]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge tag 'for-linus-5.11-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 unsigned char *sense_buffer)
69 {
70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 sense_buffer);
72 }
73
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 gfp_t gfp_mask, int numa_node)
76 {
77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 gfp_mask, numa_node);
79 }
80
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 struct kmem_cache *cache;
84 int ret = 0;
85
86 mutex_lock(&scsi_sense_cache_mutex);
87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 if (cache)
89 goto exit;
90
91 if (shost->unchecked_isa_dma) {
92 scsi_sense_isadma_cache =
93 kmem_cache_create("scsi_sense_cache(DMA)",
94 SCSI_SENSE_BUFFERSIZE, 0,
95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 if (!scsi_sense_isadma_cache)
97 ret = -ENOMEM;
98 } else {
99 scsi_sense_cache =
100 kmem_cache_create_usercopy("scsi_sense_cache",
101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 0, SCSI_SENSE_BUFFERSIZE, NULL);
103 if (!scsi_sense_cache)
104 ret = -ENOMEM;
105 }
106 exit:
107 mutex_unlock(&scsi_sense_cache_mutex);
108 return ret;
109 }
110
111 /*
112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113 * not change behaviour from the previous unplug mechanism, experimentation
114 * may prove this needs changing.
115 */
116 #define SCSI_QUEUE_DELAY 3
117
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 struct Scsi_Host *host = cmd->device->host;
122 struct scsi_device *device = cmd->device;
123 struct scsi_target *starget = scsi_target(device);
124
125 /*
126 * Set the appropriate busy bit for the device/host.
127 *
128 * If the host/device isn't busy, assume that something actually
129 * completed, and that we should be able to queue a command now.
130 *
131 * Note that the prior mid-layer assumption that any host could
132 * always queue at least one command is now broken. The mid-layer
133 * will implement a user specifiable stall (see
134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 * if a command is requeued with no other commands outstanding
136 * either for the device or for the host.
137 */
138 switch (reason) {
139 case SCSI_MLQUEUE_HOST_BUSY:
140 atomic_set(&host->host_blocked, host->max_host_blocked);
141 break;
142 case SCSI_MLQUEUE_DEVICE_BUSY:
143 case SCSI_MLQUEUE_EH_RETRY:
144 atomic_set(&device->device_blocked,
145 device->max_device_blocked);
146 break;
147 case SCSI_MLQUEUE_TARGET_BUSY:
148 atomic_set(&starget->target_blocked,
149 starget->max_target_blocked);
150 break;
151 }
152 }
153
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 if (cmd->request->rq_flags & RQF_DONTPREP) {
157 cmd->request->rq_flags &= ~RQF_DONTPREP;
158 scsi_mq_uninit_cmd(cmd);
159 } else {
160 WARN_ON_ONCE(true);
161 }
162 blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166 * __scsi_queue_insert - private queue insertion
167 * @cmd: The SCSI command being requeued
168 * @reason: The reason for the requeue
169 * @unbusy: Whether the queue should be unbusied
170 *
171 * This is a private queue insertion. The public interface
172 * scsi_queue_insert() always assumes the queue should be unbusied
173 * because it's always called before the completion. This function is
174 * for a requeue after completion, which should only occur in this
175 * file.
176 */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 struct scsi_device *device = cmd->device;
180
181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 "Inserting command %p into mlqueue\n", cmd));
183
184 scsi_set_blocked(cmd, reason);
185
186 /*
187 * Decrement the counters, since these commands are no longer
188 * active on the host/device.
189 */
190 if (unbusy)
191 scsi_device_unbusy(device, cmd);
192
193 /*
194 * Requeue this command. It will go before all other commands
195 * that are already in the queue. Schedule requeue work under
196 * lock such that the kblockd_schedule_work() call happens
197 * before blk_cleanup_queue() finishes.
198 */
199 cmd->result = 0;
200
201 blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205 * scsi_queue_insert - Reinsert a command in the queue.
206 * @cmd: command that we are adding to queue.
207 * @reason: why we are inserting command to queue.
208 *
209 * We do this for one of two cases. Either the host is busy and it cannot accept
210 * any more commands for the time being, or the device returned QUEUE_FULL and
211 * can accept no more commands.
212 *
213 * Context: This could be called either from an interrupt context or a normal
214 * process context.
215 */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223 * __scsi_execute - insert request and wait for the result
224 * @sdev: scsi device
225 * @cmd: scsi command
226 * @data_direction: data direction
227 * @buffer: data buffer
228 * @bufflen: len of buffer
229 * @sense: optional sense buffer
230 * @sshdr: optional decoded sense header
231 * @timeout: request timeout in seconds
232 * @retries: number of times to retry request
233 * @flags: flags for ->cmd_flags
234 * @rq_flags: flags for ->rq_flags
235 * @resid: optional residual length
236 *
237 * Returns the scsi_cmnd result field if a command was executed, or a negative
238 * Linux error code if we didn't get that far.
239 */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 int data_direction, void *buffer, unsigned bufflen,
242 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 int *resid)
245 {
246 struct request *req;
247 struct scsi_request *rq;
248 int ret = DRIVER_ERROR << 24;
249
250 req = blk_get_request(sdev->request_queue,
251 data_direction == DMA_TO_DEVICE ?
252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254 if (IS_ERR(req))
255 return ret;
256 rq = scsi_req(req);
257
258 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
259 buffer, bufflen, GFP_NOIO))
260 goto out;
261
262 rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 memcpy(rq->cmd, cmd, rq->cmd_len);
264 rq->retries = retries;
265 req->timeout = timeout;
266 req->cmd_flags |= flags;
267 req->rq_flags |= rq_flags | RQF_QUIET;
268
269 /*
270 * head injection *required* here otherwise quiesce won't work
271 */
272 blk_execute_rq(req->q, NULL, req, 1);
273
274 /*
275 * Some devices (USB mass-storage in particular) may transfer
276 * garbage data together with a residue indicating that the data
277 * is invalid. Prevent the garbage from being misinterpreted
278 * and prevent security leaks by zeroing out the excess data.
279 */
280 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282
283 if (resid)
284 *resid = rq->resid_len;
285 if (sense && rq->sense_len)
286 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 if (sshdr)
288 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 ret = rq->result;
290 out:
291 blk_put_request(req);
292
293 return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296
297 /*
298 * Wake up the error handler if necessary. Avoid as follows that the error
299 * handler is not woken up if host in-flight requests number ==
300 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301 * with an RCU read lock in this function to ensure that this function in
302 * its entirety either finishes before scsi_eh_scmd_add() increases the
303 * host_failed counter or that it notices the shost state change made by
304 * scsi_eh_scmd_add().
305 */
306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308 unsigned long flags;
309
310 rcu_read_lock();
311 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312 if (unlikely(scsi_host_in_recovery(shost))) {
313 spin_lock_irqsave(shost->host_lock, flags);
314 if (shost->host_failed || shost->host_eh_scheduled)
315 scsi_eh_wakeup(shost);
316 spin_unlock_irqrestore(shost->host_lock, flags);
317 }
318 rcu_read_unlock();
319 }
320
321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323 struct Scsi_Host *shost = sdev->host;
324 struct scsi_target *starget = scsi_target(sdev);
325
326 scsi_dec_host_busy(shost, cmd);
327
328 if (starget->can_queue > 0)
329 atomic_dec(&starget->target_busy);
330
331 atomic_dec(&sdev->device_busy);
332 }
333
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336 blk_mq_run_hw_queues(q, false);
337 }
338
339 /*
340 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341 * and call blk_run_queue for all the scsi_devices on the target -
342 * including current_sdev first.
343 *
344 * Called with *no* scsi locks held.
345 */
346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348 struct Scsi_Host *shost = current_sdev->host;
349 struct scsi_device *sdev, *tmp;
350 struct scsi_target *starget = scsi_target(current_sdev);
351 unsigned long flags;
352
353 spin_lock_irqsave(shost->host_lock, flags);
354 starget->starget_sdev_user = NULL;
355 spin_unlock_irqrestore(shost->host_lock, flags);
356
357 /*
358 * Call blk_run_queue for all LUNs on the target, starting with
359 * current_sdev. We race with others (to set starget_sdev_user),
360 * but in most cases, we will be first. Ideally, each LU on the
361 * target would get some limited time or requests on the target.
362 */
363 scsi_kick_queue(current_sdev->request_queue);
364
365 spin_lock_irqsave(shost->host_lock, flags);
366 if (starget->starget_sdev_user)
367 goto out;
368 list_for_each_entry_safe(sdev, tmp, &starget->devices,
369 same_target_siblings) {
370 if (sdev == current_sdev)
371 continue;
372 if (scsi_device_get(sdev))
373 continue;
374
375 spin_unlock_irqrestore(shost->host_lock, flags);
376 scsi_kick_queue(sdev->request_queue);
377 spin_lock_irqsave(shost->host_lock, flags);
378
379 scsi_device_put(sdev);
380 }
381 out:
382 spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384
385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388 return true;
389 if (atomic_read(&sdev->device_blocked) > 0)
390 return true;
391 return false;
392 }
393
394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396 if (starget->can_queue > 0) {
397 if (atomic_read(&starget->target_busy) >= starget->can_queue)
398 return true;
399 if (atomic_read(&starget->target_blocked) > 0)
400 return true;
401 }
402 return false;
403 }
404
405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407 if (atomic_read(&shost->host_blocked) > 0)
408 return true;
409 if (shost->host_self_blocked)
410 return true;
411 return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 LIST_HEAD(starved_list);
417 struct scsi_device *sdev;
418 unsigned long flags;
419
420 spin_lock_irqsave(shost->host_lock, flags);
421 list_splice_init(&shost->starved_list, &starved_list);
422
423 while (!list_empty(&starved_list)) {
424 struct request_queue *slq;
425
426 /*
427 * As long as shost is accepting commands and we have
428 * starved queues, call blk_run_queue. scsi_request_fn
429 * drops the queue_lock and can add us back to the
430 * starved_list.
431 *
432 * host_lock protects the starved_list and starved_entry.
433 * scsi_request_fn must get the host_lock before checking
434 * or modifying starved_list or starved_entry.
435 */
436 if (scsi_host_is_busy(shost))
437 break;
438
439 sdev = list_entry(starved_list.next,
440 struct scsi_device, starved_entry);
441 list_del_init(&sdev->starved_entry);
442 if (scsi_target_is_busy(scsi_target(sdev))) {
443 list_move_tail(&sdev->starved_entry,
444 &shost->starved_list);
445 continue;
446 }
447
448 /*
449 * Once we drop the host lock, a racing scsi_remove_device()
450 * call may remove the sdev from the starved list and destroy
451 * it and the queue. Mitigate by taking a reference to the
452 * queue and never touching the sdev again after we drop the
453 * host lock. Note: if __scsi_remove_device() invokes
454 * blk_cleanup_queue() before the queue is run from this
455 * function then blk_run_queue() will return immediately since
456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 */
458 slq = sdev->request_queue;
459 if (!blk_get_queue(slq))
460 continue;
461 spin_unlock_irqrestore(shost->host_lock, flags);
462
463 scsi_kick_queue(slq);
464 blk_put_queue(slq);
465
466 spin_lock_irqsave(shost->host_lock, flags);
467 }
468 /* put any unprocessed entries back */
469 list_splice(&starved_list, &shost->starved_list);
470 spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /**
474 * scsi_run_queue - Select a proper request queue to serve next.
475 * @q: last request's queue
476 *
477 * The previous command was completely finished, start a new one if possible.
