]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge remote-tracking branches 'spi/fix/fsl-dspi' and 'spi/fix/pxa2xx' into spi-linus
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33
34 #include <trace/events/scsi.h>
35
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38
39
40 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE 2
42
43 struct scsi_host_sg_pool {
44 size_t size;
45 char *name;
46 struct kmem_cache *slab;
47 mempool_t *pool;
48 };
49
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55 SP(8),
56 SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62 SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69 SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72
73 struct kmem_cache *scsi_sdb_cache;
74
75 /*
76 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77 * not change behaviour from the previous unplug mechanism, experimentation
78 * may prove this needs changing.
79 */
80 #define SCSI_QUEUE_DELAY 3
81
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85 struct Scsi_Host *host = cmd->device->host;
86 struct scsi_device *device = cmd->device;
87 struct scsi_target *starget = scsi_target(device);
88
89 /*
90 * Set the appropriate busy bit for the device/host.
91 *
92 * If the host/device isn't busy, assume that something actually
93 * completed, and that we should be able to queue a command now.
94 *
95 * Note that the prior mid-layer assumption that any host could
96 * always queue at least one command is now broken. The mid-layer
97 * will implement a user specifiable stall (see
98 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99 * if a command is requeued with no other commands outstanding
100 * either for the device or for the host.
101 */
102 switch (reason) {
103 case SCSI_MLQUEUE_HOST_BUSY:
104 atomic_set(&host->host_blocked, host->max_host_blocked);
105 break;
106 case SCSI_MLQUEUE_DEVICE_BUSY:
107 case SCSI_MLQUEUE_EH_RETRY:
108 atomic_set(&device->device_blocked,
109 device->max_device_blocked);
110 break;
111 case SCSI_MLQUEUE_TARGET_BUSY:
112 atomic_set(&starget->target_blocked,
113 starget->max_target_blocked);
114 break;
115 }
116 }
117
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120 struct scsi_device *sdev = cmd->device;
121 struct request_queue *q = cmd->request->q;
122
123 blk_mq_requeue_request(cmd->request);
124 blk_mq_kick_requeue_list(q);
125 put_device(&sdev->sdev_gendev);
126 }
127
128 /**
129 * __scsi_queue_insert - private queue insertion
130 * @cmd: The SCSI command being requeued
131 * @reason: The reason for the requeue
132 * @unbusy: Whether the queue should be unbusied
133 *
134 * This is a private queue insertion. The public interface
135 * scsi_queue_insert() always assumes the queue should be unbusied
136 * because it's always called before the completion. This function is
137 * for a requeue after completion, which should only occur in this
138 * file.
139 */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142 struct scsi_device *device = cmd->device;
143 struct request_queue *q = device->request_queue;
144 unsigned long flags;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_cleanup_queue() finishes.
163 */
164 cmd->result = 0;
165 if (q->mq_ops) {
166 scsi_mq_requeue_cmd(cmd);
167 return;
168 }
169 spin_lock_irqsave(q->queue_lock, flags);
170 blk_requeue_request(q, cmd->request);
171 kblockd_schedule_work(&device->requeue_work);
172 spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174
175 /*
176 * Function: scsi_queue_insert()
177 *
178 * Purpose: Insert a command in the midlevel queue.
179 *
180 * Arguments: cmd - command that we are adding to queue.
181 * reason - why we are inserting command to queue.
182 *
183 * Lock status: Assumed that lock is not held upon entry.
184 *
185 * Returns: Nothing.
186 *
187 * Notes: We do this for one of two cases. Either the host is busy
188 * and it cannot accept any more commands for the time being,
189 * or the device returned QUEUE_FULL and can accept no more
190 * commands.
191 * Notes: This could be called either from an interrupt context or a
192 * normal process context.
193 */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196 __scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199 * scsi_execute - insert request and wait for the result
200 * @sdev: scsi device
201 * @cmd: scsi command
202 * @data_direction: data direction
203 * @buffer: data buffer
204 * @bufflen: len of buffer
205 * @sense: optional sense buffer
206 * @timeout: request timeout in seconds
207 * @retries: number of times to retry request
208 * @flags: or into request flags;
209 * @resid: optional residual length
210 *
211 * returns the req->errors value which is the scsi_cmnd result
212 * field.
213 */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215 int data_direction, void *buffer, unsigned bufflen,
216 unsigned char *sense, int timeout, int retries, u64 flags,
217 int *resid)
218 {
219 struct request *req;
220 int write = (data_direction == DMA_TO_DEVICE);
221 int ret = DRIVER_ERROR << 24;
222
223 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224 if (IS_ERR(req))
225 return ret;
226 blk_rq_set_block_pc(req);
227
228 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
229 buffer, bufflen, __GFP_WAIT))
230 goto out;
231
232 req->cmd_len = COMMAND_SIZE(cmd[0]);
233 memcpy(req->cmd, cmd, req->cmd_len);
234 req->sense = sense;
235 req->sense_len = 0;
236 req->retries = retries;
237 req->timeout = timeout;
238 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240 /*
241 * head injection *required* here otherwise quiesce won't work
242 */
243 blk_execute_rq(req->q, NULL, req, 1);
244
245 /*
246 * Some devices (USB mass-storage in particular) may transfer
247 * garbage data together with a residue indicating that the data
248 * is invalid. Prevent the garbage from being misinterpreted
249 * and prevent security leaks by zeroing out the excess data.
250 */
251 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254 if (resid)
255 *resid = req->resid_len;
256 ret = req->errors;
257 out:
258 blk_put_request(req);
259
260 return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265 int data_direction, void *buffer, unsigned bufflen,
266 struct scsi_sense_hdr *sshdr, int timeout, int retries,
267 int *resid, u64 flags)
268 {
269 char *sense = NULL;
270 int result;
271
272 if (sshdr) {
273 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274 if (!sense)
275 return DRIVER_ERROR << 24;
276 }
277 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278 sense, timeout, retries, flags, resid);
279 if (sshdr)
280 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282 kfree(sense);
283 return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286
287 /*
288 * Function: scsi_init_cmd_errh()
289 *
290 * Purpose: Initialize cmd fields related to error handling.
291 *
292 * Arguments: cmd - command that is ready to be queued.
293 *
294 * Notes: This function has the job of initializing a number of
295 * fields related to error handling. Typically this will
296 * be called once for each command, as required.
297 */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300 cmd->serial_number = 0;
301 scsi_set_resid(cmd, 0);
302 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303 if (cmd->cmd_len == 0)
304 cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309 struct Scsi_Host *shost = sdev->host;
310 struct scsi_target *starget = scsi_target(sdev);
311 unsigned long flags;
312
313 atomic_dec(&shost->host_busy);
314 if (starget->can_queue > 0)
315 atomic_dec(&starget->target_busy);
316
317 if (unlikely(scsi_host_in_recovery(shost) &&
318 (shost->host_failed || shost->host_eh_scheduled))) {
319 spin_lock_irqsave(shost->host_lock, flags);
320 scsi_eh_wakeup(shost);
321 spin_unlock_irqrestore(shost->host_lock, flags);
322 }
323
324 atomic_dec(&sdev->device_busy);
325 }
326
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329 if (q->mq_ops)
330 blk_mq_start_hw_queues(q);
331 else
332 blk_run_queue(q);
333 }
334
335 /*
336 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337 * and call blk_run_queue for all the scsi_devices on the target -
338 * including current_sdev first.
339 *
340 * Called with *no* scsi locks held.
341 */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344 struct Scsi_Host *shost = current_sdev->host;
345 struct scsi_device *sdev, *tmp;
346 struct scsi_target *starget = scsi_target(current_sdev);
347 unsigned long flags;
348
349 spin_lock_irqsave(shost->host_lock, flags);
350 starget->starget_sdev_user = NULL;
351 spin_unlock_irqrestore(shost->host_lock, flags);
352
353 /*
354 * Call blk_run_queue for all LUNs on the target, starting with
355 * current_sdev. We race with others (to set starget_sdev_user),
356 * but in most cases, we will be first. Ideally, each LU on the
357 * target would get some limited time or requests on the target.
358 */
359 scsi_kick_queue(current_sdev->request_queue);
360
361 spin_lock_irqsave(shost->host_lock, flags);
362 if (starget->starget_sdev_user)
363 goto out;
364 list_for_each_entry_safe(sdev, tmp, &starget->devices,
365 same_target_siblings) {
366 if (sdev == current_sdev)
367 continue;
368 if (scsi_device_get(sdev))
369 continue;
370
371 spin_unlock_irqrestore(shost->host_lock, flags);
372 scsi_kick_queue(sdev->request_queue);
373 spin_lock_irqsave(shost->host_lock, flags);
374
375 scsi_device_put(sdev);
376 }
377 out:
378 spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384 return true;
385 if (atomic_read(&sdev->device_blocked) > 0)
386 return true;
387 return false;
388 }
389
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392 if (starget->can_queue > 0) {
393 if (atomic_read(&starget->target_busy) >= starget->can_queue)
394 return true;
395 if (atomic_read(&starget->target_blocked) > 0)
396 return true;
397 }
398 return false;
399 }
400
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 if (shost->can_queue > 0 &&
404 atomic_read(&shost->host_busy) >= shost->can_queue)
405 return true;
406 if (atomic_read(&shost->host_blocked) > 0)
407 return true;
408 if (shost->host_self_blocked)
409 return true;
410 return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 LIST_HEAD(starved_list);
416 struct scsi_device *sdev;
417 unsigned long flags;
418
419 spin_lock_irqsave(shost->host_lock, flags);
420 list_splice_init(&shost->starved_list, &starved_list);
421
422 while (!list_empty(&starved_list)) {
423 struct request_queue *slq;
424
425 /*
426 * As long as shost is accepting commands and we have
427 * starved queues, call blk_run_queue. scsi_request_fn
428 * drops the queue_lock and can add us back to the
429 * starved_list.
430 *
431 * host_lock protects the starved_list and starved_entry.
432 * scsi_request_fn must get the host_lock before checking
433 * or modifying starved_list or starved_entry.
434 */
435 if (scsi_host_is_busy(shost))
436 break;
437
438 sdev = list_entry(starved_list.next,
439 struct scsi_device, starved_entry);
440 list_del_init(&sdev->starved_entry);
441 if (scsi_target_is_busy(scsi_target(sdev))) {
442 list_move_tail(&sdev->starved_entry,
443 &shost->starved_list);
444 continue;
445 }
446
447 /*
448 * Once we drop the host lock, a racing scsi_remove_device()
449 * call may remove the sdev from the starved list and destroy
450 * it and the queue. Mitigate by taking a reference to the
451 * queue and never touching the sdev again after we drop the
452 * host lock. Note: if __scsi_remove_device() invokes
453 * blk_cleanup_queue() before the queue is run from this
454 * function then blk_run_queue() will return immediately since
455 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 */
457 slq = sdev->request_queue;
458 if (!blk_get_queue(slq))
459 continue;
460 spin_unlock_irqrestore(shost->host_lock, flags);
461
462 scsi_kick_queue(slq);
463 blk_put_queue(slq);
464
465 spin_lock_irqsave(shost->host_lock, flags);
466 }
467 /* put any unprocessed entries back */
468 list_splice(&starved_list, &shost->starved_list);
469 spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /*
473 * Function: scsi_run_queue()
474 *
475 * Purpose: Select a proper request queue to serve next
476 *
477 * Arguments: q - last request's queue
478 *
479 * Returns: Nothing
480 *
481 * Notes: The previous command was completely finished, start
482 * a new one if possible.
