]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge branches 'pm-cpufreq' and 'pm-cpuidle'
[mirror_ubuntu-hirsute-kernel.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 unsigned char *sense_buffer)
69 {
70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 sense_buffer);
72 }
73
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 gfp_t gfp_mask, int numa_node)
76 {
77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 gfp_mask, numa_node);
79 }
80
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 struct kmem_cache *cache;
84 int ret = 0;
85
86 mutex_lock(&scsi_sense_cache_mutex);
87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 if (cache)
89 goto exit;
90
91 if (shost->unchecked_isa_dma) {
92 scsi_sense_isadma_cache =
93 kmem_cache_create("scsi_sense_cache(DMA)",
94 SCSI_SENSE_BUFFERSIZE, 0,
95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 if (!scsi_sense_isadma_cache)
97 ret = -ENOMEM;
98 } else {
99 scsi_sense_cache =
100 kmem_cache_create_usercopy("scsi_sense_cache",
101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 0, SCSI_SENSE_BUFFERSIZE, NULL);
103 if (!scsi_sense_cache)
104 ret = -ENOMEM;
105 }
106 exit:
107 mutex_unlock(&scsi_sense_cache_mutex);
108 return ret;
109 }
110
111 /*
112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113 * not change behaviour from the previous unplug mechanism, experimentation
114 * may prove this needs changing.
115 */
116 #define SCSI_QUEUE_DELAY 3
117
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 struct Scsi_Host *host = cmd->device->host;
122 struct scsi_device *device = cmd->device;
123 struct scsi_target *starget = scsi_target(device);
124
125 /*
126 * Set the appropriate busy bit for the device/host.
127 *
128 * If the host/device isn't busy, assume that something actually
129 * completed, and that we should be able to queue a command now.
130 *
131 * Note that the prior mid-layer assumption that any host could
132 * always queue at least one command is now broken. The mid-layer
133 * will implement a user specifiable stall (see
134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 * if a command is requeued with no other commands outstanding
136 * either for the device or for the host.
137 */
138 switch (reason) {
139 case SCSI_MLQUEUE_HOST_BUSY:
140 atomic_set(&host->host_blocked, host->max_host_blocked);
141 break;
142 case SCSI_MLQUEUE_DEVICE_BUSY:
143 case SCSI_MLQUEUE_EH_RETRY:
144 atomic_set(&device->device_blocked,
145 device->max_device_blocked);
146 break;
147 case SCSI_MLQUEUE_TARGET_BUSY:
148 atomic_set(&starget->target_blocked,
149 starget->max_target_blocked);
150 break;
151 }
152 }
153
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 if (cmd->request->rq_flags & RQF_DONTPREP) {
157 cmd->request->rq_flags &= ~RQF_DONTPREP;
158 scsi_mq_uninit_cmd(cmd);
159 } else {
160 WARN_ON_ONCE(true);
161 }
162 blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166 * __scsi_queue_insert - private queue insertion
167 * @cmd: The SCSI command being requeued
168 * @reason: The reason for the requeue
169 * @unbusy: Whether the queue should be unbusied
170 *
171 * This is a private queue insertion. The public interface
172 * scsi_queue_insert() always assumes the queue should be unbusied
173 * because it's always called before the completion. This function is
174 * for a requeue after completion, which should only occur in this
175 * file.
176 */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 struct scsi_device *device = cmd->device;
180
181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 "Inserting command %p into mlqueue\n", cmd));
183
184 scsi_set_blocked(cmd, reason);
185
186 /*
187 * Decrement the counters, since these commands are no longer
188 * active on the host/device.
189 */
190 if (unbusy)
191 scsi_device_unbusy(device, cmd);
192
193 /*
194 * Requeue this command. It will go before all other commands
195 * that are already in the queue. Schedule requeue work under
196 * lock such that the kblockd_schedule_work() call happens
197 * before blk_cleanup_queue() finishes.
198 */
199 cmd->result = 0;
200
201 blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205 * scsi_queue_insert - Reinsert a command in the queue.
206 * @cmd: command that we are adding to queue.
207 * @reason: why we are inserting command to queue.
208 *
209 * We do this for one of two cases. Either the host is busy and it cannot accept
210 * any more commands for the time being, or the device returned QUEUE_FULL and
211 * can accept no more commands.
212 *
213 * Context: This could be called either from an interrupt context or a normal
214 * process context.
215 */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223 * __scsi_execute - insert request and wait for the result
224 * @sdev: scsi device
225 * @cmd: scsi command
226 * @data_direction: data direction
227 * @buffer: data buffer
228 * @bufflen: len of buffer
229 * @sense: optional sense buffer
230 * @sshdr: optional decoded sense header
231 * @timeout: request timeout in seconds
232 * @retries: number of times to retry request
233 * @flags: flags for ->cmd_flags
234 * @rq_flags: flags for ->rq_flags
235 * @resid: optional residual length
236 *
237 * Returns the scsi_cmnd result field if a command was executed, or a negative
238 * Linux error code if we didn't get that far.
239 */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 int data_direction, void *buffer, unsigned bufflen,
242 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 int *resid)
245 {
246 struct request *req;
247 struct scsi_request *rq;
248 int ret = DRIVER_ERROR << 24;
249
250 req = blk_get_request(sdev->request_queue,
251 data_direction == DMA_TO_DEVICE ?
252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 if (IS_ERR(req))
254 return ret;
255 rq = scsi_req(req);
256
257 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
258 buffer, bufflen, GFP_NOIO))
259 goto out;
260
261 rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 memcpy(rq->cmd, cmd, rq->cmd_len);
263 rq->retries = retries;
264 req->timeout = timeout;
265 req->cmd_flags |= flags;
266 req->rq_flags |= rq_flags | RQF_QUIET;
267
268 /*
269 * head injection *required* here otherwise quiesce won't work
270 */
271 blk_execute_rq(req->q, NULL, req, 1);
272
273 /*
274 * Some devices (USB mass-storage in particular) may transfer
275 * garbage data together with a residue indicating that the data
276 * is invalid. Prevent the garbage from being misinterpreted
277 * and prevent security leaks by zeroing out the excess data.
278 */
279 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281
282 if (resid)
283 *resid = rq->resid_len;
284 if (sense && rq->sense_len)
285 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 if (sshdr)
287 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 ret = rq->result;
289 out:
290 blk_put_request(req);
291
292 return ret;
293 }
294 EXPORT_SYMBOL(__scsi_execute);
295
296 /*
297 * Wake up the error handler if necessary. Avoid as follows that the error
298 * handler is not woken up if host in-flight requests number ==
299 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
300 * with an RCU read lock in this function to ensure that this function in
301 * its entirety either finishes before scsi_eh_scmd_add() increases the
302 * host_failed counter or that it notices the shost state change made by
303 * scsi_eh_scmd_add().
304 */
305 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
306 {
307 unsigned long flags;
308
309 rcu_read_lock();
310 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
311 if (unlikely(scsi_host_in_recovery(shost))) {
312 spin_lock_irqsave(shost->host_lock, flags);
313 if (shost->host_failed || shost->host_eh_scheduled)
314 scsi_eh_wakeup(shost);
315 spin_unlock_irqrestore(shost->host_lock, flags);
316 }
317 rcu_read_unlock();
318 }
319
320 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
321 {
322 struct Scsi_Host *shost = sdev->host;
323 struct scsi_target *starget = scsi_target(sdev);
324
325 scsi_dec_host_busy(shost, cmd);
326
327 if (starget->can_queue > 0)
328 atomic_dec(&starget->target_busy);
329
330 atomic_dec(&sdev->device_busy);
331 }
332
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 blk_mq_run_hw_queues(q, false);
336 }
337
338 /*
339 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
340 * and call blk_run_queue for all the scsi_devices on the target -
341 * including current_sdev first.
342 *
343 * Called with *no* scsi locks held.
344 */
345 static void scsi_single_lun_run(struct scsi_device *current_sdev)
346 {
347 struct Scsi_Host *shost = current_sdev->host;
348 struct scsi_device *sdev, *tmp;
349 struct scsi_target *starget = scsi_target(current_sdev);
350 unsigned long flags;
351
352 spin_lock_irqsave(shost->host_lock, flags);
353 starget->starget_sdev_user = NULL;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355
356 /*
357 * Call blk_run_queue for all LUNs on the target, starting with
358 * current_sdev. We race with others (to set starget_sdev_user),
359 * but in most cases, we will be first. Ideally, each LU on the
360 * target would get some limited time or requests on the target.
361 */
362 scsi_kick_queue(current_sdev->request_queue);
363
364 spin_lock_irqsave(shost->host_lock, flags);
365 if (starget->starget_sdev_user)
366 goto out;
367 list_for_each_entry_safe(sdev, tmp, &starget->devices,
368 same_target_siblings) {
369 if (sdev == current_sdev)
370 continue;
371 if (scsi_device_get(sdev))
372 continue;
373
374 spin_unlock_irqrestore(shost->host_lock, flags);
375 scsi_kick_queue(sdev->request_queue);
376 spin_lock_irqsave(shost->host_lock, flags);
377
378 scsi_device_put(sdev);
379 }
380 out:
381 spin_unlock_irqrestore(shost->host_lock, flags);
382 }
383
384 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
385 {
386 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
387 return true;
388 if (atomic_read(&sdev->device_blocked) > 0)
389 return true;
390 return false;
391 }
392
393 static inline bool scsi_target_is_busy(struct scsi_target *starget)
394 {
395 if (starget->can_queue > 0) {
396 if (atomic_read(&starget->target_busy) >= starget->can_queue)
397 return true;
398 if (atomic_read(&starget->target_blocked) > 0)
399 return true;
400 }
401 return false;
402 }
403
404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
405 {
406 if (atomic_read(&shost->host_blocked) > 0)
407 return true;
408 if (shost->host_self_blocked)
409 return true;
410 return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 LIST_HEAD(starved_list);
416 struct scsi_device *sdev;
417 unsigned long flags;
418
419 spin_lock_irqsave(shost->host_lock, flags);
420 list_splice_init(&shost->starved_list, &starved_list);
421
422 while (!list_empty(&starved_list)) {
423 struct request_queue *slq;
424
425 /*
426 * As long as shost is accepting commands and we have
427 * starved queues, call blk_run_queue. scsi_request_fn
428 * drops the queue_lock and can add us back to the
429 * starved_list.
430 *
431 * host_lock protects the starved_list and starved_entry.
432 * scsi_request_fn must get the host_lock before checking
433 * or modifying starved_list or starved_entry.
434 */
435 if (scsi_host_is_busy(shost))
436 break;
437
438 sdev = list_entry(starved_list.next,
439 struct scsi_device, starved_entry);
440 list_del_init(&sdev->starved_entry);
441 if (scsi_target_is_busy(scsi_target(sdev))) {
442 list_move_tail(&sdev->starved_entry,
443 &shost->starved_list);
444 continue;
445 }
446
447 /*
448 * Once we drop the host lock, a racing scsi_remove_device()
449 * call may remove the sdev from the starved list and destroy
450 * it and the queue. Mitigate by taking a reference to the
451 * queue and never touching the sdev again after we drop the
452 * host lock. Note: if __scsi_remove_device() invokes
453 * blk_cleanup_queue() before the queue is run from this
454 * function then blk_run_queue() will return immediately since
455 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 */
457 slq = sdev->request_queue;
458 if (!blk_get_queue(slq))
459 continue;
460 spin_unlock_irqrestore(shost->host_lock, flags);
461
462 scsi_kick_queue(slq);
463 blk_put_queue(slq);
464
465 spin_lock_irqsave(shost->host_lock, flags);
466 }
467 /* put any unprocessed entries back */
468 list_splice(&starved_list, &shost->starved_list);
469 spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /**
473 * scsi_run_queue - Select a proper request queue to serve next.
474 * @q: last request's queue
475 *
476 * The previous command was completely finished, start a new one if possible.
