]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/scsi_lib.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
57 {
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
64 {
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 struct kmem_cache *cache;
72 int ret = 0;
73
74 mutex_lock(&scsi_sense_cache_mutex);
75 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
76 if (cache)
77 goto exit;
78
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 if (!scsi_sense_cache)
91 ret = -ENOMEM;
92 }
93 exit:
94 mutex_unlock(&scsi_sense_cache_mutex);
95 return ret;
96 }
97
98 /*
99 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100 * not change behaviour from the previous unplug mechanism, experimentation
101 * may prove this needs changing.
102 */
103 #define SCSI_QUEUE_DELAY 3
104
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111
112 /*
113 * Set the appropriate busy bit for the device/host.
114 *
115 * If the host/device isn't busy, assume that something actually
116 * completed, and that we should be able to queue a command now.
117 *
118 * Note that the prior mid-layer assumption that any host could
119 * always queue at least one command is now broken. The mid-layer
120 * will implement a user specifiable stall (see
121 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 * if a command is requeued with no other commands outstanding
123 * either for the device or for the host.
124 */
125 switch (reason) {
126 case SCSI_MLQUEUE_HOST_BUSY:
127 atomic_set(&host->host_blocked, host->max_host_blocked);
128 break;
129 case SCSI_MLQUEUE_DEVICE_BUSY:
130 case SCSI_MLQUEUE_EH_RETRY:
131 atomic_set(&device->device_blocked,
132 device->max_device_blocked);
133 break;
134 case SCSI_MLQUEUE_TARGET_BUSY:
135 atomic_set(&starget->target_blocked,
136 starget->max_target_blocked);
137 break;
138 }
139 }
140
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143 struct scsi_device *sdev = cmd->device;
144
145 if (cmd->request->rq_flags & RQF_DONTPREP) {
146 cmd->request->rq_flags &= ~RQF_DONTPREP;
147 scsi_mq_uninit_cmd(cmd);
148 } else {
149 WARN_ON_ONCE(true);
150 }
151 blk_mq_requeue_request(cmd->request, true);
152 put_device(&sdev->sdev_gendev);
153 }
154
155 /**
156 * __scsi_queue_insert - private queue insertion
157 * @cmd: The SCSI command being requeued
158 * @reason: The reason for the requeue
159 * @unbusy: Whether the queue should be unbusied
160 *
161 * This is a private queue insertion. The public interface
162 * scsi_queue_insert() always assumes the queue should be unbusied
163 * because it's always called before the completion. This function is
164 * for a requeue after completion, which should only occur in this
165 * file.
166 */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
168 {
169 struct scsi_device *device = cmd->device;
170 struct request_queue *q = device->request_queue;
171 unsigned long flags;
172
173 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 "Inserting command %p into mlqueue\n", cmd));
175
176 scsi_set_blocked(cmd, reason);
177
178 /*
179 * Decrement the counters, since these commands are no longer
180 * active on the host/device.
181 */
182 if (unbusy)
183 scsi_device_unbusy(device);
184
185 /*
186 * Requeue this command. It will go before all other commands
187 * that are already in the queue. Schedule requeue work under
188 * lock such that the kblockd_schedule_work() call happens
189 * before blk_cleanup_queue() finishes.
190 */
191 cmd->result = 0;
192 if (q->mq_ops) {
193 scsi_mq_requeue_cmd(cmd);
194 return;
195 }
196 spin_lock_irqsave(q->queue_lock, flags);
197 blk_requeue_request(q, cmd->request);
198 kblockd_schedule_work(&device->requeue_work);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201
202 /*
203 * Function: scsi_queue_insert()
204 *
205 * Purpose: Insert a command in the midlevel queue.
206 *
207 * Arguments: cmd - command that we are adding to queue.
208 * reason - why we are inserting command to queue.
209 *
210 * Lock status: Assumed that lock is not held upon entry.
211 *
212 * Returns: Nothing.
213 *
214 * Notes: We do this for one of two cases. Either the host is busy
215 * and it cannot accept any more commands for the time being,
216 * or the device returned QUEUE_FULL and can accept no more
217 * commands.
218 * Notes: This could be called either from an interrupt context or a
219 * normal process context.
220 */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223 __scsi_queue_insert(cmd, reason, 1);
224 }
225
226
227 /**
228 * scsi_execute - insert request and wait for the result
229 * @sdev: scsi device
230 * @cmd: scsi command
231 * @data_direction: data direction
232 * @buffer: data buffer
233 * @bufflen: len of buffer
234 * @sense: optional sense buffer
235 * @sshdr: optional decoded sense header
236 * @timeout: request timeout in seconds
237 * @retries: number of times to retry request
238 * @flags: flags for ->cmd_flags
239 * @rq_flags: flags for ->rq_flags
240 * @resid: optional residual length
241 *
242 * Returns the scsi_cmnd result field if a command was executed, or a negative
243 * Linux error code if we didn't get that far.
244 */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 int data_direction, void *buffer, unsigned bufflen,
247 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 int timeout, int retries, u64 flags, req_flags_t rq_flags,
249 int *resid)
250 {
251 struct request *req;
252 struct scsi_request *rq;
253 int ret = DRIVER_ERROR << 24;
254
255 req = blk_get_request_flags(sdev->request_queue,
256 data_direction == DMA_TO_DEVICE ?
257 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
258 if (IS_ERR(req))
259 return ret;
260 rq = scsi_req(req);
261
262 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
263 buffer, bufflen, __GFP_RECLAIM))
264 goto out;
265
266 rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 memcpy(rq->cmd, cmd, rq->cmd_len);
268 rq->retries = retries;
269 req->timeout = timeout;
270 req->cmd_flags |= flags;
271 req->rq_flags |= rq_flags | RQF_QUIET;
272
273 /*
274 * head injection *required* here otherwise quiesce won't work
275 */
276 blk_execute_rq(req->q, NULL, req, 1);
277
278 /*
279 * Some devices (USB mass-storage in particular) may transfer
280 * garbage data together with a residue indicating that the data
281 * is invalid. Prevent the garbage from being misinterpreted
282 * and prevent security leaks by zeroing out the excess data.
283 */
284 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286
287 if (resid)
288 *resid = rq->resid_len;
289 if (sense && rq->sense_len)
290 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291 if (sshdr)
292 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293 ret = rq->result;
294 out:
295 blk_put_request(req);
296
297 return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300
301 /*
302 * Function: scsi_init_cmd_errh()
303 *
304 * Purpose: Initialize cmd fields related to error handling.
305 *
306 * Arguments: cmd - command that is ready to be queued.
307 *
308 * Notes: This function has the job of initializing a number of
309 * fields related to error handling. Typically this will
310 * be called once for each command, as required.
311 */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314 cmd->serial_number = 0;
315 scsi_set_resid(cmd, 0);
316 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 if (cmd->cmd_len == 0)
318 cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320
321 /*
322 * Decrement the host_busy counter and wake up the error handler if necessary.
323 * Avoid as follows that the error handler is not woken up if shost->host_busy
324 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
325 * with an RCU read lock in this function to ensure that this function in its
326 * entirety either finishes before scsi_eh_scmd_add() increases the
327 * host_failed counter or that it notices the shost state change made by
328 * scsi_eh_scmd_add().
329 */
330 static void scsi_dec_host_busy(struct Scsi_Host *shost)
331 {
332 unsigned long flags;
333
334 rcu_read_lock();
335 atomic_dec(&shost->host_busy);
336 if (unlikely(scsi_host_in_recovery(shost))) {
337 spin_lock_irqsave(shost->host_lock, flags);
338 if (shost->host_failed || shost->host_eh_scheduled)
339 scsi_eh_wakeup(shost);
340 spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342 rcu_read_unlock();
343 }
344
345 void scsi_device_unbusy(struct scsi_device *sdev)
346 {
347 struct Scsi_Host *shost = sdev->host;
348 struct scsi_target *starget = scsi_target(sdev);
349
350 scsi_dec_host_busy(shost);
351
352 if (starget->can_queue > 0)
353 atomic_dec(&starget->target_busy);
354
355 atomic_dec(&sdev->device_busy);
356 }
357
358 static void scsi_kick_queue(struct request_queue *q)
359 {
360 if (q->mq_ops)
361 blk_mq_start_hw_queues(q);
362 else
363 blk_run_queue(q);
364 }
365
366 /*
367 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368 * and call blk_run_queue for all the scsi_devices on the target -
369 * including current_sdev first.
370 *
371 * Called with *no* scsi locks held.
372 */
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
374 {
375 struct Scsi_Host *shost = current_sdev->host;
376 struct scsi_device *sdev, *tmp;
377 struct scsi_target *starget = scsi_target(current_sdev);
378 unsigned long flags;
379
380 spin_lock_irqsave(shost->host_lock, flags);
381 starget->starget_sdev_user = NULL;
382 spin_unlock_irqrestore(shost->host_lock, flags);
383
384 /*
385 * Call blk_run_queue for all LUNs on the target, starting with
386 * current_sdev. We race with others (to set starget_sdev_user),
387 * but in most cases, we will be first. Ideally, each LU on the
388 * target would get some limited time or requests on the target.
389 */
390 scsi_kick_queue(current_sdev->request_queue);
391
392 spin_lock_irqsave(shost->host_lock, flags);
393 if (starget->starget_sdev_user)
394 goto out;
395 list_for_each_entry_safe(sdev, tmp, &starget->devices,
396 same_target_siblings) {
397 if (sdev == current_sdev)
398 continue;
399 if (scsi_device_get(sdev))
400 continue;
401
402 spin_unlock_irqrestore(shost->host_lock, flags);
403 scsi_kick_queue(sdev->request_queue);
404 spin_lock_irqsave(shost->host_lock, flags);
405
406 scsi_device_put(sdev);
407 }
408 out:
409 spin_unlock_irqrestore(shost->host_lock, flags);
410 }
411
412 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
413 {
414 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
415 return true;
416 if (atomic_read(&sdev->device_blocked) > 0)
417 return true;
418 return false;
419 }
420
421 static inline bool scsi_target_is_busy(struct scsi_target *starget)
422 {
423 if (starget->can_queue > 0) {
424 if (atomic_read(&starget->target_busy) >= starget->can_queue)
425 return true;
426 if (atomic_read(&starget->target_blocked) > 0)
427 return true;
428 }
429 return false;
430 }
431
432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
433 {
434 if (shost->can_queue > 0 &&
435 atomic_read(&shost->host_busy) >= shost->can_queue)
436 return true;
437 if (atomic_read(&shost->host_blocked) > 0)
438 return true;
439 if (shost->host_self_blocked)
440 return true;
441 return false;
442 }
443
444 static void scsi_starved_list_run(struct Scsi_Host *shost)
445 {
446 LIST_HEAD(starved_list);
447 struct scsi_device *sdev;
448 unsigned long flags;
449
450 spin_lock_irqsave(shost->host_lock, flags);
451 list_splice_init(&shost->starved_list, &starved_list);
452
453 while (!list_empty(&starved_list)) {
454 struct request_queue *slq;
455
456 /*
457 * As long as shost is accepting commands and we have
458 * starved queues, call blk_run_queue. scsi_request_fn
459 * drops the queue_lock and can add us back to the
460 * starved_list.
461 *
462 * host_lock protects the starved_list and starved_entry.
