]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30
31
32 #define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE 32
34
35 struct scsi_host_sg_pool {
36 size_t size;
37 char *name;
38 kmem_cache_t *slab;
39 mempool_t *pool;
40 };
41
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45
46 #define SP(x) { x, "sgpool-" #x }
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
48 SP(8),
49 SP(16),
50 SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };
64 #undef SP
65
66 static void scsi_run_queue(struct request_queue *q);
67
68 /*
69 * Function: scsi_unprep_request()
70 *
71 * Purpose: Remove all preparation done for a request, including its
72 * associated scsi_cmnd, so that it can be requeued.
73 *
74 * Arguments: req - request to unprepare
75 *
76 * Lock status: Assumed that no locks are held upon entry.
77 *
78 * Returns: Nothing.
79 */
80 static void scsi_unprep_request(struct request *req)
81 {
82 struct scsi_cmnd *cmd = req->special;
83
84 req->flags &= ~REQ_DONTPREP;
85 req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
86
87 scsi_put_command(cmd);
88 }
89
90 /*
91 * Function: scsi_queue_insert()
92 *
93 * Purpose: Insert a command in the midlevel queue.
94 *
95 * Arguments: cmd - command that we are adding to queue.
96 * reason - why we are inserting command to queue.
97 *
98 * Lock status: Assumed that lock is not held upon entry.
99 *
100 * Returns: Nothing.
101 *
102 * Notes: We do this for one of two cases. Either the host is busy
103 * and it cannot accept any more commands for the time being,
104 * or the device returned QUEUE_FULL and can accept no more
105 * commands.
106 * Notes: This could be called either from an interrupt context or a
107 * normal process context.
108 */
109 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
110 {
111 struct Scsi_Host *host = cmd->device->host;
112 struct scsi_device *device = cmd->device;
113 struct request_queue *q = device->request_queue;
114 unsigned long flags;
115
116 SCSI_LOG_MLQUEUE(1,
117 printk("Inserting command %p into mlqueue\n", cmd));
118
119 /*
120 * Set the appropriate busy bit for the device/host.
121 *
122 * If the host/device isn't busy, assume that something actually
123 * completed, and that we should be able to queue a command now.
124 *
125 * Note that the prior mid-layer assumption that any host could
126 * always queue at least one command is now broken. The mid-layer
127 * will implement a user specifiable stall (see
128 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
129 * if a command is requeued with no other commands outstanding
130 * either for the device or for the host.
131 */
132 if (reason == SCSI_MLQUEUE_HOST_BUSY)
133 host->host_blocked = host->max_host_blocked;
134 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
135 device->device_blocked = device->max_device_blocked;
136
137 /*
138 * Decrement the counters, since these commands are no longer
139 * active on the host/device.
140 */
141 scsi_device_unbusy(device);
142
143 /*
144 * Requeue this command. It will go before all other commands
145 * that are already in the queue.
146 *
147 * NOTE: there is magic here about the way the queue is plugged if
148 * we have no outstanding commands.
149 *
150 * Although we *don't* plug the queue, we call the request
151 * function. The SCSI request function detects the blocked condition
152 * and plugs the queue appropriately.
153 */
154 spin_lock_irqsave(q->queue_lock, flags);
155 blk_requeue_request(q, cmd->request);
156 spin_unlock_irqrestore(q->queue_lock, flags);
157
158 scsi_run_queue(q);
159
160 return 0;
161 }
162
163 /*
164 * Function: scsi_do_req
165 *
166 * Purpose: Queue a SCSI request
167 *
168 * Arguments: sreq - command descriptor.
169 * cmnd - actual SCSI command to be performed.
170 * buffer - data buffer.
171 * bufflen - size of data buffer.
172 * done - completion function to be run.
173 * timeout - how long to let it run before timeout.
174 * retries - number of retries we allow.
175 *
176 * Lock status: No locks held upon entry.
177 *
178 * Returns: Nothing.
179 *
180 * Notes: This function is only used for queueing requests for things
181 * like ioctls and character device requests - this is because
182 * we essentially just inject a request into the queue for the
183 * device.
184 *
185 * In order to support the scsi_device_quiesce function, we
186 * now inject requests on the *head* of the device queue
187 * rather than the tail.
188 */
189 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
190 void *buffer, unsigned bufflen,
191 void (*done)(struct scsi_cmnd *),
192 int timeout, int retries)
193 {
194 /*
195 * If the upper level driver is reusing these things, then
196 * we should release the low-level block now. Another one will
197 * be allocated later when this request is getting queued.
198 */
199 __scsi_release_request(sreq);
200
201 /*
202 * Our own function scsi_done (which marks the host as not busy,
203 * disables the timeout counter, etc) will be called by us or by the
204 * scsi_hosts[host].queuecommand() function needs to also call
205 * the completion function for the high level driver.
206 */
207 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
208 sreq->sr_bufflen = bufflen;
209 sreq->sr_buffer = buffer;
210 sreq->sr_allowed = retries;
211 sreq->sr_done = done;
212 sreq->sr_timeout_per_command = timeout;
213
214 if (sreq->sr_cmd_len == 0)
215 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
216
217 /*
218 * head injection *required* here otherwise quiesce won't work
219 *
220 * Because users of this function are apt to reuse requests with no
221 * modification, we have to sanitise the request flags here
222 */
223 sreq->sr_request->flags &= ~REQ_DONTPREP;
224 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
225 1, sreq);
226 }
227 EXPORT_SYMBOL(scsi_do_req);
228
229 /**
230 * scsi_execute - insert request and wait for the result
231 * @sdev: scsi device
232 * @cmd: scsi command
233 * @data_direction: data direction
234 * @buffer: data buffer
235 * @bufflen: len of buffer
236 * @sense: optional sense buffer
237 * @timeout: request timeout in seconds
238 * @retries: number of times to retry request
239 * @flags: or into request flags;
240 *
241 * returns the req->errors value which is the the scsi_cmnd result
242 * field.
243 **/
244 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
245 int data_direction, void *buffer, unsigned bufflen,
246 unsigned char *sense, int timeout, int retries, int flags)
247 {
248 struct request *req;
249 int write = (data_direction == DMA_TO_DEVICE);
250 int ret = DRIVER_ERROR << 24;
251
252 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
253
254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
255 buffer, bufflen, __GFP_WAIT))
256 goto out;
257
258 req->cmd_len = COMMAND_SIZE(cmd[0]);
259 memcpy(req->cmd, cmd, req->cmd_len);
260 req->sense = sense;
261 req->sense_len = 0;
262 req->retries = retries;
263 req->timeout = timeout;
264 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
265
266 /*
267 * head injection *required* here otherwise quiesce won't work
268 */
269 blk_execute_rq(req->q, NULL, req, 1);
270
271 ret = req->errors;
272 out:
273 blk_put_request(req);
274
275 return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279
280 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
281 int data_direction, void *buffer, unsigned bufflen,
282 struct scsi_sense_hdr *sshdr, int timeout, int retries)
283 {
284 char *sense = NULL;
285 int result;
286
287 if (sshdr) {
288 sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289 if (!sense)
290 return DRIVER_ERROR << 24;
291 memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
292 }
293 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294 sense, timeout, retries, 0);
295 if (sshdr)
296 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297
298 kfree(sense);
299 return result;
300 }
301 EXPORT_SYMBOL(scsi_execute_req);
302
303 struct scsi_io_context {
304 void *data;
305 void (*done)(void *data, char *sense, int result, int resid);
306 char sense[SCSI_SENSE_BUFFERSIZE];
307 };
308
309 static kmem_cache_t *scsi_io_context_cache;
310
311 static void scsi_end_async(struct request *req, int uptodate)
312 {
313 struct scsi_io_context *sioc = req->end_io_data;
314
315 if (sioc->done)
316 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
317
318 kmem_cache_free(scsi_io_context_cache, sioc);
319 __blk_put_request(req->q, req);
320 }
321
322 static int scsi_merge_bio(struct request *rq, struct bio *bio)
323 {
324 struct request_queue *q = rq->q;
325
326 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
327 if (rq_data_dir(rq) == WRITE)
328 bio->bi_rw |= (1 << BIO_RW);
329 blk_queue_bounce(q, &bio);
330
331 if (!rq->bio)
332 blk_rq_bio_prep(q, rq, bio);
333 else if (!q->back_merge_fn(q, rq, bio))
334 return -EINVAL;
335 else {
336 rq->biotail->bi_next = bio;
337 rq->biotail = bio;
338 rq->hard_nr_sectors += bio_sectors(bio);
339 rq->nr_sectors = rq->hard_nr_sectors;
340 }
341
342 return 0;
343 }
344
345 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
346 {
347 if (bio->bi_size)
348 return 1;
349
350 bio_put(bio);
351 return 0;
352 }
353
354 /**
355 * scsi_req_map_sg - map a scatterlist into a request
356 * @rq: request to fill
357 * @sg: scatterlist
358 * @nsegs: number of elements
359 * @bufflen: len of buffer
360 * @gfp: memory allocation flags
361 *
362 * scsi_req_map_sg maps a scatterlist into a request so that the
363 * request can be sent to the block layer. We do not trust the scatterlist
364 * sent to use, as some ULDs use that struct to only organize the pages.