478 */
479 static void scsi_run_queue(struct request_queue *q)
480 {
481 struct scsi_device *sdev = q->queuedata;
482
483 if (scsi_target(sdev)->single_lun)
484 scsi_single_lun_run(sdev);
485 if (!list_empty(&sdev->host->starved_list))
486 scsi_starved_list_run(sdev->host);
487
488 blk_mq_run_hw_queues(q, false);
489 }
490
491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493 struct scsi_device *sdev;
494 struct request_queue *q;
495
496 sdev = container_of(work, struct scsi_device, requeue_work);
497 q = sdev->request_queue;
498 scsi_run_queue(q);
499 }
500
501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503 struct scsi_device *sdev;
504
505 shost_for_each_device(sdev, shost)
506 scsi_run_queue(sdev->request_queue);
507 }
508
509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511 if (!blk_rq_is_passthrough(cmd->request)) {
512 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513
514 if (drv->uninit_command)
515 drv->uninit_command(cmd);
516 }
517 }
518
519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521 if (cmd->sdb.table.nents)
522 sg_free_table_chained(&cmd->sdb.table,
523 SCSI_INLINE_SG_CNT);
524 if (scsi_prot_sg_count(cmd))
525 sg_free_table_chained(&cmd->prot_sdb->table,
526 SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529
530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532 scsi_free_sgtables(cmd);
533 scsi_uninit_cmd(cmd);
534 }
535
536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538 if (scsi_target(sdev)->single_lun ||
539 !list_empty(&sdev->host->starved_list)) {
540 kblockd_schedule_work(&sdev->requeue_work);
541 } else {
542 /*
543 * smp_mb() present in sbitmap_queue_clear() or implied in
544 * .end_io is for ordering writing .device_busy in
545 * scsi_device_unbusy() and reading sdev->restarts.
546 */
547 int old = atomic_read(&sdev->restarts);
548
549 /*
550 * ->restarts has to be kept as non-zero if new budget
551 * contention occurs.
552 *
553 * No need to run queue when either another re-run
554 * queue wins in updating ->restarts or a new budget
555 * contention occurs.
556 */
557 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558 blk_mq_run_hw_queues(sdev->request_queue, true);
559 }
560 }
561
562 /* Returns false when no more bytes to process, true if there are more */
563 static bool scsi_end_request(struct request *req, blk_status_t error,
564 unsigned int bytes)
565 {
566 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567 struct scsi_device *sdev = cmd->device;
568 struct request_queue *q = sdev->request_queue;
569
570 if (blk_update_request(req, error, bytes))
571 return true;
572
573 if (blk_queue_add_random(q))
574 add_disk_randomness(req->rq_disk);
575
576 if (!blk_rq_is_scsi(req)) {
577 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578 cmd->flags &= ~SCMD_INITIALIZED;
579 }
580
581 /*
582 * Calling rcu_barrier() is not necessary here because the
583 * SCSI error handler guarantees that the function called by
584 * call_rcu() has been called before scsi_end_request() is
585 * called.
586 */
587 destroy_rcu_head(&cmd->rcu);
588
589 /*
590 * In the MQ case the command gets freed by __blk_mq_end_request,
591 * so we have to do all cleanup that depends on it earlier.
592 *
593 * We also can't kick the queues from irq context, so we
594 * will have to defer it to a workqueue.
595 */
596 scsi_mq_uninit_cmd(cmd);
597
598 /*
599 * queue is still alive, so grab the ref for preventing it
600 * from being cleaned up during running queue.
601 */
602 percpu_ref_get(&q->q_usage_counter);
603
604 __blk_mq_end_request(req, error);
605
606 scsi_run_queue_async(sdev);
607
608 percpu_ref_put(&q->q_usage_counter);
609 return false;
610 }
611
612 /**
613 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614 * @cmd: SCSI command
615 * @result: scsi error code
616 *
617 * Translate a SCSI result code into a blk_status_t value. May reset the host
618 * byte of @cmd->result.
619 */
620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622 switch (host_byte(result)) {
623 case DID_OK:
624 /*
625 * Also check the other bytes than the status byte in result
626 * to handle the case when a SCSI LLD sets result to
627 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628 */
629 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630 return BLK_STS_OK;
631 return BLK_STS_IOERR;
632 case DID_TRANSPORT_FAILFAST:
633 return BLK_STS_TRANSPORT;
634 case DID_TARGET_FAILURE:
635 set_host_byte(cmd, DID_OK);
636 return BLK_STS_TARGET;
637 case DID_NEXUS_FAILURE:
638 set_host_byte(cmd, DID_OK);
639 return BLK_STS_NEXUS;
640 case DID_ALLOC_FAILURE:
641 set_host_byte(cmd, DID_OK);
642 return BLK_STS_NOSPC;
643 case DID_MEDIUM_ERROR:
644 set_host_byte(cmd, DID_OK);
645 return BLK_STS_MEDIUM;
646 default:
647 return BLK_STS_IOERR;
648 }
649 }
650
651 /* Helper for scsi_io_completion() when "reprep" action required. */
652 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
653 struct request_queue *q)
654 {
655 /* A new command will be prepared and issued. */
656 scsi_mq_requeue_cmd(cmd);
657 }
658
659 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
660 {
661 struct request *req = cmd->request;
662 unsigned long wait_for;
663
664 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
665 return false;
666
667 wait_for = (cmd->allowed + 1) * req->timeout;
668 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
669 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
670 wait_for/HZ);
671 return true;
672 }
673 return false;
674 }
675
676 /* Helper for scsi_io_completion() when special action required. */
677 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
678 {
679 struct request_queue *q = cmd->device->request_queue;
680 struct request *req = cmd->request;
681 int level = 0;
682 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
683 ACTION_DELAYED_RETRY} action;
684 struct scsi_sense_hdr sshdr;
685 bool sense_valid;
686 bool sense_current = true; /* false implies "deferred sense" */
687 blk_status_t blk_stat;
688
689 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
690 if (sense_valid)
691 sense_current = !scsi_sense_is_deferred(&sshdr);
692
693 blk_stat = scsi_result_to_blk_status(cmd, result);
694
695 if (host_byte(result) == DID_RESET) {
696 /* Third party bus reset or reset for error recovery
697 * reasons. Just retry the command and see what
698 * happens.
699 */
700 action = ACTION_RETRY;
701 } else if (sense_valid && sense_current) {
702 switch (sshdr.sense_key) {
703 case UNIT_ATTENTION:
704 if (cmd->device->removable) {
705 /* Detected disc change. Set a bit
706 * and quietly refuse further access.
707 */
708 cmd->device->changed = 1;
709 action = ACTION_FAIL;
710 } else {
711 /* Must have been a power glitch, or a
712 * bus reset. Could not have been a
713 * media change, so we just retry the
714 * command and see what happens.
715 */
716 action = ACTION_RETRY;
717 }
718 break;
719 case ILLEGAL_REQUEST:
720 /* If we had an ILLEGAL REQUEST returned, then
721 * we may have performed an unsupported
722 * command. The only thing this should be
723 * would be a ten byte read where only a six
724 * byte read was supported. Also, on a system
725 * where READ CAPACITY failed, we may have
726 * read past the end of the disk.
727 */
728 if ((cmd->device->use_10_for_rw &&
729 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
730 (cmd->cmnd[0] == READ_10 ||
731 cmd->cmnd[0] == WRITE_10)) {
732 /* This will issue a new 6-byte command. */
733 cmd->device->use_10_for_rw = 0;
734 action = ACTION_REPREP;
735 } else if (sshdr.asc == 0x10) /* DIX */ {
736 action = ACTION_FAIL;
737 blk_stat = BLK_STS_PROTECTION;
738 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
739 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
740 action = ACTION_FAIL;
741 blk_stat = BLK_STS_TARGET;
742 } else
743 action = ACTION_FAIL;
744 break;
745 case ABORTED_COMMAND:
746 action = ACTION_FAIL;
747 if (sshdr.asc == 0x10) /* DIF */
748 blk_stat = BLK_STS_PROTECTION;
749 break;
750 case NOT_READY:
751 /* If the device is in the process of becoming
752 * ready, or has a temporary blockage, retry.
753 */
754 if (sshdr.asc == 0x04) {
755 switch (sshdr.ascq) {
756 case 0x01: /* becoming ready */
757 case 0x04: /* format in progress */
758 case 0x05: /* rebuild in progress */
759 case 0x06: /* recalculation in progress */
760 case 0x07: /* operation in progress */
761 case 0x08: /* Long write in progress */
762 case 0x09: /* self test in progress */
763 case 0x14: /* space allocation in progress */
764 case 0x1a: /* start stop unit in progress */
765 case 0x1b: /* sanitize in progress */
766 case 0x1d: /* configuration in progress */
767 case 0x24: /* depopulation in progress */
768 action = ACTION_DELAYED_RETRY;
769 break;
770 case 0x0a: /* ALUA state transition */
771 blk_stat = BLK_STS_AGAIN;
772 fallthrough;
773 default:
774 action = ACTION_FAIL;
775 break;
776 }
777 } else
778 action = ACTION_FAIL;
779 break;
780 case VOLUME_OVERFLOW:
781 /* See SSC3rXX or current. */
782 action = ACTION_FAIL;
783 break;
784 case DATA_PROTECT:
785 action = ACTION_FAIL;
786 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
787 (sshdr.asc == 0x55 &&
788 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
789 /* Insufficient zone resources */
790 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
791 }
792 break;
793 default:
794 action = ACTION_FAIL;
795 break;
796 }
797 } else
798 action = ACTION_FAIL;
799
800 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
801 action = ACTION_FAIL;
802
803 switch (action) {
804 case ACTION_FAIL:
805 /* Give up and fail the remainder of the request */
806 if (!(req->rq_flags & RQF_QUIET)) {
807 static DEFINE_RATELIMIT_STATE(_rs,
808 DEFAULT_RATELIMIT_INTERVAL,
809 DEFAULT_RATELIMIT_BURST);
810
811 if (unlikely(scsi_logging_level))
812 level =
813 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
814 SCSI_LOG_MLCOMPLETE_BITS);
815
816 /*
817 * if logging is enabled the failure will be printed
818 * in scsi_log_completion(), so avoid duplicate messages
819 */
820 if (!level && __ratelimit(&_rs)) {
821 scsi_print_result(cmd, NULL, FAILED);
822 if (driver_byte(result) == DRIVER_SENSE)
823 scsi_print_sense(cmd);
824 scsi_print_command(cmd);
825 }
826 }
827 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
828 return;
829 fallthrough;
830 case ACTION_REPREP:
831 scsi_io_completion_reprep(cmd, q);
832 break;
833 case ACTION_RETRY:
834 /* Retry the same command immediately */
835 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
836 break;
837 case ACTION_DELAYED_RETRY:
838 /* Retry the same command after a delay */
839 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
840 break;
841 }
842 }
843
844 /*
845 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
846 * new result that may suppress further error checking. Also modifies
847 * *blk_statp in some cases.
848 */
849 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
850 blk_status_t *blk_statp)
851 {
852 bool sense_valid;
853 bool sense_current = true; /* false implies "deferred sense" */
854 struct request *req = cmd->request;
855 struct scsi_sense_hdr sshdr;
856
857 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
858 if (sense_valid)
859 sense_current = !scsi_sense_is_deferred(&sshdr);
860
861 if (blk_rq_is_passthrough(req)) {
862 if (sense_valid) {
863 /*
864 * SG_IO wants current and deferred errors
865 */
866 scsi_req(req)->sense_len =
867 min(8 + cmd->sense_buffer[7],
868 SCSI_SENSE_BUFFERSIZE);
869 }
870 if (sense_current)
871 *blk_statp = scsi_result_to_blk_status(cmd, result);
872 } else if (blk_rq_bytes(req) == 0 && sense_current) {
873 /*
874 * Flush commands do not transfers any data, and thus cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets *blk_statp explicitly for the problem case.