477 */
478 static void scsi_run_queue(struct request_queue *q)
479 {
480 struct scsi_device *sdev = q->queuedata;
481
482 if (scsi_target(sdev)->single_lun)
483 scsi_single_lun_run(sdev);
484 if (!list_empty(&sdev->host->starved_list))
485 scsi_starved_list_run(sdev->host);
486
487 blk_mq_run_hw_queues(q, false);
488 }
489
490 void scsi_requeue_run_queue(struct work_struct *work)
491 {
492 struct scsi_device *sdev;
493 struct request_queue *q;
494
495 sdev = container_of(work, struct scsi_device, requeue_work);
496 q = sdev->request_queue;
497 scsi_run_queue(q);
498 }
499
500 void scsi_run_host_queues(struct Scsi_Host *shost)
501 {
502 struct scsi_device *sdev;
503
504 shost_for_each_device(sdev, shost)
505 scsi_run_queue(sdev->request_queue);
506 }
507
508 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
509 {
510 if (!blk_rq_is_passthrough(cmd->request)) {
511 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
512
513 if (drv->uninit_command)
514 drv->uninit_command(cmd);
515 }
516 }
517
518 void scsi_free_sgtables(struct scsi_cmnd *cmd)
519 {
520 if (cmd->sdb.table.nents)
521 sg_free_table_chained(&cmd->sdb.table,
522 SCSI_INLINE_SG_CNT);
523 if (scsi_prot_sg_count(cmd))
524 sg_free_table_chained(&cmd->prot_sdb->table,
525 SCSI_INLINE_PROT_SG_CNT);
526 }
527 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
528
529 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
530 {
531 scsi_free_sgtables(cmd);
532 scsi_uninit_cmd(cmd);
533 }
534
535 static void scsi_run_queue_async(struct scsi_device *sdev)
536 {
537 if (scsi_target(sdev)->single_lun ||
538 !list_empty(&sdev->host->starved_list)) {
539 kblockd_schedule_work(&sdev->requeue_work);
540 } else {
541 /*
542 * smp_mb() present in sbitmap_queue_clear() or implied in
543 * .end_io is for ordering writing .device_busy in
544 * scsi_device_unbusy() and reading sdev->restarts.
545 */
546 int old = atomic_read(&sdev->restarts);
547
548 /*
549 * ->restarts has to be kept as non-zero if new budget
550 * contention occurs.
551 *
552 * No need to run queue when either another re-run
553 * queue wins in updating ->restarts or a new budget
554 * contention occurs.
555 */
556 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
557 blk_mq_run_hw_queues(sdev->request_queue, true);
558 }
559 }
560
561 /* Returns false when no more bytes to process, true if there are more */
562 static bool scsi_end_request(struct request *req, blk_status_t error,
563 unsigned int bytes)
564 {
565 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
566 struct scsi_device *sdev = cmd->device;
567 struct request_queue *q = sdev->request_queue;
568
569 if (blk_update_request(req, error, bytes))
570 return true;
571
572 if (blk_queue_add_random(q))
573 add_disk_randomness(req->rq_disk);
574
575 if (!blk_rq_is_scsi(req)) {
576 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
577 cmd->flags &= ~SCMD_INITIALIZED;
578 }
579
580 /*
581 * Calling rcu_barrier() is not necessary here because the
582 * SCSI error handler guarantees that the function called by
583 * call_rcu() has been called before scsi_end_request() is
584 * called.
585 */
586 destroy_rcu_head(&cmd->rcu);
587
588 /*
589 * In the MQ case the command gets freed by __blk_mq_end_request,
590 * so we have to do all cleanup that depends on it earlier.
591 *
592 * We also can't kick the queues from irq context, so we
593 * will have to defer it to a workqueue.
594 */
595 scsi_mq_uninit_cmd(cmd);
596
597 /*
598 * queue is still alive, so grab the ref for preventing it
599 * from being cleaned up during running queue.
600 */
601 percpu_ref_get(&q->q_usage_counter);
602
603 __blk_mq_end_request(req, error);
604
605 scsi_run_queue_async(sdev);
606
607 percpu_ref_put(&q->q_usage_counter);
608 return false;
609 }
610
611 /**
612 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
613 * @cmd: SCSI command
614 * @result: scsi error code
615 *
616 * Translate a SCSI result code into a blk_status_t value. May reset the host
617 * byte of @cmd->result.
618 */
619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
620 {
621 switch (host_byte(result)) {
622 case DID_OK:
623 /*
624 * Also check the other bytes than the status byte in result
625 * to handle the case when a SCSI LLD sets result to
626 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
627 */
628 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
629 return BLK_STS_OK;
630 return BLK_STS_IOERR;
631 case DID_TRANSPORT_FAILFAST:
632 return BLK_STS_TRANSPORT;
633 case DID_TARGET_FAILURE:
634 set_host_byte(cmd, DID_OK);
635 return BLK_STS_TARGET;
636 case DID_NEXUS_FAILURE:
637 set_host_byte(cmd, DID_OK);
638 return BLK_STS_NEXUS;
639 case DID_ALLOC_FAILURE:
640 set_host_byte(cmd, DID_OK);
641 return BLK_STS_NOSPC;
642 case DID_MEDIUM_ERROR:
643 set_host_byte(cmd, DID_OK);
644 return BLK_STS_MEDIUM;
645 default:
646 return BLK_STS_IOERR;
647 }
648 }
649
650 /* Helper for scsi_io_completion() when "reprep" action required. */
651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
652 struct request_queue *q)
653 {
654 /* A new command will be prepared and issued. */
655 scsi_mq_requeue_cmd(cmd);
656 }
657
658 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
659 {
660 struct request *req = cmd->request;
661 unsigned long wait_for;
662
663 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
664 return false;
665
666 wait_for = (cmd->allowed + 1) * req->timeout;
667 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
668 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
669 wait_for/HZ);
670 return true;
671 }
672 return false;
673 }
674
675 /* Helper for scsi_io_completion() when special action required. */
676 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
677 {
678 struct request_queue *q = cmd->device->request_queue;
679 struct request *req = cmd->request;
680 int level = 0;
681 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
682 ACTION_DELAYED_RETRY} action;
683 struct scsi_sense_hdr sshdr;
684 bool sense_valid;
685 bool sense_current = true; /* false implies "deferred sense" */
686 blk_status_t blk_stat;
687
688 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
689 if (sense_valid)
690 sense_current = !scsi_sense_is_deferred(&sshdr);
691
692 blk_stat = scsi_result_to_blk_status(cmd, result);
693
694 if (host_byte(result) == DID_RESET) {
695 /* Third party bus reset or reset for error recovery
696 * reasons. Just retry the command and see what
697 * happens.
698 */
699 action = ACTION_RETRY;
700 } else if (sense_valid && sense_current) {
701 switch (sshdr.sense_key) {
702 case UNIT_ATTENTION:
703 if (cmd->device->removable) {
704 /* Detected disc change. Set a bit
705 * and quietly refuse further access.
706 */
707 cmd->device->changed = 1;
708 action = ACTION_FAIL;
709 } else {
710 /* Must have been a power glitch, or a
711 * bus reset. Could not have been a
712 * media change, so we just retry the
713 * command and see what happens.
714 */
715 action = ACTION_RETRY;
716 }
717 break;
718 case ILLEGAL_REQUEST:
719 /* If we had an ILLEGAL REQUEST returned, then
720 * we may have performed an unsupported
721 * command. The only thing this should be
722 * would be a ten byte read where only a six
723 * byte read was supported. Also, on a system
724 * where READ CAPACITY failed, we may have
725 * read past the end of the disk.
726 */
727 if ((cmd->device->use_10_for_rw &&
728 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
729 (cmd->cmnd[0] == READ_10 ||
730 cmd->cmnd[0] == WRITE_10)) {
731 /* This will issue a new 6-byte command. */
732 cmd->device->use_10_for_rw = 0;
733 action = ACTION_REPREP;
734 } else if (sshdr.asc == 0x10) /* DIX */ {
735 action = ACTION_FAIL;
736 blk_stat = BLK_STS_PROTECTION;
737 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
738 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
739 action = ACTION_FAIL;
740 blk_stat = BLK_STS_TARGET;
741 } else
742 action = ACTION_FAIL;
743 break;
744 case ABORTED_COMMAND:
745 action = ACTION_FAIL;
746 if (sshdr.asc == 0x10) /* DIF */
747 blk_stat = BLK_STS_PROTECTION;
748 break;
749 case NOT_READY:
750 /* If the device is in the process of becoming
751 * ready, or has a temporary blockage, retry.
752 */
753 if (sshdr.asc == 0x04) {
754 switch (sshdr.ascq) {
755 case 0x01: /* becoming ready */
756 case 0x04: /* format in progress */
757 case 0x05: /* rebuild in progress */
758 case 0x06: /* recalculation in progress */
759 case 0x07: /* operation in progress */
760 case 0x08: /* Long write in progress */
761 case 0x09: /* self test in progress */
762 case 0x14: /* space allocation in progress */
763 case 0x1a: /* start stop unit in progress */
764 case 0x1b: /* sanitize in progress */
765 case 0x1d: /* configuration in progress */
766 case 0x24: /* depopulation in progress */
767 action = ACTION_DELAYED_RETRY;
768 break;
769 case 0x0a: /* ALUA state transition */
770 blk_stat = BLK_STS_AGAIN;
771 fallthrough;
772 default:
773 action = ACTION_FAIL;
774 break;
775 }
776 } else
777 action = ACTION_FAIL;
778 break;
779 case VOLUME_OVERFLOW:
780 /* See SSC3rXX or current. */
781 action = ACTION_FAIL;
782 break;
783 case DATA_PROTECT:
784 action = ACTION_FAIL;
785 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
786 (sshdr.asc == 0x55 &&
787 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
788 /* Insufficient zone resources */
789 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
790 }
791 break;
792 default:
793 action = ACTION_FAIL;
794 break;
795 }
796 } else
797 action = ACTION_FAIL;
798
799 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
800 action = ACTION_FAIL;
801
802 switch (action) {
803 case ACTION_FAIL:
804 /* Give up and fail the remainder of the request */
805 if (!(req->rq_flags & RQF_QUIET)) {
806 static DEFINE_RATELIMIT_STATE(_rs,
807 DEFAULT_RATELIMIT_INTERVAL,
808 DEFAULT_RATELIMIT_BURST);
809
810 if (unlikely(scsi_logging_level))
811 level =
812 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
813 SCSI_LOG_MLCOMPLETE_BITS);
814
815 /*
816 * if logging is enabled the failure will be printed
817 * in scsi_log_completion(), so avoid duplicate messages
818 */
819 if (!level && __ratelimit(&_rs)) {
820 scsi_print_result(cmd, NULL, FAILED);
821 if (driver_byte(result) == DRIVER_SENSE)
822 scsi_print_sense(cmd);
823 scsi_print_command(cmd);
824 }
825 }
826 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
827 return;
828 fallthrough;
829 case ACTION_REPREP:
830 scsi_io_completion_reprep(cmd, q);
831 break;
832 case ACTION_RETRY:
833 /* Retry the same command immediately */
834 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
835 break;
836 case ACTION_DELAYED_RETRY:
837 /* Retry the same command after a delay */
838 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
839 break;
840 }
841 }
842
843 /*
844 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
845 * new result that may suppress further error checking. Also modifies
846 * *blk_statp in some cases.