365 */
366 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
367 int nsegs, unsigned bufflen, gfp_t gfp)
368 {
369 struct request_queue *q = rq->q;
370 int nr_pages = (bufflen + PAGE_SIZE - 1) >> PAGE_SHIFT;
371 unsigned int data_len = 0, len, bytes, off;
372 struct page *page;
373 struct bio *bio = NULL;
374 int i, err, nr_vecs = 0;
375
376 for (i = 0; i < nsegs; i++) {
377 page = sgl[i].page;
378 off = sgl[i].offset;
379 len = sgl[i].length;
380 data_len += len;
381
382 while (len > 0) {
383 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
384
385 if (!bio) {
386 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
387 nr_pages -= nr_vecs;
388
389 bio = bio_alloc(gfp, nr_vecs);
390 if (!bio) {
391 err = -ENOMEM;
392 goto free_bios;
393 }
394 bio->bi_end_io = scsi_bi_endio;
395 }
396
397 if (bio_add_pc_page(q, bio, page, bytes, off) !=
398 bytes) {
399 bio_put(bio);
400 err = -EINVAL;
401 goto free_bios;
402 }
403
404 if (bio->bi_vcnt >= nr_vecs) {
405 err = scsi_merge_bio(rq, bio);
406 if (err) {
407 bio_endio(bio, bio->bi_size, 0);
408 goto free_bios;
409 }
410 bio = NULL;
411 }
412
413 page++;
414 len -= bytes;
415 off = 0;
416 }
417 }
418
419 rq->buffer = rq->data = NULL;
420 rq->data_len = data_len;
421 return 0;
422
423 free_bios:
424 while ((bio = rq->bio) != NULL) {
425 rq->bio = bio->bi_next;
426 /*
427 * call endio instead of bio_put incase it was bounced
428 */
429 bio_endio(bio, bio->bi_size, 0);
430 }
431
432 return err;
433 }
434
435 /**
436 * scsi_execute_async - insert request
437 * @sdev: scsi device
438 * @cmd: scsi command
439 * @data_direction: data direction
440 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
441 * @bufflen: len of buffer
442 * @use_sg: if buffer is a scatterlist this is the number of elements
443 * @timeout: request timeout in seconds
444 * @retries: number of times to retry request
445 * @flags: or into request flags
446 **/
447 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
448 int data_direction, void *buffer, unsigned bufflen,
449 int use_sg, int timeout, int retries, void *privdata,
450 void (*done)(void *, char *, int, int), gfp_t gfp)
451 {
452 struct request *req;
453 struct scsi_io_context *sioc;
454 int err = 0;
455 int write = (data_direction == DMA_TO_DEVICE);
456
457 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
458 if (!sioc)
459 return DRIVER_ERROR << 24;
460 memset(sioc, 0, sizeof(*sioc));
461
462 req = blk_get_request(sdev->request_queue, write, gfp);
463 if (!req)
464 goto free_sense;
465 req->flags |= REQ_BLOCK_PC | REQ_QUIET;
466
467 if (use_sg)
468 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
469 else if (bufflen)
470 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
471
472 if (err)
473 goto free_req;
474
475 req->cmd_len = COMMAND_SIZE(cmd[0]);
476 memcpy(req->cmd, cmd, req->cmd_len);
477 req->sense = sioc->sense;
478 req->sense_len = 0;
479 req->timeout = timeout;
480 req->retries = retries;
481 req->end_io_data = sioc;
482
483 sioc->data = privdata;
484 sioc->done = done;
485
486 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
487 return 0;
488
489 free_req:
490 blk_put_request(req);
491 free_sense:
492 kfree(sioc);
493 return DRIVER_ERROR << 24;
494 }
495 EXPORT_SYMBOL_GPL(scsi_execute_async);
496
497 /*
498 * Function: scsi_init_cmd_errh()
499 *
500 * Purpose: Initialize cmd fields related to error handling.
501 *
502 * Arguments: cmd - command that is ready to be queued.
503 *
504 * Returns: Nothing
505 *
506 * Notes: This function has the job of initializing a number of
507 * fields related to error handling. Typically this will
508 * be called once for each command, as required.
509 */
510 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
511 {
512 cmd->serial_number = 0;
513
514 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
515
516 if (cmd->cmd_len == 0)
517 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
518
519 /*
520 * We need saved copies of a number of fields - this is because
521 * error handling may need to overwrite these with different values
522 * to run different commands, and once error handling is complete,
523 * we will need to restore these values prior to running the actual
524 * command.
525 */
526 cmd->old_use_sg = cmd->use_sg;
527 cmd->old_cmd_len = cmd->cmd_len;
528 cmd->sc_old_data_direction = cmd->sc_data_direction;
529 cmd->old_underflow = cmd->underflow;
530 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
531 cmd->buffer = cmd->request_buffer;
532 cmd->bufflen = cmd->request_bufflen;
533
534 return 1;
535 }
536
537 /*
538 * Function: scsi_setup_cmd_retry()
539 *
540 * Purpose: Restore the command state for a retry
541 *
542 * Arguments: cmd - command to be restored
543 *
544 * Returns: Nothing
545 *
546 * Notes: Immediately prior to retrying a command, we need
547 * to restore certain fields that we saved above.
548 */
549 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
550 {
551 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
552 cmd->request_buffer = cmd->buffer;
553 cmd->request_bufflen = cmd->bufflen;
554 cmd->use_sg = cmd->old_use_sg;
555 cmd->cmd_len = cmd->old_cmd_len;
556 cmd->sc_data_direction = cmd->sc_old_data_direction;
557 cmd->underflow = cmd->old_underflow;
558 }
559
560 void scsi_device_unbusy(struct scsi_device *sdev)
561 {
562 struct Scsi_Host *shost = sdev->host;
563 unsigned long flags;
564
565 spin_lock_irqsave(shost->host_lock, flags);
566 shost->host_busy--;
567 if (unlikely(scsi_host_in_recovery(shost) &&
568 shost->host_failed))
569 scsi_eh_wakeup(shost);
570 spin_unlock(shost->host_lock);
571 spin_lock(sdev->request_queue->queue_lock);
572 sdev->device_busy--;
573 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
574 }
575
576 /*
577 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
578 * and call blk_run_queue for all the scsi_devices on the target -
579 * including current_sdev first.
580 *
581 * Called with *no* scsi locks held.
582 */
583 static void scsi_single_lun_run(struct scsi_device *current_sdev)
584 {
585 struct Scsi_Host *shost = current_sdev->host;
586 struct scsi_device *sdev, *tmp;
587 struct scsi_target *starget = scsi_target(current_sdev);
588 unsigned long flags;
589
590 spin_lock_irqsave(shost->host_lock, flags);
591 starget->starget_sdev_user = NULL;
592 spin_unlock_irqrestore(shost->host_lock, flags);
593
594 /*
595 * Call blk_run_queue for all LUNs on the target, starting with
596 * current_sdev. We race with others (to set starget_sdev_user),
597 * but in most cases, we will be first. Ideally, each LU on the
598 * target would get some limited time or requests on the target.
599 */
600 blk_run_queue(current_sdev->request_queue);
601
602 spin_lock_irqsave(shost->host_lock, flags);
603 if (starget->starget_sdev_user)
604 goto out;
605 list_for_each_entry_safe(sdev, tmp, &starget->devices,
606 same_target_siblings) {
607 if (sdev == current_sdev)
608 continue;
609 if (scsi_device_get(sdev))
610 continue;
611
612 spin_unlock_irqrestore(shost->host_lock, flags);
613 blk_run_queue(sdev->request_queue);
614 spin_lock_irqsave(shost->host_lock, flags);
615
616 scsi_device_put(sdev);
617 }
618 out:
619 spin_unlock_irqrestore(shost->host_lock, flags);
620 }
621
622 /*
623 * Function: scsi_run_queue()
624 *
625 * Purpose: Select a proper request queue to serve next
626 *
627 * Arguments: q - last request's queue
628 *
629 * Returns: Nothing
630 *
631 * Notes: The previous command was completely finished, start
632 * a new one if possible.