463 * scsi_request_fn must get the host_lock before checking
464 * or modifying starved_list or starved_entry.
465 */
466 if (scsi_host_is_busy(shost))
467 break;
468
469 sdev = list_entry(starved_list.next,
470 struct scsi_device, starved_entry);
471 list_del_init(&sdev->starved_entry);
472 if (scsi_target_is_busy(scsi_target(sdev))) {
473 list_move_tail(&sdev->starved_entry,
474 &shost->starved_list);
475 continue;
476 }
477
478 /*
479 * Once we drop the host lock, a racing scsi_remove_device()
480 * call may remove the sdev from the starved list and destroy
481 * it and the queue. Mitigate by taking a reference to the
482 * queue and never touching the sdev again after we drop the
483 * host lock. Note: if __scsi_remove_device() invokes
484 * blk_cleanup_queue() before the queue is run from this
485 * function then blk_run_queue() will return immediately since
486 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
487 */
488 slq = sdev->request_queue;
489 if (!blk_get_queue(slq))
490 continue;
491 spin_unlock_irqrestore(shost->host_lock, flags);
492
493 scsi_kick_queue(slq);
494 blk_put_queue(slq);
495
496 spin_lock_irqsave(shost->host_lock, flags);
497 }
498 /* put any unprocessed entries back */
499 list_splice(&starved_list, &shost->starved_list);
500 spin_unlock_irqrestore(shost->host_lock, flags);
501 }
502
503 /*
504 * Function: scsi_run_queue()
505 *
506 * Purpose: Select a proper request queue to serve next
507 *
508 * Arguments: q - last request's queue
509 *
510 * Returns: Nothing
511 *
512 * Notes: The previous command was completely finished, start
513 * a new one if possible.
514 */
515 static void scsi_run_queue(struct request_queue *q)
516 {
517 struct scsi_device *sdev = q->queuedata;
518
519 if (scsi_target(sdev)->single_lun)
520 scsi_single_lun_run(sdev);
521 if (!list_empty(&sdev->host->starved_list))
522 scsi_starved_list_run(sdev->host);
523
524 if (q->mq_ops)
525 blk_mq_run_hw_queues(q, false);
526 else
527 blk_run_queue(q);
528 }
529
530 void scsi_requeue_run_queue(struct work_struct *work)
531 {
532 struct scsi_device *sdev;
533 struct request_queue *q;
534
535 sdev = container_of(work, struct scsi_device, requeue_work);
536 q = sdev->request_queue;
537 scsi_run_queue(q);
538 }
539
540 /*
541 * Function: scsi_requeue_command()
542 *
543 * Purpose: Handle post-processing of completed commands.
544 *
545 * Arguments: q - queue to operate on
546 * cmd - command that may need to be requeued.
547 *
548 * Returns: Nothing
549 *
550 * Notes: After command completion, there may be blocks left
551 * over which weren't finished by the previous command
552 * this can be for a number of reasons - the main one is
553 * I/O errors in the middle of the request, in which case
554 * we need to request the blocks that come after the bad
555 * sector.
556 * Notes: Upon return, cmd is a stale pointer.
557 */
558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
559 {
560 struct scsi_device *sdev = cmd->device;
561 struct request *req = cmd->request;
562 unsigned long flags;
563
564 spin_lock_irqsave(q->queue_lock, flags);
565 blk_unprep_request(req);
566 req->special = NULL;
567 scsi_put_command(cmd);
568 blk_requeue_request(q, req);
569 spin_unlock_irqrestore(q->queue_lock, flags);
570
571 scsi_run_queue(q);
572
573 put_device(&sdev->sdev_gendev);
574 }
575
576 void scsi_run_host_queues(struct Scsi_Host *shost)
577 {
578 struct scsi_device *sdev;
579
580 shost_for_each_device(sdev, shost)
581 scsi_run_queue(sdev->request_queue);
582 }
583
584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 if (!blk_rq_is_passthrough(cmd->request)) {
587 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
588
589 if (drv->uninit_command)
590 drv->uninit_command(cmd);
591 }
592 }
593
594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
595 {
596 struct scsi_data_buffer *sdb;
597
598 if (cmd->sdb.table.nents)
599 sg_free_table_chained(&cmd->sdb.table, true);
600 if (cmd->request->next_rq) {
601 sdb = cmd->request->next_rq->special;
602 if (sdb)
603 sg_free_table_chained(&sdb->table, true);
604 }
605 if (scsi_prot_sg_count(cmd))
606 sg_free_table_chained(&cmd->prot_sdb->table, true);
607 }
608
609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
610 {
611 scsi_mq_free_sgtables(cmd);
612 scsi_uninit_cmd(cmd);
613 scsi_del_cmd_from_list(cmd);
614 }
615
616 /*
617 * Function: scsi_release_buffers()
618 *
619 * Purpose: Free resources allocate for a scsi_command.
620 *
621 * Arguments: cmd - command that we are bailing.
622 *
623 * Lock status: Assumed that no lock is held upon entry.
624 *
625 * Returns: Nothing
626 *
627 * Notes: In the event that an upper level driver rejects a
628 * command, we must release resources allocated during
629 * the __init_io() function. Primarily this would involve
630 * the scatter-gather table.
631 */
632 static void scsi_release_buffers(struct scsi_cmnd *cmd)
633 {
634 if (cmd->sdb.table.nents)
635 sg_free_table_chained(&cmd->sdb.table, false);
636
637 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
638
639 if (scsi_prot_sg_count(cmd))
640 sg_free_table_chained(&cmd->prot_sdb->table, false);
641 }
642
643 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
644 {
645 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
646
647 sg_free_table_chained(&bidi_sdb->table, false);
648 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
649 cmd->request->next_rq->special = NULL;
650 }
651
652 static bool scsi_end_request(struct request *req, blk_status_t error,
653 unsigned int bytes, unsigned int bidi_bytes)
654 {
655 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
656 struct scsi_device *sdev = cmd->device;
657 struct request_queue *q = sdev->request_queue;
658
659 if (blk_update_request(req, error, bytes))
660 return true;
661
662 /* Bidi request must be completed as a whole */
663 if (unlikely(bidi_bytes) &&
664 blk_update_request(req->next_rq, error, bidi_bytes))
665 return true;
666
667 if (blk_queue_add_random(q))
668 add_disk_randomness(req->rq_disk);
669
670 if (!blk_rq_is_scsi(req)) {
671 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
672 cmd->flags &= ~SCMD_INITIALIZED;
673 destroy_rcu_head(&cmd->rcu);
674 }
675
676 if (req->mq_ctx) {
677 /*
678 * In the MQ case the command gets freed by __blk_mq_end_request,
679 * so we have to do all cleanup that depends on it earlier.
680 *
681 * We also can't kick the queues from irq context, so we
682 * will have to defer it to a workqueue.
683 */
684 scsi_mq_uninit_cmd(cmd);
685
686 /*
687 * queue is still alive, so grab the ref for preventing it
688 * from being cleaned up during running queue.
689 */
690 percpu_ref_get(&q->q_usage_counter);
691
692 __blk_mq_end_request(req, error);
693
694 if (scsi_target(sdev)->single_lun ||
695 !list_empty(&sdev->host->starved_list))
696 kblockd_schedule_work(&sdev->requeue_work);
697 else
698 blk_mq_run_hw_queues(q, true);
699
700 percpu_ref_put(&q->q_usage_counter);
701 } else {
702 unsigned long flags;
703
704 if (bidi_bytes)
705 scsi_release_bidi_buffers(cmd);
706 scsi_release_buffers(cmd);
707 scsi_put_command(cmd);
708
709 spin_lock_irqsave(q->queue_lock, flags);
710 blk_finish_request(req, error);
711 spin_unlock_irqrestore(q->queue_lock, flags);
712
713 scsi_run_queue(q);
714 }
715
716 put_device(&sdev->sdev_gendev);
717 return false;
718 }
719
720 /**
721 * __scsi_error_from_host_byte - translate SCSI error code into errno
722 * @cmd: SCSI command (unused)
723 * @result: scsi error code
724 *
725 * Translate SCSI error code into block errors.
726 */
727 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
728 int result)
729 {
730 switch (host_byte(result)) {
731 case DID_TRANSPORT_FAILFAST:
732 return BLK_STS_TRANSPORT;
733 case DID_TARGET_FAILURE:
734 set_host_byte(cmd, DID_OK);
735 return BLK_STS_TARGET;
736 case DID_NEXUS_FAILURE:
737 set_host_byte(cmd, DID_OK);
738 return BLK_STS_NEXUS;
739 case DID_ALLOC_FAILURE:
740 set_host_byte(cmd, DID_OK);
741 return BLK_STS_NOSPC;
742 case DID_MEDIUM_ERROR:
743 set_host_byte(cmd, DID_OK);
744 return BLK_STS_MEDIUM;
745 default:
746 return BLK_STS_IOERR;
747 }
748 }
749
750 /*
751 * Function: scsi_io_completion()
752 *
753 * Purpose: Completion processing for block device I/O requests.
754 *
755 * Arguments: cmd - command that is finished.
756 *
757 * Lock status: Assumed that no lock is held upon entry.
758 *
759 * Returns: Nothing
760 *
761 * Notes: We will finish off the specified number of sectors. If we
762 * are done, the command block will be released and the queue
763 * function will be goosed. If we are not done then we have to
764 * figure out what to do next:
765 *
766 * a) We can call scsi_requeue_command(). The request
767 * will be unprepared and put back on the queue. Then
768 * a new command will be created for it. This should
769 * be used if we made forward progress, or if we want
770 * to switch from READ(10) to READ(6) for example.
771 *
772 * b) We can call __scsi_queue_insert(). The request will
773 * be put back on the queue and retried using the same
774 * command as before, possibly after a delay.
775 *
776 * c) We can call scsi_end_request() with -EIO to fail
777 * the remainder of the request.
778 */
779 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
780 {
781 int result = cmd->result;
782 struct request_queue *q = cmd->device->request_queue;
783 struct request *req = cmd->request;
784 blk_status_t error = BLK_STS_OK;
785 struct scsi_sense_hdr sshdr;
786 bool sense_valid = false;
787 int sense_deferred = 0, level = 0;
788 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
789 ACTION_DELAYED_RETRY} action;
790 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
791
792 if (result) {
793 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
794 if (sense_valid)
795 sense_deferred = scsi_sense_is_deferred(&sshdr);
796 }
797
798 if (blk_rq_is_passthrough(req)) {
799 if (result) {
800 if (sense_valid) {
801 /*
802 * SG_IO wants current and deferred errors
803 */
804 scsi_req(req)->sense_len =
805 min(8 + cmd->sense_buffer[7],
806 SCSI_SENSE_BUFFERSIZE);
807 }
808 if (!sense_deferred)
809 error = __scsi_error_from_host_byte(cmd, result);
810 }
811 /*
812 * __scsi_error_from_host_byte may have reset the host_byte
813 */
814 scsi_req(req)->result = cmd->result;
815 scsi_req(req)->resid_len = scsi_get_resid(cmd);
816
817 if (scsi_bidi_cmnd(cmd)) {
818 /*
819 * Bidi commands Must be complete as a whole,
820 * both sides at once.