847 */
848 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
849 blk_status_t *blk_statp)
850 {
851 bool sense_valid;
852 bool sense_current = true; /* false implies "deferred sense" */
853 struct request *req = cmd->request;
854 struct scsi_sense_hdr sshdr;
855
856 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
857 if (sense_valid)
858 sense_current = !scsi_sense_is_deferred(&sshdr);
859
860 if (blk_rq_is_passthrough(req)) {
861 if (sense_valid) {
862 /*
863 * SG_IO wants current and deferred errors
864 */
865 scsi_req(req)->sense_len =
866 min(8 + cmd->sense_buffer[7],
867 SCSI_SENSE_BUFFERSIZE);
868 }
869 if (sense_current)
870 *blk_statp = scsi_result_to_blk_status(cmd, result);
871 } else if (blk_rq_bytes(req) == 0 && sense_current) {
872 /*
873 * Flush commands do not transfers any data, and thus cannot use
874 * good_bytes != blk_rq_bytes(req) as the signal for an error.
875 * This sets *blk_statp explicitly for the problem case.
876 */
877 *blk_statp = scsi_result_to_blk_status(cmd, result);
878 }
879 /*
880 * Recovered errors need reporting, but they're always treated as
881 * success, so fiddle the result code here. For passthrough requests
882 * we already took a copy of the original into sreq->result which
883 * is what gets returned to the user
884 */
885 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
886 bool do_print = true;
887 /*
888 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
889 * skip print since caller wants ATA registers. Only occurs
890 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
891 */
892 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
893 do_print = false;
894 else if (req->rq_flags & RQF_QUIET)
895 do_print = false;
896 if (do_print)
897 scsi_print_sense(cmd);
898 result = 0;
899 /* for passthrough, *blk_statp may be set */
900 *blk_statp = BLK_STS_OK;
901 }
902 /*
903 * Another corner case: the SCSI status byte is non-zero but 'good'.
904 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
905 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
906 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
907 * intermediate statuses (both obsolete in SAM-4) as good.
908 */
909 if (status_byte(result) && scsi_status_is_good(result)) {
910 result = 0;
911 *blk_statp = BLK_STS_OK;
912 }
913 return result;
914 }
915
916 /**
917 * scsi_io_completion - Completion processing for SCSI commands.
918 * @cmd: command that is finished.
919 * @good_bytes: number of processed bytes.
920 *
921 * We will finish off the specified number of sectors. If we are done, the
922 * command block will be released and the queue function will be goosed. If we
923 * are not done then we have to figure out what to do next:
924 *
925 * a) We can call scsi_io_completion_reprep(). The request will be
926 * unprepared and put back on the queue. Then a new command will
927 * be created for it. This should be used if we made forward
928 * progress, or if we want to switch from READ(10) to READ(6) for
929 * example.
930 *
931 * b) We can call scsi_io_completion_action(). The request will be
932 * put back on the queue and retried using the same command as
933 * before, possibly after a delay.
934 *
935 * c) We can call scsi_end_request() with blk_stat other than
936 * BLK_STS_OK, to fail the remainder of the request.
937 */
938 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
939 {
940 int result = cmd->result;
941 struct request_queue *q = cmd->device->request_queue;
942 struct request *req = cmd->request;
943 blk_status_t blk_stat = BLK_STS_OK;
944
945 if (unlikely(result)) /* a nz result may or may not be an error */
946 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
947
948 if (unlikely(blk_rq_is_passthrough(req))) {
949 /*
950 * scsi_result_to_blk_status may have reset the host_byte
951 */
952 scsi_req(req)->result = cmd->result;
953 }
954
955 /*
956 * Next deal with any sectors which we were able to correctly
957 * handle.
958 */
959 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
960 "%u sectors total, %d bytes done.\n",
961 blk_rq_sectors(req), good_bytes));
962
963 /*
964 * Failed, zero length commands always need to drop down
965 * to retry code. Fast path should return in this block.
966 */
967 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
968 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
969 return; /* no bytes remaining */
970 }
971
972 /* Kill remainder if no retries. */
973 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
974 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
975 WARN_ONCE(true,
976 "Bytes remaining after failed, no-retry command");
977 return;
978 }
979
980 /*
981 * If there had been no error, but we have leftover bytes in the
982 * requeues just queue the command up again.
983 */
984 if (likely(result == 0))
985 scsi_io_completion_reprep(cmd, q);
986 else
987 scsi_io_completion_action(cmd, result);
988 }
989
990 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
991 struct request *rq)
992 {
993 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
994 !op_is_write(req_op(rq)) &&
995 sdev->host->hostt->dma_need_drain(rq);
996 }
997
998 /**
999 * scsi_alloc_sgtables - allocate S/G tables for a command
1000 * @cmd: command descriptor we wish to initialize
1001 *
1002 * Returns:
1003 * * BLK_STS_OK - on success
1004 * * BLK_STS_RESOURCE - if the failure is retryable
1005 * * BLK_STS_IOERR - if the failure is fatal
1006 */
1007 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1008 {
1009 struct scsi_device *sdev = cmd->device;
1010 struct request *rq = cmd->request;
1011 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1012 struct scatterlist *last_sg = NULL;
1013 blk_status_t ret;
1014 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1015 int count;
1016
1017 if (WARN_ON_ONCE(!nr_segs))
1018 return BLK_STS_IOERR;
1019
1020 /*
1021 * Make sure there is space for the drain. The driver must adjust
1022 * max_hw_segments to be prepared for this.
1023 */
1024 if (need_drain)
1025 nr_segs++;
1026
1027 /*
1028 * If sg table allocation fails, requeue request later.
1029 */
1030 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1031 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1032 return BLK_STS_RESOURCE;
1033
1034 /*
1035 * Next, walk the list, and fill in the addresses and sizes of
1036 * each segment.
1037 */
1038 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1039
1040 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1041 unsigned int pad_len =
1042 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1043
1044 last_sg->length += pad_len;
1045 cmd->extra_len += pad_len;
1046 }
1047
1048 if (need_drain) {
1049 sg_unmark_end(last_sg);
1050 last_sg = sg_next(last_sg);
1051 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1052 sg_mark_end(last_sg);
1053
1054 cmd->extra_len += sdev->dma_drain_len;
1055 count++;
1056 }
1057
1058 BUG_ON(count > cmd->sdb.table.nents);
1059 cmd->sdb.table.nents = count;
1060 cmd->sdb.length = blk_rq_payload_bytes(rq);
1061
1062 if (blk_integrity_rq(rq)) {
1063 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1064 int ivecs;
1065
1066 if (WARN_ON_ONCE(!prot_sdb)) {
1067 /*
1068 * This can happen if someone (e.g. multipath)
1069 * queues a command to a device on an adapter
1070 * that does not support DIX.
1071 */
1072 ret = BLK_STS_IOERR;
1073 goto out_free_sgtables;
1074 }
1075
1076 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1077
1078 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1079 prot_sdb->table.sgl,
1080 SCSI_INLINE_PROT_SG_CNT)) {
1081 ret = BLK_STS_RESOURCE;
1082 goto out_free_sgtables;
1083 }
1084
1085 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1086 prot_sdb->table.sgl);
1087 BUG_ON(count > ivecs);
1088 BUG_ON(count > queue_max_integrity_segments(rq->q));
1089
1090 cmd->prot_sdb = prot_sdb;
1091 cmd->prot_sdb->table.nents = count;
1092 }
1093
1094 return BLK_STS_OK;
1095 out_free_sgtables:
1096 scsi_free_sgtables(cmd);
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(scsi_alloc_sgtables);
1100
1101 /**
1102 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1103 * @rq: Request associated with the SCSI command to be initialized.
1104 *
1105 * This function initializes the members of struct scsi_cmnd that must be
1106 * initialized before request processing starts and that won't be
1107 * reinitialized if a SCSI command is requeued.
1108 *
1109 * Called from inside blk_get_request() for pass-through requests and from
1110 * inside scsi_init_command() for filesystem requests.
1111 */
1112 static void scsi_initialize_rq(struct request *rq)
1113 {
1114 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1115
1116 scsi_req_init(&cmd->req);
1117 init_rcu_head(&cmd->rcu);
1118 cmd->jiffies_at_alloc = jiffies;
1119 cmd->retries = 0;
1120 }
1121
1122 /*
1123 * Only called when the request isn't completed by SCSI, and not freed by
1124 * SCSI
1125 */
1126 static void scsi_cleanup_rq(struct request *rq)
1127 {
1128 if (rq->rq_flags & RQF_DONTPREP) {
1129 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1130 rq->rq_flags &= ~RQF_DONTPREP;
1131 }
1132 }
1133
1134 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1135 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1136 {
1137 void *buf = cmd->sense_buffer;
1138 void *prot = cmd->prot_sdb;
1139 struct request *rq = blk_mq_rq_from_pdu(cmd);
1140 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1141 unsigned long jiffies_at_alloc;
1142 int retries, to_clear;
1143 bool in_flight;
1144
1145 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1146 flags |= SCMD_INITIALIZED;
1147 scsi_initialize_rq(rq);
1148 }
1149
1150 jiffies_at_alloc = cmd->jiffies_at_alloc;
1151 retries = cmd->retries;
1152 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1153 /*
1154 * Zero out the cmd, except for the embedded scsi_request. Only clear
1155 * the driver-private command data if the LLD does not supply a
1156 * function to initialize that data.
1157 */
1158 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1159 if (!dev->host->hostt->init_cmd_priv)
1160 to_clear += dev->host->hostt->cmd_size;
1161 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1162
1163 cmd->device = dev;
1164 cmd->sense_buffer = buf;
1165 cmd->prot_sdb = prot;
1166 cmd->flags = flags;
1167 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168 cmd->jiffies_at_alloc = jiffies_at_alloc;
1169 cmd->retries = retries;
1170 if (in_flight)
1171 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1172
1173 }
1174
1175 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1176 struct request *req)
1177 {
1178 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1179
1180 /*
1181 * Passthrough requests may transfer data, in which case they must
1182 * a bio attached to them. Or they might contain a SCSI command
1183 * that does not transfer data, in which case they may optionally
1184 * submit a request without an attached bio.
1185 */
1186 if (req->bio) {
1187 blk_status_t ret = scsi_alloc_sgtables(cmd);
1188 if (unlikely(ret != BLK_STS_OK))
1189 return ret;
1190 } else {
1191 BUG_ON(blk_rq_bytes(req));
1192
1193 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194 }
1195
1196 cmd->cmd_len = scsi_req(req)->cmd_len;
1197 if (cmd->cmd_len == 0)
1198 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1199 cmd->cmnd = scsi_req(req)->cmd;
1200 cmd->transfersize = blk_rq_bytes(req);
1201 cmd->allowed = scsi_req(req)->retries;
1202 return BLK_STS_OK;
1203 }
1204
1205 static blk_status_t
1206 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1207 {
1208 switch (sdev->sdev_state) {
1209 case SDEV_OFFLINE:
1210 case SDEV_TRANSPORT_OFFLINE:
1211 /*
1212 * If the device is offline we refuse to process any
1213 * commands. The device must be brought online
1214 * before trying any recovery commands.
1215 */
1216 if (!sdev->offline_already) {
1217 sdev->offline_already = true;
1218 sdev_printk(KERN_ERR, sdev,
1219 "rejecting I/O to offline device\n");
1220 }
1221 return BLK_STS_IOERR;
1222 case SDEV_DEL:
1223 /*
1224 * If the device is fully deleted, we refuse to
1225 * process any commands as well.
1226 */
1227 sdev_printk(KERN_ERR, sdev,
1228 "rejecting I/O to dead device\n");
1229 return BLK_STS_IOERR;
1230 case SDEV_BLOCK:
1231 case SDEV_CREATED_BLOCK:
1232 return BLK_STS_RESOURCE;
1233 case SDEV_QUIESCE:
1234 /*
1235 * If the devices is blocked we defer normal commands.
1236 */
1237 if (req && !(req->rq_flags & RQF_PREEMPT))
1238 return BLK_STS_RESOURCE;
1239 return BLK_STS_OK;
1240 default:
1241 /*
1242 * For any other not fully online state we only allow
1243 * special commands. In particular any user initiated
1244 * command is not allowed.
1245 */
1246 if (req && !(req->rq_flags & RQF_PREEMPT))
1247 return BLK_STS_IOERR;
1248 return BLK_STS_OK;
1249 }
1250 }
1251
1252 /*
1253 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1254 * return 0.