483 */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486 struct scsi_device *sdev = q->queuedata;
487
488 if (scsi_target(sdev)->single_lun)
489 scsi_single_lun_run(sdev);
490 if (!list_empty(&sdev->host->starved_list))
491 scsi_starved_list_run(sdev->host);
492
493 if (q->mq_ops)
494 blk_mq_start_stopped_hw_queues(q, false);
495 else
496 blk_run_queue(q);
497 }
498
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501 struct scsi_device *sdev;
502 struct request_queue *q;
503
504 sdev = container_of(work, struct scsi_device, requeue_work);
505 q = sdev->request_queue;
506 scsi_run_queue(q);
507 }
508
509 /*
510 * Function: scsi_requeue_command()
511 *
512 * Purpose: Handle post-processing of completed commands.
513 *
514 * Arguments: q - queue to operate on
515 * cmd - command that may need to be requeued.
516 *
517 * Returns: Nothing
518 *
519 * Notes: After command completion, there may be blocks left
520 * over which weren't finished by the previous command
521 * this can be for a number of reasons - the main one is
522 * I/O errors in the middle of the request, in which case
523 * we need to request the blocks that come after the bad
524 * sector.
525 * Notes: Upon return, cmd is a stale pointer.
526 */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529 struct scsi_device *sdev = cmd->device;
530 struct request *req = cmd->request;
531 unsigned long flags;
532
533 spin_lock_irqsave(q->queue_lock, flags);
534 blk_unprep_request(req);
535 req->special = NULL;
536 scsi_put_command(cmd);
537 blk_requeue_request(q, req);
538 spin_unlock_irqrestore(q->queue_lock, flags);
539
540 scsi_run_queue(q);
541
542 put_device(&sdev->sdev_gendev);
543 }
544
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547 struct scsi_device *sdev = cmd->device;
548 struct request_queue *q = sdev->request_queue;
549
550 scsi_put_command(cmd);
551 scsi_run_queue(q);
552
553 put_device(&sdev->sdev_gendev);
554 }
555
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558 struct scsi_device *sdev;
559
560 shost_for_each_device(sdev, shost)
561 scsi_run_queue(sdev->request_queue);
562 }
563
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566 unsigned int index;
567
568 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570 if (nents <= 8)
571 index = 0;
572 else
573 index = get_count_order(nents) - 3;
574
575 return index;
576 }
577
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580 struct scsi_host_sg_pool *sgp;
581
582 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583 mempool_free(sgl, sgp->pool);
584 }
585
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588 struct scsi_host_sg_pool *sgp;
589
590 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591 return mempool_alloc(sgp->pool, gfp_mask);
592 }
593
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596 if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597 return;
598 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602 gfp_t gfp_mask, bool mq)
603 {
604 struct scatterlist *first_chunk = NULL;
605 int ret;
606
607 BUG_ON(!nents);
608
609 if (mq) {
610 if (nents <= SCSI_MAX_SG_SEGMENTS) {
611 sdb->table.nents = nents;
612 sg_init_table(sdb->table.sgl, sdb->table.nents);
613 return 0;
614 }
615 first_chunk = sdb->table.sgl;
616 }
617
618 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 first_chunk, gfp_mask, scsi_sg_alloc);
620 if (unlikely(ret))
621 scsi_free_sgtable(sdb, mq);
622 return ret;
623 }
624
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627 if (cmd->request->cmd_type == REQ_TYPE_FS) {
628 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630 if (drv->uninit_command)
631 drv->uninit_command(cmd);
632 }
633 }
634
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637 if (cmd->sdb.table.nents)
638 scsi_free_sgtable(&cmd->sdb, true);
639 if (cmd->request->next_rq && cmd->request->next_rq->special)
640 scsi_free_sgtable(cmd->request->next_rq->special, true);
641 if (scsi_prot_sg_count(cmd))
642 scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647 struct scsi_device *sdev = cmd->device;
648 struct Scsi_Host *shost = sdev->host;
649 unsigned long flags;
650
651 scsi_mq_free_sgtables(cmd);
652 scsi_uninit_cmd(cmd);
653
654 if (shost->use_cmd_list) {
655 BUG_ON(list_empty(&cmd->list));
656 spin_lock_irqsave(&sdev->list_lock, flags);
657 list_del_init(&cmd->list);
658 spin_unlock_irqrestore(&sdev->list_lock, flags);
659 }
660 }
661
662 /*
663 * Function: scsi_release_buffers()
664 *
665 * Purpose: Free resources allocate for a scsi_command.
666 *
667 * Arguments: cmd - command that we are bailing.
668 *
669 * Lock status: Assumed that no lock is held upon entry.
670 *
671 * Returns: Nothing
672 *
673 * Notes: In the event that an upper level driver rejects a
674 * command, we must release resources allocated during
675 * the __init_io() function. Primarily this would involve
676 * the scatter-gather table.
677 */
678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680 if (cmd->sdb.table.nents)
681 scsi_free_sgtable(&cmd->sdb, false);
682
683 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685 if (scsi_prot_sg_count(cmd))
686 scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688
689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693 scsi_free_sgtable(bidi_sdb, false);
694 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695 cmd->request->next_rq->special = NULL;
696 }
697
698 static bool scsi_end_request(struct request *req, int error,
699 unsigned int bytes, unsigned int bidi_bytes)
700 {
701 struct scsi_cmnd *cmd = req->special;
702 struct scsi_device *sdev = cmd->device;
703 struct request_queue *q = sdev->request_queue;
704
705 if (blk_update_request(req, error, bytes))
706 return true;
707
708 /* Bidi request must be completed as a whole */
709 if (unlikely(bidi_bytes) &&
710 blk_update_request(req->next_rq, error, bidi_bytes))
711 return true;
712
713 if (blk_queue_add_random(q))
714 add_disk_randomness(req->rq_disk);
715
716 if (req->mq_ctx) {
717 /*
718 * In the MQ case the command gets freed by __blk_mq_end_request,
719 * so we have to do all cleanup that depends on it earlier.
720 *
721 * We also can't kick the queues from irq context, so we
722 * will have to defer it to a workqueue.
723 */
724 scsi_mq_uninit_cmd(cmd);
725
726 __blk_mq_end_request(req, error);
727
728 if (scsi_target(sdev)->single_lun ||
729 !list_empty(&sdev->host->starved_list))
730 kblockd_schedule_work(&sdev->requeue_work);
731 else
732 blk_mq_start_stopped_hw_queues(q, true);
733
734 put_device(&sdev->sdev_gendev);
735 } else {
736 unsigned long flags;
737
738 if (bidi_bytes)
739 scsi_release_bidi_buffers(cmd);
740
741 spin_lock_irqsave(q->queue_lock, flags);
742 blk_finish_request(req, error);
743 spin_unlock_irqrestore(q->queue_lock, flags);
744
745 scsi_release_buffers(cmd);
746 scsi_next_command(cmd);
747 }
748
749 return false;
750 }
751
752 /**
753 * __scsi_error_from_host_byte - translate SCSI error code into errno
754 * @cmd: SCSI command (unused)
755 * @result: scsi error code
756 *
757 * Translate SCSI error code into standard UNIX errno.
758 * Return values:
759 * -ENOLINK temporary transport failure
760 * -EREMOTEIO permanent target failure, do not retry
761 * -EBADE permanent nexus failure, retry on other path
762 * -ENOSPC No write space available
763 * -ENODATA Medium error
764 * -EIO unspecified I/O error
765 */
766 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
767 {
768 int error = 0;
769
770 switch(host_byte(result)) {
771 case DID_TRANSPORT_FAILFAST:
772 error = -ENOLINK;
773 break;
774 case DID_TARGET_FAILURE:
775 set_host_byte(cmd, DID_OK);
776 error = -EREMOTEIO;
777 break;
778 case DID_NEXUS_FAILURE:
779 set_host_byte(cmd, DID_OK);
780 error = -EBADE;
781 break;
782 case DID_ALLOC_FAILURE:
783 set_host_byte(cmd, DID_OK);
784 error = -ENOSPC;
785 break;
786 case DID_MEDIUM_ERROR:
787 set_host_byte(cmd, DID_OK);
788 error = -ENODATA;
789 break;
790 default:
791 error = -EIO;
792 break;
793 }
794
795 return error;
796 }
797
798 /*
799 * Function: scsi_io_completion()
800 *
801 * Purpose: Completion processing for block device I/O requests.
802 *
803 * Arguments: cmd - command that is finished.
804 *
805 * Lock status: Assumed that no lock is held upon entry.
806 *
807 * Returns: Nothing
808 *
809 * Notes: We will finish off the specified number of sectors. If we
810 * are done, the command block will be released and the queue
811 * function will be goosed. If we are not done then we have to
812 * figure out what to do next:
813 *
814 * a) We can call scsi_requeue_command(). The request
815 * will be unprepared and put back on the queue. Then
816 * a new command will be created for it. This should
817 * be used if we made forward progress, or if we want
818 * to switch from READ(10) to READ(6) for example.
819 *
820 * b) We can call __scsi_queue_insert(). The request will
821 * be put back on the queue and retried using the same
822 * command as before, possibly after a delay.
823 *
824 * c) We can call scsi_end_request() with -EIO to fail
825 * the remainder of the request.
826 */
827 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
828 {
829 int result = cmd->result;
830 struct request_queue *q = cmd->device->request_queue;
831 struct request *req = cmd->request;
832 int error = 0;
833 struct scsi_sense_hdr sshdr;
834 int sense_valid = 0;
835 int sense_deferred = 0;
836 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
837 ACTION_DELAYED_RETRY} action;
838 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
839
840 if (result) {
841 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
842 if (sense_valid)
843 sense_deferred = scsi_sense_is_deferred(&sshdr);
844 }
845
846 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
847 if (result) {
848 if (sense_valid && req->sense) {
849 /*
850 * SG_IO wants current and deferred errors
851 */
852 int len = 8 + cmd->sense_buffer[7];
853
854 if (len > SCSI_SENSE_BUFFERSIZE)
855 len = SCSI_SENSE_BUFFERSIZE;
856 memcpy(req->sense, cmd->sense_buffer, len);
857 req->sense_len = len;
858 }
859 if (!sense_deferred)
860 error = __scsi_error_from_host_byte(cmd, result);
861 }
862 /*
863 * __scsi_error_from_host_byte may have reset the host_byte
864 */
865 req->errors = cmd->result;
866
867 req->resid_len = scsi_get_resid(cmd);
868
869 if (scsi_bidi_cmnd(cmd)) {
870 /*
871 * Bidi commands Must be complete as a whole,
872 * both sides at once.