633 */
634 static void scsi_run_queue(struct request_queue *q)
635 {
636 struct scsi_device *sdev = q->queuedata;
637 struct Scsi_Host *shost = sdev->host;
638 unsigned long flags;
639
640 if (sdev->single_lun)
641 scsi_single_lun_run(sdev);
642
643 spin_lock_irqsave(shost->host_lock, flags);
644 while (!list_empty(&shost->starved_list) &&
645 !shost->host_blocked && !shost->host_self_blocked &&
646 !((shost->can_queue > 0) &&
647 (shost->host_busy >= shost->can_queue))) {
648 /*
649 * As long as shost is accepting commands and we have
650 * starved queues, call blk_run_queue. scsi_request_fn
651 * drops the queue_lock and can add us back to the
652 * starved_list.
653 *
654 * host_lock protects the starved_list and starved_entry.
655 * scsi_request_fn must get the host_lock before checking
656 * or modifying starved_list or starved_entry.
657 */
658 sdev = list_entry(shost->starved_list.next,
659 struct scsi_device, starved_entry);
660 list_del_init(&sdev->starved_entry);
661 spin_unlock_irqrestore(shost->host_lock, flags);
662
663 blk_run_queue(sdev->request_queue);
664
665 spin_lock_irqsave(shost->host_lock, flags);
666 if (unlikely(!list_empty(&sdev->starved_entry)))
667 /*
668 * sdev lost a race, and was put back on the
669 * starved list. This is unlikely but without this
670 * in theory we could loop forever.
671 */
672 break;
673 }
674 spin_unlock_irqrestore(shost->host_lock, flags);
675
676 blk_run_queue(q);
677 }
678
679 /*
680 * Function: scsi_requeue_command()
681 *
682 * Purpose: Handle post-processing of completed commands.
683 *
684 * Arguments: q - queue to operate on
685 * cmd - command that may need to be requeued.
686 *
687 * Returns: Nothing
688 *
689 * Notes: After command completion, there may be blocks left
690 * over which weren't finished by the previous command
691 * this can be for a number of reasons - the main one is
692 * I/O errors in the middle of the request, in which case
693 * we need to request the blocks that come after the bad
694 * sector.
695 * Notes: Upon return, cmd is a stale pointer.
696 */
697 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
698 {
699 struct request *req = cmd->request;
700 unsigned long flags;
701
702 scsi_unprep_request(req);
703 spin_lock_irqsave(q->queue_lock, flags);
704 blk_requeue_request(q, req);
705 spin_unlock_irqrestore(q->queue_lock, flags);
706
707 scsi_run_queue(q);
708 }
709
710 void scsi_next_command(struct scsi_cmnd *cmd)
711 {
712 struct scsi_device *sdev = cmd->device;
713 struct request_queue *q = sdev->request_queue;
714
715 /* need to hold a reference on the device before we let go of the cmd */
716 get_device(&sdev->sdev_gendev);
717
718 scsi_put_command(cmd);
719 scsi_run_queue(q);
720
721 /* ok to remove device now */
722 put_device(&sdev->sdev_gendev);
723 }
724
725 void scsi_run_host_queues(struct Scsi_Host *shost)
726 {
727 struct scsi_device *sdev;
728
729 shost_for_each_device(sdev, shost)
730 scsi_run_queue(sdev->request_queue);
731 }
732
733 /*
734 * Function: scsi_end_request()
735 *
736 * Purpose: Post-processing of completed commands (usually invoked at end
737 * of upper level post-processing and scsi_io_completion).
738 *
739 * Arguments: cmd - command that is complete.
740 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
741 * bytes - number of bytes of completed I/O
742 * requeue - indicates whether we should requeue leftovers.
743 *
744 * Lock status: Assumed that lock is not held upon entry.
745 *
746 * Returns: cmd if requeue required, NULL otherwise.
747 *
748 * Notes: This is called for block device requests in order to
749 * mark some number of sectors as complete.
750 *
751 * We are guaranteeing that the request queue will be goosed
752 * at some point during this call.
753 * Notes: If cmd was requeued, upon return it will be a stale pointer.
754 */
755 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
756 int bytes, int requeue)
757 {
758 request_queue_t *q = cmd->device->request_queue;
759 struct request *req = cmd->request;
760 unsigned long flags;
761
762 /*
763 * If there are blocks left over at the end, set up the command
764 * to queue the remainder of them.
765 */
766 if (end_that_request_chunk(req, uptodate, bytes)) {
767 int leftover = (req->hard_nr_sectors << 9);
768
769 if (blk_pc_request(req))
770 leftover = req->data_len;
771
772 /* kill remainder if no retrys */
773 if (!uptodate && blk_noretry_request(req))
774 end_that_request_chunk(req, 0, leftover);
775 else {
776 if (requeue) {
777 /*
778 * Bleah. Leftovers again. Stick the
779 * leftovers in the front of the
780 * queue, and goose the queue again.
781 */
782 scsi_requeue_command(q, cmd);
783 cmd = NULL;
784 }
785 return cmd;
786 }
787 }
788
789 add_disk_randomness(req->rq_disk);
790
791 spin_lock_irqsave(q->queue_lock, flags);
792 if (blk_rq_tagged(req))
793 blk_queue_end_tag(q, req);
794 end_that_request_last(req, uptodate);
795 spin_unlock_irqrestore(q->queue_lock, flags);
796
797 /*
798 * This will goose the queue request function at the end, so we don't
799 * need to worry about launching another command.
800 */
801 scsi_next_command(cmd);
802 return NULL;
803 }
804
805 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
806 {
807 struct scsi_host_sg_pool *sgp;
808 struct scatterlist *sgl;
809
810 BUG_ON(!cmd->use_sg);
811
812 switch (cmd->use_sg) {
813 case 1 ... 8:
814 cmd->sglist_len = 0;
815 break;
816 case 9 ... 16:
817 cmd->sglist_len = 1;
818 break;
819 case 17 ... 32:
820 cmd->sglist_len = 2;
821 break;
822 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
823 case 33 ... 64:
824 cmd->sglist_len = 3;
825 break;
826 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
827 case 65 ... 128:
828 cmd->sglist_len = 4;
829 break;
830 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
831 case 129 ... 256:
832 cmd->sglist_len = 5;
833 break;
834 #endif
835 #endif
836 #endif
837 default:
838 return NULL;
839 }
840
841 sgp = scsi_sg_pools + cmd->sglist_len;
842 sgl = mempool_alloc(sgp->pool, gfp_mask);
843 return sgl;
844 }
845
846 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
847 {
848 struct scsi_host_sg_pool *sgp;
849
850 BUG_ON(index >= SG_MEMPOOL_NR);
851
852 sgp = scsi_sg_pools + index;
853 mempool_free(sgl, sgp->pool);
854 }
855
856 /*
857 * Function: scsi_release_buffers()
858 *
859 * Purpose: Completion processing for block device I/O requests.
860 *
861 * Arguments: cmd - command that we are bailing.
862 *
863 * Lock status: Assumed that no lock is held upon entry.
864 *
865 * Returns: Nothing
866 *
867 * Notes: In the event that an upper level driver rejects a
868 * command, we must release resources allocated during
869 * the __init_io() function. Primarily this would involve
870 * the scatter-gather table, and potentially any bounce
871 * buffers.
872 */
873 static void scsi_release_buffers(struct scsi_cmnd *cmd)
874 {
875 struct request *req = cmd->request;
876
877 /*
878 * Free up any indirection buffers we allocated for DMA purposes.
879 */
880 if (cmd->use_sg)
881 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
882 else if (cmd->request_buffer != req->buffer)
883 kfree(cmd->request_buffer);
884
885 /*
886 * Zero these out. They now point to freed memory, and it is
887 * dangerous to hang onto the pointers.
888 */
889 cmd->buffer = NULL;
890 cmd->bufflen = 0;
891 cmd->request_buffer = NULL;
892 cmd->request_bufflen = 0;
893 }
894
895 /*
896 * Function: scsi_io_completion()
897 *
898 * Purpose: Completion processing for block device I/O requests.