1255 *
1256 * Called with the queue_lock held.
1257 */
1258 static inline int scsi_dev_queue_ready(struct request_queue *q,
1259 struct scsi_device *sdev)
1260 {
1261 unsigned int busy;
1262
1263 busy = atomic_inc_return(&sdev->device_busy) - 1;
1264 if (atomic_read(&sdev->device_blocked)) {
1265 if (busy)
1266 goto out_dec;
1267
1268 /*
1269 * unblock after device_blocked iterates to zero
1270 */
1271 if (atomic_dec_return(&sdev->device_blocked) > 0)
1272 goto out_dec;
1273 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1274 "unblocking device at zero depth\n"));
1275 }
1276
1277 if (busy >= sdev->queue_depth)
1278 goto out_dec;
1279
1280 return 1;
1281 out_dec:
1282 atomic_dec(&sdev->device_busy);
1283 return 0;
1284 }
1285
1286 /*
1287 * scsi_target_queue_ready: checks if there we can send commands to target
1288 * @sdev: scsi device on starget to check.
1289 */
1290 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1291 struct scsi_device *sdev)
1292 {
1293 struct scsi_target *starget = scsi_target(sdev);
1294 unsigned int busy;
1295
1296 if (starget->single_lun) {
1297 spin_lock_irq(shost->host_lock);
1298 if (starget->starget_sdev_user &&
1299 starget->starget_sdev_user != sdev) {
1300 spin_unlock_irq(shost->host_lock);
1301 return 0;
1302 }
1303 starget->starget_sdev_user = sdev;
1304 spin_unlock_irq(shost->host_lock);
1305 }
1306
1307 if (starget->can_queue <= 0)
1308 return 1;
1309
1310 busy = atomic_inc_return(&starget->target_busy) - 1;
1311 if (atomic_read(&starget->target_blocked) > 0) {
1312 if (busy)
1313 goto starved;
1314
1315 /*
1316 * unblock after target_blocked iterates to zero
1317 */
1318 if (atomic_dec_return(&starget->target_blocked) > 0)
1319 goto out_dec;
1320
1321 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1322 "unblocking target at zero depth\n"));
1323 }
1324
1325 if (busy >= starget->can_queue)
1326 goto starved;
1327
1328 return 1;
1329
1330 starved:
1331 spin_lock_irq(shost->host_lock);
1332 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1333 spin_unlock_irq(shost->host_lock);
1334 out_dec:
1335 if (starget->can_queue > 0)
1336 atomic_dec(&starget->target_busy);
1337 return 0;
1338 }
1339
1340 /*
1341 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1342 * return 0. We must end up running the queue again whenever 0 is
1343 * returned, else IO can hang.
1344 */
1345 static inline int scsi_host_queue_ready(struct request_queue *q,
1346 struct Scsi_Host *shost,
1347 struct scsi_device *sdev,
1348 struct scsi_cmnd *cmd)
1349 {
1350 if (scsi_host_in_recovery(shost))
1351 return 0;
1352
1353 if (atomic_read(&shost->host_blocked) > 0) {
1354 if (scsi_host_busy(shost) > 0)
1355 goto starved;
1356
1357 /*
1358 * unblock after host_blocked iterates to zero
1359 */
1360 if (atomic_dec_return(&shost->host_blocked) > 0)
1361 goto out_dec;
1362
1363 SCSI_LOG_MLQUEUE(3,
1364 shost_printk(KERN_INFO, shost,
1365 "unblocking host at zero depth\n"));
1366 }
1367
1368 if (shost->host_self_blocked)
1369 goto starved;
1370
1371 /* We're OK to process the command, so we can't be starved */
1372 if (!list_empty(&sdev->starved_entry)) {
1373 spin_lock_irq(shost->host_lock);
1374 if (!list_empty(&sdev->starved_entry))
1375 list_del_init(&sdev->starved_entry);
1376 spin_unlock_irq(shost->host_lock);
1377 }
1378
1379 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1380
1381 return 1;
1382
1383 starved:
1384 spin_lock_irq(shost->host_lock);
1385 if (list_empty(&sdev->starved_entry))
1386 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1387 spin_unlock_irq(shost->host_lock);
1388 out_dec:
1389 scsi_dec_host_busy(shost, cmd);
1390 return 0;
1391 }
1392
1393 /*
1394 * Busy state exporting function for request stacking drivers.
1395 *
1396 * For efficiency, no lock is taken to check the busy state of
1397 * shost/starget/sdev, since the returned value is not guaranteed and
1398 * may be changed after request stacking drivers call the function,
1399 * regardless of taking lock or not.
1400 *
1401 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1402 * needs to return 'not busy'. Otherwise, request stacking drivers
1403 * may hold requests forever.
1404 */
1405 static bool scsi_mq_lld_busy(struct request_queue *q)
1406 {
1407 struct scsi_device *sdev = q->queuedata;
1408 struct Scsi_Host *shost;
1409
1410 if (blk_queue_dying(q))
1411 return false;
1412
1413 shost = sdev->host;
1414
1415 /*
1416 * Ignore host/starget busy state.
1417 * Since block layer does not have a concept of fairness across
1418 * multiple queues, congestion of host/starget needs to be handled
1419 * in SCSI layer.
1420 */
1421 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1422 return true;
1423
1424 return false;
1425 }
1426
1427 static void scsi_softirq_done(struct request *rq)
1428 {
1429 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1430 int disposition;
1431
1432 INIT_LIST_HEAD(&cmd->eh_entry);
1433
1434 atomic_inc(&cmd->device->iodone_cnt);
1435 if (cmd->result)
1436 atomic_inc(&cmd->device->ioerr_cnt);
1437
1438 disposition = scsi_decide_disposition(cmd);
1439 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1440 disposition = SUCCESS;
1441
1442 scsi_log_completion(cmd, disposition);
1443
1444 switch (disposition) {
1445 case SUCCESS:
1446 scsi_finish_command(cmd);
1447 break;
1448 case NEEDS_RETRY:
1449 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1450 break;
1451 case ADD_TO_MLQUEUE:
1452 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1453 break;
1454 default:
1455 scsi_eh_scmd_add(cmd);
1456 break;
1457 }
1458 }
1459
1460 /**
1461 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1462 * @cmd: command block we are dispatching.
1463 *
1464 * Return: nonzero return request was rejected and device's queue needs to be
1465 * plugged.
1466 */
1467 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1468 {
1469 struct Scsi_Host *host = cmd->device->host;
1470 int rtn = 0;
1471
1472 atomic_inc(&cmd->device->iorequest_cnt);
1473
1474 /* check if the device is still usable */
1475 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1476 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1477 * returns an immediate error upwards, and signals
1478 * that the device is no longer present */
1479 cmd->result = DID_NO_CONNECT << 16;
1480 goto done;
1481 }
1482
1483 /* Check to see if the scsi lld made this device blocked. */
1484 if (unlikely(scsi_device_blocked(cmd->device))) {
1485 /*
1486 * in blocked state, the command is just put back on
1487 * the device queue. The suspend state has already
1488 * blocked the queue so future requests should not
1489 * occur until the device transitions out of the
1490 * suspend state.
1491 */
1492 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1493 "queuecommand : device blocked\n"));
1494 return SCSI_MLQUEUE_DEVICE_BUSY;
1495 }
1496
1497 /* Store the LUN value in cmnd, if needed. */
1498 if (cmd->device->lun_in_cdb)
1499 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1500 (cmd->device->lun << 5 & 0xe0);
1501
1502 scsi_log_send(cmd);
1503
1504 /*
1505 * Before we queue this command, check if the command
1506 * length exceeds what the host adapter can handle.
1507 */
1508 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1509 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1510 "queuecommand : command too long. "
1511 "cdb_size=%d host->max_cmd_len=%d\n",
1512 cmd->cmd_len, cmd->device->host->max_cmd_len));
1513 cmd->result = (DID_ABORT << 16);
1514 goto done;
1515 }
1516
1517 if (unlikely(host->shost_state == SHOST_DEL)) {
1518 cmd->result = (DID_NO_CONNECT << 16);
1519 goto done;
1520
1521 }
1522
1523 trace_scsi_dispatch_cmd_start(cmd);
1524 rtn = host->hostt->queuecommand(host, cmd);
1525 if (rtn) {
1526 trace_scsi_dispatch_cmd_error(cmd, rtn);
1527 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1528 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1529 rtn = SCSI_MLQUEUE_HOST_BUSY;
1530
1531 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1532 "queuecommand : request rejected\n"));
1533 }
1534
1535 return rtn;
1536 done:
1537 cmd->scsi_done(cmd);
1538 return 0;
1539 }
1540
1541 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1542 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1543 {
1544 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1545 sizeof(struct scatterlist);
1546 }
1547
1548 static blk_status_t scsi_prepare_cmd(struct request *req)
1549 {
1550 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1551 struct scsi_device *sdev = req->q->queuedata;
1552 struct Scsi_Host *shost = sdev->host;
1553 struct scatterlist *sg;
1554
1555 scsi_init_command(sdev, cmd);
1556
1557 cmd->request = req;
1558 cmd->tag = req->tag;
1559 cmd->prot_op = SCSI_PROT_NORMAL;
1560 if (blk_rq_bytes(req))
1561 cmd->sc_data_direction = rq_dma_dir(req);
1562 else
1563 cmd->sc_data_direction = DMA_NONE;
1564
1565 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1566 cmd->sdb.table.sgl = sg;
1567
1568 if (scsi_host_get_prot(shost)) {
1569 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1570
1571 cmd->prot_sdb->table.sgl =
1572 (struct scatterlist *)(cmd->prot_sdb + 1);
1573 }
1574
1575 /*
1576 * Special handling for passthrough commands, which don't go to the ULP
1577 * at all:
1578 */
1579 if (blk_rq_is_scsi(req))
1580 return scsi_setup_scsi_cmnd(sdev, req);
1581
1582 if (sdev->handler && sdev->handler->prep_fn) {
1583 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1584
1585 if (ret != BLK_STS_OK)
1586 return ret;
1587 }
1588
1589 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1590 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1591 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1592 }
1593
1594 static void scsi_mq_done(struct scsi_cmnd *cmd)
1595 {
1596 if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1597 return;
1598 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1599 return;
1600 trace_scsi_dispatch_cmd_done(cmd);
1601 blk_mq_complete_request(cmd->request);
1602 }
1603
1604 static void scsi_mq_put_budget(struct request_queue *q)
1605 {
1606 struct scsi_device *sdev = q->queuedata;
1607
1608 atomic_dec(&sdev->device_busy);
1609 }
1610
1611 static bool scsi_mq_get_budget(struct request_queue *q)
1612 {
1613 struct scsi_device *sdev = q->queuedata;
1614
1615 if (scsi_dev_queue_ready(q, sdev))
1616 return true;
1617
1618 atomic_inc(&sdev->restarts);
1619
1620 /*
1621 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1622 * .restarts must be incremented before .device_busy is read because the
1623 * code in scsi_run_queue_async() depends on the order of these operations.
1624 */
1625 smp_mb__after_atomic();
1626
1627 /*
1628 * If all in-flight requests originated from this LUN are completed
1629 * before reading .device_busy, sdev->device_busy will be observed as
1630 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1631 * soon. Otherwise, completion of one of these requests will observe
1632 * the .restarts flag, and the request queue will be run for handling
1633 * this request, see scsi_end_request().
1634 */
1635 if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1636 !scsi_device_blocked(sdev)))
1637 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1638 return false;
1639 }
1640
1641 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1642 const struct blk_mq_queue_data *bd)
1643 {
1644 struct request *req = bd->rq;
1645 struct request_queue *q = req->q;
1646 struct scsi_device *sdev = q->queuedata;
1647 struct Scsi_Host *shost = sdev->host;
1648 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1649 blk_status_t ret;
1650 int reason;
1651
1652 /*
1653 * If the device is not in running state we will reject some or all
1654 * commands.