873 */
874 req->next_rq->resid_len = scsi_in(cmd)->resid;
875 if (scsi_end_request(req, 0, blk_rq_bytes(req),
876 blk_rq_bytes(req->next_rq)))
877 BUG();
878 return;
879 }
880 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
881 /*
882 * Certain non BLOCK_PC requests are commands that don't
883 * actually transfer anything (FLUSH), so cannot use
884 * good_bytes != blk_rq_bytes(req) as the signal for an error.
885 * This sets the error explicitly for the problem case.
886 */
887 error = __scsi_error_from_host_byte(cmd, result);
888 }
889
890 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
891 BUG_ON(blk_bidi_rq(req));
892
893 /*
894 * Next deal with any sectors which we were able to correctly
895 * handle.
896 */
897 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
898 "%u sectors total, %d bytes done.\n",
899 blk_rq_sectors(req), good_bytes));
900
901 /*
902 * Recovered errors need reporting, but they're always treated
903 * as success, so fiddle the result code here. For BLOCK_PC
904 * we already took a copy of the original into rq->errors which
905 * is what gets returned to the user
906 */
907 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
908 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
909 * print since caller wants ATA registers. Only occurs on
910 * SCSI ATA PASS_THROUGH commands when CK_COND=1
911 */
912 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913 ;
914 else if (!(req->cmd_flags & REQ_QUIET))
915 scsi_print_sense("", cmd);
916 result = 0;
917 /* BLOCK_PC may have set error */
918 error = 0;
919 }
920
921 /*
922 * If we finished all bytes in the request we are done now.
923 */
924 if (!scsi_end_request(req, error, good_bytes, 0))
925 return;
926
927 /*
928 * Kill remainder if no retrys.
929 */
930 if (error && scsi_noretry_cmd(cmd)) {
931 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
932 BUG();
933 return;
934 }
935
936 /*
937 * If there had been no error, but we have leftover bytes in the
938 * requeues just queue the command up again.
939 */
940 if (result == 0)
941 goto requeue;
942
943 error = __scsi_error_from_host_byte(cmd, result);
944
945 if (host_byte(result) == DID_RESET) {
946 /* Third party bus reset or reset for error recovery
947 * reasons. Just retry the command and see what
948 * happens.
949 */
950 action = ACTION_RETRY;
951 } else if (sense_valid && !sense_deferred) {
952 switch (sshdr.sense_key) {
953 case UNIT_ATTENTION:
954 if (cmd->device->removable) {
955 /* Detected disc change. Set a bit
956 * and quietly refuse further access.
957 */
958 cmd->device->changed = 1;
959 action = ACTION_FAIL;
960 } else {
961 /* Must have been a power glitch, or a
962 * bus reset. Could not have been a
963 * media change, so we just retry the
964 * command and see what happens.
965 */
966 action = ACTION_RETRY;
967 }
968 break;
969 case ILLEGAL_REQUEST:
970 /* If we had an ILLEGAL REQUEST returned, then
971 * we may have performed an unsupported
972 * command. The only thing this should be
973 * would be a ten byte read where only a six
974 * byte read was supported. Also, on a system
975 * where READ CAPACITY failed, we may have
976 * read past the end of the disk.
977 */
978 if ((cmd->device->use_10_for_rw &&
979 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
980 (cmd->cmnd[0] == READ_10 ||
981 cmd->cmnd[0] == WRITE_10)) {
982 /* This will issue a new 6-byte command. */
983 cmd->device->use_10_for_rw = 0;
984 action = ACTION_REPREP;
985 } else if (sshdr.asc == 0x10) /* DIX */ {
986 action = ACTION_FAIL;
987 error = -EILSEQ;
988 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
989 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
990 action = ACTION_FAIL;
991 error = -EREMOTEIO;
992 } else
993 action = ACTION_FAIL;
994 break;
995 case ABORTED_COMMAND:
996 action = ACTION_FAIL;
997 if (sshdr.asc == 0x10) /* DIF */
998 error = -EILSEQ;
999 break;
1000 case NOT_READY:
1001 /* If the device is in the process of becoming
1002 * ready, or has a temporary blockage, retry.
1003 */
1004 if (sshdr.asc == 0x04) {
1005 switch (sshdr.ascq) {
1006 case 0x01: /* becoming ready */
1007 case 0x04: /* format in progress */
1008 case 0x05: /* rebuild in progress */
1009 case 0x06: /* recalculation in progress */
1010 case 0x07: /* operation in progress */
1011 case 0x08: /* Long write in progress */
1012 case 0x09: /* self test in progress */
1013 case 0x14: /* space allocation in progress */
1014 action = ACTION_DELAYED_RETRY;
1015 break;
1016 default:
1017 action = ACTION_FAIL;
1018 break;
1019 }
1020 } else
1021 action = ACTION_FAIL;
1022 break;
1023 case VOLUME_OVERFLOW:
1024 /* See SSC3rXX or current. */
1025 action = ACTION_FAIL;
1026 break;
1027 default:
1028 action = ACTION_FAIL;
1029 break;
1030 }
1031 } else
1032 action = ACTION_FAIL;
1033
1034 if (action != ACTION_FAIL &&
1035 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1036 action = ACTION_FAIL;
1037
1038 switch (action) {
1039 case ACTION_FAIL:
1040 /* Give up and fail the remainder of the request */
1041 if (!(req->cmd_flags & REQ_QUIET)) {
1042 scsi_print_result(cmd);
1043 if (driver_byte(result) & DRIVER_SENSE)
1044 scsi_print_sense("", cmd);
1045 scsi_print_command(cmd);
1046 }
1047 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1048 return;
1049 /*FALLTHRU*/
1050 case ACTION_REPREP:
1051 requeue:
1052 /* Unprep the request and put it back at the head of the queue.
1053 * A new command will be prepared and issued.
1054 */
1055 if (q->mq_ops) {
1056 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1057 scsi_mq_uninit_cmd(cmd);
1058 scsi_mq_requeue_cmd(cmd);
1059 } else {
1060 scsi_release_buffers(cmd);
1061 scsi_requeue_command(q, cmd);
1062 }
1063 break;
1064 case ACTION_RETRY:
1065 /* Retry the same command immediately */
1066 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1067 break;
1068 case ACTION_DELAYED_RETRY:
1069 /* Retry the same command after a delay */
1070 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1071 break;
1072 }
1073 }
1074
1075 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1076 gfp_t gfp_mask)
1077 {
1078 int count;
1079
1080 /*
1081 * If sg table allocation fails, requeue request later.
1082 */
1083 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1084 gfp_mask, req->mq_ctx != NULL)))
1085 return BLKPREP_DEFER;
1086
1087 /*
1088 * Next, walk the list, and fill in the addresses and sizes of
1089 * each segment.
1090 */
1091 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1092 BUG_ON(count > sdb->table.nents);
1093 sdb->table.nents = count;
1094 sdb->length = blk_rq_bytes(req);
1095 return BLKPREP_OK;
1096 }
1097
1098 /*
1099 * Function: scsi_init_io()
1100 *
1101 * Purpose: SCSI I/O initialize function.
1102 *
1103 * Arguments: cmd - Command descriptor we wish to initialize
1104 *
1105 * Returns: 0 on success
1106 * BLKPREP_DEFER if the failure is retryable
1107 * BLKPREP_KILL if the failure is fatal
1108 */
1109 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1110 {
1111 struct scsi_device *sdev = cmd->device;
1112 struct request *rq = cmd->request;
1113 bool is_mq = (rq->mq_ctx != NULL);
1114 int error;
1115
1116 BUG_ON(!rq->nr_phys_segments);
1117
1118 error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1119 if (error)
1120 goto err_exit;
1121
1122 if (blk_bidi_rq(rq)) {
1123 if (!rq->q->mq_ops) {
1124 struct scsi_data_buffer *bidi_sdb =
1125 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1126 if (!bidi_sdb) {
1127 error = BLKPREP_DEFER;
1128 goto err_exit;
1129 }
1130
1131 rq->next_rq->special = bidi_sdb;
1132 }
1133
1134 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1135 GFP_ATOMIC);
1136 if (error)
1137 goto err_exit;
1138 }
1139
1140 if (blk_integrity_rq(rq)) {
1141 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1142 int ivecs, count;
1143
1144 BUG_ON(prot_sdb == NULL);
1145 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1146
1147 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1148 error = BLKPREP_DEFER;
1149 goto err_exit;
1150 }
1151
1152 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1153 prot_sdb->table.sgl);
1154 BUG_ON(unlikely(count > ivecs));
1155 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1156
1157 cmd->prot_sdb = prot_sdb;
1158 cmd->prot_sdb->table.nents = count;
1159 }
1160
1161 return BLKPREP_OK;
1162 err_exit:
1163 if (is_mq) {
1164 scsi_mq_free_sgtables(cmd);
1165 } else {
1166 scsi_release_buffers(cmd);
1167 cmd->request->special = NULL;
1168 scsi_put_command(cmd);
1169 put_device(&sdev->sdev_gendev);
1170 }
1171 return error;
1172 }
1173 EXPORT_SYMBOL(scsi_init_io);
1174
1175 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1176 struct request *req)
1177 {
1178 struct scsi_cmnd *cmd;
1179
1180 if (!req->special) {
1181 /* Bail if we can't get a reference to the device */
1182 if (!get_device(&sdev->sdev_gendev))
1183 return NULL;
1184
1185 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1186 if (unlikely(!cmd)) {
1187 put_device(&sdev->sdev_gendev);
1188 return NULL;
1189 }
1190 req->special = cmd;
1191 } else {
1192 cmd = req->special;
1193 }
1194
1195 /* pull a tag out of the request if we have one */
1196 cmd->tag = req->tag;
1197 cmd->request = req;
1198
1199 cmd->cmnd = req->cmd;
1200 cmd->prot_op = SCSI_PROT_NORMAL;
1201
1202 return cmd;
1203 }
1204
1205 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1206 {
1207 struct scsi_cmnd *cmd = req->special;
1208
1209 /*
1210 * BLOCK_PC requests may transfer data, in which case they must
1211 * a bio attached to them. Or they might contain a SCSI command
1212 * that does not transfer data, in which case they may optionally
1213 * submit a request without an attached bio.
1214 */
1215 if (req->bio) {
1216 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1217 if (unlikely(ret))
1218 return ret;
1219 } else {
1220 BUG_ON(blk_rq_bytes(req));
1221
1222 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1223 }
1224
1225 cmd->cmd_len = req->cmd_len;
1226 cmd->transfersize = blk_rq_bytes(req);
1227 cmd->allowed = req->retries;
1228 return BLKPREP_OK;
1229 }
1230
1231 /*
1232 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1233 * that still need to be translated to SCSI CDBs from the ULD.