899 *
900 * Arguments: cmd - command that is finished.
901 *
902 * Lock status: Assumed that no lock is held upon entry.
903 *
904 * Returns: Nothing
905 *
906 * Notes: This function is matched in terms of capabilities to
907 * the function that created the scatter-gather list.
908 * In other words, if there are no bounce buffers
909 * (the normal case for most drivers), we don't need
910 * the logic to deal with cleaning up afterwards.
911 *
912 * We must do one of several things here:
913 *
914 * a) Call scsi_end_request. This will finish off the
915 * specified number of sectors. If we are done, the
916 * command block will be released, and the queue
917 * function will be goosed. If we are not done, then
918 * scsi_end_request will directly goose the queue.
919 *
920 * b) We can just use scsi_requeue_command() here. This would
921 * be used if we just wanted to retry, for example.
922 */
923 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
924 unsigned int block_bytes)
925 {
926 int result = cmd->result;
927 int this_count = cmd->bufflen;
928 request_queue_t *q = cmd->device->request_queue;
929 struct request *req = cmd->request;
930 int clear_errors = 1;
931 struct scsi_sense_hdr sshdr;
932 int sense_valid = 0;
933 int sense_deferred = 0;
934
935 /*
936 * Free up any indirection buffers we allocated for DMA purposes.
937 * For the case of a READ, we need to copy the data out of the
938 * bounce buffer and into the real buffer.
939 */
940 if (cmd->use_sg)
941 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
942 else if (cmd->buffer != req->buffer) {
943 if (rq_data_dir(req) == READ) {
944 unsigned long flags;
945 char *to = bio_kmap_irq(req->bio, &flags);
946 memcpy(to, cmd->buffer, cmd->bufflen);
947 bio_kunmap_irq(to, &flags);
948 }
949 kfree(cmd->buffer);
950 }
951
952 if (result) {
953 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
954 if (sense_valid)
955 sense_deferred = scsi_sense_is_deferred(&sshdr);
956 }
957 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
958 req->errors = result;
959 if (result) {
960 clear_errors = 0;
961 if (sense_valid && req->sense) {
962 /*
963 * SG_IO wants current and deferred errors
964 */
965 int len = 8 + cmd->sense_buffer[7];
966
967 if (len > SCSI_SENSE_BUFFERSIZE)
968 len = SCSI_SENSE_BUFFERSIZE;
969 memcpy(req->sense, cmd->sense_buffer, len);
970 req->sense_len = len;
971 }
972 } else
973 req->data_len = cmd->resid;
974 }
975
976 /*
977 * Zero these out. They now point to freed memory, and it is
978 * dangerous to hang onto the pointers.
979 */
980 cmd->buffer = NULL;
981 cmd->bufflen = 0;
982 cmd->request_buffer = NULL;
983 cmd->request_bufflen = 0;
984
985 /*
986 * Next deal with any sectors which we were able to correctly
987 * handle.
988 */
989 if (good_bytes >= 0) {
990 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
991 req->nr_sectors, good_bytes));
992 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
993
994 if (clear_errors)
995 req->errors = 0;
996 /*
997 * If multiple sectors are requested in one buffer, then
998 * they will have been finished off by the first command.
999 * If not, then we have a multi-buffer command.
1000 *
1001 * If block_bytes != 0, it means we had a medium error
1002 * of some sort, and that we want to mark some number of
1003 * sectors as not uptodate. Thus we want to inhibit
1004 * requeueing right here - we will requeue down below
1005 * when we handle the bad sectors.
1006 */
1007
1008 /*
1009 * If the command completed without error, then either
1010 * finish off the rest of the command, or start a new one.
1011 */
1012 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
1013 return;
1014 }
1015 /*
1016 * Now, if we were good little boys and girls, Santa left us a request
1017 * sense buffer. We can extract information from this, so we
1018 * can choose a block to remap, etc.
1019 */
1020 if (sense_valid && !sense_deferred) {
1021 switch (sshdr.sense_key) {
1022 case UNIT_ATTENTION:
1023 if (cmd->device->removable) {
1024 /* detected disc change. set a bit
1025 * and quietly refuse further access.
1026 */
1027 cmd->device->changed = 1;
1028 scsi_end_request(cmd, 0,
1029 this_count, 1);
1030 return;
1031 } else {
1032 /*
1033 * Must have been a power glitch, or a
1034 * bus reset. Could not have been a
1035 * media change, so we just retry the
1036 * request and see what happens.
1037 */
1038 scsi_requeue_command(q, cmd);
1039 return;
1040 }
1041 break;
1042 case ILLEGAL_REQUEST:
1043 /*
1044 * If we had an ILLEGAL REQUEST returned, then we may
1045 * have performed an unsupported command. The only
1046 * thing this should be would be a ten byte read where
1047 * only a six byte read was supported. Also, on a
1048 * system where READ CAPACITY failed, we may have read
1049 * past the end of the disk.
1050 */
1051 if ((cmd->device->use_10_for_rw &&
1052 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1053 (cmd->cmnd[0] == READ_10 ||
1054 cmd->cmnd[0] == WRITE_10)) {
1055 cmd->device->use_10_for_rw = 0;
1056 /*
1057 * This will cause a retry with a 6-byte
1058 * command.
1059 */
1060 scsi_requeue_command(q, cmd);
1061 result = 0;
1062 } else {
1063 scsi_end_request(cmd, 0, this_count, 1);
1064 return;
1065 }
1066 break;
1067 case NOT_READY:
1068 /*
1069 * If the device is in the process of becoming ready,
1070 * retry.
1071 */
1072 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
1073 scsi_requeue_command(q, cmd);
1074 return;
1075 }
1076 if (!(req->flags & REQ_QUIET))
1077 scmd_printk(KERN_INFO, cmd,
1078 "Device not ready.\n");
1079 scsi_end_request(cmd, 0, this_count, 1);
1080 return;
1081 case VOLUME_OVERFLOW:
1082 if (!(req->flags & REQ_QUIET)) {
1083 scmd_printk(KERN_INFO, cmd,
1084 "Volume overflow, CDB: ");
1085 __scsi_print_command(cmd->data_cmnd);
1086 scsi_print_sense("", cmd);
1087 }
1088 scsi_end_request(cmd, 0, block_bytes, 1);
1089 return;
1090 default:
1091 break;
1092 }
1093 } /* driver byte != 0 */
1094 if (host_byte(result) == DID_RESET) {
1095 /*
1096 * Third party bus reset or reset for error
1097 * recovery reasons. Just retry the request
1098 * and see what happens.
1099 */
1100 scsi_requeue_command(q, cmd);
1101 return;
1102 }
1103 if (result) {
1104 if (!(req->flags & REQ_QUIET)) {
1105 scmd_printk(KERN_INFO, cmd,
1106 "SCSI error: return code = 0x%x\n", result);
1107
1108 if (driver_byte(result) & DRIVER_SENSE)
1109 scsi_print_sense("", cmd);
1110 }
1111 /*
1112 * Mark a single buffer as not uptodate. Queue the remainder.
1113 * We sometimes get this cruft in the event that a medium error
1114 * isn't properly reported.
1115 */
1116 block_bytes = req->hard_cur_sectors << 9;
1117 if (!block_bytes)
1118 block_bytes = req->data_len;
1119 scsi_end_request(cmd, 0, block_bytes, 1);
1120 }
1121 }
1122 EXPORT_SYMBOL(scsi_io_completion);
1123
1124 /*
1125 * Function: scsi_init_io()
1126 *
1127 * Purpose: SCSI I/O initialize function.
1128 *
1129 * Arguments: cmd - Command descriptor we wish to initialize
1130 *
1131 * Returns: 0 on success
1132 * BLKPREP_DEFER if the failure is retryable
1133 * BLKPREP_KILL if the failure is fatal
1134 */
1135 static int scsi_init_io(struct scsi_cmnd *cmd)
1136 {
1137 struct request *req = cmd->request;
1138 struct scatterlist *sgpnt;
1139 int count;
1140
1141 /*
1142 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1143 */
1144 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1145 cmd->request_bufflen = req->data_len;
1146 cmd->request_buffer = req->data;
1147 req->buffer = req->data;
1148 cmd->use_sg = 0;
1149 return 0;
1150 }
1151
1152 /*
1153 * we used to not use scatter-gather for single segment request,
1154 * but now we do (it makes highmem I/O easier to support without
1155 * kmapping pages)
1156 */
1157 cmd->use_sg = req->nr_phys_segments;
1158
1159 /*
1160 * if sg table allocation fails, requeue request later.