821 */
822 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
823 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
824 blk_rq_bytes(req->next_rq)))
825 BUG();
826 return;
827 }
828 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
829 /*
830 * Flush commands do not transfers any data, and thus cannot use
831 * good_bytes != blk_rq_bytes(req) as the signal for an error.
832 * This sets the error explicitly for the problem case.
833 */
834 error = __scsi_error_from_host_byte(cmd, result);
835 }
836
837 /* no bidi support for !blk_rq_is_passthrough yet */
838 BUG_ON(blk_bidi_rq(req));
839
840 /*
841 * Next deal with any sectors which we were able to correctly
842 * handle.
843 */
844 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
845 "%u sectors total, %d bytes done.\n",
846 blk_rq_sectors(req), good_bytes));
847
848 /*
849 * Recovered errors need reporting, but they're always treated as
850 * success, so fiddle the result code here. For passthrough requests
851 * we already took a copy of the original into sreq->result which
852 * is what gets returned to the user
853 */
854 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
855 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
856 * print since caller wants ATA registers. Only occurs on
857 * SCSI ATA PASS_THROUGH commands when CK_COND=1
858 */
859 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
860 ;
861 else if (!(req->rq_flags & RQF_QUIET))
862 scsi_print_sense(cmd);
863 result = 0;
864 /* for passthrough error may be set */
865 error = BLK_STS_OK;
866 }
867 /*
868 * Another corner case: the SCSI status byte is non-zero but 'good'.
869 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
870 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
871 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
872 * intermediate statuses (both obsolete in SAM-4) as good.
873 */
874 if (status_byte(result) && scsi_status_is_good(result)) {
875 result = 0;
876 error = BLK_STS_OK;
877 }
878
879 /*
880 * special case: failed zero length commands always need to
881 * drop down into the retry code. Otherwise, if we finished
882 * all bytes in the request we are done now.
883 */
884 if (!(blk_rq_bytes(req) == 0 && error) &&
885 !scsi_end_request(req, error, good_bytes, 0))
886 return;
887
888 /*
889 * Kill remainder if no retrys.
890 */
891 if (error && scsi_noretry_cmd(cmd)) {
892 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
893 BUG();
894 return;
895 }
896
897 /*
898 * If there had been no error, but we have leftover bytes in the
899 * requeues just queue the command up again.
900 */
901 if (result == 0)
902 goto requeue;
903
904 error = __scsi_error_from_host_byte(cmd, result);
905
906 if (host_byte(result) == DID_RESET) {
907 /* Third party bus reset or reset for error recovery
908 * reasons. Just retry the command and see what
909 * happens.
910 */
911 action = ACTION_RETRY;
912 } else if (sense_valid && !sense_deferred) {
913 switch (sshdr.sense_key) {
914 case UNIT_ATTENTION:
915 if (cmd->device->removable) {
916 /* Detected disc change. Set a bit
917 * and quietly refuse further access.
918 */
919 cmd->device->changed = 1;
920 action = ACTION_FAIL;
921 } else {
922 /* Must have been a power glitch, or a
923 * bus reset. Could not have been a
924 * media change, so we just retry the
925 * command and see what happens.
926 */
927 action = ACTION_RETRY;
928 }
929 break;
930 case ILLEGAL_REQUEST:
931 /* If we had an ILLEGAL REQUEST returned, then
932 * we may have performed an unsupported
933 * command. The only thing this should be
934 * would be a ten byte read where only a six
935 * byte read was supported. Also, on a system
936 * where READ CAPACITY failed, we may have
937 * read past the end of the disk.
938 */
939 if ((cmd->device->use_10_for_rw &&
940 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
941 (cmd->cmnd[0] == READ_10 ||
942 cmd->cmnd[0] == WRITE_10)) {
943 /* This will issue a new 6-byte command. */
944 cmd->device->use_10_for_rw = 0;
945 action = ACTION_REPREP;
946 } else if (sshdr.asc == 0x10) /* DIX */ {
947 action = ACTION_FAIL;
948 error = BLK_STS_PROTECTION;
949 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
950 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
951 action = ACTION_FAIL;
952 error = BLK_STS_TARGET;
953 } else
954 action = ACTION_FAIL;
955 break;
956 case ABORTED_COMMAND:
957 action = ACTION_FAIL;
958 if (sshdr.asc == 0x10) /* DIF */
959 error = BLK_STS_PROTECTION;
960 break;
961 case NOT_READY:
962 /* If the device is in the process of becoming
963 * ready, or has a temporary blockage, retry.
964 */
965 if (sshdr.asc == 0x04) {
966 switch (sshdr.ascq) {
967 case 0x01: /* becoming ready */
968 case 0x04: /* format in progress */
969 case 0x05: /* rebuild in progress */
970 case 0x06: /* recalculation in progress */
971 case 0x07: /* operation in progress */
972 case 0x08: /* Long write in progress */
973 case 0x09: /* self test in progress */
974 case 0x14: /* space allocation in progress */
975 action = ACTION_DELAYED_RETRY;
976 break;
977 default:
978 action = ACTION_FAIL;
979 break;
980 }
981 } else
982 action = ACTION_FAIL;
983 break;
984 case VOLUME_OVERFLOW:
985 /* See SSC3rXX or current. */
986 action = ACTION_FAIL;
987 break;
988 default:
989 action = ACTION_FAIL;
990 break;
991 }
992 } else
993 action = ACTION_FAIL;
994
995 if (action != ACTION_FAIL &&
996 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
997 action = ACTION_FAIL;
998
999 switch (action) {
1000 case ACTION_FAIL:
1001 /* Give up and fail the remainder of the request */
1002 if (!(req->rq_flags & RQF_QUIET)) {
1003 static DEFINE_RATELIMIT_STATE(_rs,
1004 DEFAULT_RATELIMIT_INTERVAL,
1005 DEFAULT_RATELIMIT_BURST);
1006
1007 if (unlikely(scsi_logging_level))
1008 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1009 SCSI_LOG_MLCOMPLETE_BITS);
1010
1011 /*
1012 * if logging is enabled the failure will be printed
1013 * in scsi_log_completion(), so avoid duplicate messages
1014 */
1015 if (!level && __ratelimit(&_rs)) {
1016 scsi_print_result(cmd, NULL, FAILED);
1017 if (driver_byte(result) & DRIVER_SENSE)
1018 scsi_print_sense(cmd);
1019 scsi_print_command(cmd);
1020 }
1021 }
1022 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1023 return;
1024 /*FALLTHRU*/
1025 case ACTION_REPREP:
1026 requeue:
1027 /* Unprep the request and put it back at the head of the queue.
1028 * A new command will be prepared and issued.
1029 */
1030 if (q->mq_ops) {
1031 scsi_mq_requeue_cmd(cmd);
1032 } else {
1033 scsi_release_buffers(cmd);
1034 scsi_requeue_command(q, cmd);
1035 }
1036 break;
1037 case ACTION_RETRY:
1038 /* Retry the same command immediately */
1039 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1040 break;
1041 case ACTION_DELAYED_RETRY:
1042 /* Retry the same command after a delay */
1043 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1044 break;
1045 }
1046 }
1047
1048 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1049 {
1050 int count;
1051
1052 /*
1053 * If sg table allocation fails, requeue request later.
1054 */
1055 if (unlikely(sg_alloc_table_chained(&sdb->table,
1056 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1057 return BLKPREP_DEFER;
1058
1059 /*
1060 * Next, walk the list, and fill in the addresses and sizes of
1061 * each segment.
1062 */
1063 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1064 BUG_ON(count > sdb->table.nents);
1065 sdb->table.nents = count;
1066 sdb->length = blk_rq_payload_bytes(req);
1067 return BLKPREP_OK;
1068 }
1069
1070 /*
1071 * Function: scsi_init_io()
1072 *
1073 * Purpose: SCSI I/O initialize function.
1074 *
1075 * Arguments: cmd - Command descriptor we wish to initialize
1076 *
1077 * Returns: 0 on success
1078 * BLKPREP_DEFER if the failure is retryable
1079 * BLKPREP_KILL if the failure is fatal
1080 */
1081 int scsi_init_io(struct scsi_cmnd *cmd)
1082 {
1083 struct scsi_device *sdev = cmd->device;
1084 struct request *rq = cmd->request;
1085 bool is_mq = (rq->mq_ctx != NULL);
1086 int error = BLKPREP_KILL;
1087
1088 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1089 goto err_exit;
1090
1091 error = scsi_init_sgtable(rq, &cmd->sdb);
1092 if (error)
1093 goto err_exit;
1094
1095 if (blk_bidi_rq(rq)) {
1096 if (!rq->q->mq_ops) {
1097 struct scsi_data_buffer *bidi_sdb =
1098 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1099 if (!bidi_sdb) {
1100 error = BLKPREP_DEFER;
1101 goto err_exit;
1102 }
1103
1104 rq->next_rq->special = bidi_sdb;
1105 }
1106
1107 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1108 if (error)
1109 goto err_exit;
1110 }
1111
1112 if (blk_integrity_rq(rq)) {
1113 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1114 int ivecs, count;
1115
1116 if (prot_sdb == NULL) {
1117 /*
1118 * This can happen if someone (e.g. multipath)
1119 * queues a command to a device on an adapter
1120 * that does not support DIX.
1121 */
1122 WARN_ON_ONCE(1);
1123 error = BLKPREP_KILL;
1124 goto err_exit;
1125 }
1126
1127 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1128
1129 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1130 prot_sdb->table.sgl)) {
1131 error = BLKPREP_DEFER;
1132 goto err_exit;
1133 }
1134
1135 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1136 prot_sdb->table.sgl);
1137 BUG_ON(unlikely(count > ivecs));
1138 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1139
1140 cmd->prot_sdb = prot_sdb;
1141 cmd->prot_sdb->table.nents = count;
1142 }
1143
1144 return BLKPREP_OK;
1145 err_exit:
1146 if (is_mq) {
1147 scsi_mq_free_sgtables(cmd);
1148 } else {
1149 scsi_release_buffers(cmd);
1150 cmd->request->special = NULL;
1151 scsi_put_command(cmd);
1152 put_device(&sdev->sdev_gendev);
1153 }
1154 return error;
1155 }
1156 EXPORT_SYMBOL(scsi_init_io);
1157
1158 /**
1159 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1160 * @rq: Request associated with the SCSI command to be initialized.
1161 *
1162 * This function initializes the members of struct scsi_cmnd that must be
1163 * initialized before request processing starts and that won't be
1164 * reinitialized if a SCSI command is requeued.
1165 *
1166 * Called from inside blk_get_request() for pass-through requests and from
1167 * inside scsi_init_command() for filesystem requests.