1234 */
1235 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1236 {
1237 struct scsi_cmnd *cmd = req->special;
1238
1239 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242 if (ret != BLKPREP_OK)
1243 return ret;
1244 }
1245
1246 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1247 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1248 }
1249
1250 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1251 {
1252 struct scsi_cmnd *cmd = req->special;
1253
1254 if (!blk_rq_bytes(req))
1255 cmd->sc_data_direction = DMA_NONE;
1256 else if (rq_data_dir(req) == WRITE)
1257 cmd->sc_data_direction = DMA_TO_DEVICE;
1258 else
1259 cmd->sc_data_direction = DMA_FROM_DEVICE;
1260
1261 switch (req->cmd_type) {
1262 case REQ_TYPE_FS:
1263 return scsi_setup_fs_cmnd(sdev, req);
1264 case REQ_TYPE_BLOCK_PC:
1265 return scsi_setup_blk_pc_cmnd(sdev, req);
1266 default:
1267 return BLKPREP_KILL;
1268 }
1269 }
1270
1271 static int
1272 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1273 {
1274 int ret = BLKPREP_OK;
1275
1276 /*
1277 * If the device is not in running state we will reject some
1278 * or all commands.
1279 */
1280 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1281 switch (sdev->sdev_state) {
1282 case SDEV_OFFLINE:
1283 case SDEV_TRANSPORT_OFFLINE:
1284 /*
1285 * If the device is offline we refuse to process any
1286 * commands. The device must be brought online
1287 * before trying any recovery commands.
1288 */
1289 sdev_printk(KERN_ERR, sdev,
1290 "rejecting I/O to offline device\n");
1291 ret = BLKPREP_KILL;
1292 break;
1293 case SDEV_DEL:
1294 /*
1295 * If the device is fully deleted, we refuse to
1296 * process any commands as well.
1297 */
1298 sdev_printk(KERN_ERR, sdev,
1299 "rejecting I/O to dead device\n");
1300 ret = BLKPREP_KILL;
1301 break;
1302 case SDEV_QUIESCE:
1303 case SDEV_BLOCK:
1304 case SDEV_CREATED_BLOCK:
1305 /*
1306 * If the devices is blocked we defer normal commands.
1307 */
1308 if (!(req->cmd_flags & REQ_PREEMPT))
1309 ret = BLKPREP_DEFER;
1310 break;
1311 default:
1312 /*
1313 * For any other not fully online state we only allow
1314 * special commands. In particular any user initiated
1315 * command is not allowed.
1316 */
1317 if (!(req->cmd_flags & REQ_PREEMPT))
1318 ret = BLKPREP_KILL;
1319 break;
1320 }
1321 }
1322 return ret;
1323 }
1324
1325 static int
1326 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1327 {
1328 struct scsi_device *sdev = q->queuedata;
1329
1330 switch (ret) {
1331 case BLKPREP_KILL:
1332 req->errors = DID_NO_CONNECT << 16;
1333 /* release the command and kill it */
1334 if (req->special) {
1335 struct scsi_cmnd *cmd = req->special;
1336 scsi_release_buffers(cmd);
1337 scsi_put_command(cmd);
1338 put_device(&sdev->sdev_gendev);
1339 req->special = NULL;
1340 }
1341 break;
1342 case BLKPREP_DEFER:
1343 /*
1344 * If we defer, the blk_peek_request() returns NULL, but the
1345 * queue must be restarted, so we schedule a callback to happen
1346 * shortly.
1347 */
1348 if (atomic_read(&sdev->device_busy) == 0)
1349 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1350 break;
1351 default:
1352 req->cmd_flags |= REQ_DONTPREP;
1353 }
1354
1355 return ret;
1356 }
1357
1358 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1359 {
1360 struct scsi_device *sdev = q->queuedata;
1361 struct scsi_cmnd *cmd;
1362 int ret;
1363
1364 ret = scsi_prep_state_check(sdev, req);
1365 if (ret != BLKPREP_OK)
1366 goto out;
1367
1368 cmd = scsi_get_cmd_from_req(sdev, req);
1369 if (unlikely(!cmd)) {
1370 ret = BLKPREP_DEFER;
1371 goto out;
1372 }
1373
1374 ret = scsi_setup_cmnd(sdev, req);
1375 out:
1376 return scsi_prep_return(q, req, ret);
1377 }
1378
1379 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1380 {
1381 scsi_uninit_cmd(req->special);
1382 }
1383
1384 /*
1385 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1386 * return 0.
1387 *
1388 * Called with the queue_lock held.
1389 */
1390 static inline int scsi_dev_queue_ready(struct request_queue *q,
1391 struct scsi_device *sdev)
1392 {
1393 unsigned int busy;
1394
1395 busy = atomic_inc_return(&sdev->device_busy) - 1;
1396 if (atomic_read(&sdev->device_blocked)) {
1397 if (busy)
1398 goto out_dec;
1399
1400 /*
1401 * unblock after device_blocked iterates to zero
1402 */
1403 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1404 /*
1405 * For the MQ case we take care of this in the caller.
1406 */
1407 if (!q->mq_ops)
1408 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1409 goto out_dec;
1410 }
1411 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1412 "unblocking device at zero depth\n"));
1413 }
1414
1415 if (busy >= sdev->queue_depth)
1416 goto out_dec;
1417
1418 return 1;
1419 out_dec:
1420 atomic_dec(&sdev->device_busy);
1421 return 0;
1422 }
1423
1424 /*
1425 * scsi_target_queue_ready: checks if there we can send commands to target
1426 * @sdev: scsi device on starget to check.
1427 */
1428 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1429 struct scsi_device *sdev)
1430 {
1431 struct scsi_target *starget = scsi_target(sdev);
1432 unsigned int busy;
1433
1434 if (starget->single_lun) {
1435 spin_lock_irq(shost->host_lock);
1436 if (starget->starget_sdev_user &&
1437 starget->starget_sdev_user != sdev) {
1438 spin_unlock_irq(shost->host_lock);
1439 return 0;
1440 }
1441 starget->starget_sdev_user = sdev;
1442 spin_unlock_irq(shost->host_lock);
1443 }
1444
1445 if (starget->can_queue <= 0)
1446 return 1;
1447
1448 busy = atomic_inc_return(&starget->target_busy) - 1;
1449 if (atomic_read(&starget->target_blocked) > 0) {
1450 if (busy)
1451 goto starved;
1452
1453 /*
1454 * unblock after target_blocked iterates to zero
1455 */
1456 if (atomic_dec_return(&starget->target_blocked) > 0)
1457 goto out_dec;
1458
1459 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1460 "unblocking target at zero depth\n"));
1461 }
1462
1463 if (busy >= starget->can_queue)
1464 goto starved;
1465
1466 return 1;
1467
1468 starved:
1469 spin_lock_irq(shost->host_lock);
1470 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1471 spin_unlock_irq(shost->host_lock);
1472 out_dec:
1473 if (starget->can_queue > 0)
1474 atomic_dec(&starget->target_busy);
1475 return 0;
1476 }
1477
1478 /*
1479 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1480 * return 0. We must end up running the queue again whenever 0 is
1481 * returned, else IO can hang.
1482 */
1483 static inline int scsi_host_queue_ready(struct request_queue *q,
1484 struct Scsi_Host *shost,
1485 struct scsi_device *sdev)
1486 {
1487 unsigned int busy;
1488
1489 if (scsi_host_in_recovery(shost))
1490 return 0;
1491
1492 busy = atomic_inc_return(&shost->host_busy) - 1;
1493 if (atomic_read(&shost->host_blocked) > 0) {
1494 if (busy)
1495 goto starved;
1496
1497 /*
1498 * unblock after host_blocked iterates to zero
1499 */
1500 if (atomic_dec_return(&shost->host_blocked) > 0)
1501 goto out_dec;
1502
1503 SCSI_LOG_MLQUEUE(3,
1504 shost_printk(KERN_INFO, shost,
1505 "unblocking host at zero depth\n"));
1506 }
1507
1508 if (shost->can_queue > 0 && busy >= shost->can_queue)
1509 goto starved;
1510 if (shost->host_self_blocked)
1511 goto starved;
1512
1513 /* We're OK to process the command, so we can't be starved */
1514 if (!list_empty(&sdev->starved_entry)) {
1515 spin_lock_irq(shost->host_lock);
1516 if (!list_empty(&sdev->starved_entry))
1517 list_del_init(&sdev->starved_entry);
1518 spin_unlock_irq(shost->host_lock);
1519 }
1520
1521 return 1;
1522
1523 starved:
1524 spin_lock_irq(shost->host_lock);
1525 if (list_empty(&sdev->starved_entry))
1526 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1527 spin_unlock_irq(shost->host_lock);
1528 out_dec:
1529 atomic_dec(&shost->host_busy);
1530 return 0;
1531 }
1532
1533 /*
1534 * Busy state exporting function for request stacking drivers.
1535 *
1536 * For efficiency, no lock is taken to check the busy state of
1537 * shost/starget/sdev, since the returned value is not guaranteed and
1538 * may be changed after request stacking drivers call the function,
1539 * regardless of taking lock or not.
1540 *
1541 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1542 * needs to return 'not busy'. Otherwise, request stacking drivers
1543 * may hold requests forever.
1544 */
1545 static int scsi_lld_busy(struct request_queue *q)
1546 {
1547 struct scsi_device *sdev = q->queuedata;
1548 struct Scsi_Host *shost;
1549
1550 if (blk_queue_dying(q))
1551 return 0;
1552
1553 shost = sdev->host;
1554
1555 /*
1556 * Ignore host/starget busy state.
1557 * Since block layer does not have a concept of fairness across
1558 * multiple queues, congestion of host/starget needs to be handled
1559 * in SCSI layer.
1560 */
1561 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1562 return 1;
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * Kill a request for a dead device
1569 */
1570 static void scsi_kill_request(struct request *req, struct request_queue *q)
1571 {
1572 struct scsi_cmnd *cmd = req->special;
1573 struct scsi_device *sdev;
1574 struct scsi_target *starget;
1575 struct Scsi_Host *shost;
1576
1577 blk_start_request(req);
1578
1579 scmd_printk(KERN_INFO, cmd, "killing request\n");
1580
1581 sdev = cmd->device;
1582 starget = scsi_target(sdev);
1583 shost = sdev->host;
1584 scsi_init_cmd_errh(cmd);
1585 cmd->result = DID_NO_CONNECT << 16;
1586 atomic_inc(&cmd->device->iorequest_cnt);
1587
1588 /*
1589 * SCSI request completion path will do scsi_device_unbusy(),
1590 * bump busy counts. To bump the counters, we need to dance
1591 * with the locks as normal issue path does.