1161 */
1162 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1163 if (unlikely(!sgpnt)) {
1164 scsi_unprep_request(req);
1165 return BLKPREP_DEFER;
1166 }
1167
1168 cmd->request_buffer = (char *) sgpnt;
1169 cmd->request_bufflen = req->nr_sectors << 9;
1170 if (blk_pc_request(req))
1171 cmd->request_bufflen = req->data_len;
1172 req->buffer = NULL;
1173
1174 /*
1175 * Next, walk the list, and fill in the addresses and sizes of
1176 * each segment.
1177 */
1178 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1179
1180 /*
1181 * mapped well, send it off
1182 */
1183 if (likely(count <= cmd->use_sg)) {
1184 cmd->use_sg = count;
1185 return 0;
1186 }
1187
1188 printk(KERN_ERR "Incorrect number of segments after building list\n");
1189 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1190 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1191 req->current_nr_sectors);
1192
1193 /* release the command and kill it */
1194 scsi_release_buffers(cmd);
1195 scsi_put_command(cmd);
1196 return BLKPREP_KILL;
1197 }
1198
1199 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1200 sector_t *error_sector)
1201 {
1202 struct scsi_device *sdev = q->queuedata;
1203 struct scsi_driver *drv;
1204
1205 if (sdev->sdev_state != SDEV_RUNNING)
1206 return -ENXIO;
1207
1208 drv = *(struct scsi_driver **) disk->private_data;
1209 if (drv->issue_flush)
1210 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1211
1212 return -EOPNOTSUPP;
1213 }
1214
1215 static void scsi_generic_done(struct scsi_cmnd *cmd)
1216 {
1217 BUG_ON(!blk_pc_request(cmd->request));
1218 /*
1219 * This will complete the whole command with uptodate=1 so
1220 * as far as the block layer is concerned the command completed
1221 * successfully. Since this is a REQ_BLOCK_PC command the
1222 * caller should check the request's errors value
1223 */
1224 scsi_io_completion(cmd, cmd->bufflen, 0);
1225 }
1226
1227 void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1228 {
1229 struct request *req = cmd->request;
1230
1231 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1232 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1233 cmd->cmd_len = req->cmd_len;
1234 if (!req->data_len)
1235 cmd->sc_data_direction = DMA_NONE;
1236 else if (rq_data_dir(req) == WRITE)
1237 cmd->sc_data_direction = DMA_TO_DEVICE;
1238 else
1239 cmd->sc_data_direction = DMA_FROM_DEVICE;
1240
1241 cmd->transfersize = req->data_len;
1242 cmd->allowed = req->retries;
1243 cmd->timeout_per_command = req->timeout;
1244 }
1245 EXPORT_SYMBOL_GPL(scsi_setup_blk_pc_cmnd);
1246
1247 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1248 {
1249 struct scsi_device *sdev = q->queuedata;
1250 struct scsi_cmnd *cmd;
1251 int specials_only = 0;
1252
1253 /*
1254 * Just check to see if the device is online. If it isn't, we
1255 * refuse to process any commands. The device must be brought
1256 * online before trying any recovery commands
1257 */
1258 if (unlikely(!scsi_device_online(sdev))) {
1259 sdev_printk(KERN_ERR, sdev,
1260 "rejecting I/O to offline device\n");
1261 goto kill;
1262 }
1263 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1264 /* OK, we're not in a running state don't prep
1265 * user commands */
1266 if (sdev->sdev_state == SDEV_DEL) {
1267 /* Device is fully deleted, no commands
1268 * at all allowed down */
1269 sdev_printk(KERN_ERR, sdev,
1270 "rejecting I/O to dead device\n");
1271 goto kill;
1272 }
1273 /* OK, we only allow special commands (i.e. not
1274 * user initiated ones */
1275 specials_only = sdev->sdev_state;
1276 }
1277
1278 /*
1279 * Find the actual device driver associated with this command.
1280 * The SPECIAL requests are things like character device or
1281 * ioctls, which did not originate from ll_rw_blk. Note that
1282 * the special field is also used to indicate the cmd for
1283 * the remainder of a partially fulfilled request that can
1284 * come up when there is a medium error. We have to treat
1285 * these two cases differently. We differentiate by looking
1286 * at request->cmd, as this tells us the real story.
1287 */
1288 if (req->flags & REQ_SPECIAL && req->special) {
1289 struct scsi_request *sreq = req->special;
1290
1291 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1292 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1293 if (unlikely(!cmd))
1294 goto defer;
1295 scsi_init_cmd_from_req(cmd, sreq);
1296 } else
1297 cmd = req->special;
1298 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1299
1300 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1301 if(specials_only == SDEV_QUIESCE ||
1302 specials_only == SDEV_BLOCK)
1303 goto defer;
1304
1305 sdev_printk(KERN_ERR, sdev,
1306 "rejecting I/O to device being removed\n");
1307 goto kill;
1308 }
1309
1310
1311 /*
1312 * Now try and find a command block that we can use.
1313 */
1314 if (!req->special) {
1315 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1316 if (unlikely(!cmd))
1317 goto defer;
1318 } else
1319 cmd = req->special;
1320
1321 /* pull a tag out of the request if we have one */
1322 cmd->tag = req->tag;
1323 } else {
1324 blk_dump_rq_flags(req, "SCSI bad req");
1325 goto kill;
1326 }
1327
1328 /* note the overloading of req->special. When the tag
1329 * is active it always means cmd. If the tag goes
1330 * back for re-queueing, it may be reset */
1331 req->special = cmd;
1332 cmd->request = req;
1333
1334 /*
1335 * FIXME: drop the lock here because the functions below
1336 * expect to be called without the queue lock held. Also,
1337 * previously, we dequeued the request before dropping the
1338 * lock. We hope REQ_STARTED prevents anything untoward from
1339 * happening now.
1340 */
1341 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1342 struct scsi_driver *drv;
1343 int ret;
1344
1345 /*
1346 * This will do a couple of things:
1347 * 1) Fill in the actual SCSI command.
1348 * 2) Fill in any other upper-level specific fields
1349 * (timeout).
1350 *
1351 * If this returns 0, it means that the request failed
1352 * (reading past end of disk, reading offline device,
1353 * etc). This won't actually talk to the device, but
1354 * some kinds of consistency checking may cause the
1355 * request to be rejected immediately.
1356 */
1357
1358 /*
1359 * This sets up the scatter-gather table (allocating if
1360 * required).
1361 */
1362 ret = scsi_init_io(cmd);
1363 switch(ret) {
1364 /* For BLKPREP_KILL/DEFER the cmd was released */
1365 case BLKPREP_KILL:
1366 goto kill;
1367 case BLKPREP_DEFER:
1368 goto defer;
1369 }
1370
1371 /*
1372 * Initialize the actual SCSI command for this request.
1373 */
1374 if (req->rq_disk) {
1375 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1376 if (unlikely(!drv->init_command(cmd))) {
1377 scsi_release_buffers(cmd);
1378 scsi_put_command(cmd);
1379 goto kill;
1380 }
1381 } else {
1382 scsi_setup_blk_pc_cmnd(cmd);
1383 cmd->done = scsi_generic_done;
1384 }
1385 }
1386
1387 /*
1388 * The request is now prepped, no need to come back here
1389 */
1390 req->flags |= REQ_DONTPREP;
1391 return BLKPREP_OK;
1392
1393 defer:
1394 /* If we defer, the elv_next_request() returns NULL, but the
1395 * queue must be restarted, so we plug here if no returning
1396 * command will automatically do that. */
1397 if (sdev->device_busy == 0)
1398 blk_plug_device(q);
1399 return BLKPREP_DEFER;
1400 kill:
1401 req->errors = DID_NO_CONNECT << 16;
1402 return BLKPREP_KILL;
1403 }
1404
1405 /*
1406 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1407 * return 0.
1408 *
1409 * Called with the queue_lock held.