1168 */
1169 void scsi_initialize_rq(struct request *rq)
1170 {
1171 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1172
1173 scsi_req_init(&cmd->req);
1174 init_rcu_head(&cmd->rcu);
1175 cmd->jiffies_at_alloc = jiffies;
1176 cmd->retries = 0;
1177 }
1178 EXPORT_SYMBOL(scsi_initialize_rq);
1179
1180 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1181 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1182 {
1183 struct scsi_device *sdev = cmd->device;
1184 struct Scsi_Host *shost = sdev->host;
1185 unsigned long flags;
1186
1187 if (shost->use_cmd_list) {
1188 spin_lock_irqsave(&sdev->list_lock, flags);
1189 list_add_tail(&cmd->list, &sdev->cmd_list);
1190 spin_unlock_irqrestore(&sdev->list_lock, flags);
1191 }
1192 }
1193
1194 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1195 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1196 {
1197 struct scsi_device *sdev = cmd->device;
1198 struct Scsi_Host *shost = sdev->host;
1199 unsigned long flags;
1200
1201 if (shost->use_cmd_list) {
1202 spin_lock_irqsave(&sdev->list_lock, flags);
1203 BUG_ON(list_empty(&cmd->list));
1204 list_del_init(&cmd->list);
1205 spin_unlock_irqrestore(&sdev->list_lock, flags);
1206 }
1207 }
1208
1209 /* Called after a request has been started. */
1210 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1211 {
1212 void *buf = cmd->sense_buffer;
1213 void *prot = cmd->prot_sdb;
1214 struct request *rq = blk_mq_rq_from_pdu(cmd);
1215 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1216 unsigned long jiffies_at_alloc;
1217 int retries;
1218
1219 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1220 flags |= SCMD_INITIALIZED;
1221 scsi_initialize_rq(rq);
1222 }
1223
1224 jiffies_at_alloc = cmd->jiffies_at_alloc;
1225 retries = cmd->retries;
1226 /* zero out the cmd, except for the embedded scsi_request */
1227 memset((char *)cmd + sizeof(cmd->req), 0,
1228 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1229
1230 cmd->device = dev;
1231 cmd->sense_buffer = buf;
1232 cmd->prot_sdb = prot;
1233 cmd->flags = flags;
1234 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1235 cmd->jiffies_at_alloc = jiffies_at_alloc;
1236 cmd->retries = retries;
1237
1238 scsi_add_cmd_to_list(cmd);
1239 }
1240
1241 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1242 {
1243 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1244
1245 /*
1246 * Passthrough requests may transfer data, in which case they must
1247 * a bio attached to them. Or they might contain a SCSI command
1248 * that does not transfer data, in which case they may optionally
1249 * submit a request without an attached bio.
1250 */
1251 if (req->bio) {
1252 int ret = scsi_init_io(cmd);
1253 if (unlikely(ret))
1254 return ret;
1255 } else {
1256 BUG_ON(blk_rq_bytes(req));
1257
1258 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1259 }
1260
1261 cmd->cmd_len = scsi_req(req)->cmd_len;
1262 cmd->cmnd = scsi_req(req)->cmd;
1263 cmd->transfersize = blk_rq_bytes(req);
1264 cmd->allowed = scsi_req(req)->retries;
1265 return BLKPREP_OK;
1266 }
1267
1268 /*
1269 * Setup a normal block command. These are simple request from filesystems
1270 * that still need to be translated to SCSI CDBs from the ULD.
1271 */
1272 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1273 {
1274 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1275
1276 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1277 int ret = sdev->handler->prep_fn(sdev, req);
1278 if (ret != BLKPREP_OK)
1279 return ret;
1280 }
1281
1282 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1283 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1284 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1285 }
1286
1287 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1288 {
1289 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1290
1291 if (!blk_rq_bytes(req))
1292 cmd->sc_data_direction = DMA_NONE;
1293 else if (rq_data_dir(req) == WRITE)
1294 cmd->sc_data_direction = DMA_TO_DEVICE;
1295 else
1296 cmd->sc_data_direction = DMA_FROM_DEVICE;
1297
1298 if (blk_rq_is_scsi(req))
1299 return scsi_setup_scsi_cmnd(sdev, req);
1300 else
1301 return scsi_setup_fs_cmnd(sdev, req);
1302 }
1303
1304 static int
1305 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1306 {
1307 int ret = BLKPREP_OK;
1308
1309 /*
1310 * If the device is not in running state we will reject some
1311 * or all commands.
1312 */
1313 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1314 switch (sdev->sdev_state) {
1315 case SDEV_OFFLINE:
1316 case SDEV_TRANSPORT_OFFLINE:
1317 /*
1318 * If the device is offline we refuse to process any
1319 * commands. The device must be brought online
1320 * before trying any recovery commands.
1321 */
1322 sdev_printk(KERN_ERR, sdev,
1323 "rejecting I/O to offline device\n");
1324 ret = BLKPREP_KILL;
1325 break;
1326 case SDEV_DEL:
1327 /*
1328 * If the device is fully deleted, we refuse to
1329 * process any commands as well.
1330 */
1331 sdev_printk(KERN_ERR, sdev,
1332 "rejecting I/O to dead device\n");
1333 ret = BLKPREP_KILL;
1334 break;
1335 case SDEV_BLOCK:
1336 case SDEV_CREATED_BLOCK:
1337 ret = BLKPREP_DEFER;
1338 break;
1339 case SDEV_QUIESCE:
1340 /*
1341 * If the devices is blocked we defer normal commands.
1342 */
1343 if (req && !(req->rq_flags & RQF_PREEMPT))
1344 ret = BLKPREP_DEFER;
1345 break;
1346 default:
1347 /*
1348 * For any other not fully online state we only allow
1349 * special commands. In particular any user initiated
1350 * command is not allowed.
1351 */
1352 if (req && !(req->rq_flags & RQF_PREEMPT))
1353 ret = BLKPREP_KILL;
1354 break;
1355 }
1356 }
1357 return ret;
1358 }
1359
1360 static int
1361 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1362 {
1363 struct scsi_device *sdev = q->queuedata;
1364
1365 switch (ret) {
1366 case BLKPREP_KILL:
1367 case BLKPREP_INVALID:
1368 scsi_req(req)->result = DID_NO_CONNECT << 16;
1369 /* release the command and kill it */
1370 if (req->special) {
1371 struct scsi_cmnd *cmd = req->special;
1372 scsi_release_buffers(cmd);
1373 scsi_put_command(cmd);
1374 put_device(&sdev->sdev_gendev);
1375 req->special = NULL;
1376 }
1377 break;
1378 case BLKPREP_DEFER:
1379 /*
1380 * If we defer, the blk_peek_request() returns NULL, but the
1381 * queue must be restarted, so we schedule a callback to happen
1382 * shortly.
1383 */
1384 if (atomic_read(&sdev->device_busy) == 0)
1385 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1386 break;
1387 default:
1388 req->rq_flags |= RQF_DONTPREP;
1389 }
1390
1391 return ret;
1392 }
1393
1394 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1395 {
1396 struct scsi_device *sdev = q->queuedata;
1397 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1398 int ret;
1399
1400 ret = scsi_prep_state_check(sdev, req);
1401 if (ret != BLKPREP_OK)
1402 goto out;
1403
1404 if (!req->special) {
1405 /* Bail if we can't get a reference to the device */
1406 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1407 ret = BLKPREP_DEFER;
1408 goto out;
1409 }
1410
1411 scsi_init_command(sdev, cmd);
1412 req->special = cmd;
1413 }
1414
1415 cmd->tag = req->tag;
1416 cmd->request = req;
1417 cmd->prot_op = SCSI_PROT_NORMAL;
1418
1419 ret = scsi_setup_cmnd(sdev, req);
1420 out:
1421 return scsi_prep_return(q, req, ret);
1422 }
1423
1424 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1425 {
1426 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1427 }
1428
1429 /*
1430 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1431 * return 0.
1432 *
1433 * Called with the queue_lock held.
1434 */
1435 static inline int scsi_dev_queue_ready(struct request_queue *q,
1436 struct scsi_device *sdev)
1437 {
1438 unsigned int busy;
1439
1440 busy = atomic_inc_return(&sdev->device_busy) - 1;
1441 if (atomic_read(&sdev->device_blocked)) {
1442 if (busy)
1443 goto out_dec;
1444
1445 /*
1446 * unblock after device_blocked iterates to zero
1447 */
1448 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1449 /*
1450 * For the MQ case we take care of this in the caller.
1451 */
1452 if (!q->mq_ops)
1453 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1454 goto out_dec;
1455 }
1456 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1457 "unblocking device at zero depth\n"));
1458 }
1459
1460 if (busy >= sdev->queue_depth)
1461 goto out_dec;
1462
1463 return 1;
1464 out_dec:
1465 atomic_dec(&sdev->device_busy);
1466 return 0;
1467 }
1468
1469 /*
1470 * scsi_target_queue_ready: checks if there we can send commands to target
1471 * @sdev: scsi device on starget to check.
1472 */
1473 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1474 struct scsi_device *sdev)
1475 {
1476 struct scsi_target *starget = scsi_target(sdev);
1477 unsigned int busy;
1478
1479 if (starget->single_lun) {
1480 spin_lock_irq(shost->host_lock);
1481 if (starget->starget_sdev_user &&
1482 starget->starget_sdev_user != sdev) {
1483 spin_unlock_irq(shost->host_lock);
1484 return 0;
1485 }
1486 starget->starget_sdev_user = sdev;
1487 spin_unlock_irq(shost->host_lock);
1488 }
1489
1490 if (starget->can_queue <= 0)
1491 return 1;
1492
1493 busy = atomic_inc_return(&starget->target_busy) - 1;
1494 if (atomic_read(&starget->target_blocked) > 0) {
1495 if (busy)
1496 goto starved;
1497
1498 /*
1499 * unblock after target_blocked iterates to zero
1500 */
1501 if (atomic_dec_return(&starget->target_blocked) > 0)
1502 goto out_dec;
1503
1504 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1505 "unblocking target at zero depth\n"));
1506 }
1507
1508 if (busy >= starget->can_queue)
1509 goto starved;
1510
1511 return 1;
1512
1513 starved:
1514 spin_lock_irq(shost->host_lock);
1515 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1516 spin_unlock_irq(shost->host_lock);
1517 out_dec:
1518 if (starget->can_queue > 0)
1519 atomic_dec(&starget->target_busy);
1520 return 0;
1521 }
1522
1523 /*
1524 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1525 * return 0. We must end up running the queue again whenever 0 is
1526 * returned, else IO can hang.
1527 */
1528 static inline int scsi_host_queue_ready(struct request_queue *q,
1529 struct Scsi_Host *shost,
1530 struct scsi_device *sdev)
1531 {
1532 unsigned int busy;
1533
1534 if (scsi_host_in_recovery(shost))
1535 return 0;
1536
1537 busy = atomic_inc_return(&shost->host_busy) - 1;
1538 if (atomic_read(&shost->host_blocked) > 0) {
1539 if (busy)
1540 goto starved;
1541
1542 /*
1543 * unblock after host_blocked iterates to zero
1544 */
1545 if (atomic_dec_return(&shost->host_blocked) > 0)
1546 goto out_dec;
1547
1548 SCSI_LOG_MLQUEUE(3,
1549 shost_printk(KERN_INFO, shost,
1550 "unblocking host at zero depth\n"));
1551 }
1552
1553 if (shost->can_queue > 0 && busy >= shost->can_queue)
1554 goto starved;
1555 if (shost->host_self_blocked)
1556 goto starved;
1557
1558 /* We're OK to process the command, so we can't be starved */
1559 if (!list_empty(&sdev->starved_entry)) {
1560 spin_lock_irq(shost->host_lock);
1561 if (!list_empty(&sdev->starved_entry))
1562 list_del_init(&sdev->starved_entry);
1563 spin_unlock_irq(shost->host_lock);
1564 }
1565
1566 return 1;
1567
1568 starved:
1569 spin_lock_irq(shost->host_lock);
1570 if (list_empty(&sdev->starved_entry))
1571 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1572 spin_unlock_irq(shost->host_lock);
1573 out_dec:
1574 scsi_dec_host_busy(shost);
1575 return 0;
1576 }
1577
1578 /*
1579 * Busy state exporting function for request stacking drivers.