877 */
878 *blk_statp = scsi_result_to_blk_status(cmd, result);
879 }
880 /*
881 * Recovered errors need reporting, but they're always treated as
882 * success, so fiddle the result code here. For passthrough requests
883 * we already took a copy of the original into sreq->result which
884 * is what gets returned to the user
885 */
886 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
887 bool do_print = true;
888 /*
889 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
890 * skip print since caller wants ATA registers. Only occurs
891 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
892 */
893 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
894 do_print = false;
895 else if (req->rq_flags & RQF_QUIET)
896 do_print = false;
897 if (do_print)
898 scsi_print_sense(cmd);
899 result = 0;
900 /* for passthrough, *blk_statp may be set */
901 *blk_statp = BLK_STS_OK;
902 }
903 /*
904 * Another corner case: the SCSI status byte is non-zero but 'good'.
905 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
906 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
907 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
908 * intermediate statuses (both obsolete in SAM-4) as good.
909 */
910 if (status_byte(result) && scsi_status_is_good(result)) {
911 result = 0;
912 *blk_statp = BLK_STS_OK;
913 }
914 return result;
915 }
916
917 /**
918 * scsi_io_completion - Completion processing for SCSI commands.
919 * @cmd: command that is finished.
920 * @good_bytes: number of processed bytes.
921 *
922 * We will finish off the specified number of sectors. If we are done, the
923 * command block will be released and the queue function will be goosed. If we
924 * are not done then we have to figure out what to do next:
925 *
926 * a) We can call scsi_io_completion_reprep(). The request will be
927 * unprepared and put back on the queue. Then a new command will
928 * be created for it. This should be used if we made forward
929 * progress, or if we want to switch from READ(10) to READ(6) for
930 * example.
931 *
932 * b) We can call scsi_io_completion_action(). The request will be
933 * put back on the queue and retried using the same command as
934 * before, possibly after a delay.
935 *
936 * c) We can call scsi_end_request() with blk_stat other than
937 * BLK_STS_OK, to fail the remainder of the request.
938 */
939 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
940 {
941 int result = cmd->result;
942 struct request_queue *q = cmd->device->request_queue;
943 struct request *req = cmd->request;
944 blk_status_t blk_stat = BLK_STS_OK;
945
946 if (unlikely(result)) /* a nz result may or may not be an error */
947 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
948
949 if (unlikely(blk_rq_is_passthrough(req))) {
950 /*
951 * scsi_result_to_blk_status may have reset the host_byte
952 */
953 scsi_req(req)->result = cmd->result;
954 }
955
956 /*
957 * Next deal with any sectors which we were able to correctly
958 * handle.
959 */
960 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
961 "%u sectors total, %d bytes done.\n",
962 blk_rq_sectors(req), good_bytes));
963
964 /*
965 * Failed, zero length commands always need to drop down
966 * to retry code. Fast path should return in this block.
967 */
968 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
969 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
970 return; /* no bytes remaining */
971 }
972
973 /* Kill remainder if no retries. */
974 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
975 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
976 WARN_ONCE(true,
977 "Bytes remaining after failed, no-retry command");
978 return;
979 }
980
981 /*
982 * If there had been no error, but we have leftover bytes in the
983 * requeues just queue the command up again.
984 */
985 if (likely(result == 0))
986 scsi_io_completion_reprep(cmd, q);
987 else
988 scsi_io_completion_action(cmd, result);
989 }
990
991 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
992 struct request *rq)
993 {
994 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
995 !op_is_write(req_op(rq)) &&
996 sdev->host->hostt->dma_need_drain(rq);
997 }
998
999 /**
1000 * scsi_alloc_sgtables - allocate S/G tables for a command
1001 * @cmd: command descriptor we wish to initialize
1002 *
1003 * Returns:
1004 * * BLK_STS_OK - on success
1005 * * BLK_STS_RESOURCE - if the failure is retryable
1006 * * BLK_STS_IOERR - if the failure is fatal
1007 */
1008 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1009 {
1010 struct scsi_device *sdev = cmd->device;
1011 struct request *rq = cmd->request;
1012 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1013 struct scatterlist *last_sg = NULL;
1014 blk_status_t ret;
1015 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1016 int count;
1017
1018 if (WARN_ON_ONCE(!nr_segs))
1019 return BLK_STS_IOERR;
1020
1021 /*
1022 * Make sure there is space for the drain. The driver must adjust
1023 * max_hw_segments to be prepared for this.
1024 */
1025 if (need_drain)
1026 nr_segs++;
1027
1028 /*
1029 * If sg table allocation fails, requeue request later.
1030 */
1031 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1032 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1033 return BLK_STS_RESOURCE;
1034
1035 /*
1036 * Next, walk the list, and fill in the addresses and sizes of
1037 * each segment.
1038 */
1039 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1040
1041 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1042 unsigned int pad_len =
1043 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1044
1045 last_sg->length += pad_len;
1046 cmd->extra_len += pad_len;
1047 }
1048
1049 if (need_drain) {
1050 sg_unmark_end(last_sg);
1051 last_sg = sg_next(last_sg);
1052 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1053 sg_mark_end(last_sg);
1054
1055 cmd->extra_len += sdev->dma_drain_len;
1056 count++;
1057 }
1058
1059 BUG_ON(count > cmd->sdb.table.nents);
1060 cmd->sdb.table.nents = count;
1061 cmd->sdb.length = blk_rq_payload_bytes(rq);
1062
1063 if (blk_integrity_rq(rq)) {
1064 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065 int ivecs;
1066
1067 if (WARN_ON_ONCE(!prot_sdb)) {
1068 /*
1069 * This can happen if someone (e.g. multipath)
1070 * queues a command to a device on an adapter
1071 * that does not support DIX.
1072 */
1073 ret = BLK_STS_IOERR;
1074 goto out_free_sgtables;
1075 }
1076
1077 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1078
1079 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1080 prot_sdb->table.sgl,
1081 SCSI_INLINE_PROT_SG_CNT)) {
1082 ret = BLK_STS_RESOURCE;
1083 goto out_free_sgtables;
1084 }
1085
1086 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087 prot_sdb->table.sgl);
1088 BUG_ON(count > ivecs);
1089 BUG_ON(count > queue_max_integrity_segments(rq->q));
1090
1091 cmd->prot_sdb = prot_sdb;
1092 cmd->prot_sdb->table.nents = count;
1093 }
1094
1095 return BLK_STS_OK;
1096 out_free_sgtables:
1097 scsi_free_sgtables(cmd);
1098 return ret;
1099 }
1100 EXPORT_SYMBOL(scsi_alloc_sgtables);
1101
1102 /**
1103 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1104 * @rq: Request associated with the SCSI command to be initialized.
1105 *
1106 * This function initializes the members of struct scsi_cmnd that must be
1107 * initialized before request processing starts and that won't be
1108 * reinitialized if a SCSI command is requeued.
1109 *
1110 * Called from inside blk_get_request() for pass-through requests and from
1111 * inside scsi_init_command() for filesystem requests.
1112 */
1113 static void scsi_initialize_rq(struct request *rq)
1114 {
1115 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1116
1117 scsi_req_init(&cmd->req);
1118 init_rcu_head(&cmd->rcu);
1119 cmd->jiffies_at_alloc = jiffies;
1120 cmd->retries = 0;
1121 }
1122
1123 /*
1124 * Only called when the request isn't completed by SCSI, and not freed by
1125 * SCSI
1126 */
1127 static void scsi_cleanup_rq(struct request *rq)
1128 {
1129 if (rq->rq_flags & RQF_DONTPREP) {
1130 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1131 rq->rq_flags &= ~RQF_DONTPREP;
1132 }
1133 }
1134
1135 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1136 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1137 {
1138 void *buf = cmd->sense_buffer;
1139 void *prot = cmd->prot_sdb;
1140 struct request *rq = blk_mq_rq_from_pdu(cmd);
1141 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1142 unsigned long jiffies_at_alloc;
1143 int retries, to_clear;
1144 bool in_flight;
1145
1146 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1147 flags |= SCMD_INITIALIZED;
1148 scsi_initialize_rq(rq);
1149 }
1150
1151 jiffies_at_alloc = cmd->jiffies_at_alloc;
1152 retries = cmd->retries;
1153 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1154 /*
1155 * Zero out the cmd, except for the embedded scsi_request. Only clear
1156 * the driver-private command data if the LLD does not supply a
1157 * function to initialize that data.
1158 */
1159 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1160 if (!dev->host->hostt->init_cmd_priv)
1161 to_clear += dev->host->hostt->cmd_size;
1162 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1163
1164 cmd->device = dev;
1165 cmd->sense_buffer = buf;
1166 cmd->prot_sdb = prot;
1167 cmd->flags = flags;
1168 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 cmd->jiffies_at_alloc = jiffies_at_alloc;
1170 cmd->retries = retries;
1171 if (in_flight)
1172 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1173
1174 }
1175
1176 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1177 struct request *req)
1178 {
1179 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1180
1181 /*
1182 * Passthrough requests may transfer data, in which case they must
1183 * a bio attached to them. Or they might contain a SCSI command
1184 * that does not transfer data, in which case they may optionally
1185 * submit a request without an attached bio.
1186 */
1187 if (req->bio) {
1188 blk_status_t ret = scsi_alloc_sgtables(cmd);
1189 if (unlikely(ret != BLK_STS_OK))
1190 return ret;
1191 } else {
1192 BUG_ON(blk_rq_bytes(req));
1193
1194 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1195 }
1196
1197 cmd->cmd_len = scsi_req(req)->cmd_len;
1198 if (cmd->cmd_len == 0)
1199 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1200 cmd->cmnd = scsi_req(req)->cmd;
1201 cmd->transfersize = blk_rq_bytes(req);
1202 cmd->allowed = scsi_req(req)->retries;
1203 return BLK_STS_OK;
1204 }
1205
1206 static blk_status_t
1207 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1208 {
1209 switch (sdev->sdev_state) {
1210 case SDEV_CREATED:
1211 return BLK_STS_OK;
1212 case SDEV_OFFLINE:
1213 case SDEV_TRANSPORT_OFFLINE:
1214 /*
1215 * If the device is offline we refuse to process any
1216 * commands. The device must be brought online
1217 * before trying any recovery commands.
1218 */
1219 if (!sdev->offline_already) {
1220 sdev->offline_already = true;
1221 sdev_printk(KERN_ERR, sdev,
1222 "rejecting I/O to offline device\n");
1223 }
1224 return BLK_STS_IOERR;
1225 case SDEV_DEL:
1226 /*
1227 * If the device is fully deleted, we refuse to
1228 * process any commands as well.
1229 */
1230 sdev_printk(KERN_ERR, sdev,
1231 "rejecting I/O to dead device\n");
1232 return BLK_STS_IOERR;
1233 case SDEV_BLOCK:
1234 case SDEV_CREATED_BLOCK:
1235 return BLK_STS_RESOURCE;
1236 case SDEV_QUIESCE:
1237 /*
1238 * If the device is blocked we only accept power management
1239 * commands.
1240 */
1241 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1242 return BLK_STS_RESOURCE;
1243 return BLK_STS_OK;
1244 default:
1245 /*
1246 * For any other not fully online state we only allow
1247 * power management commands.
1248 */
1249 if (req && !(req->rq_flags & RQF_PM))
1250 return BLK_STS_IOERR;
1251 return BLK_STS_OK;
1252 }
1253 }
1254
1255 /*
1256 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1257 * return 0.
1258 *
1259 * Called with the queue_lock held.