1410 */
1411 static inline int scsi_dev_queue_ready(struct request_queue *q,
1412 struct scsi_device *sdev)
1413 {
1414 if (sdev->device_busy >= sdev->queue_depth)
1415 return 0;
1416 if (sdev->device_busy == 0 && sdev->device_blocked) {
1417 /*
1418 * unblock after device_blocked iterates to zero
1419 */
1420 if (--sdev->device_blocked == 0) {
1421 SCSI_LOG_MLQUEUE(3,
1422 sdev_printk(KERN_INFO, sdev,
1423 "unblocking device at zero depth\n"));
1424 } else {
1425 blk_plug_device(q);
1426 return 0;
1427 }
1428 }
1429 if (sdev->device_blocked)
1430 return 0;
1431
1432 return 1;
1433 }
1434
1435 /*
1436 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1437 * return 0. We must end up running the queue again whenever 0 is
1438 * returned, else IO can hang.
1439 *
1440 * Called with host_lock held.
1441 */
1442 static inline int scsi_host_queue_ready(struct request_queue *q,
1443 struct Scsi_Host *shost,
1444 struct scsi_device *sdev)
1445 {
1446 if (scsi_host_in_recovery(shost))
1447 return 0;
1448 if (shost->host_busy == 0 && shost->host_blocked) {
1449 /*
1450 * unblock after host_blocked iterates to zero
1451 */
1452 if (--shost->host_blocked == 0) {
1453 SCSI_LOG_MLQUEUE(3,
1454 printk("scsi%d unblocking host at zero depth\n",
1455 shost->host_no));
1456 } else {
1457 blk_plug_device(q);
1458 return 0;
1459 }
1460 }
1461 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1462 shost->host_blocked || shost->host_self_blocked) {
1463 if (list_empty(&sdev->starved_entry))
1464 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1465 return 0;
1466 }
1467
1468 /* We're OK to process the command, so we can't be starved */
1469 if (!list_empty(&sdev->starved_entry))
1470 list_del_init(&sdev->starved_entry);
1471
1472 return 1;
1473 }
1474
1475 /*
1476 * Kill a request for a dead device
1477 */
1478 static void scsi_kill_request(struct request *req, request_queue_t *q)
1479 {
1480 struct scsi_cmnd *cmd = req->special;
1481
1482 blkdev_dequeue_request(req);
1483
1484 if (unlikely(cmd == NULL)) {
1485 printk(KERN_CRIT "impossible request in %s.\n",
1486 __FUNCTION__);
1487 BUG();
1488 }
1489
1490 scsi_init_cmd_errh(cmd);
1491 cmd->result = DID_NO_CONNECT << 16;
1492 atomic_inc(&cmd->device->iorequest_cnt);
1493 __scsi_done(cmd);
1494 }
1495
1496 static void scsi_softirq_done(struct request *rq)
1497 {
1498 struct scsi_cmnd *cmd = rq->completion_data;
1499 unsigned long wait_for = cmd->allowed * cmd->timeout_per_command;
1500 int disposition;
1501
1502 INIT_LIST_HEAD(&cmd->eh_entry);
1503
1504 disposition = scsi_decide_disposition(cmd);
1505 if (disposition != SUCCESS &&
1506 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1507 sdev_printk(KERN_ERR, cmd->device,
1508 "timing out command, waited %lus\n",
1509 wait_for/HZ);
1510 disposition = SUCCESS;
1511 }
1512
1513 scsi_log_completion(cmd, disposition);
1514
1515 switch (disposition) {
1516 case SUCCESS:
1517 scsi_finish_command(cmd);
1518 break;
1519 case NEEDS_RETRY:
1520 scsi_retry_command(cmd);
1521 break;
1522 case ADD_TO_MLQUEUE:
1523 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1524 break;
1525 default:
1526 if (!scsi_eh_scmd_add(cmd, 0))
1527 scsi_finish_command(cmd);
1528 }
1529 }
1530
1531 /*
1532 * Function: scsi_request_fn()
1533 *
1534 * Purpose: Main strategy routine for SCSI.
1535 *
1536 * Arguments: q - Pointer to actual queue.
1537 *
1538 * Returns: Nothing
1539 *
1540 * Lock status: IO request lock assumed to be held when called.
1541 */
1542 static void scsi_request_fn(struct request_queue *q)
1543 {
1544 struct scsi_device *sdev = q->queuedata;
1545 struct Scsi_Host *shost;
1546 struct scsi_cmnd *cmd;
1547 struct request *req;
1548
1549 if (!sdev) {
1550 printk("scsi: killing requests for dead queue\n");
1551 while ((req = elv_next_request(q)) != NULL)
1552 scsi_kill_request(req, q);
1553 return;
1554 }
1555
1556 if(!get_device(&sdev->sdev_gendev))
1557 /* We must be tearing the block queue down already */
1558 return;
1559
1560 /*
1561 * To start with, we keep looping until the queue is empty, or until
1562 * the host is no longer able to accept any more requests.
1563 */
1564 shost = sdev->host;
1565 while (!blk_queue_plugged(q)) {
1566 int rtn;
1567 /*
1568 * get next queueable request. We do this early to make sure
1569 * that the request is fully prepared even if we cannot
1570 * accept it.
1571 */
1572 req = elv_next_request(q);
1573 if (!req || !scsi_dev_queue_ready(q, sdev))
1574 break;
1575
1576 if (unlikely(!scsi_device_online(sdev))) {
1577 sdev_printk(KERN_ERR, sdev,
1578 "rejecting I/O to offline device\n");
1579 scsi_kill_request(req, q);
1580 continue;
1581 }
1582
1583
1584 /*
1585 * Remove the request from the request list.
1586 */
1587 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1588 blkdev_dequeue_request(req);
1589 sdev->device_busy++;
1590
1591 spin_unlock(q->queue_lock);
1592 cmd = req->special;
1593 if (unlikely(cmd == NULL)) {
1594 printk(KERN_CRIT "impossible request in %s.\n"
1595 "please mail a stack trace to "
1596 "linux-scsi@vger.kernel.org",
1597 __FUNCTION__);
1598 BUG();
1599 }
1600 spin_lock(shost->host_lock);
1601
1602 if (!scsi_host_queue_ready(q, shost, sdev))
1603 goto not_ready;
1604 if (sdev->single_lun) {
1605 if (scsi_target(sdev)->starget_sdev_user &&
1606 scsi_target(sdev)->starget_sdev_user != sdev)
1607 goto not_ready;
1608 scsi_target(sdev)->starget_sdev_user = sdev;
1609 }
1610 shost->host_busy++;
1611
1612 /*
1613 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1614 * take the lock again.
1615 */
1616 spin_unlock_irq(shost->host_lock);
1617
1618 /*
1619 * Finally, initialize any error handling parameters, and set up
1620 * the timers for timeouts.
1621 */
1622 scsi_init_cmd_errh(cmd);
1623
1624 /*
1625 * Dispatch the command to the low-level driver.
1626 */
1627 rtn = scsi_dispatch_cmd(cmd);
1628 spin_lock_irq(q->queue_lock);
1629 if(rtn) {
1630 /* we're refusing the command; because of
1631 * the way locks get dropped, we need to
1632 * check here if plugging is required */
1633 if(sdev->device_busy == 0)
1634 blk_plug_device(q);
1635
1636 break;
1637 }
1638 }
1639
1640 goto out;
1641
1642 not_ready:
1643 spin_unlock_irq(shost->host_lock);
1644
1645 /*
1646 * lock q, handle tag, requeue req, and decrement device_busy. We
1647 * must return with queue_lock held.
1648 *
1649 * Decrementing device_busy without checking it is OK, as all such
1650 * cases (host limits or settings) should run the queue at some
1651 * later time.
1652 */
1653 spin_lock_irq(q->queue_lock);
1654 blk_requeue_request(q, req);
1655 sdev->device_busy--;
1656 if(sdev->device_busy == 0)
1657 blk_plug_device(q);
1658 out:
1659 /* must be careful here...if we trigger the ->remove() function
1660 * we cannot be holding the q lock */
1661 spin_unlock_irq(q->queue_lock);
1662 put_device(&sdev->sdev_gendev);
1663 spin_lock_irq(q->queue_lock);
1664 }
1665
1666 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1667 {
1668 struct device *host_dev;
1669 u64 bounce_limit = 0xffffffff;
1670
1671 if (shost->unchecked_isa_dma)
1672 return BLK_BOUNCE_ISA;
1673 /*
1674 * Platforms with virtual-DMA translation
1675 * hardware have no practical limit.