1580 *
1581 * For efficiency, no lock is taken to check the busy state of
1582 * shost/starget/sdev, since the returned value is not guaranteed and
1583 * may be changed after request stacking drivers call the function,
1584 * regardless of taking lock or not.
1585 *
1586 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1587 * needs to return 'not busy'. Otherwise, request stacking drivers
1588 * may hold requests forever.
1589 */
1590 static int scsi_lld_busy(struct request_queue *q)
1591 {
1592 struct scsi_device *sdev = q->queuedata;
1593 struct Scsi_Host *shost;
1594
1595 if (blk_queue_dying(q))
1596 return 0;
1597
1598 shost = sdev->host;
1599
1600 /*
1601 * Ignore host/starget busy state.
1602 * Since block layer does not have a concept of fairness across
1603 * multiple queues, congestion of host/starget needs to be handled
1604 * in SCSI layer.
1605 */
1606 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1607 return 1;
1608
1609 return 0;
1610 }
1611
1612 /*
1613 * Kill a request for a dead device
1614 */
1615 static void scsi_kill_request(struct request *req, struct request_queue *q)
1616 {
1617 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1618 struct scsi_device *sdev;
1619 struct scsi_target *starget;
1620 struct Scsi_Host *shost;
1621
1622 blk_start_request(req);
1623
1624 scmd_printk(KERN_INFO, cmd, "killing request\n");
1625
1626 sdev = cmd->device;
1627 starget = scsi_target(sdev);
1628 shost = sdev->host;
1629 scsi_init_cmd_errh(cmd);
1630 cmd->result = DID_NO_CONNECT << 16;
1631 atomic_inc(&cmd->device->iorequest_cnt);
1632
1633 /*
1634 * SCSI request completion path will do scsi_device_unbusy(),
1635 * bump busy counts. To bump the counters, we need to dance
1636 * with the locks as normal issue path does.
1637 */
1638 atomic_inc(&sdev->device_busy);
1639 atomic_inc(&shost->host_busy);
1640 if (starget->can_queue > 0)
1641 atomic_inc(&starget->target_busy);
1642
1643 blk_complete_request(req);
1644 }
1645
1646 static void scsi_softirq_done(struct request *rq)
1647 {
1648 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1649 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1650 int disposition;
1651
1652 INIT_LIST_HEAD(&cmd->eh_entry);
1653
1654 atomic_inc(&cmd->device->iodone_cnt);
1655 if (cmd->result)
1656 atomic_inc(&cmd->device->ioerr_cnt);
1657
1658 disposition = scsi_decide_disposition(cmd);
1659 if (disposition != SUCCESS &&
1660 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1661 sdev_printk(KERN_ERR, cmd->device,
1662 "timing out command, waited %lus\n",
1663 wait_for/HZ);
1664 disposition = SUCCESS;
1665 }
1666
1667 scsi_log_completion(cmd, disposition);
1668
1669 switch (disposition) {
1670 case SUCCESS:
1671 scsi_finish_command(cmd);
1672 break;
1673 case NEEDS_RETRY:
1674 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1675 break;
1676 case ADD_TO_MLQUEUE:
1677 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1678 break;
1679 default:
1680 scsi_eh_scmd_add(cmd);
1681 break;
1682 }
1683 }
1684
1685 /**
1686 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1687 * @cmd: command block we are dispatching.
1688 *
1689 * Return: nonzero return request was rejected and device's queue needs to be
1690 * plugged.
1691 */
1692 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1693 {
1694 struct Scsi_Host *host = cmd->device->host;
1695 int rtn = 0;
1696
1697 atomic_inc(&cmd->device->iorequest_cnt);
1698
1699 /* check if the device is still usable */
1700 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1701 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1702 * returns an immediate error upwards, and signals
1703 * that the device is no longer present */
1704 cmd->result = DID_NO_CONNECT << 16;
1705 goto done;
1706 }
1707
1708 /* Check to see if the scsi lld made this device blocked. */
1709 if (unlikely(scsi_device_blocked(cmd->device))) {
1710 /*
1711 * in blocked state, the command is just put back on
1712 * the device queue. The suspend state has already
1713 * blocked the queue so future requests should not
1714 * occur until the device transitions out of the
1715 * suspend state.
1716 */
1717 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1718 "queuecommand : device blocked\n"));
1719 return SCSI_MLQUEUE_DEVICE_BUSY;
1720 }
1721
1722 /* Store the LUN value in cmnd, if needed. */
1723 if (cmd->device->lun_in_cdb)
1724 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1725 (cmd->device->lun << 5 & 0xe0);
1726
1727 scsi_log_send(cmd);
1728
1729 /*
1730 * Before we queue this command, check if the command
1731 * length exceeds what the host adapter can handle.
1732 */
1733 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1734 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1735 "queuecommand : command too long. "
1736 "cdb_size=%d host->max_cmd_len=%d\n",
1737 cmd->cmd_len, cmd->device->host->max_cmd_len));
1738 cmd->result = (DID_ABORT << 16);
1739 goto done;
1740 }
1741
1742 if (unlikely(host->shost_state == SHOST_DEL)) {
1743 cmd->result = (DID_NO_CONNECT << 16);
1744 goto done;
1745
1746 }
1747
1748 trace_scsi_dispatch_cmd_start(cmd);
1749 rtn = host->hostt->queuecommand(host, cmd);
1750 if (rtn) {
1751 trace_scsi_dispatch_cmd_error(cmd, rtn);
1752 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1753 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1754 rtn = SCSI_MLQUEUE_HOST_BUSY;
1755
1756 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1757 "queuecommand : request rejected\n"));
1758 }
1759
1760 return rtn;
1761 done:
1762 cmd->scsi_done(cmd);
1763 return 0;
1764 }
1765
1766 /**
1767 * scsi_done - Invoke completion on finished SCSI command.
1768 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1769 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1770 *
1771 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1772 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1773 * calls blk_complete_request() for further processing.
1774 *
1775 * This function is interrupt context safe.
1776 */
1777 static void scsi_done(struct scsi_cmnd *cmd)
1778 {
1779 trace_scsi_dispatch_cmd_done(cmd);
1780 blk_complete_request(cmd->request);
1781 }
1782
1783 /*
1784 * Function: scsi_request_fn()
1785 *
1786 * Purpose: Main strategy routine for SCSI.
1787 *
1788 * Arguments: q - Pointer to actual queue.
1789 *
1790 * Returns: Nothing
1791 *
1792 * Lock status: request queue lock assumed to be held when called.
1793 *
1794 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1795 * protection for ZBC disks.
1796 */
1797 static void scsi_request_fn(struct request_queue *q)
1798 __releases(q->queue_lock)
1799 __acquires(q->queue_lock)
1800 {
1801 struct scsi_device *sdev = q->queuedata;
1802 struct Scsi_Host *shost;
1803 struct scsi_cmnd *cmd;
1804 struct request *req;
1805
1806 /*
1807 * To start with, we keep looping until the queue is empty, or until
1808 * the host is no longer able to accept any more requests.
1809 */
1810 shost = sdev->host;
1811 for (;;) {
1812 int rtn;
1813 /*
1814 * get next queueable request. We do this early to make sure
1815 * that the request is fully prepared even if we cannot
1816 * accept it.
1817 */
1818 req = blk_peek_request(q);
1819 if (!req)
1820 break;
1821
1822 if (unlikely(!scsi_device_online(sdev))) {
1823 sdev_printk(KERN_ERR, sdev,
1824 "rejecting I/O to offline device\n");
1825 scsi_kill_request(req, q);
1826 continue;
1827 }
1828
1829 if (!scsi_dev_queue_ready(q, sdev))
1830 break;
1831
1832 /*
1833 * Remove the request from the request list.
1834 */
1835 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1836 blk_start_request(req);
1837
1838 spin_unlock_irq(q->queue_lock);
1839 cmd = blk_mq_rq_to_pdu(req);
1840 if (cmd != req->special) {
1841 printk(KERN_CRIT "impossible request in %s.\n"
1842 "please mail a stack trace to "
1843 "linux-scsi@vger.kernel.org\n",
1844 __func__);
1845 blk_dump_rq_flags(req, "foo");
1846 BUG();
1847 }
1848
1849 /*
1850 * We hit this when the driver is using a host wide
1851 * tag map. For device level tag maps the queue_depth check
1852 * in the device ready fn would prevent us from trying
1853 * to allocate a tag. Since the map is a shared host resource
1854 * we add the dev to the starved list so it eventually gets
1855 * a run when a tag is freed.
1856 */
1857 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1858 spin_lock_irq(shost->host_lock);
1859 if (list_empty(&sdev->starved_entry))
1860 list_add_tail(&sdev->starved_entry,
1861 &shost->starved_list);
1862 spin_unlock_irq(shost->host_lock);
1863 goto not_ready;
1864 }
1865
1866 if (!scsi_target_queue_ready(shost, sdev))
1867 goto not_ready;
1868
1869 if (!scsi_host_queue_ready(q, shost, sdev))
1870 goto host_not_ready;
1871
1872 if (sdev->simple_tags)
1873 cmd->flags |= SCMD_TAGGED;
1874 else
1875 cmd->flags &= ~SCMD_TAGGED;
1876
1877 /*
1878 * Finally, initialize any error handling parameters, and set up
1879 * the timers for timeouts.
1880 */
1881 scsi_init_cmd_errh(cmd);
1882
1883 /*
1884 * Dispatch the command to the low-level driver.
1885 */
1886 cmd->scsi_done = scsi_done;
1887 rtn = scsi_dispatch_cmd(cmd);
1888 if (rtn) {
1889 scsi_queue_insert(cmd, rtn);
1890 spin_lock_irq(q->queue_lock);
1891 goto out_delay;
1892 }
1893 spin_lock_irq(q->queue_lock);
1894 }
1895
1896 return;
1897
1898 host_not_ready:
1899 if (scsi_target(sdev)->can_queue > 0)
1900 atomic_dec(&scsi_target(sdev)->target_busy);
1901 not_ready:
1902 /*
1903 * lock q, handle tag, requeue req, and decrement device_busy. We
1904 * must return with queue_lock held.
1905 *
1906 * Decrementing device_busy without checking it is OK, as all such
1907 * cases (host limits or settings) should run the queue at some
1908 * later time.