1260 */
1261 static inline int scsi_dev_queue_ready(struct request_queue *q,
1262 struct scsi_device *sdev)
1263 {
1264 unsigned int busy;
1265
1266 busy = atomic_inc_return(&sdev->device_busy) - 1;
1267 if (atomic_read(&sdev->device_blocked)) {
1268 if (busy)
1269 goto out_dec;
1270
1271 /*
1272 * unblock after device_blocked iterates to zero
1273 */
1274 if (atomic_dec_return(&sdev->device_blocked) > 0)
1275 goto out_dec;
1276 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1277 "unblocking device at zero depth\n"));
1278 }
1279
1280 if (busy >= sdev->queue_depth)
1281 goto out_dec;
1282
1283 return 1;
1284 out_dec:
1285 atomic_dec(&sdev->device_busy);
1286 return 0;
1287 }
1288
1289 /*
1290 * scsi_target_queue_ready: checks if there we can send commands to target
1291 * @sdev: scsi device on starget to check.
1292 */
1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1294 struct scsi_device *sdev)
1295 {
1296 struct scsi_target *starget = scsi_target(sdev);
1297 unsigned int busy;
1298
1299 if (starget->single_lun) {
1300 spin_lock_irq(shost->host_lock);
1301 if (starget->starget_sdev_user &&
1302 starget->starget_sdev_user != sdev) {
1303 spin_unlock_irq(shost->host_lock);
1304 return 0;
1305 }
1306 starget->starget_sdev_user = sdev;
1307 spin_unlock_irq(shost->host_lock);
1308 }
1309
1310 if (starget->can_queue <= 0)
1311 return 1;
1312
1313 busy = atomic_inc_return(&starget->target_busy) - 1;
1314 if (atomic_read(&starget->target_blocked) > 0) {
1315 if (busy)
1316 goto starved;
1317
1318 /*
1319 * unblock after target_blocked iterates to zero
1320 */
1321 if (atomic_dec_return(&starget->target_blocked) > 0)
1322 goto out_dec;
1323
1324 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1325 "unblocking target at zero depth\n"));
1326 }
1327
1328 if (busy >= starget->can_queue)
1329 goto starved;
1330
1331 return 1;
1332
1333 starved:
1334 spin_lock_irq(shost->host_lock);
1335 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1336 spin_unlock_irq(shost->host_lock);
1337 out_dec:
1338 if (starget->can_queue > 0)
1339 atomic_dec(&starget->target_busy);
1340 return 0;
1341 }
1342
1343 /*
1344 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1345 * return 0. We must end up running the queue again whenever 0 is
1346 * returned, else IO can hang.
1347 */
1348 static inline int scsi_host_queue_ready(struct request_queue *q,
1349 struct Scsi_Host *shost,
1350 struct scsi_device *sdev,
1351 struct scsi_cmnd *cmd)
1352 {
1353 if (scsi_host_in_recovery(shost))
1354 return 0;
1355
1356 if (atomic_read(&shost->host_blocked) > 0) {
1357 if (scsi_host_busy(shost) > 0)
1358 goto starved;
1359
1360 /*
1361 * unblock after host_blocked iterates to zero
1362 */
1363 if (atomic_dec_return(&shost->host_blocked) > 0)
1364 goto out_dec;
1365
1366 SCSI_LOG_MLQUEUE(3,
1367 shost_printk(KERN_INFO, shost,
1368 "unblocking host at zero depth\n"));
1369 }
1370
1371 if (shost->host_self_blocked)
1372 goto starved;
1373
1374 /* We're OK to process the command, so we can't be starved */
1375 if (!list_empty(&sdev->starved_entry)) {
1376 spin_lock_irq(shost->host_lock);
1377 if (!list_empty(&sdev->starved_entry))
1378 list_del_init(&sdev->starved_entry);
1379 spin_unlock_irq(shost->host_lock);
1380 }
1381
1382 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1383
1384 return 1;
1385
1386 starved:
1387 spin_lock_irq(shost->host_lock);
1388 if (list_empty(&sdev->starved_entry))
1389 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1390 spin_unlock_irq(shost->host_lock);
1391 out_dec:
1392 scsi_dec_host_busy(shost, cmd);
1393 return 0;
1394 }
1395
1396 /*
1397 * Busy state exporting function for request stacking drivers.
1398 *
1399 * For efficiency, no lock is taken to check the busy state of
1400 * shost/starget/sdev, since the returned value is not guaranteed and
1401 * may be changed after request stacking drivers call the function,
1402 * regardless of taking lock or not.
1403 *
1404 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1405 * needs to return 'not busy'. Otherwise, request stacking drivers
1406 * may hold requests forever.
1407 */
1408 static bool scsi_mq_lld_busy(struct request_queue *q)
1409 {
1410 struct scsi_device *sdev = q->queuedata;
1411 struct Scsi_Host *shost;
1412
1413 if (blk_queue_dying(q))
1414 return false;
1415
1416 shost = sdev->host;
1417
1418 /*
1419 * Ignore host/starget busy state.
1420 * Since block layer does not have a concept of fairness across
1421 * multiple queues, congestion of host/starget needs to be handled
1422 * in SCSI layer.
1423 */
1424 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1425 return true;
1426
1427 return false;
1428 }
1429
1430 static void scsi_softirq_done(struct request *rq)
1431 {
1432 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1433 int disposition;
1434
1435 INIT_LIST_HEAD(&cmd->eh_entry);
1436
1437 atomic_inc(&cmd->device->iodone_cnt);
1438 if (cmd->result)
1439 atomic_inc(&cmd->device->ioerr_cnt);
1440
1441 disposition = scsi_decide_disposition(cmd);
1442 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1443 disposition = SUCCESS;
1444
1445 scsi_log_completion(cmd, disposition);
1446
1447 switch (disposition) {
1448 case SUCCESS:
1449 scsi_finish_command(cmd);
1450 break;
1451 case NEEDS_RETRY:
1452 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1453 break;
1454 case ADD_TO_MLQUEUE:
1455 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1456 break;
1457 default:
1458 scsi_eh_scmd_add(cmd);
1459 break;
1460 }
1461 }
1462
1463 /**
1464 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1465 * @cmd: command block we are dispatching.
1466 *
1467 * Return: nonzero return request was rejected and device's queue needs to be
1468 * plugged.
1469 */
1470 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1471 {
1472 struct Scsi_Host *host = cmd->device->host;
1473 int rtn = 0;
1474
1475 atomic_inc(&cmd->device->iorequest_cnt);
1476
1477 /* check if the device is still usable */
1478 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1479 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1480 * returns an immediate error upwards, and signals
1481 * that the device is no longer present */
1482 cmd->result = DID_NO_CONNECT << 16;
1483 goto done;
1484 }
1485
1486 /* Check to see if the scsi lld made this device blocked. */
1487 if (unlikely(scsi_device_blocked(cmd->device))) {
1488 /*
1489 * in blocked state, the command is just put back on
1490 * the device queue. The suspend state has already
1491 * blocked the queue so future requests should not
1492 * occur until the device transitions out of the
1493 * suspend state.
1494 */
1495 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496 "queuecommand : device blocked\n"));
1497 return SCSI_MLQUEUE_DEVICE_BUSY;
1498 }
1499
1500 /* Store the LUN value in cmnd, if needed. */
1501 if (cmd->device->lun_in_cdb)
1502 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1503 (cmd->device->lun << 5 & 0xe0);
1504
1505 scsi_log_send(cmd);
1506
1507 /*
1508 * Before we queue this command, check if the command
1509 * length exceeds what the host adapter can handle.
1510 */
1511 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1512 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1513 "queuecommand : command too long. "
1514 "cdb_size=%d host->max_cmd_len=%d\n",
1515 cmd->cmd_len, cmd->device->host->max_cmd_len));
1516 cmd->result = (DID_ABORT << 16);
1517 goto done;
1518 }
1519
1520 if (unlikely(host->shost_state == SHOST_DEL)) {
1521 cmd->result = (DID_NO_CONNECT << 16);
1522 goto done;
1523
1524 }
1525
1526 trace_scsi_dispatch_cmd_start(cmd);
1527 rtn = host->hostt->queuecommand(host, cmd);
1528 if (rtn) {
1529 trace_scsi_dispatch_cmd_error(cmd, rtn);
1530 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1531 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1532 rtn = SCSI_MLQUEUE_HOST_BUSY;
1533
1534 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1535 "queuecommand : request rejected\n"));
1536 }
1537
1538 return rtn;
1539 done:
1540 cmd->scsi_done(cmd);
1541 return 0;
1542 }
1543
1544 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1545 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1546 {
1547 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1548 sizeof(struct scatterlist);
1549 }
1550
1551 static blk_status_t scsi_prepare_cmd(struct request *req)
1552 {
1553 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1554 struct scsi_device *sdev = req->q->queuedata;
1555 struct Scsi_Host *shost = sdev->host;
1556 struct scatterlist *sg;
1557
1558 scsi_init_command(sdev, cmd);
1559
1560 cmd->request = req;
1561 cmd->tag = req->tag;
1562 cmd->prot_op = SCSI_PROT_NORMAL;
1563 if (blk_rq_bytes(req))
1564 cmd->sc_data_direction = rq_dma_dir(req);
1565 else
1566 cmd->sc_data_direction = DMA_NONE;
1567
1568 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1569 cmd->sdb.table.sgl = sg;
1570
1571 if (scsi_host_get_prot(shost)) {
1572 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1573
1574 cmd->prot_sdb->table.sgl =
1575 (struct scatterlist *)(cmd->prot_sdb + 1);
1576 }
1577
1578 /*
1579 * Special handling for passthrough commands, which don't go to the ULP
1580 * at all:
1581 */
1582 if (blk_rq_is_scsi(req))
1583 return scsi_setup_scsi_cmnd(sdev, req);
1584
1585 if (sdev->handler && sdev->handler->prep_fn) {
1586 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1587
1588 if (ret != BLK_STS_OK)
1589 return ret;
1590 }
1591
1592 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1593 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1594 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1595 }
1596
1597 static void scsi_mq_done(struct scsi_cmnd *cmd)
1598 {
1599 if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1600 return;
1601 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1602 return;
1603 trace_scsi_dispatch_cmd_done(cmd);
1604 blk_mq_complete_request(cmd->request);
1605 }
1606
1607 static void scsi_mq_put_budget(struct request_queue *q)
1608 {
1609 struct scsi_device *sdev = q->queuedata;
1610
1611 atomic_dec(&sdev->device_busy);
1612 }
1613
1614 static bool scsi_mq_get_budget(struct request_queue *q)
1615 {
1616 struct scsi_device *sdev = q->queuedata;
1617
1618 if (scsi_dev_queue_ready(q, sdev))
1619 return true;
1620
1621 atomic_inc(&sdev->restarts);
1622
1623 /*
1624 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1625 * .restarts must be incremented before .device_busy is read because the
1626 * code in scsi_run_queue_async() depends on the order of these operations.
1627 */
1628 smp_mb__after_atomic();
1629
1630 /*
1631 * If all in-flight requests originated from this LUN are completed
1632 * before reading .device_busy, sdev->device_busy will be observed as
1633 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1634 * soon. Otherwise, completion of one of these requests will observe
1635 * the .restarts flag, and the request queue will be run for handling
1636 * this request, see scsi_end_request().
1637 */
1638 if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1639 !scsi_device_blocked(sdev)))
1640 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1641 return false;
1642 }
1643
1644 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645 const struct blk_mq_queue_data *bd)
1646 {
1647 struct request *req = bd->rq;
1648 struct request_queue *q = req->q;
1649 struct scsi_device *sdev = q->queuedata;
1650 struct Scsi_Host *shost = sdev->host;
1651 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652 blk_status_t ret;
1653 int reason;
1654
1655 /*
1656 * If the device is not in running state we will reject some or all
1657 * commands.