1592 */
1593 atomic_inc(&sdev->device_busy);
1594 atomic_inc(&shost->host_busy);
1595 if (starget->can_queue > 0)
1596 atomic_inc(&starget->target_busy);
1597
1598 blk_complete_request(req);
1599 }
1600
1601 static void scsi_softirq_done(struct request *rq)
1602 {
1603 struct scsi_cmnd *cmd = rq->special;
1604 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1605 int disposition;
1606
1607 INIT_LIST_HEAD(&cmd->eh_entry);
1608
1609 atomic_inc(&cmd->device->iodone_cnt);
1610 if (cmd->result)
1611 atomic_inc(&cmd->device->ioerr_cnt);
1612
1613 disposition = scsi_decide_disposition(cmd);
1614 if (disposition != SUCCESS &&
1615 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1616 sdev_printk(KERN_ERR, cmd->device,
1617 "timing out command, waited %lus\n",
1618 wait_for/HZ);
1619 disposition = SUCCESS;
1620 }
1621
1622 scsi_log_completion(cmd, disposition);
1623
1624 switch (disposition) {
1625 case SUCCESS:
1626 scsi_finish_command(cmd);
1627 break;
1628 case NEEDS_RETRY:
1629 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1630 break;
1631 case ADD_TO_MLQUEUE:
1632 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1633 break;
1634 default:
1635 if (!scsi_eh_scmd_add(cmd, 0))
1636 scsi_finish_command(cmd);
1637 }
1638 }
1639
1640 /**
1641 * scsi_done - Invoke completion on finished SCSI command.
1642 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1643 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1644 *
1645 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1646 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1647 * calls blk_complete_request() for further processing.
1648 *
1649 * This function is interrupt context safe.
1650 */
1651 static void scsi_done(struct scsi_cmnd *cmd)
1652 {
1653 trace_scsi_dispatch_cmd_done(cmd);
1654 blk_complete_request(cmd->request);
1655 }
1656
1657 /*
1658 * Function: scsi_request_fn()
1659 *
1660 * Purpose: Main strategy routine for SCSI.
1661 *
1662 * Arguments: q - Pointer to actual queue.
1663 *
1664 * Returns: Nothing
1665 *
1666 * Lock status: IO request lock assumed to be held when called.
1667 */
1668 static void scsi_request_fn(struct request_queue *q)
1669 __releases(q->queue_lock)
1670 __acquires(q->queue_lock)
1671 {
1672 struct scsi_device *sdev = q->queuedata;
1673 struct Scsi_Host *shost;
1674 struct scsi_cmnd *cmd;
1675 struct request *req;
1676
1677 /*
1678 * To start with, we keep looping until the queue is empty, or until
1679 * the host is no longer able to accept any more requests.
1680 */
1681 shost = sdev->host;
1682 for (;;) {
1683 int rtn;
1684 /*
1685 * get next queueable request. We do this early to make sure
1686 * that the request is fully prepared even if we cannot
1687 * accept it.
1688 */
1689 req = blk_peek_request(q);
1690 if (!req)
1691 break;
1692
1693 if (unlikely(!scsi_device_online(sdev))) {
1694 sdev_printk(KERN_ERR, sdev,
1695 "rejecting I/O to offline device\n");
1696 scsi_kill_request(req, q);
1697 continue;
1698 }
1699
1700 if (!scsi_dev_queue_ready(q, sdev))
1701 break;
1702
1703 /*
1704 * Remove the request from the request list.
1705 */
1706 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1707 blk_start_request(req);
1708
1709 spin_unlock_irq(q->queue_lock);
1710 cmd = req->special;
1711 if (unlikely(cmd == NULL)) {
1712 printk(KERN_CRIT "impossible request in %s.\n"
1713 "please mail a stack trace to "
1714 "linux-scsi@vger.kernel.org\n",
1715 __func__);
1716 blk_dump_rq_flags(req, "foo");
1717 BUG();
1718 }
1719
1720 /*
1721 * We hit this when the driver is using a host wide
1722 * tag map. For device level tag maps the queue_depth check
1723 * in the device ready fn would prevent us from trying
1724 * to allocate a tag. Since the map is a shared host resource
1725 * we add the dev to the starved list so it eventually gets
1726 * a run when a tag is freed.
1727 */
1728 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1729 spin_lock_irq(shost->host_lock);
1730 if (list_empty(&sdev->starved_entry))
1731 list_add_tail(&sdev->starved_entry,
1732 &shost->starved_list);
1733 spin_unlock_irq(shost->host_lock);
1734 goto not_ready;
1735 }
1736
1737 if (!scsi_target_queue_ready(shost, sdev))
1738 goto not_ready;
1739
1740 if (!scsi_host_queue_ready(q, shost, sdev))
1741 goto host_not_ready;
1742
1743 /*
1744 * Finally, initialize any error handling parameters, and set up
1745 * the timers for timeouts.
1746 */
1747 scsi_init_cmd_errh(cmd);
1748
1749 /*
1750 * Dispatch the command to the low-level driver.
1751 */
1752 cmd->scsi_done = scsi_done;
1753 rtn = scsi_dispatch_cmd(cmd);
1754 if (rtn) {
1755 scsi_queue_insert(cmd, rtn);
1756 spin_lock_irq(q->queue_lock);
1757 goto out_delay;
1758 }
1759 spin_lock_irq(q->queue_lock);
1760 }
1761
1762 return;
1763
1764 host_not_ready:
1765 if (scsi_target(sdev)->can_queue > 0)
1766 atomic_dec(&scsi_target(sdev)->target_busy);
1767 not_ready:
1768 /*
1769 * lock q, handle tag, requeue req, and decrement device_busy. We
1770 * must return with queue_lock held.
1771 *
1772 * Decrementing device_busy without checking it is OK, as all such
1773 * cases (host limits or settings) should run the queue at some
1774 * later time.
1775 */
1776 spin_lock_irq(q->queue_lock);
1777 blk_requeue_request(q, req);
1778 atomic_dec(&sdev->device_busy);
1779 out_delay:
1780 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1781 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1782 }
1783
1784 static inline int prep_to_mq(int ret)
1785 {
1786 switch (ret) {
1787 case BLKPREP_OK:
1788 return 0;
1789 case BLKPREP_DEFER:
1790 return BLK_MQ_RQ_QUEUE_BUSY;
1791 default:
1792 return BLK_MQ_RQ_QUEUE_ERROR;
1793 }
1794 }
1795
1796 static int scsi_mq_prep_fn(struct request *req)
1797 {
1798 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1799 struct scsi_device *sdev = req->q->queuedata;
1800 struct Scsi_Host *shost = sdev->host;
1801 unsigned char *sense_buf = cmd->sense_buffer;
1802 struct scatterlist *sg;
1803
1804 memset(cmd, 0, sizeof(struct scsi_cmnd));
1805
1806 req->special = cmd;
1807
1808 cmd->request = req;
1809 cmd->device = sdev;
1810 cmd->sense_buffer = sense_buf;
1811
1812 cmd->tag = req->tag;
1813
1814 cmd->cmnd = req->cmd;
1815 cmd->prot_op = SCSI_PROT_NORMAL;
1816
1817 INIT_LIST_HEAD(&cmd->list);
1818 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1819 cmd->jiffies_at_alloc = jiffies;
1820
1821 if (shost->use_cmd_list) {
1822 spin_lock_irq(&sdev->list_lock);
1823 list_add_tail(&cmd->list, &sdev->cmd_list);
1824 spin_unlock_irq(&sdev->list_lock);
1825 }
1826
1827 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1828 cmd->sdb.table.sgl = sg;
1829
1830 if (scsi_host_get_prot(shost)) {
1831 cmd->prot_sdb = (void *)sg +
1832 shost->sg_tablesize * sizeof(struct scatterlist);
1833 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1834
1835 cmd->prot_sdb->table.sgl =
1836 (struct scatterlist *)(cmd->prot_sdb + 1);
1837 }
1838
1839 if (blk_bidi_rq(req)) {
1840 struct request *next_rq = req->next_rq;
1841 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1842
1843 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1844 bidi_sdb->table.sgl =
1845 (struct scatterlist *)(bidi_sdb + 1);
1846
1847 next_rq->special = bidi_sdb;
1848 }
1849
1850 blk_mq_start_request(req);
1851
1852 return scsi_setup_cmnd(sdev, req);
1853 }
1854
1855 static void scsi_mq_done(struct scsi_cmnd *cmd)
1856 {
1857 trace_scsi_dispatch_cmd_done(cmd);
1858 blk_mq_complete_request(cmd->request);
1859 }
1860
1861 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1862 bool last)
1863 {
1864 struct request_queue *q = req->q;
1865 struct scsi_device *sdev = q->queuedata;
1866 struct Scsi_Host *shost = sdev->host;
1867 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1868 int ret;
1869 int reason;
1870
1871 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1872 if (ret)
1873 goto out;
1874
1875 ret = BLK_MQ_RQ_QUEUE_BUSY;
1876 if (!get_device(&sdev->sdev_gendev))
1877 goto out;
1878
1879 if (!scsi_dev_queue_ready(q, sdev))
1880 goto out_put_device;
1881 if (!scsi_target_queue_ready(shost, sdev))
1882 goto out_dec_device_busy;
1883 if (!scsi_host_queue_ready(q, shost, sdev))
1884 goto out_dec_target_busy;
1885
1886
1887 if (!(req->cmd_flags & REQ_DONTPREP)) {
1888 ret = prep_to_mq(scsi_mq_prep_fn(req));
1889 if (ret)
1890 goto out_dec_host_busy;
1891 req->cmd_flags |= REQ_DONTPREP;
1892 } else {
1893 blk_mq_start_request(req);
1894 }
1895
1896 if (blk_queue_tagged(q))
1897 req->cmd_flags |= REQ_QUEUED;
1898 else
1899 req->cmd_flags &= ~REQ_QUEUED;
1900
1901 scsi_init_cmd_errh(cmd);
1902 cmd->scsi_done = scsi_mq_done;
1903
1904 reason = scsi_dispatch_cmd(cmd);
1905 if (reason) {
1906 scsi_set_blocked(cmd, reason);
1907 ret = BLK_MQ_RQ_QUEUE_BUSY;
1908 goto out_dec_host_busy;
1909 }
1910
1911 return BLK_MQ_RQ_QUEUE_OK;
1912
1913 out_dec_host_busy:
1914 atomic_dec(&shost->host_busy);
1915 out_dec_target_busy:
1916 if (scsi_target(sdev)->can_queue > 0)
1917 atomic_dec(&scsi_target(sdev)->target_busy);
1918 out_dec_device_busy:
1919 atomic_dec(&sdev->device_busy);
1920 out_put_device:
1921 put_device(&sdev->sdev_gendev);
1922 out:
1923 switch (ret) {
1924 case BLK_MQ_RQ_QUEUE_BUSY:
1925 blk_mq_stop_hw_queue(hctx);
1926 if (atomic_read(&sdev->device_busy) == 0 &&
1927 !scsi_device_blocked(sdev))
1928 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1929 break;
1930 case BLK_MQ_RQ_QUEUE_ERROR:
1931 /*
1932 * Make sure to release all allocated ressources when
1933 * we hit an error, as we will never see this command
1934 * again.