1909 */
1910 spin_lock_irq(q->queue_lock);
1911 blk_requeue_request(q, req);
1912 atomic_dec(&sdev->device_busy);
1913 out_delay:
1914 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1915 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1916 }
1917
1918 static inline blk_status_t prep_to_mq(int ret)
1919 {
1920 switch (ret) {
1921 case BLKPREP_OK:
1922 return BLK_STS_OK;
1923 case BLKPREP_DEFER:
1924 return BLK_STS_RESOURCE;
1925 default:
1926 return BLK_STS_IOERR;
1927 }
1928 }
1929
1930 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1931 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1932 {
1933 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1934 sizeof(struct scatterlist);
1935 }
1936
1937 static int scsi_mq_prep_fn(struct request *req)
1938 {
1939 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1940 struct scsi_device *sdev = req->q->queuedata;
1941 struct Scsi_Host *shost = sdev->host;
1942 struct scatterlist *sg;
1943
1944 scsi_init_command(sdev, cmd);
1945
1946 req->special = cmd;
1947
1948 cmd->request = req;
1949
1950 cmd->tag = req->tag;
1951 cmd->prot_op = SCSI_PROT_NORMAL;
1952
1953 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1954 cmd->sdb.table.sgl = sg;
1955
1956 if (scsi_host_get_prot(shost)) {
1957 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1958
1959 cmd->prot_sdb->table.sgl =
1960 (struct scatterlist *)(cmd->prot_sdb + 1);
1961 }
1962
1963 if (blk_bidi_rq(req)) {
1964 struct request *next_rq = req->next_rq;
1965 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1966
1967 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1968 bidi_sdb->table.sgl =
1969 (struct scatterlist *)(bidi_sdb + 1);
1970
1971 next_rq->special = bidi_sdb;
1972 }
1973
1974 blk_mq_start_request(req);
1975
1976 return scsi_setup_cmnd(sdev, req);
1977 }
1978
1979 static void scsi_mq_done(struct scsi_cmnd *cmd)
1980 {
1981 trace_scsi_dispatch_cmd_done(cmd);
1982 blk_mq_complete_request(cmd->request);
1983 }
1984
1985 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1986 {
1987 struct request_queue *q = hctx->queue;
1988 struct scsi_device *sdev = q->queuedata;
1989
1990 atomic_dec(&sdev->device_busy);
1991 put_device(&sdev->sdev_gendev);
1992 }
1993
1994 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1995 {
1996 struct request_queue *q = hctx->queue;
1997 struct scsi_device *sdev = q->queuedata;
1998
1999 if (!get_device(&sdev->sdev_gendev))
2000 goto out;
2001 if (!scsi_dev_queue_ready(q, sdev))
2002 goto out_put_device;
2003
2004 return true;
2005
2006 out_put_device:
2007 put_device(&sdev->sdev_gendev);
2008 out:
2009 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2010 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2011 return false;
2012 }
2013
2014 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2015 const struct blk_mq_queue_data *bd)
2016 {
2017 struct request *req = bd->rq;
2018 struct request_queue *q = req->q;
2019 struct scsi_device *sdev = q->queuedata;
2020 struct Scsi_Host *shost = sdev->host;
2021 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2022 blk_status_t ret;
2023 int reason;
2024
2025 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2026 if (ret != BLK_STS_OK)
2027 goto out_put_budget;
2028
2029 ret = BLK_STS_RESOURCE;
2030 if (!scsi_target_queue_ready(shost, sdev))
2031 goto out_put_budget;
2032 if (!scsi_host_queue_ready(q, shost, sdev))
2033 goto out_dec_target_busy;
2034
2035 if (!(req->rq_flags & RQF_DONTPREP)) {
2036 ret = prep_to_mq(scsi_mq_prep_fn(req));
2037 if (ret != BLK_STS_OK)
2038 goto out_dec_host_busy;
2039 req->rq_flags |= RQF_DONTPREP;
2040 } else {
2041 blk_mq_start_request(req);
2042 }
2043
2044 if (sdev->simple_tags)
2045 cmd->flags |= SCMD_TAGGED;
2046 else
2047 cmd->flags &= ~SCMD_TAGGED;
2048
2049 scsi_init_cmd_errh(cmd);
2050 cmd->scsi_done = scsi_mq_done;
2051
2052 reason = scsi_dispatch_cmd(cmd);
2053 if (reason) {
2054 scsi_set_blocked(cmd, reason);
2055 ret = BLK_STS_RESOURCE;
2056 goto out_dec_host_busy;
2057 }
2058
2059 return BLK_STS_OK;
2060
2061 out_dec_host_busy:
2062 scsi_dec_host_busy(shost);
2063 out_dec_target_busy:
2064 if (scsi_target(sdev)->can_queue > 0)
2065 atomic_dec(&scsi_target(sdev)->target_busy);
2066 out_put_budget:
2067 scsi_mq_put_budget(hctx);
2068 switch (ret) {
2069 case BLK_STS_OK:
2070 break;
2071 case BLK_STS_RESOURCE:
2072 if (atomic_read(&sdev->device_busy) ||
2073 scsi_device_blocked(sdev))
2074 ret = BLK_STS_DEV_RESOURCE;
2075 break;
2076 default:
2077 if (unlikely(!scsi_device_online(sdev)))
2078 scsi_req(req)->result = DID_NO_CONNECT << 16;
2079 else
2080 scsi_req(req)->result = DID_ERROR << 16;
2081 /*
2082 * Make sure to release all allocated resources when
2083 * we hit an error, as we will never see this command
2084 * again.
2085 */
2086 if (req->rq_flags & RQF_DONTPREP)
2087 scsi_mq_uninit_cmd(cmd);
2088 break;
2089 }
2090 return ret;
2091 }
2092
2093 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2094 bool reserved)
2095 {
2096 if (reserved)
2097 return BLK_EH_RESET_TIMER;
2098 return scsi_times_out(req);
2099 }
2100
2101 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2102 unsigned int hctx_idx, unsigned int numa_node)
2103 {
2104 struct Scsi_Host *shost = set->driver_data;
2105 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2106 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2107 struct scatterlist *sg;
2108
2109 if (unchecked_isa_dma)
2110 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2111 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2112 GFP_KERNEL, numa_node);
2113 if (!cmd->sense_buffer)
2114 return -ENOMEM;
2115 cmd->req.sense = cmd->sense_buffer;
2116
2117 if (scsi_host_get_prot(shost)) {
2118 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2119 shost->hostt->cmd_size;
2120 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2121 }
2122
2123 return 0;
2124 }
2125
2126 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2127 unsigned int hctx_idx)
2128 {
2129 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2130
2131 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2132 cmd->sense_buffer);
2133 }
2134
2135 static int scsi_map_queues(struct blk_mq_tag_set *set)
2136 {
2137 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2138
2139 if (shost->hostt->map_queues)
2140 return shost->hostt->map_queues(shost);
2141 return blk_mq_map_queues(set);
2142 }
2143
2144 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2145 {
2146 struct device *host_dev;
2147 u64 bounce_limit = 0xffffffff;
2148
2149 if (shost->unchecked_isa_dma)
2150 return BLK_BOUNCE_ISA;
2151 /*
2152 * Platforms with virtual-DMA translation
2153 * hardware have no practical limit.
2154 */
2155 if (!PCI_DMA_BUS_IS_PHYS)
2156 return BLK_BOUNCE_ANY;
2157
2158 host_dev = scsi_get_device(shost);
2159 if (host_dev && host_dev->dma_mask)
2160 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2161
2162 return bounce_limit;
2163 }
2164
2165 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2166 {
2167 struct device *dev = shost->dma_dev;
2168
2169 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2170
2171 /*
2172 * this limit is imposed by hardware restrictions
2173 */
2174 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2175 SG_MAX_SEGMENTS));
2176
2177 if (scsi_host_prot_dma(shost)) {
2178 shost->sg_prot_tablesize =
2179 min_not_zero(shost->sg_prot_tablesize,
2180 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2181 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2182 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2183 }
2184
2185 blk_queue_max_hw_sectors(q, shost->max_sectors);
2186 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2187 blk_queue_segment_boundary(q, shost->dma_boundary);
2188 dma_set_seg_boundary(dev, shost->dma_boundary);
2189
2190 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2191
2192 if (!shost->use_clustering)
2193 q->limits.cluster = 0;
2194
2195 /*
2196 * Set a reasonable default alignment: The larger of 32-byte (dword),
2197 * which is a common minimum for HBAs, and the minimum DMA alignment,
2198 * which is set by the platform.
2199 *
2200 * Devices that require a bigger alignment can increase it later.
2201 */
2202 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2203 }
2204 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2205
2206 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2207 gfp_t gfp)
2208 {
2209 struct Scsi_Host *shost = q->rq_alloc_data;
2210 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2211 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2212
2213 memset(cmd, 0, sizeof(*cmd));
2214
2215 if (unchecked_isa_dma)
2216 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2217 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2218 NUMA_NO_NODE);
2219 if (!cmd->sense_buffer)
2220 goto fail;
2221 cmd->req.sense = cmd->sense_buffer;
2222
2223 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2224 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2225 if (!cmd->prot_sdb)
2226 goto fail_free_sense;
2227 }
2228
2229 return 0;
2230
2231 fail_free_sense:
2232 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2233 fail:
2234 return -ENOMEM;
2235 }
2236
2237 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2238 {
2239 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2240
2241 if (cmd->prot_sdb)
2242 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2243 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2244 cmd->sense_buffer);
2245 }
2246
2247 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2248 {
2249 struct Scsi_Host *shost = sdev->host;
2250 struct request_queue *q;
2251
2252 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2253 if (!q)
2254 return NULL;
2255 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2256 q->rq_alloc_data = shost;
2257 q->request_fn = scsi_request_fn;
2258 q->init_rq_fn = scsi_old_init_rq;
2259 q->exit_rq_fn = scsi_old_exit_rq;
2260 q->initialize_rq_fn = scsi_initialize_rq;
2261
2262 if (blk_init_allocated_queue(q) < 0) {
2263 blk_cleanup_queue(q);
2264 return NULL;
2265 }
2266
2267 __scsi_init_queue(shost, q);
2268 blk_queue_prep_rq(q, scsi_prep_fn);
2269 blk_queue_unprep_rq(q, scsi_unprep_fn);
2270 blk_queue_softirq_done(q, scsi_softirq_done);
2271 blk_queue_rq_timed_out(q, scsi_times_out);
2272 blk_queue_lld_busy(q, scsi_lld_busy);
2273 return q;
2274 }
2275
2276 static const struct blk_mq_ops scsi_mq_ops = {
2277 .get_budget = scsi_mq_get_budget,
2278 .put_budget = scsi_mq_put_budget,
2279 .queue_rq = scsi_queue_rq,
2280 .complete = scsi_softirq_done,
2281 .timeout = scsi_timeout,
2282 #ifdef CONFIG_BLK_DEBUG_FS
2283 .show_rq = scsi_show_rq,
2284 #endif
2285 .init_request = scsi_mq_init_request,
2286 .exit_request = scsi_mq_exit_request,
2287 .initialize_rq_fn = scsi_initialize_rq,
2288 .map_queues = scsi_map_queues,
2289 };
2290
2291 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2292 {
2293 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2294 if (IS_ERR(sdev->request_queue))
2295 return NULL;
2296
2297 sdev->request_queue->queuedata = sdev;
2298 __scsi_init_queue(sdev->host, sdev->request_queue);
2299 return sdev->request_queue;
2300 }
2301
2302 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2303 {
2304 unsigned int cmd_size, sgl_size;
2305
2306 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2307 scsi_mq_sgl_size(shost));
2308 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2309 if (scsi_host_get_prot(shost))
2310 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2311
2312 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2313 shost->tag_set.ops = &scsi_mq_ops;
2314 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2315 shost->tag_set.queue_depth = shost->can_queue;
2316 shost->tag_set.cmd_size = cmd_size;
2317 shost->tag_set.numa_node = NUMA_NO_NODE;
2318 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2319 shost->tag_set.flags |=
2320 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2321 shost->tag_set.driver_data = shost;
2322
2323 return blk_mq_alloc_tag_set(&shost->tag_set);
2324 }
2325
2326 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2327 {
2328 blk_mq_free_tag_set(&shost->tag_set);
2329 }
2330
2331 /**
2332 * scsi_device_from_queue - return sdev associated with a request_queue
2333 * @q: The request queue to return the sdev from
2334 *
2335 * Return the sdev associated with a request queue or NULL if the
2336 * request_queue does not reference a SCSI device.