1658 */
1659 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660 ret = scsi_device_state_check(sdev, req);
1661 if (ret != BLK_STS_OK)
1662 goto out_put_budget;
1663 }
1664
1665 ret = BLK_STS_RESOURCE;
1666 if (!scsi_target_queue_ready(shost, sdev))
1667 goto out_put_budget;
1668 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1669 goto out_dec_target_busy;
1670
1671 if (!(req->rq_flags & RQF_DONTPREP)) {
1672 ret = scsi_prepare_cmd(req);
1673 if (ret != BLK_STS_OK)
1674 goto out_dec_host_busy;
1675 req->rq_flags |= RQF_DONTPREP;
1676 } else {
1677 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678 }
1679
1680 cmd->flags &= SCMD_PRESERVED_FLAGS;
1681 if (sdev->simple_tags)
1682 cmd->flags |= SCMD_TAGGED;
1683 if (bd->last)
1684 cmd->flags |= SCMD_LAST;
1685
1686 scsi_set_resid(cmd, 0);
1687 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1688 cmd->scsi_done = scsi_mq_done;
1689
1690 blk_mq_start_request(req);
1691 reason = scsi_dispatch_cmd(cmd);
1692 if (reason) {
1693 scsi_set_blocked(cmd, reason);
1694 ret = BLK_STS_RESOURCE;
1695 goto out_dec_host_busy;
1696 }
1697
1698 return BLK_STS_OK;
1699
1700 out_dec_host_busy:
1701 scsi_dec_host_busy(shost, cmd);
1702 out_dec_target_busy:
1703 if (scsi_target(sdev)->can_queue > 0)
1704 atomic_dec(&scsi_target(sdev)->target_busy);
1705 out_put_budget:
1706 scsi_mq_put_budget(q);
1707 switch (ret) {
1708 case BLK_STS_OK:
1709 break;
1710 case BLK_STS_RESOURCE:
1711 case BLK_STS_ZONE_RESOURCE:
1712 if (scsi_device_blocked(sdev))
1713 ret = BLK_STS_DEV_RESOURCE;
1714 break;
1715 case BLK_STS_AGAIN:
1716 scsi_req(req)->result = DID_BUS_BUSY << 16;
1717 if (req->rq_flags & RQF_DONTPREP)
1718 scsi_mq_uninit_cmd(cmd);
1719 break;
1720 default:
1721 if (unlikely(!scsi_device_online(sdev)))
1722 scsi_req(req)->result = DID_NO_CONNECT << 16;
1723 else
1724 scsi_req(req)->result = DID_ERROR << 16;
1725 /*
1726 * Make sure to release all allocated resources when
1727 * we hit an error, as we will never see this command
1728 * again.
1729 */
1730 if (req->rq_flags & RQF_DONTPREP)
1731 scsi_mq_uninit_cmd(cmd);
1732 scsi_run_queue_async(sdev);
1733 break;
1734 }
1735 return ret;
1736 }
1737
1738 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1739 bool reserved)
1740 {
1741 if (reserved)
1742 return BLK_EH_RESET_TIMER;
1743 return scsi_times_out(req);
1744 }
1745
1746 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1747 unsigned int hctx_idx, unsigned int numa_node)
1748 {
1749 struct Scsi_Host *shost = set->driver_data;
1750 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1751 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1752 struct scatterlist *sg;
1753 int ret = 0;
1754
1755 if (unchecked_isa_dma)
1756 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1757 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1758 GFP_KERNEL, numa_node);
1759 if (!cmd->sense_buffer)
1760 return -ENOMEM;
1761 cmd->req.sense = cmd->sense_buffer;
1762
1763 if (scsi_host_get_prot(shost)) {
1764 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1765 shost->hostt->cmd_size;
1766 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1767 }
1768
1769 if (shost->hostt->init_cmd_priv) {
1770 ret = shost->hostt->init_cmd_priv(shost, cmd);
1771 if (ret < 0)
1772 scsi_free_sense_buffer(unchecked_isa_dma,
1773 cmd->sense_buffer);
1774 }
1775
1776 return ret;
1777 }
1778
1779 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1780 unsigned int hctx_idx)
1781 {
1782 struct Scsi_Host *shost = set->driver_data;
1783 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1784
1785 if (shost->hostt->exit_cmd_priv)
1786 shost->hostt->exit_cmd_priv(shost, cmd);
1787 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1788 cmd->sense_buffer);
1789 }
1790
1791 static int scsi_map_queues(struct blk_mq_tag_set *set)
1792 {
1793 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1794
1795 if (shost->hostt->map_queues)
1796 return shost->hostt->map_queues(shost);
1797 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1798 }
1799
1800 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1801 {
1802 struct device *dev = shost->dma_dev;
1803
1804 /*
1805 * this limit is imposed by hardware restrictions
1806 */
1807 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1808 SG_MAX_SEGMENTS));
1809
1810 if (scsi_host_prot_dma(shost)) {
1811 shost->sg_prot_tablesize =
1812 min_not_zero(shost->sg_prot_tablesize,
1813 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1814 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1815 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1816 }
1817
1818 if (dev->dma_mask) {
1819 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1820 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1821 }
1822 blk_queue_max_hw_sectors(q, shost->max_sectors);
1823 if (shost->unchecked_isa_dma)
1824 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1825 blk_queue_segment_boundary(q, shost->dma_boundary);
1826 dma_set_seg_boundary(dev, shost->dma_boundary);
1827
1828 blk_queue_max_segment_size(q, shost->max_segment_size);
1829 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1830 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1831
1832 /*
1833 * Set a reasonable default alignment: The larger of 32-byte (dword),
1834 * which is a common minimum for HBAs, and the minimum DMA alignment,
1835 * which is set by the platform.
1836 *
1837 * Devices that require a bigger alignment can increase it later.
1838 */
1839 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1840 }
1841 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1842
1843 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1844 .get_budget = scsi_mq_get_budget,
1845 .put_budget = scsi_mq_put_budget,
1846 .queue_rq = scsi_queue_rq,
1847 .complete = scsi_softirq_done,
1848 .timeout = scsi_timeout,
1849 #ifdef CONFIG_BLK_DEBUG_FS
1850 .show_rq = scsi_show_rq,
1851 #endif
1852 .init_request = scsi_mq_init_request,
1853 .exit_request = scsi_mq_exit_request,
1854 .initialize_rq_fn = scsi_initialize_rq,
1855 .cleanup_rq = scsi_cleanup_rq,
1856 .busy = scsi_mq_lld_busy,
1857 .map_queues = scsi_map_queues,
1858 };
1859
1860
1861 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1862 {
1863 struct request_queue *q = hctx->queue;
1864 struct scsi_device *sdev = q->queuedata;
1865 struct Scsi_Host *shost = sdev->host;
1866
1867 shost->hostt->commit_rqs(shost, hctx->queue_num);
1868 }
1869
1870 static const struct blk_mq_ops scsi_mq_ops = {
1871 .get_budget = scsi_mq_get_budget,
1872 .put_budget = scsi_mq_put_budget,
1873 .queue_rq = scsi_queue_rq,
1874 .commit_rqs = scsi_commit_rqs,
1875 .complete = scsi_softirq_done,
1876 .timeout = scsi_timeout,
1877 #ifdef CONFIG_BLK_DEBUG_FS
1878 .show_rq = scsi_show_rq,
1879 #endif
1880 .init_request = scsi_mq_init_request,
1881 .exit_request = scsi_mq_exit_request,
1882 .initialize_rq_fn = scsi_initialize_rq,
1883 .cleanup_rq = scsi_cleanup_rq,
1884 .busy = scsi_mq_lld_busy,
1885 .map_queues = scsi_map_queues,
1886 };
1887
1888 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1889 {
1890 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1891 if (IS_ERR(sdev->request_queue))
1892 return NULL;
1893
1894 sdev->request_queue->queuedata = sdev;
1895 __scsi_init_queue(sdev->host, sdev->request_queue);
1896 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1897 return sdev->request_queue;
1898 }
1899
1900 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1901 {
1902 unsigned int cmd_size, sgl_size;
1903 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1904
1905 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1906 scsi_mq_inline_sgl_size(shost));
1907 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1908 if (scsi_host_get_prot(shost))
1909 cmd_size += sizeof(struct scsi_data_buffer) +
1910 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1911
1912 memset(tag_set, 0, sizeof(*tag_set));
1913 if (shost->hostt->commit_rqs)
1914 tag_set->ops = &scsi_mq_ops;
1915 else
1916 tag_set->ops = &scsi_mq_ops_no_commit;
1917 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1918 tag_set->queue_depth = shost->can_queue;
1919 tag_set->cmd_size = cmd_size;
1920 tag_set->numa_node = NUMA_NO_NODE;
1921 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1922 tag_set->flags |=
1923 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1924 tag_set->driver_data = shost;
1925 if (shost->host_tagset)
1926 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1927
1928 return blk_mq_alloc_tag_set(tag_set);
1929 }
1930
1931 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1932 {
1933 blk_mq_free_tag_set(&shost->tag_set);
1934 }
1935
1936 /**
1937 * scsi_device_from_queue - return sdev associated with a request_queue
1938 * @q: The request queue to return the sdev from
1939 *
1940 * Return the sdev associated with a request queue or NULL if the
1941 * request_queue does not reference a SCSI device.
1942 */
1943 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1944 {
1945 struct scsi_device *sdev = NULL;
1946
1947 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1948 q->mq_ops == &scsi_mq_ops)
1949 sdev = q->queuedata;
1950 if (!sdev || !get_device(&sdev->sdev_gendev))
1951 sdev = NULL;
1952
1953 return sdev;
1954 }
1955
1956 /**
1957 * scsi_block_requests - Utility function used by low-level drivers to prevent
1958 * further commands from being queued to the device.
1959 * @shost: host in question
1960 *
1961 * There is no timer nor any other means by which the requests get unblocked
1962 * other than the low-level driver calling scsi_unblock_requests().
1963 */
1964 void scsi_block_requests(struct Scsi_Host *shost)
1965 {
1966 shost->host_self_blocked = 1;
1967 }
1968 EXPORT_SYMBOL(scsi_block_requests);
1969
1970 /**
1971 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1972 * further commands to be queued to the device.
1973 * @shost: host in question
1974 *
1975 * There is no timer nor any other means by which the requests get unblocked
1976 * other than the low-level driver calling scsi_unblock_requests(). This is done
1977 * as an API function so that changes to the internals of the scsi mid-layer
1978 * won't require wholesale changes to drivers that use this feature.
1979 */
1980 void scsi_unblock_requests(struct Scsi_Host *shost)
1981 {
1982 shost->host_self_blocked = 0;
1983 scsi_run_host_queues(shost);
1984 }
1985 EXPORT_SYMBOL(scsi_unblock_requests);
1986
1987 void scsi_exit_queue(void)
1988 {
1989 kmem_cache_destroy(scsi_sense_cache);
1990 kmem_cache_destroy(scsi_sense_isadma_cache);
1991 }
1992
1993 /**
1994 * scsi_mode_select - issue a mode select
1995 * @sdev: SCSI device to be queried
1996 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1997 * @sp: Save page bit (0 == don't save, 1 == save)
1998 * @modepage: mode page being requested
1999 * @buffer: request buffer (may not be smaller than eight bytes)
2000 * @len: length of request buffer.
2001 * @timeout: command timeout
2002 * @retries: number of retries before failing
2003 * @data: returns a structure abstracting the mode header data
2004 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2005 * must be SCSI_SENSE_BUFFERSIZE big.