1676 */
1677 if (!PCI_DMA_BUS_IS_PHYS)
1678 return BLK_BOUNCE_ANY;
1679
1680 host_dev = scsi_get_device(shost);
1681 if (host_dev && host_dev->dma_mask)
1682 bounce_limit = *host_dev->dma_mask;
1683
1684 return bounce_limit;
1685 }
1686 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1687
1688 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1689 {
1690 struct Scsi_Host *shost = sdev->host;
1691 struct request_queue *q;
1692
1693 q = blk_init_queue(scsi_request_fn, NULL);
1694 if (!q)
1695 return NULL;
1696
1697 blk_queue_prep_rq(q, scsi_prep_fn);
1698
1699 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1700 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1701 blk_queue_max_sectors(q, shost->max_sectors);
1702 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1703 blk_queue_segment_boundary(q, shost->dma_boundary);
1704 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1705 blk_queue_softirq_done(q, scsi_softirq_done);
1706
1707 if (!shost->use_clustering)
1708 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1709 return q;
1710 }
1711
1712 void scsi_free_queue(struct request_queue *q)
1713 {
1714 blk_cleanup_queue(q);
1715 }
1716
1717 /*
1718 * Function: scsi_block_requests()
1719 *
1720 * Purpose: Utility function used by low-level drivers to prevent further
1721 * commands from being queued to the device.
1722 *
1723 * Arguments: shost - Host in question
1724 *
1725 * Returns: Nothing
1726 *
1727 * Lock status: No locks are assumed held.
1728 *
1729 * Notes: There is no timer nor any other means by which the requests
1730 * get unblocked other than the low-level driver calling
1731 * scsi_unblock_requests().
1732 */
1733 void scsi_block_requests(struct Scsi_Host *shost)
1734 {
1735 shost->host_self_blocked = 1;
1736 }
1737 EXPORT_SYMBOL(scsi_block_requests);
1738
1739 /*
1740 * Function: scsi_unblock_requests()
1741 *
1742 * Purpose: Utility function used by low-level drivers to allow further
1743 * commands from being queued to the device.
1744 *
1745 * Arguments: shost - Host in question
1746 *
1747 * Returns: Nothing
1748 *
1749 * Lock status: No locks are assumed held.
1750 *
1751 * Notes: There is no timer nor any other means by which the requests
1752 * get unblocked other than the low-level driver calling
1753 * scsi_unblock_requests().
1754 *
1755 * This is done as an API function so that changes to the
1756 * internals of the scsi mid-layer won't require wholesale
1757 * changes to drivers that use this feature.
1758 */
1759 void scsi_unblock_requests(struct Scsi_Host *shost)
1760 {
1761 shost->host_self_blocked = 0;
1762 scsi_run_host_queues(shost);
1763 }
1764 EXPORT_SYMBOL(scsi_unblock_requests);
1765
1766 int __init scsi_init_queue(void)
1767 {
1768 int i;
1769
1770 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1771 sizeof(struct scsi_io_context),
1772 0, 0, NULL, NULL);
1773 if (!scsi_io_context_cache) {
1774 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1775 return -ENOMEM;
1776 }
1777
1778 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1779 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1780 int size = sgp->size * sizeof(struct scatterlist);
1781
1782 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1783 SLAB_HWCACHE_ALIGN, NULL, NULL);
1784 if (!sgp->slab) {
1785 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1786 sgp->name);
1787 }
1788
1789 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1790 mempool_alloc_slab, mempool_free_slab,
1791 sgp->slab);
1792 if (!sgp->pool) {
1793 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1794 sgp->name);
1795 }
1796 }
1797
1798 return 0;
1799 }
1800
1801 void scsi_exit_queue(void)
1802 {
1803 int i;
1804
1805 kmem_cache_destroy(scsi_io_context_cache);
1806
1807 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1808 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1809 mempool_destroy(sgp->pool);
1810 kmem_cache_destroy(sgp->slab);
1811 }
1812 }
1813 /**
1814 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1815 * six bytes if necessary.
1816 * @sdev: SCSI device to be queried
1817 * @dbd: set if mode sense will allow block descriptors to be returned
1818 * @modepage: mode page being requested
1819 * @buffer: request buffer (may not be smaller than eight bytes)
1820 * @len: length of request buffer.
1821 * @timeout: command timeout
1822 * @retries: number of retries before failing
1823 * @data: returns a structure abstracting the mode header data
1824 * @sense: place to put sense data (or NULL if no sense to be collected).
1825 * must be SCSI_SENSE_BUFFERSIZE big.
1826 *
1827 * Returns zero if unsuccessful, or the header offset (either 4
1828 * or 8 depending on whether a six or ten byte command was
1829 * issued) if successful.
1830 **/
1831 int
1832 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1833 unsigned char *buffer, int len, int timeout, int retries,
1834 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1835 unsigned char cmd[12];
1836 int use_10_for_ms;
1837 int header_length;
1838 int result;
1839 struct scsi_sense_hdr my_sshdr;
1840
1841 memset(data, 0, sizeof(*data));
1842 memset(&cmd[0], 0, 12);
1843 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1844 cmd[2] = modepage;
1845
1846 /* caller might not be interested in sense, but we need it */
1847 if (!sshdr)
1848 sshdr = &my_sshdr;
1849
1850 retry:
1851 use_10_for_ms = sdev->use_10_for_ms;
1852
1853 if (use_10_for_ms) {
1854 if (len < 8)
1855 len = 8;
1856
1857 cmd[0] = MODE_SENSE_10;
1858 cmd[8] = len;
1859 header_length = 8;
1860 } else {
1861 if (len < 4)
1862 len = 4;
1863
1864 cmd[0] = MODE_SENSE;
1865 cmd[4] = len;
1866 header_length = 4;
1867 }
1868
1869 memset(buffer, 0, len);
1870
1871 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1872 sshdr, timeout, retries);
1873
1874 /* This code looks awful: what it's doing is making sure an
1875 * ILLEGAL REQUEST sense return identifies the actual command
1876 * byte as the problem. MODE_SENSE commands can return
1877 * ILLEGAL REQUEST if the code page isn't supported */
1878
1879 if (use_10_for_ms && !scsi_status_is_good(result) &&
1880 (driver_byte(result) & DRIVER_SENSE)) {
1881 if (scsi_sense_valid(sshdr)) {
1882 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1883 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1884 /*
1885 * Invalid command operation code
1886 */
1887 sdev->use_10_for_ms = 0;
1888 goto retry;
1889 }
1890 }
1891 }
1892
1893 if(scsi_status_is_good(result)) {
1894 data->header_length = header_length;
1895 if(use_10_for_ms) {
1896 data->length = buffer[0]*256 + buffer[1] + 2;
1897 data->medium_type = buffer[2];
1898 data->device_specific = buffer[3];
1899 data->longlba = buffer[4] & 0x01;
1900 data->block_descriptor_length = buffer[6]*256
1901 + buffer[7];
1902 } else {
1903 data->length = buffer[0] + 1;
1904 data->medium_type = buffer[1];
1905 data->device_specific = buffer[2];
1906 data->block_descriptor_length = buffer[3];
1907 }
1908 }
1909
1910 return result;
1911 }
1912 EXPORT_SYMBOL(scsi_mode_sense);
1913
1914 int
1915 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1916 {
1917 char cmd[] = {
1918 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1919 };
1920 struct scsi_sense_hdr sshdr;
1921 int result;
1922
1923 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1924 timeout, retries);
1925
1926 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1927
1928 if ((scsi_sense_valid(&sshdr)) &&
1929 ((sshdr.sense_key == UNIT_ATTENTION) ||
1930 (sshdr.sense_key == NOT_READY))) {
1931 sdev->changed = 1;
1932 result = 0;
1933 }
1934 }
1935 return result;
1936 }
1937 EXPORT_SYMBOL(scsi_test_unit_ready);
1938
1939 /**
1940 * scsi_device_set_state - Take the given device through the device
1941 * state model.
1942 * @sdev: scsi device to change the state of.
1943 * @state: state to change to.
1944 *
1945 * Returns zero if unsuccessful or an error if the requested
1946 * transition is illegal.