2337 */
2338 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2339 {
2340 struct scsi_device *sdev = NULL;
2341
2342 if (q->mq_ops) {
2343 if (q->mq_ops == &scsi_mq_ops)
2344 sdev = q->queuedata;
2345 } else if (q->request_fn == scsi_request_fn)
2346 sdev = q->queuedata;
2347 if (!sdev || !get_device(&sdev->sdev_gendev))
2348 sdev = NULL;
2349
2350 return sdev;
2351 }
2352 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2353
2354 /*
2355 * Function: scsi_block_requests()
2356 *
2357 * Purpose: Utility function used by low-level drivers to prevent further
2358 * commands from being queued to the device.
2359 *
2360 * Arguments: shost - Host in question
2361 *
2362 * Returns: Nothing
2363 *
2364 * Lock status: No locks are assumed held.
2365 *
2366 * Notes: There is no timer nor any other means by which the requests
2367 * get unblocked other than the low-level driver calling
2368 * scsi_unblock_requests().
2369 */
2370 void scsi_block_requests(struct Scsi_Host *shost)
2371 {
2372 shost->host_self_blocked = 1;
2373 }
2374 EXPORT_SYMBOL(scsi_block_requests);
2375
2376 /*
2377 * Function: scsi_unblock_requests()
2378 *
2379 * Purpose: Utility function used by low-level drivers to allow further
2380 * commands from being queued to the device.
2381 *
2382 * Arguments: shost - Host in question
2383 *
2384 * Returns: Nothing
2385 *
2386 * Lock status: No locks are assumed held.
2387 *
2388 * Notes: There is no timer nor any other means by which the requests
2389 * get unblocked other than the low-level driver calling
2390 * scsi_unblock_requests().
2391 *
2392 * This is done as an API function so that changes to the
2393 * internals of the scsi mid-layer won't require wholesale
2394 * changes to drivers that use this feature.
2395 */
2396 void scsi_unblock_requests(struct Scsi_Host *shost)
2397 {
2398 shost->host_self_blocked = 0;
2399 scsi_run_host_queues(shost);
2400 }
2401 EXPORT_SYMBOL(scsi_unblock_requests);
2402
2403 int __init scsi_init_queue(void)
2404 {
2405 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2406 sizeof(struct scsi_data_buffer),
2407 0, 0, NULL);
2408 if (!scsi_sdb_cache) {
2409 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2410 return -ENOMEM;
2411 }
2412
2413 return 0;
2414 }
2415
2416 void scsi_exit_queue(void)
2417 {
2418 kmem_cache_destroy(scsi_sense_cache);
2419 kmem_cache_destroy(scsi_sense_isadma_cache);
2420 kmem_cache_destroy(scsi_sdb_cache);
2421 }
2422
2423 /**
2424 * scsi_mode_select - issue a mode select
2425 * @sdev: SCSI device to be queried
2426 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2427 * @sp: Save page bit (0 == don't save, 1 == save)
2428 * @modepage: mode page being requested
2429 * @buffer: request buffer (may not be smaller than eight bytes)
2430 * @len: length of request buffer.
2431 * @timeout: command timeout
2432 * @retries: number of retries before failing
2433 * @data: returns a structure abstracting the mode header data
2434 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2435 * must be SCSI_SENSE_BUFFERSIZE big.
2436 *
2437 * Returns zero if successful; negative error number or scsi
2438 * status on error
2439 *
2440 */
2441 int
2442 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2443 unsigned char *buffer, int len, int timeout, int retries,
2444 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2445 {
2446 unsigned char cmd[10];
2447 unsigned char *real_buffer;
2448 int ret;
2449
2450 memset(cmd, 0, sizeof(cmd));
2451 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2452
2453 if (sdev->use_10_for_ms) {
2454 if (len > 65535)
2455 return -EINVAL;
2456 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2457 if (!real_buffer)
2458 return -ENOMEM;
2459 memcpy(real_buffer + 8, buffer, len);
2460 len += 8;
2461 real_buffer[0] = 0;
2462 real_buffer[1] = 0;
2463 real_buffer[2] = data->medium_type;
2464 real_buffer[3] = data->device_specific;
2465 real_buffer[4] = data->longlba ? 0x01 : 0;
2466 real_buffer[5] = 0;
2467 real_buffer[6] = data->block_descriptor_length >> 8;
2468 real_buffer[7] = data->block_descriptor_length;
2469
2470 cmd[0] = MODE_SELECT_10;
2471 cmd[7] = len >> 8;
2472 cmd[8] = len;
2473 } else {
2474 if (len > 255 || data->block_descriptor_length > 255 ||
2475 data->longlba)
2476 return -EINVAL;
2477
2478 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2479 if (!real_buffer)
2480 return -ENOMEM;
2481 memcpy(real_buffer + 4, buffer, len);
2482 len += 4;
2483 real_buffer[0] = 0;
2484 real_buffer[1] = data->medium_type;
2485 real_buffer[2] = data->device_specific;
2486 real_buffer[3] = data->block_descriptor_length;
2487
2488
2489 cmd[0] = MODE_SELECT;
2490 cmd[4] = len;
2491 }
2492
2493 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2494 sshdr, timeout, retries, NULL);
2495 kfree(real_buffer);
2496 return ret;
2497 }
2498 EXPORT_SYMBOL_GPL(scsi_mode_select);
2499
2500 /**
2501 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2502 * @sdev: SCSI device to be queried
2503 * @dbd: set if mode sense will allow block descriptors to be returned
2504 * @modepage: mode page being requested
2505 * @buffer: request buffer (may not be smaller than eight bytes)
2506 * @len: length of request buffer.
2507 * @timeout: command timeout
2508 * @retries: number of retries before failing
2509 * @data: returns a structure abstracting the mode header data
2510 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2511 * must be SCSI_SENSE_BUFFERSIZE big.
2512 *
2513 * Returns zero if unsuccessful, or the header offset (either 4
2514 * or 8 depending on whether a six or ten byte command was
2515 * issued) if successful.
2516 */
2517 int
2518 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2519 unsigned char *buffer, int len, int timeout, int retries,
2520 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2521 {
2522 unsigned char cmd[12];
2523 int use_10_for_ms;
2524 int header_length;
2525 int result, retry_count = retries;
2526 struct scsi_sense_hdr my_sshdr;
2527
2528 memset(data, 0, sizeof(*data));
2529 memset(&cmd[0], 0, 12);
2530 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2531 cmd[2] = modepage;
2532
2533 /* caller might not be interested in sense, but we need it */
2534 if (!sshdr)
2535 sshdr = &my_sshdr;
2536
2537 retry:
2538 use_10_for_ms = sdev->use_10_for_ms;
2539
2540 if (use_10_for_ms) {
2541 if (len < 8)
2542 len = 8;
2543
2544 cmd[0] = MODE_SENSE_10;
2545 cmd[8] = len;
2546 header_length = 8;
2547 } else {
2548 if (len < 4)
2549 len = 4;
2550
2551 cmd[0] = MODE_SENSE;
2552 cmd[4] = len;
2553 header_length = 4;
2554 }
2555
2556 memset(buffer, 0, len);
2557
2558 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2559 sshdr, timeout, retries, NULL);
2560
2561 /* This code looks awful: what it's doing is making sure an
2562 * ILLEGAL REQUEST sense return identifies the actual command
2563 * byte as the problem. MODE_SENSE commands can return
2564 * ILLEGAL REQUEST if the code page isn't supported */
2565
2566 if (use_10_for_ms && !scsi_status_is_good(result) &&
2567 (driver_byte(result) & DRIVER_SENSE)) {
2568 if (scsi_sense_valid(sshdr)) {
2569 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2570 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2571 /*
2572 * Invalid command operation code
2573 */
2574 sdev->use_10_for_ms = 0;
2575 goto retry;
2576 }
2577 }
2578 }
2579
2580 if(scsi_status_is_good(result)) {
2581 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2582 (modepage == 6 || modepage == 8))) {
2583 /* Initio breakage? */
2584 header_length = 0;
2585 data->length = 13;
2586 data->medium_type = 0;
2587 data->device_specific = 0;
2588 data->longlba = 0;
2589 data->block_descriptor_length = 0;
2590 } else if(use_10_for_ms) {
2591 data->length = buffer[0]*256 + buffer[1] + 2;
2592 data->medium_type = buffer[2];
2593 data->device_specific = buffer[3];
2594 data->longlba = buffer[4] & 0x01;
2595 data->block_descriptor_length = buffer[6]*256
2596 + buffer[7];
2597 } else {
2598 data->length = buffer[0] + 1;
2599 data->medium_type = buffer[1];
2600 data->device_specific = buffer[2];
2601 data->block_descriptor_length = buffer[3];
2602 }
2603 data->header_length = header_length;
2604 } else if ((status_byte(result) == CHECK_CONDITION) &&
2605 scsi_sense_valid(sshdr) &&
2606 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2607 retry_count--;
2608 goto retry;
2609 }
2610
2611 return result;
2612 }
2613 EXPORT_SYMBOL(scsi_mode_sense);
2614
2615 /**
2616 * scsi_test_unit_ready - test if unit is ready
2617 * @sdev: scsi device to change the state of.
2618 * @timeout: command timeout
2619 * @retries: number of retries before failing
2620 * @sshdr: outpout pointer for decoded sense information.
2621 *
2622 * Returns zero if unsuccessful or an error if TUR failed. For
2623 * removable media, UNIT_ATTENTION sets ->changed flag.
2624 **/
2625 int
2626 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2627 struct scsi_sense_hdr *sshdr)
2628 {
2629 char cmd[] = {
2630 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2631 };
2632 int result;
2633
2634 /* try to eat the UNIT_ATTENTION if there are enough retries */
2635 do {
2636 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2637 timeout, retries, NULL);
2638 if (sdev->removable && scsi_sense_valid(sshdr) &&
2639 sshdr->sense_key == UNIT_ATTENTION)
2640 sdev->changed = 1;
2641 } while (scsi_sense_valid(sshdr) &&
2642 sshdr->sense_key == UNIT_ATTENTION && --retries);
2643
2644 return result;
2645 }
2646 EXPORT_SYMBOL(scsi_test_unit_ready);
2647
2648 /**
2649 * scsi_device_set_state - Take the given device through the device state model.
2650 * @sdev: scsi device to change the state of.
2651 * @state: state to change to.
2652 *
2653 * Returns zero if successful or an error if the requested
2654 * transition is illegal.