1655 */
1656 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1657 ret = scsi_device_state_check(sdev, req);
1658 if (ret != BLK_STS_OK)
1659 goto out_put_budget;
1660 }
1661
1662 ret = BLK_STS_RESOURCE;
1663 if (!scsi_target_queue_ready(shost, sdev))
1664 goto out_put_budget;
1665 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1666 goto out_dec_target_busy;
1667
1668 if (!(req->rq_flags & RQF_DONTPREP)) {
1669 ret = scsi_prepare_cmd(req);
1670 if (ret != BLK_STS_OK)
1671 goto out_dec_host_busy;
1672 req->rq_flags |= RQF_DONTPREP;
1673 } else {
1674 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1675 }
1676
1677 cmd->flags &= SCMD_PRESERVED_FLAGS;
1678 if (sdev->simple_tags)
1679 cmd->flags |= SCMD_TAGGED;
1680 if (bd->last)
1681 cmd->flags |= SCMD_LAST;
1682
1683 scsi_set_resid(cmd, 0);
1684 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1685 cmd->scsi_done = scsi_mq_done;
1686
1687 blk_mq_start_request(req);
1688 reason = scsi_dispatch_cmd(cmd);
1689 if (reason) {
1690 scsi_set_blocked(cmd, reason);
1691 ret = BLK_STS_RESOURCE;
1692 goto out_dec_host_busy;
1693 }
1694
1695 return BLK_STS_OK;
1696
1697 out_dec_host_busy:
1698 scsi_dec_host_busy(shost, cmd);
1699 out_dec_target_busy:
1700 if (scsi_target(sdev)->can_queue > 0)
1701 atomic_dec(&scsi_target(sdev)->target_busy);
1702 out_put_budget:
1703 scsi_mq_put_budget(q);
1704 switch (ret) {
1705 case BLK_STS_OK:
1706 break;
1707 case BLK_STS_RESOURCE:
1708 case BLK_STS_ZONE_RESOURCE:
1709 if (scsi_device_blocked(sdev))
1710 ret = BLK_STS_DEV_RESOURCE;
1711 break;
1712 case BLK_STS_AGAIN:
1713 scsi_req(req)->result = DID_BUS_BUSY << 16;
1714 if (req->rq_flags & RQF_DONTPREP)
1715 scsi_mq_uninit_cmd(cmd);
1716 break;
1717 default:
1718 if (unlikely(!scsi_device_online(sdev)))
1719 scsi_req(req)->result = DID_NO_CONNECT << 16;
1720 else
1721 scsi_req(req)->result = DID_ERROR << 16;
1722 /*
1723 * Make sure to release all allocated resources when
1724 * we hit an error, as we will never see this command
1725 * again.
1726 */
1727 if (req->rq_flags & RQF_DONTPREP)
1728 scsi_mq_uninit_cmd(cmd);
1729 scsi_run_queue_async(sdev);
1730 break;
1731 }
1732 return ret;
1733 }
1734
1735 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1736 bool reserved)
1737 {
1738 if (reserved)
1739 return BLK_EH_RESET_TIMER;
1740 return scsi_times_out(req);
1741 }
1742
1743 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1744 unsigned int hctx_idx, unsigned int numa_node)
1745 {
1746 struct Scsi_Host *shost = set->driver_data;
1747 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1748 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1749 struct scatterlist *sg;
1750 int ret = 0;
1751
1752 if (unchecked_isa_dma)
1753 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1754 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1755 GFP_KERNEL, numa_node);
1756 if (!cmd->sense_buffer)
1757 return -ENOMEM;
1758 cmd->req.sense = cmd->sense_buffer;
1759
1760 if (scsi_host_get_prot(shost)) {
1761 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1762 shost->hostt->cmd_size;
1763 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1764 }
1765
1766 if (shost->hostt->init_cmd_priv) {
1767 ret = shost->hostt->init_cmd_priv(shost, cmd);
1768 if (ret < 0)
1769 scsi_free_sense_buffer(unchecked_isa_dma,
1770 cmd->sense_buffer);
1771 }
1772
1773 return ret;
1774 }
1775
1776 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1777 unsigned int hctx_idx)
1778 {
1779 struct Scsi_Host *shost = set->driver_data;
1780 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1781
1782 if (shost->hostt->exit_cmd_priv)
1783 shost->hostt->exit_cmd_priv(shost, cmd);
1784 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1785 cmd->sense_buffer);
1786 }
1787
1788 static int scsi_map_queues(struct blk_mq_tag_set *set)
1789 {
1790 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1791
1792 if (shost->hostt->map_queues)
1793 return shost->hostt->map_queues(shost);
1794 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1795 }
1796
1797 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1798 {
1799 struct device *dev = shost->dma_dev;
1800
1801 /*
1802 * this limit is imposed by hardware restrictions
1803 */
1804 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1805 SG_MAX_SEGMENTS));
1806
1807 if (scsi_host_prot_dma(shost)) {
1808 shost->sg_prot_tablesize =
1809 min_not_zero(shost->sg_prot_tablesize,
1810 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1811 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1812 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1813 }
1814
1815 if (dev->dma_mask) {
1816 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1817 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1818 }
1819 blk_queue_max_hw_sectors(q, shost->max_sectors);
1820 if (shost->unchecked_isa_dma)
1821 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1822 blk_queue_segment_boundary(q, shost->dma_boundary);
1823 dma_set_seg_boundary(dev, shost->dma_boundary);
1824
1825 blk_queue_max_segment_size(q, shost->max_segment_size);
1826 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1827 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1828
1829 /*
1830 * Set a reasonable default alignment: The larger of 32-byte (dword),
1831 * which is a common minimum for HBAs, and the minimum DMA alignment,
1832 * which is set by the platform.
1833 *
1834 * Devices that require a bigger alignment can increase it later.
1835 */
1836 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1837 }
1838 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1839
1840 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1841 .get_budget = scsi_mq_get_budget,
1842 .put_budget = scsi_mq_put_budget,
1843 .queue_rq = scsi_queue_rq,
1844 .complete = scsi_softirq_done,
1845 .timeout = scsi_timeout,
1846 #ifdef CONFIG_BLK_DEBUG_FS
1847 .show_rq = scsi_show_rq,
1848 #endif
1849 .init_request = scsi_mq_init_request,
1850 .exit_request = scsi_mq_exit_request,
1851 .initialize_rq_fn = scsi_initialize_rq,
1852 .cleanup_rq = scsi_cleanup_rq,
1853 .busy = scsi_mq_lld_busy,
1854 .map_queues = scsi_map_queues,
1855 };
1856
1857
1858 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1859 {
1860 struct request_queue *q = hctx->queue;
1861 struct scsi_device *sdev = q->queuedata;
1862 struct Scsi_Host *shost = sdev->host;
1863
1864 shost->hostt->commit_rqs(shost, hctx->queue_num);
1865 }
1866
1867 static const struct blk_mq_ops scsi_mq_ops = {
1868 .get_budget = scsi_mq_get_budget,
1869 .put_budget = scsi_mq_put_budget,
1870 .queue_rq = scsi_queue_rq,
1871 .commit_rqs = scsi_commit_rqs,
1872 .complete = scsi_softirq_done,
1873 .timeout = scsi_timeout,
1874 #ifdef CONFIG_BLK_DEBUG_FS
1875 .show_rq = scsi_show_rq,
1876 #endif
1877 .init_request = scsi_mq_init_request,
1878 .exit_request = scsi_mq_exit_request,
1879 .initialize_rq_fn = scsi_initialize_rq,
1880 .cleanup_rq = scsi_cleanup_rq,
1881 .busy = scsi_mq_lld_busy,
1882 .map_queues = scsi_map_queues,
1883 };
1884
1885 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1886 {
1887 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1888 if (IS_ERR(sdev->request_queue))
1889 return NULL;
1890
1891 sdev->request_queue->queuedata = sdev;
1892 __scsi_init_queue(sdev->host, sdev->request_queue);
1893 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1894 return sdev->request_queue;
1895 }
1896
1897 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1898 {
1899 unsigned int cmd_size, sgl_size;
1900 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1901
1902 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1903 scsi_mq_inline_sgl_size(shost));
1904 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1905 if (scsi_host_get_prot(shost))
1906 cmd_size += sizeof(struct scsi_data_buffer) +
1907 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1908
1909 memset(tag_set, 0, sizeof(*tag_set));
1910 if (shost->hostt->commit_rqs)
1911 tag_set->ops = &scsi_mq_ops;
1912 else
1913 tag_set->ops = &scsi_mq_ops_no_commit;
1914 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1915 tag_set->queue_depth = shost->can_queue;
1916 tag_set->cmd_size = cmd_size;
1917 tag_set->numa_node = NUMA_NO_NODE;
1918 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1919 tag_set->flags |=
1920 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1921 tag_set->driver_data = shost;
1922 if (shost->host_tagset)
1923 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1924
1925 return blk_mq_alloc_tag_set(tag_set);
1926 }
1927
1928 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1929 {
1930 blk_mq_free_tag_set(&shost->tag_set);
1931 }
1932
1933 /**
1934 * scsi_device_from_queue - return sdev associated with a request_queue
1935 * @q: The request queue to return the sdev from
1936 *
1937 * Return the sdev associated with a request queue or NULL if the
1938 * request_queue does not reference a SCSI device.
1939 */
1940 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1941 {
1942 struct scsi_device *sdev = NULL;
1943
1944 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1945 q->mq_ops == &scsi_mq_ops)
1946 sdev = q->queuedata;
1947 if (!sdev || !get_device(&sdev->sdev_gendev))
1948 sdev = NULL;
1949
1950 return sdev;
1951 }
1952
1953 /**
1954 * scsi_block_requests - Utility function used by low-level drivers to prevent
1955 * further commands from being queued to the device.
1956 * @shost: host in question
1957 *
1958 * There is no timer nor any other means by which the requests get unblocked
1959 * other than the low-level driver calling scsi_unblock_requests().
1960 */
1961 void scsi_block_requests(struct Scsi_Host *shost)
1962 {
1963 shost->host_self_blocked = 1;
1964 }
1965 EXPORT_SYMBOL(scsi_block_requests);
1966
1967 /**
1968 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1969 * further commands to be queued to the device.
1970 * @shost: host in question
1971 *
1972 * There is no timer nor any other means by which the requests get unblocked
1973 * other than the low-level driver calling scsi_unblock_requests(). This is done
1974 * as an API function so that changes to the internals of the scsi mid-layer
1975 * won't require wholesale changes to drivers that use this feature.
1976 */
1977 void scsi_unblock_requests(struct Scsi_Host *shost)
1978 {
1979 shost->host_self_blocked = 0;
1980 scsi_run_host_queues(shost);
1981 }
1982 EXPORT_SYMBOL(scsi_unblock_requests);
1983
1984 void scsi_exit_queue(void)
1985 {
1986 kmem_cache_destroy(scsi_sense_cache);
1987 kmem_cache_destroy(scsi_sense_isadma_cache);
1988 }
1989
1990 /**
1991 * scsi_mode_select - issue a mode select
1992 * @sdev: SCSI device to be queried
1993 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1994 * @sp: Save page bit (0 == don't save, 1 == save)
1995 * @modepage: mode page being requested
1996 * @buffer: request buffer (may not be smaller than eight bytes)
1997 * @len: length of request buffer.
1998 * @timeout: command timeout
1999 * @retries: number of retries before failing
2000 * @data: returns a structure abstracting the mode header data
2001 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2002 * must be SCSI_SENSE_BUFFERSIZE big.