1947 **/
1948 int
1949 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1950 {
1951 enum scsi_device_state oldstate = sdev->sdev_state;
1952
1953 if (state == oldstate)
1954 return 0;
1955
1956 switch (state) {
1957 case SDEV_CREATED:
1958 /* There are no legal states that come back to
1959 * created. This is the manually initialised start
1960 * state */
1961 goto illegal;
1962
1963 case SDEV_RUNNING:
1964 switch (oldstate) {
1965 case SDEV_CREATED:
1966 case SDEV_OFFLINE:
1967 case SDEV_QUIESCE:
1968 case SDEV_BLOCK:
1969 break;
1970 default:
1971 goto illegal;
1972 }
1973 break;
1974
1975 case SDEV_QUIESCE:
1976 switch (oldstate) {
1977 case SDEV_RUNNING:
1978 case SDEV_OFFLINE:
1979 break;
1980 default:
1981 goto illegal;
1982 }
1983 break;
1984
1985 case SDEV_OFFLINE:
1986 switch (oldstate) {
1987 case SDEV_CREATED:
1988 case SDEV_RUNNING:
1989 case SDEV_QUIESCE:
1990 case SDEV_BLOCK:
1991 break;
1992 default:
1993 goto illegal;
1994 }
1995 break;
1996
1997 case SDEV_BLOCK:
1998 switch (oldstate) {
1999 case SDEV_CREATED:
2000 case SDEV_RUNNING:
2001 break;
2002 default:
2003 goto illegal;
2004 }
2005 break;
2006
2007 case SDEV_CANCEL:
2008 switch (oldstate) {
2009 case SDEV_CREATED:
2010 case SDEV_RUNNING:
2011 case SDEV_OFFLINE:
2012 case SDEV_BLOCK:
2013 break;
2014 default:
2015 goto illegal;
2016 }
2017 break;
2018
2019 case SDEV_DEL:
2020 switch (oldstate) {
2021 case SDEV_CANCEL:
2022 break;
2023 default:
2024 goto illegal;
2025 }
2026 break;
2027
2028 }
2029 sdev->sdev_state = state;
2030 return 0;
2031
2032 illegal:
2033 SCSI_LOG_ERROR_RECOVERY(1,
2034 sdev_printk(KERN_ERR, sdev,
2035 "Illegal state transition %s->%s\n",
2036 scsi_device_state_name(oldstate),
2037 scsi_device_state_name(state))
2038 );
2039 return -EINVAL;
2040 }
2041 EXPORT_SYMBOL(scsi_device_set_state);
2042
2043 /**
2044 * scsi_device_quiesce - Block user issued commands.
2045 * @sdev: scsi device to quiesce.
2046 *
2047 * This works by trying to transition to the SDEV_QUIESCE state
2048 * (which must be a legal transition). When the device is in this
2049 * state, only special requests will be accepted, all others will
2050 * be deferred. Since special requests may also be requeued requests,
2051 * a successful return doesn't guarantee the device will be
2052 * totally quiescent.
2053 *
2054 * Must be called with user context, may sleep.
2055 *
2056 * Returns zero if unsuccessful or an error if not.
2057 **/
2058 int
2059 scsi_device_quiesce(struct scsi_device *sdev)
2060 {
2061 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2062 if (err)
2063 return err;
2064
2065 scsi_run_queue(sdev->request_queue);
2066 while (sdev->device_busy) {
2067 msleep_interruptible(200);
2068 scsi_run_queue(sdev->request_queue);
2069 }
2070 return 0;
2071 }
2072 EXPORT_SYMBOL(scsi_device_quiesce);
2073
2074 /**
2075 * scsi_device_resume - Restart user issued commands to a quiesced device.
2076 * @sdev: scsi device to resume.
2077 *
2078 * Moves the device from quiesced back to running and restarts the
2079 * queues.
2080 *
2081 * Must be called with user context, may sleep.
2082 **/
2083 void
2084 scsi_device_resume(struct scsi_device *sdev)
2085 {
2086 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2087 return;
2088 scsi_run_queue(sdev->request_queue);
2089 }
2090 EXPORT_SYMBOL(scsi_device_resume);
2091
2092 static void
2093 device_quiesce_fn(struct scsi_device *sdev, void *data)
2094 {
2095 scsi_device_quiesce(sdev);
2096 }
2097
2098 void
2099 scsi_target_quiesce(struct scsi_target *starget)
2100 {
2101 starget_for_each_device(starget, NULL, device_quiesce_fn);
2102 }
2103 EXPORT_SYMBOL(scsi_target_quiesce);
2104
2105 static void
2106 device_resume_fn(struct scsi_device *sdev, void *data)
2107 {
2108 scsi_device_resume(sdev);
2109 }
2110
2111 void
2112 scsi_target_resume(struct scsi_target *starget)
2113 {
2114 starget_for_each_device(starget, NULL, device_resume_fn);
2115 }
2116 EXPORT_SYMBOL(scsi_target_resume);
2117
2118 /**
2119 * scsi_internal_device_block - internal function to put a device
2120 * temporarily into the SDEV_BLOCK state
2121 * @sdev: device to block
2122 *
2123 * Block request made by scsi lld's to temporarily stop all
2124 * scsi commands on the specified device. Called from interrupt
2125 * or normal process context.
2126 *
2127 * Returns zero if successful or error if not
2128 *
2129 * Notes:
2130 * This routine transitions the device to the SDEV_BLOCK state
2131 * (which must be a legal transition). When the device is in this
2132 * state, all commands are deferred until the scsi lld reenables
2133 * the device with scsi_device_unblock or device_block_tmo fires.
2134 * This routine assumes the host_lock is held on entry.
2135 **/
2136 int
2137 scsi_internal_device_block(struct scsi_device *sdev)
2138 {
2139 request_queue_t *q = sdev->request_queue;
2140 unsigned long flags;
2141 int err = 0;
2142
2143 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2144 if (err)
2145 return err;
2146
2147 /*
2148 * The device has transitioned to SDEV_BLOCK. Stop the
2149 * block layer from calling the midlayer with this device's
2150 * request queue.
2151 */
2152 spin_lock_irqsave(q->queue_lock, flags);
2153 blk_stop_queue(q);
2154 spin_unlock_irqrestore(q->queue_lock, flags);
2155
2156 return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2159
2160 /**
2161 * scsi_internal_device_unblock - resume a device after a block request
2162 * @sdev: device to resume
2163 *
2164 * Called by scsi lld's or the midlayer to restart the device queue
2165 * for the previously suspended scsi device. Called from interrupt or
2166 * normal process context.
2167 *
2168 * Returns zero if successful or error if not.
2169 *
2170 * Notes:
2171 * This routine transitions the device to the SDEV_RUNNING state
2172 * (which must be a legal transition) allowing the midlayer to
2173 * goose the queue for this device. This routine assumes the
2174 * host_lock is held upon entry.
2175 **/
2176 int
2177 scsi_internal_device_unblock(struct scsi_device *sdev)
2178 {
2179 request_queue_t *q = sdev->request_queue;
2180 int err;
2181 unsigned long flags;
2182
2183 /*
2184 * Try to transition the scsi device to SDEV_RUNNING
2185 * and goose the device queue if successful.
2186 */
2187 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2188 if (err)
2189 return err;
2190
2191 spin_lock_irqsave(q->queue_lock, flags);
2192 blk_start_queue(q);
2193 spin_unlock_irqrestore(q->queue_lock, flags);
2194
2195 return 0;
2196 }
2197 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2198
2199 static void
2200 device_block(struct scsi_device *sdev, void *data)
2201 {
2202 scsi_internal_device_block(sdev);
2203 }
2204
2205 static int
2206 target_block(struct device *dev, void *data)
2207 {
2208 if (scsi_is_target_device(dev))
2209 starget_for_each_device(to_scsi_target(dev), NULL,
2210 device_block);
2211 return 0;
2212 }
2213
2214 void
2215 scsi_target_block(struct device *dev)
2216 {
2217 if (scsi_is_target_device(dev))
2218 starget_for_each_device(to_scsi_target(dev), NULL,
2219 device_block);
2220 else
2221 device_for_each_child(dev, NULL, target_block);
2222 }
2223 EXPORT_SYMBOL_GPL(scsi_target_block);
2224
2225 static void
2226 device_unblock(struct scsi_device *sdev, void *data)
2227 {
2228 scsi_internal_device_unblock(sdev);
2229 }
2230
2231 static int
2232 target_unblock(struct device *dev, void *data)
2233 {
2234 if (scsi_is_target_device(dev))
2235 starget_for_each_device(to_scsi_target(dev), NULL,
2236 device_unblock);
2237 return 0;
2238 }
2239
2240 void
2241 scsi_target_unblock(struct device *dev)
2242 {
2243 if (scsi_is_target_device(dev))
2244 starget_for_each_device(to_scsi_target(dev), NULL,
2245 device_unblock);
2246 else
2247 device_for_each_child(dev, NULL, target_unblock);
2248 }
2249 EXPORT_SYMBOL_GPL(scsi_target_unblock);