1935 */
1936 if (req->cmd_flags & REQ_DONTPREP)
1937 scsi_mq_uninit_cmd(cmd);
1938 break;
1939 default:
1940 break;
1941 }
1942 return ret;
1943 }
1944
1945 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1946 bool reserved)
1947 {
1948 if (reserved)
1949 return BLK_EH_RESET_TIMER;
1950 return scsi_times_out(req);
1951 }
1952
1953 static int scsi_init_request(void *data, struct request *rq,
1954 unsigned int hctx_idx, unsigned int request_idx,
1955 unsigned int numa_node)
1956 {
1957 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1958
1959 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1960 numa_node);
1961 if (!cmd->sense_buffer)
1962 return -ENOMEM;
1963 return 0;
1964 }
1965
1966 static void scsi_exit_request(void *data, struct request *rq,
1967 unsigned int hctx_idx, unsigned int request_idx)
1968 {
1969 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1970
1971 kfree(cmd->sense_buffer);
1972 }
1973
1974 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1975 {
1976 struct device *host_dev;
1977 u64 bounce_limit = 0xffffffff;
1978
1979 if (shost->unchecked_isa_dma)
1980 return BLK_BOUNCE_ISA;
1981 /*
1982 * Platforms with virtual-DMA translation
1983 * hardware have no practical limit.
1984 */
1985 if (!PCI_DMA_BUS_IS_PHYS)
1986 return BLK_BOUNCE_ANY;
1987
1988 host_dev = scsi_get_device(shost);
1989 if (host_dev && host_dev->dma_mask)
1990 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1991
1992 return bounce_limit;
1993 }
1994
1995 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1996 {
1997 struct device *dev = shost->dma_dev;
1998
1999 /*
2000 * this limit is imposed by hardware restrictions
2001 */
2002 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2003 SCSI_MAX_SG_CHAIN_SEGMENTS));
2004
2005 if (scsi_host_prot_dma(shost)) {
2006 shost->sg_prot_tablesize =
2007 min_not_zero(shost->sg_prot_tablesize,
2008 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2009 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2010 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2011 }
2012
2013 blk_queue_max_hw_sectors(q, shost->max_sectors);
2014 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2015 blk_queue_segment_boundary(q, shost->dma_boundary);
2016 dma_set_seg_boundary(dev, shost->dma_boundary);
2017
2018 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2019
2020 if (!shost->use_clustering)
2021 q->limits.cluster = 0;
2022
2023 /*
2024 * set a reasonable default alignment on word boundaries: the
2025 * host and device may alter it using
2026 * blk_queue_update_dma_alignment() later.
2027 */
2028 blk_queue_dma_alignment(q, 0x03);
2029 }
2030
2031 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2032 request_fn_proc *request_fn)
2033 {
2034 struct request_queue *q;
2035
2036 q = blk_init_queue(request_fn, NULL);
2037 if (!q)
2038 return NULL;
2039 __scsi_init_queue(shost, q);
2040 return q;
2041 }
2042 EXPORT_SYMBOL(__scsi_alloc_queue);
2043
2044 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2045 {
2046 struct request_queue *q;
2047
2048 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2049 if (!q)
2050 return NULL;
2051
2052 blk_queue_prep_rq(q, scsi_prep_fn);
2053 blk_queue_unprep_rq(q, scsi_unprep_fn);
2054 blk_queue_softirq_done(q, scsi_softirq_done);
2055 blk_queue_rq_timed_out(q, scsi_times_out);
2056 blk_queue_lld_busy(q, scsi_lld_busy);
2057 return q;
2058 }
2059
2060 static struct blk_mq_ops scsi_mq_ops = {
2061 .map_queue = blk_mq_map_queue,
2062 .queue_rq = scsi_queue_rq,
2063 .complete = scsi_softirq_done,
2064 .timeout = scsi_timeout,
2065 .init_request = scsi_init_request,
2066 .exit_request = scsi_exit_request,
2067 };
2068
2069 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2070 {
2071 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2072 if (IS_ERR(sdev->request_queue))
2073 return NULL;
2074
2075 sdev->request_queue->queuedata = sdev;
2076 __scsi_init_queue(sdev->host, sdev->request_queue);
2077 return sdev->request_queue;
2078 }
2079
2080 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2081 {
2082 unsigned int cmd_size, sgl_size, tbl_size;
2083
2084 tbl_size = shost->sg_tablesize;
2085 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2086 tbl_size = SCSI_MAX_SG_SEGMENTS;
2087 sgl_size = tbl_size * sizeof(struct scatterlist);
2088 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2089 if (scsi_host_get_prot(shost))
2090 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2091
2092 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2093 shost->tag_set.ops = &scsi_mq_ops;
2094 shost->tag_set.nr_hw_queues = 1;
2095 shost->tag_set.queue_depth = shost->can_queue;
2096 shost->tag_set.cmd_size = cmd_size;
2097 shost->tag_set.numa_node = NUMA_NO_NODE;
2098 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2099 shost->tag_set.driver_data = shost;
2100
2101 return blk_mq_alloc_tag_set(&shost->tag_set);
2102 }
2103
2104 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2105 {
2106 blk_mq_free_tag_set(&shost->tag_set);
2107 }
2108
2109 /*
2110 * Function: scsi_block_requests()
2111 *
2112 * Purpose: Utility function used by low-level drivers to prevent further
2113 * commands from being queued to the device.
2114 *
2115 * Arguments: shost - Host in question
2116 *
2117 * Returns: Nothing
2118 *
2119 * Lock status: No locks are assumed held.
2120 *
2121 * Notes: There is no timer nor any other means by which the requests
2122 * get unblocked other than the low-level driver calling
2123 * scsi_unblock_requests().
2124 */
2125 void scsi_block_requests(struct Scsi_Host *shost)
2126 {
2127 shost->host_self_blocked = 1;
2128 }
2129 EXPORT_SYMBOL(scsi_block_requests);
2130
2131 /*
2132 * Function: scsi_unblock_requests()
2133 *
2134 * Purpose: Utility function used by low-level drivers to allow further
2135 * commands from being queued to the device.
2136 *
2137 * Arguments: shost - Host in question
2138 *
2139 * Returns: Nothing
2140 *
2141 * Lock status: No locks are assumed held.
2142 *
2143 * Notes: There is no timer nor any other means by which the requests
2144 * get unblocked other than the low-level driver calling
2145 * scsi_unblock_requests().
2146 *
2147 * This is done as an API function so that changes to the
2148 * internals of the scsi mid-layer won't require wholesale
2149 * changes to drivers that use this feature.
2150 */
2151 void scsi_unblock_requests(struct Scsi_Host *shost)
2152 {
2153 shost->host_self_blocked = 0;
2154 scsi_run_host_queues(shost);
2155 }
2156 EXPORT_SYMBOL(scsi_unblock_requests);
2157
2158 int __init scsi_init_queue(void)
2159 {
2160 int i;
2161
2162 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2163 sizeof(struct scsi_data_buffer),
2164 0, 0, NULL);
2165 if (!scsi_sdb_cache) {
2166 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2167 return -ENOMEM;
2168 }
2169
2170 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2171 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2172 int size = sgp->size * sizeof(struct scatterlist);
2173
2174 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2175 SLAB_HWCACHE_ALIGN, NULL);
2176 if (!sgp->slab) {
2177 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2178 sgp->name);
2179 goto cleanup_sdb;
2180 }
2181
2182 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2183 sgp->slab);
2184 if (!sgp->pool) {
2185 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2186 sgp->name);
2187 goto cleanup_sdb;
2188 }
2189 }
2190
2191 return 0;
2192
2193 cleanup_sdb:
2194 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2195 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2196 if (sgp->pool)
2197 mempool_destroy(sgp->pool);
2198 if (sgp->slab)
2199 kmem_cache_destroy(sgp->slab);
2200 }
2201 kmem_cache_destroy(scsi_sdb_cache);
2202
2203 return -ENOMEM;
2204 }
2205
2206 void scsi_exit_queue(void)
2207 {
2208 int i;
2209
2210 kmem_cache_destroy(scsi_sdb_cache);
2211
2212 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2213 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2214 mempool_destroy(sgp->pool);
2215 kmem_cache_destroy(sgp->slab);
2216 }
2217 }
2218
2219 /**
2220 * scsi_mode_select - issue a mode select
2221 * @sdev: SCSI device to be queried
2222 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2223 * @sp: Save page bit (0 == don't save, 1 == save)
2224 * @modepage: mode page being requested
2225 * @buffer: request buffer (may not be smaller than eight bytes)
2226 * @len: length of request buffer.
2227 * @timeout: command timeout
2228 * @retries: number of retries before failing
2229 * @data: returns a structure abstracting the mode header data
2230 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2231 * must be SCSI_SENSE_BUFFERSIZE big.
2232 *
2233 * Returns zero if successful; negative error number or scsi
2234 * status on error
2235 *
2236 */
2237 int
2238 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2239 unsigned char *buffer, int len, int timeout, int retries,
2240 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2241 {
2242 unsigned char cmd[10];
2243 unsigned char *real_buffer;
2244 int ret;
2245
2246 memset(cmd, 0, sizeof(cmd));
2247 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2248
2249 if (sdev->use_10_for_ms) {
2250 if (len > 65535)
2251 return -EINVAL;
2252 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2253 if (!real_buffer)
2254 return -ENOMEM;
2255 memcpy(real_buffer + 8, buffer, len);
2256 len += 8;
2257 real_buffer[0] = 0;
2258 real_buffer[1] = 0;
2259 real_buffer[2] = data->medium_type;
2260 real_buffer[3] = data->device_specific;
2261 real_buffer[4] = data->longlba ? 0x01 : 0;
2262 real_buffer[5] = 0;
2263 real_buffer[6] = data->block_descriptor_length >> 8;
2264 real_buffer[7] = data->block_descriptor_length;
2265
2266 cmd[0] = MODE_SELECT_10;
2267 cmd[7] = len >> 8;
2268 cmd[8] = len;
2269 } else {
2270 if (len > 255 || data->block_descriptor_length > 255 ||
2271 data->longlba)
2272 return -EINVAL;
2273
2274 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2275 if (!real_buffer)
2276 return -ENOMEM;
2277 memcpy(real_buffer + 4, buffer, len);
2278 len += 4;
2279 real_buffer[0] = 0;
2280 real_buffer[1] = data->medium_type;
2281 real_buffer[2] = data->device_specific;
2282 real_buffer[3] = data->block_descriptor_length;
2283
2284
2285 cmd[0] = MODE_SELECT;
2286 cmd[4] = len;
2287 }
2288
2289 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2290 sshdr, timeout, retries, NULL);
2291 kfree(real_buffer);
2292 return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(scsi_mode_select);
2295
2296 /**
2297 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2298 * @sdev: SCSI device to be queried
2299 * @dbd: set if mode sense will allow block descriptors to be returned
2300 * @modepage: mode page being requested
2301 * @buffer: request buffer (may not be smaller than eight bytes)
2302 * @len: length of request buffer.
2303 * @timeout: command timeout
2304 * @retries: number of retries before failing
2305 * @data: returns a structure abstracting the mode header data
2306 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2307 * must be SCSI_SENSE_BUFFERSIZE big.