2003 *
2004 * Returns zero if successful; negative error number or scsi
2005 * status on error
2006 *
2007 */
2008 int
2009 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2010 unsigned char *buffer, int len, int timeout, int retries,
2011 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2012 {
2013 unsigned char cmd[10];
2014 unsigned char *real_buffer;
2015 int ret;
2016
2017 memset(cmd, 0, sizeof(cmd));
2018 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2019
2020 if (sdev->use_10_for_ms) {
2021 if (len > 65535)
2022 return -EINVAL;
2023 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2024 if (!real_buffer)
2025 return -ENOMEM;
2026 memcpy(real_buffer + 8, buffer, len);
2027 len += 8;
2028 real_buffer[0] = 0;
2029 real_buffer[1] = 0;
2030 real_buffer[2] = data->medium_type;
2031 real_buffer[3] = data->device_specific;
2032 real_buffer[4] = data->longlba ? 0x01 : 0;
2033 real_buffer[5] = 0;
2034 real_buffer[6] = data->block_descriptor_length >> 8;
2035 real_buffer[7] = data->block_descriptor_length;
2036
2037 cmd[0] = MODE_SELECT_10;
2038 cmd[7] = len >> 8;
2039 cmd[8] = len;
2040 } else {
2041 if (len > 255 || data->block_descriptor_length > 255 ||
2042 data->longlba)
2043 return -EINVAL;
2044
2045 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2046 if (!real_buffer)
2047 return -ENOMEM;
2048 memcpy(real_buffer + 4, buffer, len);
2049 len += 4;
2050 real_buffer[0] = 0;
2051 real_buffer[1] = data->medium_type;
2052 real_buffer[2] = data->device_specific;
2053 real_buffer[3] = data->block_descriptor_length;
2054
2055 cmd[0] = MODE_SELECT;
2056 cmd[4] = len;
2057 }
2058
2059 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2060 sshdr, timeout, retries, NULL);
2061 kfree(real_buffer);
2062 return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(scsi_mode_select);
2065
2066 /**
2067 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2068 * @sdev: SCSI device to be queried
2069 * @dbd: set if mode sense will allow block descriptors to be returned
2070 * @modepage: mode page being requested
2071 * @buffer: request buffer (may not be smaller than eight bytes)
2072 * @len: length of request buffer.
2073 * @timeout: command timeout
2074 * @retries: number of retries before failing
2075 * @data: returns a structure abstracting the mode header data
2076 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2077 * must be SCSI_SENSE_BUFFERSIZE big.
2078 *
2079 * Returns zero if unsuccessful, or the header offset (either 4
2080 * or 8 depending on whether a six or ten byte command was
2081 * issued) if successful.
2082 */
2083 int
2084 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2085 unsigned char *buffer, int len, int timeout, int retries,
2086 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2087 {
2088 unsigned char cmd[12];
2089 int use_10_for_ms;
2090 int header_length;
2091 int result, retry_count = retries;
2092 struct scsi_sense_hdr my_sshdr;
2093
2094 memset(data, 0, sizeof(*data));
2095 memset(&cmd[0], 0, 12);
2096
2097 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2098 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2099 cmd[2] = modepage;
2100
2101 /* caller might not be interested in sense, but we need it */
2102 if (!sshdr)
2103 sshdr = &my_sshdr;
2104
2105 retry:
2106 use_10_for_ms = sdev->use_10_for_ms;
2107
2108 if (use_10_for_ms) {
2109 if (len < 8)
2110 len = 8;
2111
2112 cmd[0] = MODE_SENSE_10;
2113 cmd[8] = len;
2114 header_length = 8;
2115 } else {
2116 if (len < 4)
2117 len = 4;
2118
2119 cmd[0] = MODE_SENSE;
2120 cmd[4] = len;
2121 header_length = 4;
2122 }
2123
2124 memset(buffer, 0, len);
2125
2126 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2127 sshdr, timeout, retries, NULL);
2128
2129 /* This code looks awful: what it's doing is making sure an
2130 * ILLEGAL REQUEST sense return identifies the actual command
2131 * byte as the problem. MODE_SENSE commands can return
2132 * ILLEGAL REQUEST if the code page isn't supported */
2133
2134 if (use_10_for_ms && !scsi_status_is_good(result) &&
2135 driver_byte(result) == DRIVER_SENSE) {
2136 if (scsi_sense_valid(sshdr)) {
2137 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2138 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2139 /*
2140 * Invalid command operation code
2141 */
2142 sdev->use_10_for_ms = 0;
2143 goto retry;
2144 }
2145 }
2146 }
2147
2148 if (scsi_status_is_good(result)) {
2149 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2150 (modepage == 6 || modepage == 8))) {
2151 /* Initio breakage? */
2152 header_length = 0;
2153 data->length = 13;
2154 data->medium_type = 0;
2155 data->device_specific = 0;
2156 data->longlba = 0;
2157 data->block_descriptor_length = 0;
2158 } else if (use_10_for_ms) {
2159 data->length = buffer[0]*256 + buffer[1] + 2;
2160 data->medium_type = buffer[2];
2161 data->device_specific = buffer[3];
2162 data->longlba = buffer[4] & 0x01;
2163 data->block_descriptor_length = buffer[6]*256
2164 + buffer[7];
2165 } else {
2166 data->length = buffer[0] + 1;
2167 data->medium_type = buffer[1];
2168 data->device_specific = buffer[2];
2169 data->block_descriptor_length = buffer[3];
2170 }
2171 data->header_length = header_length;
2172 } else if ((status_byte(result) == CHECK_CONDITION) &&
2173 scsi_sense_valid(sshdr) &&
2174 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2175 retry_count--;
2176 goto retry;
2177 }
2178
2179 return result;
2180 }
2181 EXPORT_SYMBOL(scsi_mode_sense);
2182
2183 /**
2184 * scsi_test_unit_ready - test if unit is ready
2185 * @sdev: scsi device to change the state of.
2186 * @timeout: command timeout
2187 * @retries: number of retries before failing
2188 * @sshdr: outpout pointer for decoded sense information.
2189 *
2190 * Returns zero if unsuccessful or an error if TUR failed. For
2191 * removable media, UNIT_ATTENTION sets ->changed flag.
2192 **/
2193 int
2194 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2195 struct scsi_sense_hdr *sshdr)
2196 {
2197 char cmd[] = {
2198 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2199 };
2200 int result;
2201
2202 /* try to eat the UNIT_ATTENTION if there are enough retries */
2203 do {
2204 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2205 timeout, 1, NULL);
2206 if (sdev->removable && scsi_sense_valid(sshdr) &&
2207 sshdr->sense_key == UNIT_ATTENTION)
2208 sdev->changed = 1;
2209 } while (scsi_sense_valid(sshdr) &&
2210 sshdr->sense_key == UNIT_ATTENTION && --retries);
2211
2212 return result;
2213 }
2214 EXPORT_SYMBOL(scsi_test_unit_ready);
2215
2216 /**
2217 * scsi_device_set_state - Take the given device through the device state model.
2218 * @sdev: scsi device to change the state of.
2219 * @state: state to change to.
2220 *
2221 * Returns zero if successful or an error if the requested
2222 * transition is illegal.
2223 */
2224 int
2225 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2226 {
2227 enum scsi_device_state oldstate = sdev->sdev_state;
2228
2229 if (state == oldstate)
2230 return 0;
2231
2232 switch (state) {
2233 case SDEV_CREATED:
2234 switch (oldstate) {
2235 case SDEV_CREATED_BLOCK:
2236 break;
2237 default:
2238 goto illegal;
2239 }
2240 break;
2241
2242 case SDEV_RUNNING:
2243 switch (oldstate) {
2244 case SDEV_CREATED:
2245 case SDEV_OFFLINE:
2246 case SDEV_TRANSPORT_OFFLINE:
2247 case SDEV_QUIESCE:
2248 case SDEV_BLOCK:
2249 break;
2250 default:
2251 goto illegal;
2252 }
2253 break;
2254
2255 case SDEV_QUIESCE:
2256 switch (oldstate) {
2257 case SDEV_RUNNING:
2258 case SDEV_OFFLINE:
2259 case SDEV_TRANSPORT_OFFLINE:
2260 break;
2261 default:
2262 goto illegal;
2263 }
2264 break;
2265
2266 case SDEV_OFFLINE:
2267 case SDEV_TRANSPORT_OFFLINE:
2268 switch (oldstate) {
2269 case SDEV_CREATED:
2270 case SDEV_RUNNING:
2271 case SDEV_QUIESCE:
2272 case SDEV_BLOCK:
2273 break;
2274 default:
2275 goto illegal;
2276 }
2277 break;
2278
2279 case SDEV_BLOCK:
2280 switch (oldstate) {
2281 case SDEV_RUNNING:
2282 case SDEV_CREATED_BLOCK:
2283 case SDEV_QUIESCE:
2284 case SDEV_OFFLINE:
2285 break;
2286 default:
2287 goto illegal;
2288 }
2289 break;
2290
2291 case SDEV_CREATED_BLOCK:
2292 switch (oldstate) {
2293 case SDEV_CREATED:
2294 break;
2295 default:
2296 goto illegal;
2297 }
2298 break;
2299
2300 case SDEV_CANCEL:
2301 switch (oldstate) {
2302 case SDEV_CREATED:
2303 case SDEV_RUNNING:
2304 case SDEV_QUIESCE:
2305 case SDEV_OFFLINE:
2306 case SDEV_TRANSPORT_OFFLINE:
2307 break;
2308 default:
2309 goto illegal;
2310 }
2311 break;
2312
2313 case SDEV_DEL:
2314 switch (oldstate) {
2315 case SDEV_CREATED:
2316 case SDEV_RUNNING:
2317 case SDEV_OFFLINE:
2318 case SDEV_TRANSPORT_OFFLINE:
2319 case SDEV_CANCEL:
2320 case SDEV_BLOCK:
2321 case SDEV_CREATED_BLOCK:
2322 break;
2323 default:
2324 goto illegal;
2325 }
2326 break;
2327
2328 }
2329 sdev->offline_already = false;
2330 sdev->sdev_state = state;
2331 return 0;
2332
2333 illegal:
2334 SCSI_LOG_ERROR_RECOVERY(1,
2335 sdev_printk(KERN_ERR, sdev,
2336 "Illegal state transition %s->%s",
2337 scsi_device_state_name(oldstate),
2338 scsi_device_state_name(state))
2339 );
2340 return -EINVAL;
2341 }
2342 EXPORT_SYMBOL(scsi_device_set_state);
2343
2344 /**
2345 * scsi_evt_emit - emit a single SCSI device uevent
2346 * @sdev: associated SCSI device
2347 * @evt: event to emit
2348 *
2349 * Send a single uevent (scsi_event) to the associated scsi_device.
2350 */
2351 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2352 {
2353 int idx = 0;
2354 char *envp[3];
2355
2356 switch (evt->evt_type) {
2357 case SDEV_EVT_MEDIA_CHANGE:
2358 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2359 break;
2360 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2361 scsi_rescan_device(&sdev->sdev_gendev);
2362 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2363 break;
2364 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2365 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2366 break;
2367 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2368 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2369 break;
2370 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2371 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2372 break;
2373 case SDEV_EVT_LUN_CHANGE_REPORTED:
2374 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2375 break;
2376 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2377 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2378 break;
2379 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2380 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2381 break;
2382 default:
2383 /* do nothing */
2384 break;
2385 }
2386
2387 envp[idx++] = NULL;
2388
2389 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2390 }
2391
2392 /**
2393 * scsi_evt_thread - send a uevent for each scsi event
2394 * @work: work struct for scsi_device
2395 *
2396 * Dispatch queued events to their associated scsi_device kobjects
2397 * as uevents.