2006 *
2007 * Returns zero if successful; negative error number or scsi
2008 * status on error
2009 *
2010 */
2011 int
2012 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2013 unsigned char *buffer, int len, int timeout, int retries,
2014 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2015 {
2016 unsigned char cmd[10];
2017 unsigned char *real_buffer;
2018 int ret;
2019
2020 memset(cmd, 0, sizeof(cmd));
2021 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2022
2023 if (sdev->use_10_for_ms) {
2024 if (len > 65535)
2025 return -EINVAL;
2026 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2027 if (!real_buffer)
2028 return -ENOMEM;
2029 memcpy(real_buffer + 8, buffer, len);
2030 len += 8;
2031 real_buffer[0] = 0;
2032 real_buffer[1] = 0;
2033 real_buffer[2] = data->medium_type;
2034 real_buffer[3] = data->device_specific;
2035 real_buffer[4] = data->longlba ? 0x01 : 0;
2036 real_buffer[5] = 0;
2037 real_buffer[6] = data->block_descriptor_length >> 8;
2038 real_buffer[7] = data->block_descriptor_length;
2039
2040 cmd[0] = MODE_SELECT_10;
2041 cmd[7] = len >> 8;
2042 cmd[8] = len;
2043 } else {
2044 if (len > 255 || data->block_descriptor_length > 255 ||
2045 data->longlba)
2046 return -EINVAL;
2047
2048 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2049 if (!real_buffer)
2050 return -ENOMEM;
2051 memcpy(real_buffer + 4, buffer, len);
2052 len += 4;
2053 real_buffer[0] = 0;
2054 real_buffer[1] = data->medium_type;
2055 real_buffer[2] = data->device_specific;
2056 real_buffer[3] = data->block_descriptor_length;
2057
2058 cmd[0] = MODE_SELECT;
2059 cmd[4] = len;
2060 }
2061
2062 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2063 sshdr, timeout, retries, NULL);
2064 kfree(real_buffer);
2065 return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(scsi_mode_select);
2068
2069 /**
2070 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2071 * @sdev: SCSI device to be queried
2072 * @dbd: set if mode sense will allow block descriptors to be returned
2073 * @modepage: mode page being requested
2074 * @buffer: request buffer (may not be smaller than eight bytes)
2075 * @len: length of request buffer.
2076 * @timeout: command timeout
2077 * @retries: number of retries before failing
2078 * @data: returns a structure abstracting the mode header data
2079 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2080 * must be SCSI_SENSE_BUFFERSIZE big.
2081 *
2082 * Returns zero if unsuccessful, or the header offset (either 4
2083 * or 8 depending on whether a six or ten byte command was
2084 * issued) if successful.
2085 */
2086 int
2087 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2088 unsigned char *buffer, int len, int timeout, int retries,
2089 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 {
2091 unsigned char cmd[12];
2092 int use_10_for_ms;
2093 int header_length;
2094 int result, retry_count = retries;
2095 struct scsi_sense_hdr my_sshdr;
2096
2097 memset(data, 0, sizeof(*data));
2098 memset(&cmd[0], 0, 12);
2099
2100 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2101 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2102 cmd[2] = modepage;
2103
2104 /* caller might not be interested in sense, but we need it */
2105 if (!sshdr)
2106 sshdr = &my_sshdr;
2107
2108 retry:
2109 use_10_for_ms = sdev->use_10_for_ms;
2110
2111 if (use_10_for_ms) {
2112 if (len < 8)
2113 len = 8;
2114
2115 cmd[0] = MODE_SENSE_10;
2116 cmd[8] = len;
2117 header_length = 8;
2118 } else {
2119 if (len < 4)
2120 len = 4;
2121
2122 cmd[0] = MODE_SENSE;
2123 cmd[4] = len;
2124 header_length = 4;
2125 }
2126
2127 memset(buffer, 0, len);
2128
2129 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2130 sshdr, timeout, retries, NULL);
2131
2132 /* This code looks awful: what it's doing is making sure an
2133 * ILLEGAL REQUEST sense return identifies the actual command
2134 * byte as the problem. MODE_SENSE commands can return
2135 * ILLEGAL REQUEST if the code page isn't supported */
2136
2137 if (use_10_for_ms && !scsi_status_is_good(result) &&
2138 driver_byte(result) == DRIVER_SENSE) {
2139 if (scsi_sense_valid(sshdr)) {
2140 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2141 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2142 /*
2143 * Invalid command operation code
2144 */
2145 sdev->use_10_for_ms = 0;
2146 goto retry;
2147 }
2148 }
2149 }
2150
2151 if (scsi_status_is_good(result)) {
2152 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2153 (modepage == 6 || modepage == 8))) {
2154 /* Initio breakage? */
2155 header_length = 0;
2156 data->length = 13;
2157 data->medium_type = 0;
2158 data->device_specific = 0;
2159 data->longlba = 0;
2160 data->block_descriptor_length = 0;
2161 } else if (use_10_for_ms) {
2162 data->length = buffer[0]*256 + buffer[1] + 2;
2163 data->medium_type = buffer[2];
2164 data->device_specific = buffer[3];
2165 data->longlba = buffer[4] & 0x01;
2166 data->block_descriptor_length = buffer[6]*256
2167 + buffer[7];
2168 } else {
2169 data->length = buffer[0] + 1;
2170 data->medium_type = buffer[1];
2171 data->device_specific = buffer[2];
2172 data->block_descriptor_length = buffer[3];
2173 }
2174 data->header_length = header_length;
2175 } else if ((status_byte(result) == CHECK_CONDITION) &&
2176 scsi_sense_valid(sshdr) &&
2177 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2178 retry_count--;
2179 goto retry;
2180 }
2181
2182 return result;
2183 }
2184 EXPORT_SYMBOL(scsi_mode_sense);
2185
2186 /**
2187 * scsi_test_unit_ready - test if unit is ready
2188 * @sdev: scsi device to change the state of.
2189 * @timeout: command timeout
2190 * @retries: number of retries before failing
2191 * @sshdr: outpout pointer for decoded sense information.
2192 *
2193 * Returns zero if unsuccessful or an error if TUR failed. For
2194 * removable media, UNIT_ATTENTION sets ->changed flag.
2195 **/
2196 int
2197 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2198 struct scsi_sense_hdr *sshdr)
2199 {
2200 char cmd[] = {
2201 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2202 };
2203 int result;
2204
2205 /* try to eat the UNIT_ATTENTION if there are enough retries */
2206 do {
2207 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2208 timeout, 1, NULL);
2209 if (sdev->removable && scsi_sense_valid(sshdr) &&
2210 sshdr->sense_key == UNIT_ATTENTION)
2211 sdev->changed = 1;
2212 } while (scsi_sense_valid(sshdr) &&
2213 sshdr->sense_key == UNIT_ATTENTION && --retries);
2214
2215 return result;
2216 }
2217 EXPORT_SYMBOL(scsi_test_unit_ready);
2218
2219 /**
2220 * scsi_device_set_state - Take the given device through the device state model.
2221 * @sdev: scsi device to change the state of.
2222 * @state: state to change to.
2223 *
2224 * Returns zero if successful or an error if the requested
2225 * transition is illegal.
2226 */
2227 int
2228 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2229 {
2230 enum scsi_device_state oldstate = sdev->sdev_state;
2231
2232 if (state == oldstate)
2233 return 0;
2234
2235 switch (state) {
2236 case SDEV_CREATED:
2237 switch (oldstate) {
2238 case SDEV_CREATED_BLOCK:
2239 break;
2240 default:
2241 goto illegal;
2242 }
2243 break;
2244
2245 case SDEV_RUNNING:
2246 switch (oldstate) {
2247 case SDEV_CREATED:
2248 case SDEV_OFFLINE:
2249 case SDEV_TRANSPORT_OFFLINE:
2250 case SDEV_QUIESCE:
2251 case SDEV_BLOCK:
2252 break;
2253 default:
2254 goto illegal;
2255 }
2256 break;
2257
2258 case SDEV_QUIESCE:
2259 switch (oldstate) {
2260 case SDEV_RUNNING:
2261 case SDEV_OFFLINE:
2262 case SDEV_TRANSPORT_OFFLINE:
2263 break;
2264 default:
2265 goto illegal;
2266 }
2267 break;
2268
2269 case SDEV_OFFLINE:
2270 case SDEV_TRANSPORT_OFFLINE:
2271 switch (oldstate) {
2272 case SDEV_CREATED:
2273 case SDEV_RUNNING:
2274 case SDEV_QUIESCE:
2275 case SDEV_BLOCK:
2276 break;
2277 default:
2278 goto illegal;
2279 }
2280 break;
2281
2282 case SDEV_BLOCK:
2283 switch (oldstate) {
2284 case SDEV_RUNNING:
2285 case SDEV_CREATED_BLOCK:
2286 case SDEV_QUIESCE:
2287 case SDEV_OFFLINE:
2288 break;
2289 default:
2290 goto illegal;
2291 }
2292 break;
2293
2294 case SDEV_CREATED_BLOCK:
2295 switch (oldstate) {
2296 case SDEV_CREATED:
2297 break;
2298 default:
2299 goto illegal;
2300 }
2301 break;
2302
2303 case SDEV_CANCEL:
2304 switch (oldstate) {
2305 case SDEV_CREATED:
2306 case SDEV_RUNNING:
2307 case SDEV_QUIESCE:
2308 case SDEV_OFFLINE:
2309 case SDEV_TRANSPORT_OFFLINE:
2310 break;
2311 default:
2312 goto illegal;
2313 }
2314 break;
2315
2316 case SDEV_DEL:
2317 switch (oldstate) {
2318 case SDEV_CREATED:
2319 case SDEV_RUNNING:
2320 case SDEV_OFFLINE:
2321 case SDEV_TRANSPORT_OFFLINE:
2322 case SDEV_CANCEL:
2323 case SDEV_BLOCK:
2324 case SDEV_CREATED_BLOCK:
2325 break;
2326 default:
2327 goto illegal;
2328 }
2329 break;
2330
2331 }
2332 sdev->offline_already = false;
2333 sdev->sdev_state = state;
2334 return 0;
2335
2336 illegal:
2337 SCSI_LOG_ERROR_RECOVERY(1,
2338 sdev_printk(KERN_ERR, sdev,
2339 "Illegal state transition %s->%s",
2340 scsi_device_state_name(oldstate),
2341 scsi_device_state_name(state))
2342 );
2343 return -EINVAL;
2344 }
2345 EXPORT_SYMBOL(scsi_device_set_state);
2346
2347 /**
2348 * scsi_evt_emit - emit a single SCSI device uevent
2349 * @sdev: associated SCSI device
2350 * @evt: event to emit
2351 *
2352 * Send a single uevent (scsi_event) to the associated scsi_device.
2353 */
2354 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2355 {
2356 int idx = 0;
2357 char *envp[3];
2358
2359 switch (evt->evt_type) {
2360 case SDEV_EVT_MEDIA_CHANGE:
2361 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2362 break;
2363 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2364 scsi_rescan_device(&sdev->sdev_gendev);
2365 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2366 break;
2367 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2368 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2369 break;
2370 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2371 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2372 break;
2373 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2374 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2375 break;
2376 case SDEV_EVT_LUN_CHANGE_REPORTED:
2377 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2378 break;
2379 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2380 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2381 break;
2382 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2383 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2384 break;
2385 default:
2386 /* do nothing */
2387 break;
2388 }
2389
2390 envp[idx++] = NULL;
2391
2392 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2393 }
2394
2395 /**
2396 * scsi_evt_thread - send a uevent for each scsi event
2397 * @work: work struct for scsi_device
2398 *
2399 * Dispatch queued events to their associated scsi_device kobjects
2400 * as uevents.