2308 *
2309 * Returns zero if unsuccessful, or the header offset (either 4
2310 * or 8 depending on whether a six or ten byte command was
2311 * issued) if successful.
2312 */
2313 int
2314 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2315 unsigned char *buffer, int len, int timeout, int retries,
2316 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2317 {
2318 unsigned char cmd[12];
2319 int use_10_for_ms;
2320 int header_length;
2321 int result;
2322 struct scsi_sense_hdr my_sshdr;
2323
2324 memset(data, 0, sizeof(*data));
2325 memset(&cmd[0], 0, 12);
2326 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2327 cmd[2] = modepage;
2328
2329 /* caller might not be interested in sense, but we need it */
2330 if (!sshdr)
2331 sshdr = &my_sshdr;
2332
2333 retry:
2334 use_10_for_ms = sdev->use_10_for_ms;
2335
2336 if (use_10_for_ms) {
2337 if (len < 8)
2338 len = 8;
2339
2340 cmd[0] = MODE_SENSE_10;
2341 cmd[8] = len;
2342 header_length = 8;
2343 } else {
2344 if (len < 4)
2345 len = 4;
2346
2347 cmd[0] = MODE_SENSE;
2348 cmd[4] = len;
2349 header_length = 4;
2350 }
2351
2352 memset(buffer, 0, len);
2353
2354 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2355 sshdr, timeout, retries, NULL);
2356
2357 /* This code looks awful: what it's doing is making sure an
2358 * ILLEGAL REQUEST sense return identifies the actual command
2359 * byte as the problem. MODE_SENSE commands can return
2360 * ILLEGAL REQUEST if the code page isn't supported */
2361
2362 if (use_10_for_ms && !scsi_status_is_good(result) &&
2363 (driver_byte(result) & DRIVER_SENSE)) {
2364 if (scsi_sense_valid(sshdr)) {
2365 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2366 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2367 /*
2368 * Invalid command operation code
2369 */
2370 sdev->use_10_for_ms = 0;
2371 goto retry;
2372 }
2373 }
2374 }
2375
2376 if(scsi_status_is_good(result)) {
2377 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2378 (modepage == 6 || modepage == 8))) {
2379 /* Initio breakage? */
2380 header_length = 0;
2381 data->length = 13;
2382 data->medium_type = 0;
2383 data->device_specific = 0;
2384 data->longlba = 0;
2385 data->block_descriptor_length = 0;
2386 } else if(use_10_for_ms) {
2387 data->length = buffer[0]*256 + buffer[1] + 2;
2388 data->medium_type = buffer[2];
2389 data->device_specific = buffer[3];
2390 data->longlba = buffer[4] & 0x01;
2391 data->block_descriptor_length = buffer[6]*256
2392 + buffer[7];
2393 } else {
2394 data->length = buffer[0] + 1;
2395 data->medium_type = buffer[1];
2396 data->device_specific = buffer[2];
2397 data->block_descriptor_length = buffer[3];
2398 }
2399 data->header_length = header_length;
2400 }
2401
2402 return result;
2403 }
2404 EXPORT_SYMBOL(scsi_mode_sense);
2405
2406 /**
2407 * scsi_test_unit_ready - test if unit is ready
2408 * @sdev: scsi device to change the state of.
2409 * @timeout: command timeout
2410 * @retries: number of retries before failing
2411 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2412 * returning sense. Make sure that this is cleared before passing
2413 * in.
2414 *
2415 * Returns zero if unsuccessful or an error if TUR failed. For
2416 * removable media, UNIT_ATTENTION sets ->changed flag.
2417 **/
2418 int
2419 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2420 struct scsi_sense_hdr *sshdr_external)
2421 {
2422 char cmd[] = {
2423 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2424 };
2425 struct scsi_sense_hdr *sshdr;
2426 int result;
2427
2428 if (!sshdr_external)
2429 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2430 else
2431 sshdr = sshdr_external;
2432
2433 /* try to eat the UNIT_ATTENTION if there are enough retries */
2434 do {
2435 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2436 timeout, retries, NULL);
2437 if (sdev->removable && scsi_sense_valid(sshdr) &&
2438 sshdr->sense_key == UNIT_ATTENTION)
2439 sdev->changed = 1;
2440 } while (scsi_sense_valid(sshdr) &&
2441 sshdr->sense_key == UNIT_ATTENTION && --retries);
2442
2443 if (!sshdr_external)
2444 kfree(sshdr);
2445 return result;
2446 }
2447 EXPORT_SYMBOL(scsi_test_unit_ready);
2448
2449 /**
2450 * scsi_device_set_state - Take the given device through the device state model.
2451 * @sdev: scsi device to change the state of.
2452 * @state: state to change to.
2453 *
2454 * Returns zero if unsuccessful or an error if the requested
2455 * transition is illegal.
2456 */
2457 int
2458 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2459 {
2460 enum scsi_device_state oldstate = sdev->sdev_state;
2461
2462 if (state == oldstate)
2463 return 0;
2464
2465 switch (state) {
2466 case SDEV_CREATED:
2467 switch (oldstate) {
2468 case SDEV_CREATED_BLOCK:
2469 break;
2470 default:
2471 goto illegal;
2472 }
2473 break;
2474
2475 case SDEV_RUNNING:
2476 switch (oldstate) {
2477 case SDEV_CREATED:
2478 case SDEV_OFFLINE:
2479 case SDEV_TRANSPORT_OFFLINE:
2480 case SDEV_QUIESCE:
2481 case SDEV_BLOCK:
2482 break;
2483 default:
2484 goto illegal;
2485 }
2486 break;
2487
2488 case SDEV_QUIESCE:
2489 switch (oldstate) {
2490 case SDEV_RUNNING:
2491 case SDEV_OFFLINE:
2492 case SDEV_TRANSPORT_OFFLINE:
2493 break;
2494 default:
2495 goto illegal;
2496 }
2497 break;
2498
2499 case SDEV_OFFLINE:
2500 case SDEV_TRANSPORT_OFFLINE:
2501 switch (oldstate) {
2502 case SDEV_CREATED:
2503 case SDEV_RUNNING:
2504 case SDEV_QUIESCE:
2505 case SDEV_BLOCK:
2506 break;
2507 default:
2508 goto illegal;
2509 }
2510 break;
2511
2512 case SDEV_BLOCK:
2513 switch (oldstate) {
2514 case SDEV_RUNNING:
2515 case SDEV_CREATED_BLOCK:
2516 break;
2517 default:
2518 goto illegal;
2519 }
2520 break;
2521
2522 case SDEV_CREATED_BLOCK:
2523 switch (oldstate) {
2524 case SDEV_CREATED:
2525 break;
2526 default:
2527 goto illegal;
2528 }
2529 break;
2530
2531 case SDEV_CANCEL:
2532 switch (oldstate) {
2533 case SDEV_CREATED:
2534 case SDEV_RUNNING:
2535 case SDEV_QUIESCE:
2536 case SDEV_OFFLINE:
2537 case SDEV_TRANSPORT_OFFLINE:
2538 case SDEV_BLOCK:
2539 break;
2540 default:
2541 goto illegal;
2542 }
2543 break;
2544
2545 case SDEV_DEL:
2546 switch (oldstate) {
2547 case SDEV_CREATED:
2548 case SDEV_RUNNING:
2549 case SDEV_OFFLINE:
2550 case SDEV_TRANSPORT_OFFLINE:
2551 case SDEV_CANCEL:
2552 case SDEV_CREATED_BLOCK:
2553 break;
2554 default:
2555 goto illegal;
2556 }
2557 break;
2558
2559 }
2560 sdev->sdev_state = state;
2561 return 0;
2562
2563 illegal:
2564 SCSI_LOG_ERROR_RECOVERY(1,
2565 sdev_printk(KERN_ERR, sdev,
2566 "Illegal state transition %s->%s",
2567 scsi_device_state_name(oldstate),
2568 scsi_device_state_name(state))
2569 );
2570 return -EINVAL;
2571 }
2572 EXPORT_SYMBOL(scsi_device_set_state);
2573
2574 /**
2575 * sdev_evt_emit - emit a single SCSI device uevent
2576 * @sdev: associated SCSI device
2577 * @evt: event to emit
2578 *
2579 * Send a single uevent (scsi_event) to the associated scsi_device.
2580 */
2581 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2582 {
2583 int idx = 0;
2584 char *envp[3];
2585
2586 switch (evt->evt_type) {
2587 case SDEV_EVT_MEDIA_CHANGE:
2588 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2589 break;
2590 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2591 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2592 break;
2593 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2594 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2595 break;
2596 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2597 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2598 break;
2599 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2600 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2601 break;
2602 case SDEV_EVT_LUN_CHANGE_REPORTED:
2603 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2604 break;
2605 default:
2606 /* do nothing */
2607 break;
2608 }
2609
2610 envp[idx++] = NULL;
2611
2612 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2613 }
2614
2615 /**
2616 * sdev_evt_thread - send a uevent for each scsi event
2617 * @work: work struct for scsi_device
2618 *
2619 * Dispatch queued events to their associated scsi_device kobjects
2620 * as uevents.
2621 */
2622 void scsi_evt_thread(struct work_struct *work)
2623 {
2624 struct scsi_device *sdev;
2625 enum scsi_device_event evt_type;
2626 LIST_HEAD(event_list);
2627
2628 sdev = container_of(work, struct scsi_device, event_work);
2629
2630 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2631 if (test_and_clear_bit(evt_type, sdev->pending_events))
2632 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2633
2634 while (1) {
2635 struct scsi_event *evt;
2636 struct list_head *this, *tmp;
2637 unsigned long flags;
2638
2639 spin_lock_irqsave(&sdev->list_lock, flags);
2640 list_splice_init(&sdev->event_list, &event_list);
2641 spin_unlock_irqrestore(&sdev->list_lock, flags);
2642
2643 if (list_empty(&event_list))
2644 break;
2645
2646 list_for_each_safe(this, tmp, &event_list) {
2647 evt = list_entry(this, struct scsi_event, node);
2648 list_del(&evt->node);
2649 scsi_evt_emit(sdev, evt);
2650 kfree(evt);
2651 }
2652 }
2653 }
2654
2655 /**
2656 * sdev_evt_send - send asserted event to uevent thread
2657 * @sdev: scsi_device event occurred on
2658 * @evt: event to send
2659 *
2660 * Assert scsi device event asynchronously.
2661 */
2662 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2663 {
2664 unsigned long flags;
2665
2666 #if 0
2667 /* FIXME: currently this check eliminates all media change events
2668 * for polled devices. Need to update to discriminate between AN
2669 * and polled events */
2670 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2671 kfree(evt);
2672 return;
2673 }
2674 #endif
2675
2676 spin_lock_irqsave(&sdev->list_lock, flags);
2677 list_add_tail(&evt->node, &sdev->event_list);
2678 schedule_work(&sdev->event_work);
2679 spin_unlock_irqrestore(&sdev->list_lock, flags);
2680 }
2681 EXPORT_SYMBOL_GPL(sdev_evt_send);
2682
2683 /**
2684 * sdev_evt_alloc - allocate a new scsi event
2685 * @evt_type: type of event to allocate
2686 * @gfpflags: GFP flags for allocation
2687 *
2688 * Allocates and returns a new scsi_event.