2398 */
2399 void scsi_evt_thread(struct work_struct *work)
2400 {
2401 struct scsi_device *sdev;
2402 enum scsi_device_event evt_type;
2403 LIST_HEAD(event_list);
2404
2405 sdev = container_of(work, struct scsi_device, event_work);
2406
2407 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2408 if (test_and_clear_bit(evt_type, sdev->pending_events))
2409 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2410
2411 while (1) {
2412 struct scsi_event *evt;
2413 struct list_head *this, *tmp;
2414 unsigned long flags;
2415
2416 spin_lock_irqsave(&sdev->list_lock, flags);
2417 list_splice_init(&sdev->event_list, &event_list);
2418 spin_unlock_irqrestore(&sdev->list_lock, flags);
2419
2420 if (list_empty(&event_list))
2421 break;
2422
2423 list_for_each_safe(this, tmp, &event_list) {
2424 evt = list_entry(this, struct scsi_event, node);
2425 list_del(&evt->node);
2426 scsi_evt_emit(sdev, evt);
2427 kfree(evt);
2428 }
2429 }
2430 }
2431
2432 /**
2433 * sdev_evt_send - send asserted event to uevent thread
2434 * @sdev: scsi_device event occurred on
2435 * @evt: event to send
2436 *
2437 * Assert scsi device event asynchronously.
2438 */
2439 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2440 {
2441 unsigned long flags;
2442
2443 #if 0
2444 /* FIXME: currently this check eliminates all media change events
2445 * for polled devices. Need to update to discriminate between AN
2446 * and polled events */
2447 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2448 kfree(evt);
2449 return;
2450 }
2451 #endif
2452
2453 spin_lock_irqsave(&sdev->list_lock, flags);
2454 list_add_tail(&evt->node, &sdev->event_list);
2455 schedule_work(&sdev->event_work);
2456 spin_unlock_irqrestore(&sdev->list_lock, flags);
2457 }
2458 EXPORT_SYMBOL_GPL(sdev_evt_send);
2459
2460 /**
2461 * sdev_evt_alloc - allocate a new scsi event
2462 * @evt_type: type of event to allocate
2463 * @gfpflags: GFP flags for allocation
2464 *
2465 * Allocates and returns a new scsi_event.
2466 */
2467 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2468 gfp_t gfpflags)
2469 {
2470 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2471 if (!evt)
2472 return NULL;
2473
2474 evt->evt_type = evt_type;
2475 INIT_LIST_HEAD(&evt->node);
2476
2477 /* evt_type-specific initialization, if any */
2478 switch (evt_type) {
2479 case SDEV_EVT_MEDIA_CHANGE:
2480 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2481 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2482 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2483 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2484 case SDEV_EVT_LUN_CHANGE_REPORTED:
2485 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2486 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2487 default:
2488 /* do nothing */
2489 break;
2490 }
2491
2492 return evt;
2493 }
2494 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2495
2496 /**
2497 * sdev_evt_send_simple - send asserted event to uevent thread
2498 * @sdev: scsi_device event occurred on
2499 * @evt_type: type of event to send
2500 * @gfpflags: GFP flags for allocation
2501 *
2502 * Assert scsi device event asynchronously, given an event type.
2503 */
2504 void sdev_evt_send_simple(struct scsi_device *sdev,
2505 enum scsi_device_event evt_type, gfp_t gfpflags)
2506 {
2507 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2508 if (!evt) {
2509 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2510 evt_type);
2511 return;
2512 }
2513
2514 sdev_evt_send(sdev, evt);
2515 }
2516 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2517
2518 /**
2519 * scsi_device_quiesce - Block user issued commands.
2520 * @sdev: scsi device to quiesce.
2521 *
2522 * This works by trying to transition to the SDEV_QUIESCE state
2523 * (which must be a legal transition). When the device is in this
2524 * state, only special requests will be accepted, all others will
2525 * be deferred. Since special requests may also be requeued requests,
2526 * a successful return doesn't guarantee the device will be
2527 * totally quiescent.
2528 *
2529 * Must be called with user context, may sleep.
2530 *
2531 * Returns zero if unsuccessful or an error if not.
2532 */
2533 int
2534 scsi_device_quiesce(struct scsi_device *sdev)
2535 {
2536 struct request_queue *q = sdev->request_queue;
2537 int err;
2538
2539 /*
2540 * It is allowed to call scsi_device_quiesce() multiple times from
2541 * the same context but concurrent scsi_device_quiesce() calls are
2542 * not allowed.
2543 */
2544 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2545
2546 if (sdev->quiesced_by == current)
2547 return 0;
2548
2549 blk_set_pm_only(q);
2550
2551 blk_mq_freeze_queue(q);
2552 /*
2553 * Ensure that the effect of blk_set_pm_only() will be visible
2554 * for percpu_ref_tryget() callers that occur after the queue
2555 * unfreeze even if the queue was already frozen before this function
2556 * was called. See also https://lwn.net/Articles/573497/.
2557 */
2558 synchronize_rcu();
2559 blk_mq_unfreeze_queue(q);
2560
2561 mutex_lock(&sdev->state_mutex);
2562 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2563 if (err == 0)
2564 sdev->quiesced_by = current;
2565 else
2566 blk_clear_pm_only(q);
2567 mutex_unlock(&sdev->state_mutex);
2568
2569 return err;
2570 }
2571 EXPORT_SYMBOL(scsi_device_quiesce);
2572
2573 /**
2574 * scsi_device_resume - Restart user issued commands to a quiesced device.
2575 * @sdev: scsi device to resume.
2576 *
2577 * Moves the device from quiesced back to running and restarts the
2578 * queues.
2579 *
2580 * Must be called with user context, may sleep.
2581 */
2582 void scsi_device_resume(struct scsi_device *sdev)
2583 {
2584 /* check if the device state was mutated prior to resume, and if
2585 * so assume the state is being managed elsewhere (for example
2586 * device deleted during suspend)
2587 */
2588 mutex_lock(&sdev->state_mutex);
2589 if (sdev->quiesced_by) {
2590 sdev->quiesced_by = NULL;
2591 blk_clear_pm_only(sdev->request_queue);
2592 }
2593 if (sdev->sdev_state == SDEV_QUIESCE)
2594 scsi_device_set_state(sdev, SDEV_RUNNING);
2595 mutex_unlock(&sdev->state_mutex);
2596 }
2597 EXPORT_SYMBOL(scsi_device_resume);
2598
2599 static void
2600 device_quiesce_fn(struct scsi_device *sdev, void *data)
2601 {
2602 scsi_device_quiesce(sdev);
2603 }
2604
2605 void
2606 scsi_target_quiesce(struct scsi_target *starget)
2607 {
2608 starget_for_each_device(starget, NULL, device_quiesce_fn);
2609 }
2610 EXPORT_SYMBOL(scsi_target_quiesce);
2611
2612 static void
2613 device_resume_fn(struct scsi_device *sdev, void *data)
2614 {
2615 scsi_device_resume(sdev);
2616 }
2617
2618 void
2619 scsi_target_resume(struct scsi_target *starget)
2620 {
2621 starget_for_each_device(starget, NULL, device_resume_fn);
2622 }
2623 EXPORT_SYMBOL(scsi_target_resume);
2624
2625 /**
2626 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2627 * @sdev: device to block
2628 *
2629 * Pause SCSI command processing on the specified device. Does not sleep.
2630 *
2631 * Returns zero if successful or a negative error code upon failure.
2632 *
2633 * Notes:
2634 * This routine transitions the device to the SDEV_BLOCK state (which must be
2635 * a legal transition). When the device is in this state, command processing
2636 * is paused until the device leaves the SDEV_BLOCK state. See also
2637 * scsi_internal_device_unblock_nowait().
2638 */
2639 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2640 {
2641 struct request_queue *q = sdev->request_queue;
2642 int err = 0;
2643
2644 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2645 if (err) {
2646 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2647
2648 if (err)
2649 return err;
2650 }
2651
2652 /*
2653 * The device has transitioned to SDEV_BLOCK. Stop the
2654 * block layer from calling the midlayer with this device's
2655 * request queue.
2656 */
2657 blk_mq_quiesce_queue_nowait(q);
2658 return 0;
2659 }
2660 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2661
2662 /**
2663 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2664 * @sdev: device to block
2665 *
2666 * Pause SCSI command processing on the specified device and wait until all
2667 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2668 *
2669 * Returns zero if successful or a negative error code upon failure.
2670 *
2671 * Note:
2672 * This routine transitions the device to the SDEV_BLOCK state (which must be
2673 * a legal transition). When the device is in this state, command processing
2674 * is paused until the device leaves the SDEV_BLOCK state. See also
2675 * scsi_internal_device_unblock().
2676 */
2677 static int scsi_internal_device_block(struct scsi_device *sdev)
2678 {
2679 struct request_queue *q = sdev->request_queue;
2680 int err;
2681
2682 mutex_lock(&sdev->state_mutex);
2683 err = scsi_internal_device_block_nowait(sdev);
2684 if (err == 0)
2685 blk_mq_quiesce_queue(q);
2686 mutex_unlock(&sdev->state_mutex);
2687
2688 return err;
2689 }
2690
2691 void scsi_start_queue(struct scsi_device *sdev)
2692 {
2693 struct request_queue *q = sdev->request_queue;
2694
2695 blk_mq_unquiesce_queue(q);
2696 }
2697
2698 /**
2699 * scsi_internal_device_unblock_nowait - resume a device after a block request
2700 * @sdev: device to resume
2701 * @new_state: state to set the device to after unblocking
2702 *
2703 * Restart the device queue for a previously suspended SCSI device. Does not
2704 * sleep.
2705 *
2706 * Returns zero if successful or a negative error code upon failure.
2707 *
2708 * Notes:
2709 * This routine transitions the device to the SDEV_RUNNING state or to one of
2710 * the offline states (which must be a legal transition) allowing the midlayer
2711 * to goose the queue for this device.
2712 */
2713 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2714 enum scsi_device_state new_state)
2715 {
2716 switch (new_state) {
2717 case SDEV_RUNNING:
2718 case SDEV_TRANSPORT_OFFLINE:
2719 break;
2720 default:
2721 return -EINVAL;
2722 }
2723
2724 /*
2725 * Try to transition the scsi device to SDEV_RUNNING or one of the
2726 * offlined states and goose the device queue if successful.
2727 */
2728 switch (sdev->sdev_state) {
2729 case SDEV_BLOCK:
2730 case SDEV_TRANSPORT_OFFLINE:
2731 sdev->sdev_state = new_state;
2732 break;
2733 case SDEV_CREATED_BLOCK:
2734 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2735 new_state == SDEV_OFFLINE)
2736 sdev->sdev_state = new_state;
2737 else
2738 sdev->sdev_state = SDEV_CREATED;
2739 break;
2740 case SDEV_CANCEL:
2741 case SDEV_OFFLINE:
2742 break;
2743 default:
2744 return -EINVAL;
2745 }
2746 scsi_start_queue(sdev);
2747
2748 return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2751
2752 /**
2753 * scsi_internal_device_unblock - resume a device after a block request
2754 * @sdev: device to resume
2755 * @new_state: state to set the device to after unblocking
2756 *
2757 * Restart the device queue for a previously suspended SCSI device. May sleep.
2758 *
2759 * Returns zero if successful or a negative error code upon failure.
2760 *
2761 * Notes:
2762 * This routine transitions the device to the SDEV_RUNNING state or to one of
2763 * the offline states (which must be a legal transition) allowing the midlayer
2764 * to goose the queue for this device.