2401 */
2402 void scsi_evt_thread(struct work_struct *work)
2403 {
2404 struct scsi_device *sdev;
2405 enum scsi_device_event evt_type;
2406 LIST_HEAD(event_list);
2407
2408 sdev = container_of(work, struct scsi_device, event_work);
2409
2410 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2411 if (test_and_clear_bit(evt_type, sdev->pending_events))
2412 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2413
2414 while (1) {
2415 struct scsi_event *evt;
2416 struct list_head *this, *tmp;
2417 unsigned long flags;
2418
2419 spin_lock_irqsave(&sdev->list_lock, flags);
2420 list_splice_init(&sdev->event_list, &event_list);
2421 spin_unlock_irqrestore(&sdev->list_lock, flags);
2422
2423 if (list_empty(&event_list))
2424 break;
2425
2426 list_for_each_safe(this, tmp, &event_list) {
2427 evt = list_entry(this, struct scsi_event, node);
2428 list_del(&evt->node);
2429 scsi_evt_emit(sdev, evt);
2430 kfree(evt);
2431 }
2432 }
2433 }
2434
2435 /**
2436 * sdev_evt_send - send asserted event to uevent thread
2437 * @sdev: scsi_device event occurred on
2438 * @evt: event to send
2439 *
2440 * Assert scsi device event asynchronously.
2441 */
2442 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444 unsigned long flags;
2445
2446 #if 0
2447 /* FIXME: currently this check eliminates all media change events
2448 * for polled devices. Need to update to discriminate between AN
2449 * and polled events */
2450 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2451 kfree(evt);
2452 return;
2453 }
2454 #endif
2455
2456 spin_lock_irqsave(&sdev->list_lock, flags);
2457 list_add_tail(&evt->node, &sdev->event_list);
2458 schedule_work(&sdev->event_work);
2459 spin_unlock_irqrestore(&sdev->list_lock, flags);
2460 }
2461 EXPORT_SYMBOL_GPL(sdev_evt_send);
2462
2463 /**
2464 * sdev_evt_alloc - allocate a new scsi event
2465 * @evt_type: type of event to allocate
2466 * @gfpflags: GFP flags for allocation
2467 *
2468 * Allocates and returns a new scsi_event.
2469 */
2470 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2471 gfp_t gfpflags)
2472 {
2473 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2474 if (!evt)
2475 return NULL;
2476
2477 evt->evt_type = evt_type;
2478 INIT_LIST_HEAD(&evt->node);
2479
2480 /* evt_type-specific initialization, if any */
2481 switch (evt_type) {
2482 case SDEV_EVT_MEDIA_CHANGE:
2483 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2484 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2485 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2486 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2487 case SDEV_EVT_LUN_CHANGE_REPORTED:
2488 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2489 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2490 default:
2491 /* do nothing */
2492 break;
2493 }
2494
2495 return evt;
2496 }
2497 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2498
2499 /**
2500 * sdev_evt_send_simple - send asserted event to uevent thread
2501 * @sdev: scsi_device event occurred on
2502 * @evt_type: type of event to send
2503 * @gfpflags: GFP flags for allocation
2504 *
2505 * Assert scsi device event asynchronously, given an event type.
2506 */
2507 void sdev_evt_send_simple(struct scsi_device *sdev,
2508 enum scsi_device_event evt_type, gfp_t gfpflags)
2509 {
2510 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2511 if (!evt) {
2512 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2513 evt_type);
2514 return;
2515 }
2516
2517 sdev_evt_send(sdev, evt);
2518 }
2519 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2520
2521 /**
2522 * scsi_device_quiesce - Block all commands except power management.
2523 * @sdev: scsi device to quiesce.
2524 *
2525 * This works by trying to transition to the SDEV_QUIESCE state
2526 * (which must be a legal transition). When the device is in this
2527 * state, only power management requests will be accepted, all others will
2528 * be deferred.
2529 *
2530 * Must be called with user context, may sleep.
2531 *
2532 * Returns zero if unsuccessful or an error if not.
2533 */
2534 int
2535 scsi_device_quiesce(struct scsi_device *sdev)
2536 {
2537 struct request_queue *q = sdev->request_queue;
2538 int err;
2539
2540 /*
2541 * It is allowed to call scsi_device_quiesce() multiple times from
2542 * the same context but concurrent scsi_device_quiesce() calls are
2543 * not allowed.
2544 */
2545 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2546
2547 if (sdev->quiesced_by == current)
2548 return 0;
2549
2550 blk_set_pm_only(q);
2551
2552 blk_mq_freeze_queue(q);
2553 /*
2554 * Ensure that the effect of blk_set_pm_only() will be visible
2555 * for percpu_ref_tryget() callers that occur after the queue
2556 * unfreeze even if the queue was already frozen before this function
2557 * was called. See also https://lwn.net/Articles/573497/.
2558 */
2559 synchronize_rcu();
2560 blk_mq_unfreeze_queue(q);
2561
2562 mutex_lock(&sdev->state_mutex);
2563 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2564 if (err == 0)
2565 sdev->quiesced_by = current;
2566 else
2567 blk_clear_pm_only(q);
2568 mutex_unlock(&sdev->state_mutex);
2569
2570 return err;
2571 }
2572 EXPORT_SYMBOL(scsi_device_quiesce);
2573
2574 /**
2575 * scsi_device_resume - Restart user issued commands to a quiesced device.
2576 * @sdev: scsi device to resume.
2577 *
2578 * Moves the device from quiesced back to running and restarts the
2579 * queues.
2580 *
2581 * Must be called with user context, may sleep.
2582 */
2583 void scsi_device_resume(struct scsi_device *sdev)
2584 {
2585 /* check if the device state was mutated prior to resume, and if
2586 * so assume the state is being managed elsewhere (for example
2587 * device deleted during suspend)
2588 */
2589 mutex_lock(&sdev->state_mutex);
2590 if (sdev->sdev_state == SDEV_QUIESCE)
2591 scsi_device_set_state(sdev, SDEV_RUNNING);
2592 if (sdev->quiesced_by) {
2593 sdev->quiesced_by = NULL;
2594 blk_clear_pm_only(sdev->request_queue);
2595 }
2596 mutex_unlock(&sdev->state_mutex);
2597 }
2598 EXPORT_SYMBOL(scsi_device_resume);
2599
2600 static void
2601 device_quiesce_fn(struct scsi_device *sdev, void *data)
2602 {
2603 scsi_device_quiesce(sdev);
2604 }
2605
2606 void
2607 scsi_target_quiesce(struct scsi_target *starget)
2608 {
2609 starget_for_each_device(starget, NULL, device_quiesce_fn);
2610 }
2611 EXPORT_SYMBOL(scsi_target_quiesce);
2612
2613 static void
2614 device_resume_fn(struct scsi_device *sdev, void *data)
2615 {
2616 scsi_device_resume(sdev);
2617 }
2618
2619 void
2620 scsi_target_resume(struct scsi_target *starget)
2621 {
2622 starget_for_each_device(starget, NULL, device_resume_fn);
2623 }
2624 EXPORT_SYMBOL(scsi_target_resume);
2625
2626 /**
2627 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2628 * @sdev: device to block
2629 *
2630 * Pause SCSI command processing on the specified device. Does not sleep.
2631 *
2632 * Returns zero if successful or a negative error code upon failure.
2633 *
2634 * Notes:
2635 * This routine transitions the device to the SDEV_BLOCK state (which must be
2636 * a legal transition). When the device is in this state, command processing
2637 * is paused until the device leaves the SDEV_BLOCK state. See also
2638 * scsi_internal_device_unblock_nowait().
2639 */
2640 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2641 {
2642 struct request_queue *q = sdev->request_queue;
2643 int err = 0;
2644
2645 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2646 if (err) {
2647 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2648
2649 if (err)
2650 return err;
2651 }
2652
2653 /*
2654 * The device has transitioned to SDEV_BLOCK. Stop the
2655 * block layer from calling the midlayer with this device's
2656 * request queue.
2657 */
2658 blk_mq_quiesce_queue_nowait(q);
2659 return 0;
2660 }
2661 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2662
2663 /**
2664 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2665 * @sdev: device to block
2666 *
2667 * Pause SCSI command processing on the specified device and wait until all
2668 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2669 *
2670 * Returns zero if successful or a negative error code upon failure.
2671 *
2672 * Note:
2673 * This routine transitions the device to the SDEV_BLOCK state (which must be
2674 * a legal transition). When the device is in this state, command processing
2675 * is paused until the device leaves the SDEV_BLOCK state. See also
2676 * scsi_internal_device_unblock().
2677 */
2678 static int scsi_internal_device_block(struct scsi_device *sdev)
2679 {
2680 struct request_queue *q = sdev->request_queue;
2681 int err;
2682
2683 mutex_lock(&sdev->state_mutex);
2684 err = scsi_internal_device_block_nowait(sdev);
2685 if (err == 0)
2686 blk_mq_quiesce_queue(q);
2687 mutex_unlock(&sdev->state_mutex);
2688
2689 return err;
2690 }
2691
2692 void scsi_start_queue(struct scsi_device *sdev)
2693 {
2694 struct request_queue *q = sdev->request_queue;
2695
2696 blk_mq_unquiesce_queue(q);
2697 }
2698
2699 /**
2700 * scsi_internal_device_unblock_nowait - resume a device after a block request
2701 * @sdev: device to resume
2702 * @new_state: state to set the device to after unblocking
2703 *
2704 * Restart the device queue for a previously suspended SCSI device. Does not
2705 * sleep.
2706 *
2707 * Returns zero if successful or a negative error code upon failure.
2708 *
2709 * Notes:
2710 * This routine transitions the device to the SDEV_RUNNING state or to one of
2711 * the offline states (which must be a legal transition) allowing the midlayer
2712 * to goose the queue for this device.
2713 */
2714 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2715 enum scsi_device_state new_state)
2716 {
2717 switch (new_state) {
2718 case SDEV_RUNNING:
2719 case SDEV_TRANSPORT_OFFLINE:
2720 break;
2721 default:
2722 return -EINVAL;
2723 }
2724
2725 /*
2726 * Try to transition the scsi device to SDEV_RUNNING or one of the
2727 * offlined states and goose the device queue if successful.
2728 */
2729 switch (sdev->sdev_state) {
2730 case SDEV_BLOCK:
2731 case SDEV_TRANSPORT_OFFLINE:
2732 sdev->sdev_state = new_state;
2733 break;
2734 case SDEV_CREATED_BLOCK:
2735 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2736 new_state == SDEV_OFFLINE)
2737 sdev->sdev_state = new_state;
2738 else
2739 sdev->sdev_state = SDEV_CREATED;
2740 break;
2741 case SDEV_CANCEL:
2742 case SDEV_OFFLINE:
2743 break;
2744 default:
2745 return -EINVAL;
2746 }
2747 scsi_start_queue(sdev);
2748
2749 return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2752
2753 /**
2754 * scsi_internal_device_unblock - resume a device after a block request
2755 * @sdev: device to resume
2756 * @new_state: state to set the device to after unblocking
2757 *
2758 * Restart the device queue for a previously suspended SCSI device. May sleep.
2759 *
2760 * Returns zero if successful or a negative error code upon failure.
2761 *
2762 * Notes:
2763 * This routine transitions the device to the SDEV_RUNNING state or to one of
2764 * the offline states (which must be a legal transition) allowing the midlayer
2765 * to goose the queue for this device.