2689 */
2690 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2691 gfp_t gfpflags)
2692 {
2693 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2694 if (!evt)
2695 return NULL;
2696
2697 evt->evt_type = evt_type;
2698 INIT_LIST_HEAD(&evt->node);
2699
2700 /* evt_type-specific initialization, if any */
2701 switch (evt_type) {
2702 case SDEV_EVT_MEDIA_CHANGE:
2703 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2704 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2705 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2706 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2707 case SDEV_EVT_LUN_CHANGE_REPORTED:
2708 default:
2709 /* do nothing */
2710 break;
2711 }
2712
2713 return evt;
2714 }
2715 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2716
2717 /**
2718 * sdev_evt_send_simple - send asserted event to uevent thread
2719 * @sdev: scsi_device event occurred on
2720 * @evt_type: type of event to send
2721 * @gfpflags: GFP flags for allocation
2722 *
2723 * Assert scsi device event asynchronously, given an event type.
2724 */
2725 void sdev_evt_send_simple(struct scsi_device *sdev,
2726 enum scsi_device_event evt_type, gfp_t gfpflags)
2727 {
2728 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2729 if (!evt) {
2730 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2731 evt_type);
2732 return;
2733 }
2734
2735 sdev_evt_send(sdev, evt);
2736 }
2737 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2738
2739 /**
2740 * scsi_device_quiesce - Block user issued commands.
2741 * @sdev: scsi device to quiesce.
2742 *
2743 * This works by trying to transition to the SDEV_QUIESCE state
2744 * (which must be a legal transition). When the device is in this
2745 * state, only special requests will be accepted, all others will
2746 * be deferred. Since special requests may also be requeued requests,
2747 * a successful return doesn't guarantee the device will be
2748 * totally quiescent.
2749 *
2750 * Must be called with user context, may sleep.
2751 *
2752 * Returns zero if unsuccessful or an error if not.
2753 */
2754 int
2755 scsi_device_quiesce(struct scsi_device *sdev)
2756 {
2757 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758 if (err)
2759 return err;
2760
2761 scsi_run_queue(sdev->request_queue);
2762 while (atomic_read(&sdev->device_busy)) {
2763 msleep_interruptible(200);
2764 scsi_run_queue(sdev->request_queue);
2765 }
2766 return 0;
2767 }
2768 EXPORT_SYMBOL(scsi_device_quiesce);
2769
2770 /**
2771 * scsi_device_resume - Restart user issued commands to a quiesced device.
2772 * @sdev: scsi device to resume.
2773 *
2774 * Moves the device from quiesced back to running and restarts the
2775 * queues.
2776 *
2777 * Must be called with user context, may sleep.
2778 */
2779 void scsi_device_resume(struct scsi_device *sdev)
2780 {
2781 /* check if the device state was mutated prior to resume, and if
2782 * so assume the state is being managed elsewhere (for example
2783 * device deleted during suspend)
2784 */
2785 if (sdev->sdev_state != SDEV_QUIESCE ||
2786 scsi_device_set_state(sdev, SDEV_RUNNING))
2787 return;
2788 scsi_run_queue(sdev->request_queue);
2789 }
2790 EXPORT_SYMBOL(scsi_device_resume);
2791
2792 static void
2793 device_quiesce_fn(struct scsi_device *sdev, void *data)
2794 {
2795 scsi_device_quiesce(sdev);
2796 }
2797
2798 void
2799 scsi_target_quiesce(struct scsi_target *starget)
2800 {
2801 starget_for_each_device(starget, NULL, device_quiesce_fn);
2802 }
2803 EXPORT_SYMBOL(scsi_target_quiesce);
2804
2805 static void
2806 device_resume_fn(struct scsi_device *sdev, void *data)
2807 {
2808 scsi_device_resume(sdev);
2809 }
2810
2811 void
2812 scsi_target_resume(struct scsi_target *starget)
2813 {
2814 starget_for_each_device(starget, NULL, device_resume_fn);
2815 }
2816 EXPORT_SYMBOL(scsi_target_resume);
2817
2818 /**
2819 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2820 * @sdev: device to block
2821 *
2822 * Block request made by scsi lld's to temporarily stop all
2823 * scsi commands on the specified device. Called from interrupt
2824 * or normal process context.
2825 *
2826 * Returns zero if successful or error if not
2827 *
2828 * Notes:
2829 * This routine transitions the device to the SDEV_BLOCK state
2830 * (which must be a legal transition). When the device is in this
2831 * state, all commands are deferred until the scsi lld reenables
2832 * the device with scsi_device_unblock or device_block_tmo fires.
2833 */
2834 int
2835 scsi_internal_device_block(struct scsi_device *sdev)
2836 {
2837 struct request_queue *q = sdev->request_queue;
2838 unsigned long flags;
2839 int err = 0;
2840
2841 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2842 if (err) {
2843 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2844
2845 if (err)
2846 return err;
2847 }
2848
2849 /*
2850 * The device has transitioned to SDEV_BLOCK. Stop the
2851 * block layer from calling the midlayer with this device's
2852 * request queue.
2853 */
2854 if (q->mq_ops) {
2855 blk_mq_stop_hw_queues(q);
2856 } else {
2857 spin_lock_irqsave(q->queue_lock, flags);
2858 blk_stop_queue(q);
2859 spin_unlock_irqrestore(q->queue_lock, flags);
2860 }
2861
2862 return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2865
2866 /**
2867 * scsi_internal_device_unblock - resume a device after a block request
2868 * @sdev: device to resume
2869 * @new_state: state to set devices to after unblocking
2870 *
2871 * Called by scsi lld's or the midlayer to restart the device queue
2872 * for the previously suspended scsi device. Called from interrupt or
2873 * normal process context.
2874 *
2875 * Returns zero if successful or error if not.
2876 *
2877 * Notes:
2878 * This routine transitions the device to the SDEV_RUNNING state
2879 * or to one of the offline states (which must be a legal transition)
2880 * allowing the midlayer to goose the queue for this device.
2881 */
2882 int
2883 scsi_internal_device_unblock(struct scsi_device *sdev,
2884 enum scsi_device_state new_state)
2885 {
2886 struct request_queue *q = sdev->request_queue;
2887 unsigned long flags;
2888
2889 /*
2890 * Try to transition the scsi device to SDEV_RUNNING or one of the
2891 * offlined states and goose the device queue if successful.
2892 */
2893 if ((sdev->sdev_state == SDEV_BLOCK) ||
2894 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2895 sdev->sdev_state = new_state;
2896 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2897 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2898 new_state == SDEV_OFFLINE)
2899 sdev->sdev_state = new_state;
2900 else
2901 sdev->sdev_state = SDEV_CREATED;
2902 } else if (sdev->sdev_state != SDEV_CANCEL &&
2903 sdev->sdev_state != SDEV_OFFLINE)
2904 return -EINVAL;
2905
2906 if (q->mq_ops) {
2907 blk_mq_start_stopped_hw_queues(q, false);
2908 } else {
2909 spin_lock_irqsave(q->queue_lock, flags);
2910 blk_start_queue(q);
2911 spin_unlock_irqrestore(q->queue_lock, flags);
2912 }
2913
2914 return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2917
2918 static void
2919 device_block(struct scsi_device *sdev, void *data)
2920 {
2921 scsi_internal_device_block(sdev);
2922 }
2923
2924 static int
2925 target_block(struct device *dev, void *data)
2926 {
2927 if (scsi_is_target_device(dev))
2928 starget_for_each_device(to_scsi_target(dev), NULL,
2929 device_block);
2930 return 0;
2931 }
2932
2933 void
2934 scsi_target_block(struct device *dev)
2935 {
2936 if (scsi_is_target_device(dev))
2937 starget_for_each_device(to_scsi_target(dev), NULL,
2938 device_block);
2939 else
2940 device_for_each_child(dev, NULL, target_block);
2941 }
2942 EXPORT_SYMBOL_GPL(scsi_target_block);
2943
2944 static void
2945 device_unblock(struct scsi_device *sdev, void *data)
2946 {
2947 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2948 }
2949
2950 static int
2951 target_unblock(struct device *dev, void *data)
2952 {
2953 if (scsi_is_target_device(dev))
2954 starget_for_each_device(to_scsi_target(dev), data,
2955 device_unblock);
2956 return 0;
2957 }
2958
2959 void
2960 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2961 {
2962 if (scsi_is_target_device(dev))
2963 starget_for_each_device(to_scsi_target(dev), &new_state,
2964 device_unblock);
2965 else
2966 device_for_each_child(dev, &new_state, target_unblock);
2967 }
2968 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2969
2970 /**
2971 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2972 * @sgl: scatter-gather list
2973 * @sg_count: number of segments in sg
2974 * @offset: offset in bytes into sg, on return offset into the mapped area
2975 * @len: bytes to map, on return number of bytes mapped
2976 *
2977 * Returns virtual address of the start of the mapped page
2978 */
2979 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2980 size_t *offset, size_t *len)
2981 {
2982 int i;
2983 size_t sg_len = 0, len_complete = 0;
2984 struct scatterlist *sg;
2985 struct page *page;
2986
2987 WARN_ON(!irqs_disabled());
2988
2989 for_each_sg(sgl, sg, sg_count, i) {
2990 len_complete = sg_len; /* Complete sg-entries */
2991 sg_len += sg->length;
2992 if (sg_len > *offset)
2993 break;
2994 }
2995
2996 if (unlikely(i == sg_count)) {
2997 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2998 "elements %d\n",
2999 __func__, sg_len, *offset, sg_count);
3000 WARN_ON(1);
3001 return NULL;
3002 }
3003
3004 /* Offset starting from the beginning of first page in this sg-entry */
3005 *offset = *offset - len_complete + sg->offset;
3006
3007 /* Assumption: contiguous pages can be accessed as "page + i" */
3008 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3009 *offset &= ~PAGE_MASK;
3010
3011 /* Bytes in this sg-entry from *offset to the end of the page */
3012 sg_len = PAGE_SIZE - *offset;
3013 if (*len > sg_len)
3014 *len = sg_len;
3015
3016 return kmap_atomic(page);
3017 }
3018 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3019
3020 /**
3021 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3022 * @virt: virtual address to be unmapped
3023 */
3024 void scsi_kunmap_atomic_sg(void *virt)
3025 {
3026 kunmap_atomic(virt);
3027 }
3028 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3029
3030 void sdev_disable_disk_events(struct scsi_device *sdev)
3031 {
3032 atomic_inc(&sdev->disk_events_disable_depth);
3033 }
3034 EXPORT_SYMBOL(sdev_disable_disk_events);
3035
3036 void sdev_enable_disk_events(struct scsi_device *sdev)
3037 {
3038 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3039 return;
3040 atomic_dec(&sdev->disk_events_disable_depth);
3041 }
3042 EXPORT_SYMBOL(sdev_enable_disk_events);