2765 */
2766 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2767 enum scsi_device_state new_state)
2768 {
2769 int ret;
2770
2771 mutex_lock(&sdev->state_mutex);
2772 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2773 mutex_unlock(&sdev->state_mutex);
2774
2775 return ret;
2776 }
2777
2778 static void
2779 device_block(struct scsi_device *sdev, void *data)
2780 {
2781 int ret;
2782
2783 ret = scsi_internal_device_block(sdev);
2784
2785 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2786 dev_name(&sdev->sdev_gendev), ret);
2787 }
2788
2789 static int
2790 target_block(struct device *dev, void *data)
2791 {
2792 if (scsi_is_target_device(dev))
2793 starget_for_each_device(to_scsi_target(dev), NULL,
2794 device_block);
2795 return 0;
2796 }
2797
2798 void
2799 scsi_target_block(struct device *dev)
2800 {
2801 if (scsi_is_target_device(dev))
2802 starget_for_each_device(to_scsi_target(dev), NULL,
2803 device_block);
2804 else
2805 device_for_each_child(dev, NULL, target_block);
2806 }
2807 EXPORT_SYMBOL_GPL(scsi_target_block);
2808
2809 static void
2810 device_unblock(struct scsi_device *sdev, void *data)
2811 {
2812 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2813 }
2814
2815 static int
2816 target_unblock(struct device *dev, void *data)
2817 {
2818 if (scsi_is_target_device(dev))
2819 starget_for_each_device(to_scsi_target(dev), data,
2820 device_unblock);
2821 return 0;
2822 }
2823
2824 void
2825 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2826 {
2827 if (scsi_is_target_device(dev))
2828 starget_for_each_device(to_scsi_target(dev), &new_state,
2829 device_unblock);
2830 else
2831 device_for_each_child(dev, &new_state, target_unblock);
2832 }
2833 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2834
2835 int
2836 scsi_host_block(struct Scsi_Host *shost)
2837 {
2838 struct scsi_device *sdev;
2839 int ret = 0;
2840
2841 /*
2842 * Call scsi_internal_device_block_nowait so we can avoid
2843 * calling synchronize_rcu() for each LUN.
2844 */
2845 shost_for_each_device(sdev, shost) {
2846 mutex_lock(&sdev->state_mutex);
2847 ret = scsi_internal_device_block_nowait(sdev);
2848 mutex_unlock(&sdev->state_mutex);
2849 if (ret) {
2850 scsi_device_put(sdev);
2851 break;
2852 }
2853 }
2854
2855 /*
2856 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2857 * calling synchronize_rcu() once is enough.
2858 */
2859 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2860
2861 if (!ret)
2862 synchronize_rcu();
2863
2864 return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(scsi_host_block);
2867
2868 int
2869 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2870 {
2871 struct scsi_device *sdev;
2872 int ret = 0;
2873
2874 shost_for_each_device(sdev, shost) {
2875 ret = scsi_internal_device_unblock(sdev, new_state);
2876 if (ret) {
2877 scsi_device_put(sdev);
2878 break;
2879 }
2880 }
2881 return ret;
2882 }
2883 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2884
2885 /**
2886 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2887 * @sgl: scatter-gather list
2888 * @sg_count: number of segments in sg
2889 * @offset: offset in bytes into sg, on return offset into the mapped area
2890 * @len: bytes to map, on return number of bytes mapped
2891 *
2892 * Returns virtual address of the start of the mapped page
2893 */
2894 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2895 size_t *offset, size_t *len)
2896 {
2897 int i;
2898 size_t sg_len = 0, len_complete = 0;
2899 struct scatterlist *sg;
2900 struct page *page;
2901
2902 WARN_ON(!irqs_disabled());
2903
2904 for_each_sg(sgl, sg, sg_count, i) {
2905 len_complete = sg_len; /* Complete sg-entries */
2906 sg_len += sg->length;
2907 if (sg_len > *offset)
2908 break;
2909 }
2910
2911 if (unlikely(i == sg_count)) {
2912 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2913 "elements %d\n",
2914 __func__, sg_len, *offset, sg_count);
2915 WARN_ON(1);
2916 return NULL;
2917 }
2918
2919 /* Offset starting from the beginning of first page in this sg-entry */
2920 *offset = *offset - len_complete + sg->offset;
2921
2922 /* Assumption: contiguous pages can be accessed as "page + i" */
2923 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2924 *offset &= ~PAGE_MASK;
2925
2926 /* Bytes in this sg-entry from *offset to the end of the page */
2927 sg_len = PAGE_SIZE - *offset;
2928 if (*len > sg_len)
2929 *len = sg_len;
2930
2931 return kmap_atomic(page);
2932 }
2933 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2934
2935 /**
2936 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2937 * @virt: virtual address to be unmapped
2938 */
2939 void scsi_kunmap_atomic_sg(void *virt)
2940 {
2941 kunmap_atomic(virt);
2942 }
2943 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2944
2945 void sdev_disable_disk_events(struct scsi_device *sdev)
2946 {
2947 atomic_inc(&sdev->disk_events_disable_depth);
2948 }
2949 EXPORT_SYMBOL(sdev_disable_disk_events);
2950
2951 void sdev_enable_disk_events(struct scsi_device *sdev)
2952 {
2953 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2954 return;
2955 atomic_dec(&sdev->disk_events_disable_depth);
2956 }
2957 EXPORT_SYMBOL(sdev_enable_disk_events);
2958
2959 static unsigned char designator_prio(const unsigned char *d)
2960 {
2961 if (d[1] & 0x30)
2962 /* not associated with LUN */
2963 return 0;
2964
2965 if (d[3] == 0)
2966 /* invalid length */
2967 return 0;
2968
2969 /*
2970 * Order of preference for lun descriptor:
2971 * - SCSI name string
2972 * - NAA IEEE Registered Extended
2973 * - EUI-64 based 16-byte
2974 * - EUI-64 based 12-byte
2975 * - NAA IEEE Registered
2976 * - NAA IEEE Extended
2977 * - EUI-64 based 8-byte
2978 * - SCSI name string (truncated)
2979 * - T10 Vendor ID
2980 * as longer descriptors reduce the likelyhood
2981 * of identification clashes.
2982 */
2983
2984 switch (d[1] & 0xf) {
2985 case 8:
2986 /* SCSI name string, variable-length UTF-8 */
2987 return 9;
2988 case 3:
2989 switch (d[4] >> 4) {
2990 case 6:
2991 /* NAA registered extended */
2992 return 8;
2993 case 5:
2994 /* NAA registered */
2995 return 5;
2996 case 4:
2997 /* NAA extended */
2998 return 4;
2999 case 3:
3000 /* NAA locally assigned */
3001 return 1;
3002 default:
3003 break;
3004 }
3005 break;
3006 case 2:
3007 switch (d[3]) {
3008 case 16:
3009 /* EUI64-based, 16 byte */
3010 return 7;
3011 case 12:
3012 /* EUI64-based, 12 byte */
3013 return 6;
3014 case 8:
3015 /* EUI64-based, 8 byte */
3016 return 3;
3017 default:
3018 break;
3019 }
3020 break;
3021 case 1:
3022 /* T10 vendor ID */
3023 return 1;
3024 default:
3025 break;
3026 }
3027
3028 return 0;
3029 }
3030
3031 /**
3032 * scsi_vpd_lun_id - return a unique device identification
3033 * @sdev: SCSI device
3034 * @id: buffer for the identification
3035 * @id_len: length of the buffer
3036 *
3037 * Copies a unique device identification into @id based
3038 * on the information in the VPD page 0x83 of the device.
3039 * The string will be formatted as a SCSI name string.
3040 *
3041 * Returns the length of the identification or error on failure.
3042 * If the identifier is longer than the supplied buffer the actual
3043 * identifier length is returned and the buffer is not zero-padded.
3044 */
3045 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3046 {
3047 u8 cur_id_prio = 0;
3048 u8 cur_id_size = 0;
3049 const unsigned char *d, *cur_id_str;
3050 const struct scsi_vpd *vpd_pg83;
3051 int id_size = -EINVAL;
3052
3053 rcu_read_lock();
3054 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3055 if (!vpd_pg83) {
3056 rcu_read_unlock();
3057 return -ENXIO;
3058 }
3059
3060 /* The id string must be at least 20 bytes + terminating NULL byte */
3061 if (id_len < 21) {
3062 rcu_read_unlock();
3063 return -EINVAL;
3064 }
3065
3066 memset(id, 0, id_len);
3067 for (d = vpd_pg83->data + 4;
3068 d < vpd_pg83->data + vpd_pg83->len;
3069 d += d[3] + 4) {
3070 u8 prio = designator_prio(d);
3071
3072 if (prio == 0 || cur_id_prio > prio)
3073 continue;
3074
3075 switch (d[1] & 0xf) {
3076 case 0x1:
3077 /* T10 Vendor ID */
3078 if (cur_id_size > d[3])
3079 break;
3080 cur_id_prio = prio;
3081 cur_id_size = d[3];
3082 if (cur_id_size + 4 > id_len)
3083 cur_id_size = id_len - 4;
3084 cur_id_str = d + 4;
3085 id_size = snprintf(id, id_len, "t10.%*pE",
3086 cur_id_size, cur_id_str);
3087 break;
3088 case 0x2:
3089 /* EUI-64 */
3090 cur_id_prio = prio;
3091 cur_id_size = d[3];
3092 cur_id_str = d + 4;
3093 switch (cur_id_size) {
3094 case 8:
3095 id_size = snprintf(id, id_len,
3096 "eui.%8phN",
3097 cur_id_str);
3098 break;
3099 case 12:
3100 id_size = snprintf(id, id_len,
3101 "eui.%12phN",
3102 cur_id_str);
3103 break;
3104 case 16:
3105 id_size = snprintf(id, id_len,
3106 "eui.%16phN",
3107 cur_id_str);
3108 break;
3109 default:
3110 break;
3111 }
3112 break;
3113 case 0x3:
3114 /* NAA */
3115 cur_id_prio = prio;
3116 cur_id_size = d[3];
3117 cur_id_str = d + 4;
3118 switch (cur_id_size) {
3119 case 8:
3120 id_size = snprintf(id, id_len,
3121 "naa.%8phN",
3122 cur_id_str);
3123 break;
3124 case 16:
3125 id_size = snprintf(id, id_len,
3126 "naa.%16phN",
3127 cur_id_str);
3128 break;
3129 default:
3130 break;
3131 }
3132 break;
3133 case 0x8:
3134 /* SCSI name string */
3135 if (cur_id_size > d[3])
3136 break;
3137 /* Prefer others for truncated descriptor */
3138 if (d[3] > id_len) {
3139 prio = 2;
3140 if (cur_id_prio > prio)
3141 break;
3142 }
3143 cur_id_prio = prio;
3144 cur_id_size = id_size = d[3];
3145 cur_id_str = d + 4;
3146 if (cur_id_size >= id_len)
3147 cur_id_size = id_len - 1;
3148 memcpy(id, cur_id_str, cur_id_size);
3149 break;
3150 default:
3151 break;
3152 }
3153 }
3154 rcu_read_unlock();
3155
3156 return id_size;
3157 }
3158 EXPORT_SYMBOL(scsi_vpd_lun_id);
3159
3160 /*
3161 * scsi_vpd_tpg_id - return a target port group identifier
3162 * @sdev: SCSI device
3163 *
3164 * Returns the Target Port Group identifier from the information
3165 * froom VPD page 0x83 of the device.
3166 *
3167 * Returns the identifier or error on failure.
3168 */
3169 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3170 {
3171 const unsigned char *d;
3172 const struct scsi_vpd *vpd_pg83;
3173 int group_id = -EAGAIN, rel_port = -1;
3174
3175 rcu_read_lock();
3176 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3177 if (!vpd_pg83) {
3178 rcu_read_unlock();
3179 return -ENXIO;
3180 }
3181
3182 d = vpd_pg83->data + 4;
3183 while (d < vpd_pg83->data + vpd_pg83->len) {
3184 switch (d[1] & 0xf) {
3185 case 0x4:
3186 /* Relative target port */
3187 rel_port = get_unaligned_be16(&d[6]);
3188 break;
3189 case 0x5:
3190 /* Target port group */
3191 group_id = get_unaligned_be16(&d[6]);
3192 break;
3193 default:
3194 break;
3195 }
3196 d += d[3] + 4;
3197 }
3198 rcu_read_unlock();
3199
3200 if (group_id >= 0 && rel_id && rel_port != -1)
3201 *rel_id = rel_port;
3202
3203 return group_id;
3204 }
3205 EXPORT_SYMBOL(scsi_vpd_tpg_id);