2766 */
2767 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2768 enum scsi_device_state new_state)
2769 {
2770 int ret;
2771
2772 mutex_lock(&sdev->state_mutex);
2773 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2774 mutex_unlock(&sdev->state_mutex);
2775
2776 return ret;
2777 }
2778
2779 static void
2780 device_block(struct scsi_device *sdev, void *data)
2781 {
2782 int ret;
2783
2784 ret = scsi_internal_device_block(sdev);
2785
2786 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2787 dev_name(&sdev->sdev_gendev), ret);
2788 }
2789
2790 static int
2791 target_block(struct device *dev, void *data)
2792 {
2793 if (scsi_is_target_device(dev))
2794 starget_for_each_device(to_scsi_target(dev), NULL,
2795 device_block);
2796 return 0;
2797 }
2798
2799 void
2800 scsi_target_block(struct device *dev)
2801 {
2802 if (scsi_is_target_device(dev))
2803 starget_for_each_device(to_scsi_target(dev), NULL,
2804 device_block);
2805 else
2806 device_for_each_child(dev, NULL, target_block);
2807 }
2808 EXPORT_SYMBOL_GPL(scsi_target_block);
2809
2810 static void
2811 device_unblock(struct scsi_device *sdev, void *data)
2812 {
2813 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2814 }
2815
2816 static int
2817 target_unblock(struct device *dev, void *data)
2818 {
2819 if (scsi_is_target_device(dev))
2820 starget_for_each_device(to_scsi_target(dev), data,
2821 device_unblock);
2822 return 0;
2823 }
2824
2825 void
2826 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2827 {
2828 if (scsi_is_target_device(dev))
2829 starget_for_each_device(to_scsi_target(dev), &new_state,
2830 device_unblock);
2831 else
2832 device_for_each_child(dev, &new_state, target_unblock);
2833 }
2834 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2835
2836 int
2837 scsi_host_block(struct Scsi_Host *shost)
2838 {
2839 struct scsi_device *sdev;
2840 int ret = 0;
2841
2842 /*
2843 * Call scsi_internal_device_block_nowait so we can avoid
2844 * calling synchronize_rcu() for each LUN.
2845 */
2846 shost_for_each_device(sdev, shost) {
2847 mutex_lock(&sdev->state_mutex);
2848 ret = scsi_internal_device_block_nowait(sdev);
2849 mutex_unlock(&sdev->state_mutex);
2850 if (ret) {
2851 scsi_device_put(sdev);
2852 break;
2853 }
2854 }
2855
2856 /*
2857 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2858 * calling synchronize_rcu() once is enough.
2859 */
2860 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2861
2862 if (!ret)
2863 synchronize_rcu();
2864
2865 return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(scsi_host_block);
2868
2869 int
2870 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2871 {
2872 struct scsi_device *sdev;
2873 int ret = 0;
2874
2875 shost_for_each_device(sdev, shost) {
2876 ret = scsi_internal_device_unblock(sdev, new_state);
2877 if (ret) {
2878 scsi_device_put(sdev);
2879 break;
2880 }
2881 }
2882 return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2885
2886 /**
2887 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2888 * @sgl: scatter-gather list
2889 * @sg_count: number of segments in sg
2890 * @offset: offset in bytes into sg, on return offset into the mapped area
2891 * @len: bytes to map, on return number of bytes mapped
2892 *
2893 * Returns virtual address of the start of the mapped page
2894 */
2895 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2896 size_t *offset, size_t *len)
2897 {
2898 int i;
2899 size_t sg_len = 0, len_complete = 0;
2900 struct scatterlist *sg;
2901 struct page *page;
2902
2903 WARN_ON(!irqs_disabled());
2904
2905 for_each_sg(sgl, sg, sg_count, i) {
2906 len_complete = sg_len; /* Complete sg-entries */
2907 sg_len += sg->length;
2908 if (sg_len > *offset)
2909 break;
2910 }
2911
2912 if (unlikely(i == sg_count)) {
2913 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2914 "elements %d\n",
2915 __func__, sg_len, *offset, sg_count);
2916 WARN_ON(1);
2917 return NULL;
2918 }
2919
2920 /* Offset starting from the beginning of first page in this sg-entry */
2921 *offset = *offset - len_complete + sg->offset;
2922
2923 /* Assumption: contiguous pages can be accessed as "page + i" */
2924 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2925 *offset &= ~PAGE_MASK;
2926
2927 /* Bytes in this sg-entry from *offset to the end of the page */
2928 sg_len = PAGE_SIZE - *offset;
2929 if (*len > sg_len)
2930 *len = sg_len;
2931
2932 return kmap_atomic(page);
2933 }
2934 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2935
2936 /**
2937 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2938 * @virt: virtual address to be unmapped
2939 */
2940 void scsi_kunmap_atomic_sg(void *virt)
2941 {
2942 kunmap_atomic(virt);
2943 }
2944 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2945
2946 void sdev_disable_disk_events(struct scsi_device *sdev)
2947 {
2948 atomic_inc(&sdev->disk_events_disable_depth);
2949 }
2950 EXPORT_SYMBOL(sdev_disable_disk_events);
2951
2952 void sdev_enable_disk_events(struct scsi_device *sdev)
2953 {
2954 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2955 return;
2956 atomic_dec(&sdev->disk_events_disable_depth);
2957 }
2958 EXPORT_SYMBOL(sdev_enable_disk_events);
2959
2960 static unsigned char designator_prio(const unsigned char *d)
2961 {
2962 if (d[1] & 0x30)
2963 /* not associated with LUN */
2964 return 0;
2965
2966 if (d[3] == 0)
2967 /* invalid length */
2968 return 0;
2969
2970 /*
2971 * Order of preference for lun descriptor:
2972 * - SCSI name string
2973 * - NAA IEEE Registered Extended
2974 * - EUI-64 based 16-byte
2975 * - EUI-64 based 12-byte
2976 * - NAA IEEE Registered
2977 * - NAA IEEE Extended
2978 * - EUI-64 based 8-byte
2979 * - SCSI name string (truncated)
2980 * - T10 Vendor ID
2981 * as longer descriptors reduce the likelyhood
2982 * of identification clashes.
2983 */
2984
2985 switch (d[1] & 0xf) {
2986 case 8:
2987 /* SCSI name string, variable-length UTF-8 */
2988 return 9;
2989 case 3:
2990 switch (d[4] >> 4) {
2991 case 6:
2992 /* NAA registered extended */
2993 return 8;
2994 case 5:
2995 /* NAA registered */
2996 return 5;
2997 case 4:
2998 /* NAA extended */
2999 return 4;
3000 case 3:
3001 /* NAA locally assigned */
3002 return 1;
3003 default:
3004 break;
3005 }
3006 break;
3007 case 2:
3008 switch (d[3]) {
3009 case 16:
3010 /* EUI64-based, 16 byte */
3011 return 7;
3012 case 12:
3013 /* EUI64-based, 12 byte */
3014 return 6;
3015 case 8:
3016 /* EUI64-based, 8 byte */
3017 return 3;
3018 default:
3019 break;
3020 }
3021 break;
3022 case 1:
3023 /* T10 vendor ID */
3024 return 1;
3025 default:
3026 break;
3027 }
3028
3029 return 0;
3030 }
3031
3032 /**
3033 * scsi_vpd_lun_id - return a unique device identification
3034 * @sdev: SCSI device
3035 * @id: buffer for the identification
3036 * @id_len: length of the buffer
3037 *
3038 * Copies a unique device identification into @id based
3039 * on the information in the VPD page 0x83 of the device.
3040 * The string will be formatted as a SCSI name string.
3041 *
3042 * Returns the length of the identification or error on failure.
3043 * If the identifier is longer than the supplied buffer the actual
3044 * identifier length is returned and the buffer is not zero-padded.
3045 */
3046 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3047 {
3048 u8 cur_id_prio = 0;
3049 u8 cur_id_size = 0;
3050 const unsigned char *d, *cur_id_str;
3051 const struct scsi_vpd *vpd_pg83;
3052 int id_size = -EINVAL;
3053
3054 rcu_read_lock();
3055 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3056 if (!vpd_pg83) {
3057 rcu_read_unlock();
3058 return -ENXIO;
3059 }
3060
3061 /* The id string must be at least 20 bytes + terminating NULL byte */
3062 if (id_len < 21) {
3063 rcu_read_unlock();
3064 return -EINVAL;
3065 }
3066
3067 memset(id, 0, id_len);
3068 for (d = vpd_pg83->data + 4;
3069 d < vpd_pg83->data + vpd_pg83->len;
3070 d += d[3] + 4) {
3071 u8 prio = designator_prio(d);
3072
3073 if (prio == 0 || cur_id_prio > prio)
3074 continue;
3075
3076 switch (d[1] & 0xf) {
3077 case 0x1:
3078 /* T10 Vendor ID */
3079 if (cur_id_size > d[3])
3080 break;
3081 cur_id_prio = prio;
3082 cur_id_size = d[3];
3083 if (cur_id_size + 4 > id_len)
3084 cur_id_size = id_len - 4;
3085 cur_id_str = d + 4;
3086 id_size = snprintf(id, id_len, "t10.%*pE",
3087 cur_id_size, cur_id_str);
3088 break;
3089 case 0x2:
3090 /* EUI-64 */
3091 cur_id_prio = prio;
3092 cur_id_size = d[3];
3093 cur_id_str = d + 4;
3094 switch (cur_id_size) {
3095 case 8:
3096 id_size = snprintf(id, id_len,
3097 "eui.%8phN",
3098 cur_id_str);
3099 break;
3100 case 12:
3101 id_size = snprintf(id, id_len,
3102 "eui.%12phN",
3103 cur_id_str);
3104 break;
3105 case 16:
3106 id_size = snprintf(id, id_len,
3107 "eui.%16phN",
3108 cur_id_str);
3109 break;
3110 default:
3111 break;
3112 }
3113 break;
3114 case 0x3:
3115 /* NAA */
3116 cur_id_prio = prio;
3117 cur_id_size = d[3];
3118 cur_id_str = d + 4;
3119 switch (cur_id_size) {
3120 case 8:
3121 id_size = snprintf(id, id_len,
3122 "naa.%8phN",
3123 cur_id_str);
3124 break;
3125 case 16:
3126 id_size = snprintf(id, id_len,
3127 "naa.%16phN",
3128 cur_id_str);
3129 break;
3130 default:
3131 break;
3132 }
3133 break;
3134 case 0x8:
3135 /* SCSI name string */
3136 if (cur_id_size > d[3])
3137 break;
3138 /* Prefer others for truncated descriptor */
3139 if (d[3] > id_len) {
3140 prio = 2;
3141 if (cur_id_prio > prio)
3142 break;
3143 }
3144 cur_id_prio = prio;
3145 cur_id_size = id_size = d[3];
3146 cur_id_str = d + 4;
3147 if (cur_id_size >= id_len)
3148 cur_id_size = id_len - 1;
3149 memcpy(id, cur_id_str, cur_id_size);
3150 break;
3151 default:
3152 break;
3153 }
3154 }
3155 rcu_read_unlock();
3156
3157 return id_size;
3158 }
3159 EXPORT_SYMBOL(scsi_vpd_lun_id);
3160
3161 /*
3162 * scsi_vpd_tpg_id - return a target port group identifier
3163 * @sdev: SCSI device
3164 *
3165 * Returns the Target Port Group identifier from the information
3166 * froom VPD page 0x83 of the device.
3167 *
3168 * Returns the identifier or error on failure.
3169 */
3170 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3171 {
3172 const unsigned char *d;
3173 const struct scsi_vpd *vpd_pg83;
3174 int group_id = -EAGAIN, rel_port = -1;
3175
3176 rcu_read_lock();
3177 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3178 if (!vpd_pg83) {
3179 rcu_read_unlock();
3180 return -ENXIO;
3181 }
3182
3183 d = vpd_pg83->data + 4;
3184 while (d < vpd_pg83->data + vpd_pg83->len) {
3185 switch (d[1] & 0xf) {
3186 case 0x4:
3187 /* Relative target port */
3188 rel_port = get_unaligned_be16(&d[6]);
3189 break;
3190 case 0x5:
3191 /* Target port group */
3192 group_id = get_unaligned_be16(&d[6]);
3193 break;
3194 default:
3195 break;
3196 }
3197 d += d[3] + 4;
3198 }
3199 rcu_read_unlock();
3200
3201 if (group_id >= 0 && rel_id && rel_port != -1)
3202 *rel_id = rel_port;
3203
3204 return group_id;
3205 }
3206 EXPORT_SYMBOL(scsi_vpd_tpg_id);