2655 */
2656 int
2657 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2658 {
2659 enum scsi_device_state oldstate = sdev->sdev_state;
2660
2661 if (state == oldstate)
2662 return 0;
2663
2664 switch (state) {
2665 case SDEV_CREATED:
2666 switch (oldstate) {
2667 case SDEV_CREATED_BLOCK:
2668 break;
2669 default:
2670 goto illegal;
2671 }
2672 break;
2673
2674 case SDEV_RUNNING:
2675 switch (oldstate) {
2676 case SDEV_CREATED:
2677 case SDEV_OFFLINE:
2678 case SDEV_TRANSPORT_OFFLINE:
2679 case SDEV_QUIESCE:
2680 case SDEV_BLOCK:
2681 break;
2682 default:
2683 goto illegal;
2684 }
2685 break;
2686
2687 case SDEV_QUIESCE:
2688 switch (oldstate) {
2689 case SDEV_RUNNING:
2690 case SDEV_OFFLINE:
2691 case SDEV_TRANSPORT_OFFLINE:
2692 break;
2693 default:
2694 goto illegal;
2695 }
2696 break;
2697
2698 case SDEV_OFFLINE:
2699 case SDEV_TRANSPORT_OFFLINE:
2700 switch (oldstate) {
2701 case SDEV_CREATED:
2702 case SDEV_RUNNING:
2703 case SDEV_QUIESCE:
2704 case SDEV_BLOCK:
2705 break;
2706 default:
2707 goto illegal;
2708 }
2709 break;
2710
2711 case SDEV_BLOCK:
2712 switch (oldstate) {
2713 case SDEV_RUNNING:
2714 case SDEV_CREATED_BLOCK:
2715 break;
2716 default:
2717 goto illegal;
2718 }
2719 break;
2720
2721 case SDEV_CREATED_BLOCK:
2722 switch (oldstate) {
2723 case SDEV_CREATED:
2724 break;
2725 default:
2726 goto illegal;
2727 }
2728 break;
2729
2730 case SDEV_CANCEL:
2731 switch (oldstate) {
2732 case SDEV_CREATED:
2733 case SDEV_RUNNING:
2734 case SDEV_QUIESCE:
2735 case SDEV_OFFLINE:
2736 case SDEV_TRANSPORT_OFFLINE:
2737 break;
2738 default:
2739 goto illegal;
2740 }
2741 break;
2742
2743 case SDEV_DEL:
2744 switch (oldstate) {
2745 case SDEV_CREATED:
2746 case SDEV_RUNNING:
2747 case SDEV_OFFLINE:
2748 case SDEV_TRANSPORT_OFFLINE:
2749 case SDEV_CANCEL:
2750 case SDEV_BLOCK:
2751 case SDEV_CREATED_BLOCK:
2752 break;
2753 default:
2754 goto illegal;
2755 }
2756 break;
2757
2758 }
2759 sdev->sdev_state = state;
2760 return 0;
2761
2762 illegal:
2763 SCSI_LOG_ERROR_RECOVERY(1,
2764 sdev_printk(KERN_ERR, sdev,
2765 "Illegal state transition %s->%s",
2766 scsi_device_state_name(oldstate),
2767 scsi_device_state_name(state))
2768 );
2769 return -EINVAL;
2770 }
2771 EXPORT_SYMBOL(scsi_device_set_state);
2772
2773 /**
2774 * sdev_evt_emit - emit a single SCSI device uevent
2775 * @sdev: associated SCSI device
2776 * @evt: event to emit
2777 *
2778 * Send a single uevent (scsi_event) to the associated scsi_device.
2779 */
2780 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2781 {
2782 int idx = 0;
2783 char *envp[3];
2784
2785 switch (evt->evt_type) {
2786 case SDEV_EVT_MEDIA_CHANGE:
2787 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2788 break;
2789 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2790 scsi_rescan_device(&sdev->sdev_gendev);
2791 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2792 break;
2793 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2794 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2795 break;
2796 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2797 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2798 break;
2799 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2800 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2801 break;
2802 case SDEV_EVT_LUN_CHANGE_REPORTED:
2803 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2804 break;
2805 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2806 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2807 break;
2808 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2809 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2810 break;
2811 default:
2812 /* do nothing */
2813 break;
2814 }
2815
2816 envp[idx++] = NULL;
2817
2818 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2819 }
2820
2821 /**
2822 * sdev_evt_thread - send a uevent for each scsi event
2823 * @work: work struct for scsi_device
2824 *
2825 * Dispatch queued events to their associated scsi_device kobjects
2826 * as uevents.
2827 */
2828 void scsi_evt_thread(struct work_struct *work)
2829 {
2830 struct scsi_device *sdev;
2831 enum scsi_device_event evt_type;
2832 LIST_HEAD(event_list);
2833
2834 sdev = container_of(work, struct scsi_device, event_work);
2835
2836 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2837 if (test_and_clear_bit(evt_type, sdev->pending_events))
2838 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2839
2840 while (1) {
2841 struct scsi_event *evt;
2842 struct list_head *this, *tmp;
2843 unsigned long flags;
2844
2845 spin_lock_irqsave(&sdev->list_lock, flags);
2846 list_splice_init(&sdev->event_list, &event_list);
2847 spin_unlock_irqrestore(&sdev->list_lock, flags);
2848
2849 if (list_empty(&event_list))
2850 break;
2851
2852 list_for_each_safe(this, tmp, &event_list) {
2853 evt = list_entry(this, struct scsi_event, node);
2854 list_del(&evt->node);
2855 scsi_evt_emit(sdev, evt);
2856 kfree(evt);
2857 }
2858 }
2859 }
2860
2861 /**
2862 * sdev_evt_send - send asserted event to uevent thread
2863 * @sdev: scsi_device event occurred on
2864 * @evt: event to send
2865 *
2866 * Assert scsi device event asynchronously.
2867 */
2868 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2869 {
2870 unsigned long flags;
2871
2872 #if 0
2873 /* FIXME: currently this check eliminates all media change events
2874 * for polled devices. Need to update to discriminate between AN
2875 * and polled events */
2876 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2877 kfree(evt);
2878 return;
2879 }
2880 #endif
2881
2882 spin_lock_irqsave(&sdev->list_lock, flags);
2883 list_add_tail(&evt->node, &sdev->event_list);
2884 schedule_work(&sdev->event_work);
2885 spin_unlock_irqrestore(&sdev->list_lock, flags);
2886 }
2887 EXPORT_SYMBOL_GPL(sdev_evt_send);
2888
2889 /**
2890 * sdev_evt_alloc - allocate a new scsi event
2891 * @evt_type: type of event to allocate
2892 * @gfpflags: GFP flags for allocation
2893 *
2894 * Allocates and returns a new scsi_event.
2895 */
2896 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2897 gfp_t gfpflags)
2898 {
2899 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2900 if (!evt)
2901 return NULL;
2902
2903 evt->evt_type = evt_type;
2904 INIT_LIST_HEAD(&evt->node);
2905
2906 /* evt_type-specific initialization, if any */
2907 switch (evt_type) {
2908 case SDEV_EVT_MEDIA_CHANGE:
2909 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2910 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2911 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2912 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2913 case SDEV_EVT_LUN_CHANGE_REPORTED:
2914 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2915 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2916 default:
2917 /* do nothing */
2918 break;
2919 }
2920
2921 return evt;
2922 }
2923 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2924
2925 /**
2926 * sdev_evt_send_simple - send asserted event to uevent thread
2927 * @sdev: scsi_device event occurred on
2928 * @evt_type: type of event to send
2929 * @gfpflags: GFP flags for allocation
2930 *
2931 * Assert scsi device event asynchronously, given an event type.
2932 */
2933 void sdev_evt_send_simple(struct scsi_device *sdev,
2934 enum scsi_device_event evt_type, gfp_t gfpflags)
2935 {
2936 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2937 if (!evt) {
2938 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2939 evt_type);
2940 return;
2941 }
2942
2943 sdev_evt_send(sdev, evt);
2944 }
2945 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2946
2947 /**
2948 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2949 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2950 */
2951 static int scsi_request_fn_active(struct scsi_device *sdev)
2952 {
2953 struct request_queue *q = sdev->request_queue;
2954 int request_fn_active;
2955
2956 WARN_ON_ONCE(sdev->host->use_blk_mq);
2957
2958 spin_lock_irq(q->queue_lock);
2959 request_fn_active = q->request_fn_active;
2960 spin_unlock_irq(q->queue_lock);
2961
2962 return request_fn_active;
2963 }
2964
2965 /**
2966 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2967 * @sdev: SCSI device pointer.
2968 *
2969 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2970 * invoked from scsi_request_fn() have finished.
2971 */
2972 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2973 {
2974 WARN_ON_ONCE(sdev->host->use_blk_mq);
2975
2976 while (scsi_request_fn_active(sdev))
2977 msleep(20);
2978 }
2979
2980 /**
2981 * scsi_device_quiesce - Block user issued commands.
2982 * @sdev: scsi device to quiesce.
2983 *
2984 * This works by trying to transition to the SDEV_QUIESCE state
2985 * (which must be a legal transition). When the device is in this
2986 * state, only special requests will be accepted, all others will
2987 * be deferred. Since special requests may also be requeued requests,
2988 * a successful return doesn't guarantee the device will be
2989 * totally quiescent.
2990 *
2991 * Must be called with user context, may sleep.
2992 *
2993 * Returns zero if unsuccessful or an error if not.
2994 */
2995 int
2996 scsi_device_quiesce(struct scsi_device *sdev)
2997 {
2998 struct request_queue *q = sdev->request_queue;
2999 int err;
3000
3001 /*
3002 * It is allowed to call scsi_device_quiesce() multiple times from
3003 * the same context but concurrent scsi_device_quiesce() calls are
3004 * not allowed.
3005 */
3006 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3007
3008 blk_set_preempt_only(q);
3009
3010 blk_mq_freeze_queue(q);
3011 /*
3012 * Ensure that the effect of blk_set_preempt_only() will be visible
3013 * for percpu_ref_tryget() callers that occur after the queue
3014 * unfreeze even if the queue was already frozen before this function
3015 * was called. See also https://lwn.net/Articles/573497/.
3016 */
3017 synchronize_rcu();
3018 blk_mq_unfreeze_queue(q);
3019
3020 mutex_lock(&sdev->state_mutex);
3021 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3022 if (err == 0)
3023 sdev->quiesced_by = current;
3024 else
3025 blk_clear_preempt_only(q);
3026 mutex_unlock(&sdev->state_mutex);
3027
3028 return err;
3029 }
3030 EXPORT_SYMBOL(scsi_device_quiesce);
3031
3032 /**
3033 * scsi_device_resume - Restart user issued commands to a quiesced device.
3034 * @sdev: scsi device to resume.
3035 *
3036 * Moves the device from quiesced back to running and restarts the
3037 * queues.
3038 *
3039 * Must be called with user context, may sleep.
3040 */
3041 void scsi_device_resume(struct scsi_device *sdev)
3042 {
3043 /* check if the device state was mutated prior to resume, and if
3044 * so assume the state is being managed elsewhere (for example
3045 * device deleted during suspend)
3046 */
3047 mutex_lock(&sdev->state_mutex);
3048 sdev->quiesced_by = NULL;
3049 blk_clear_preempt_only(sdev->request_queue);
3050 if (sdev->sdev_state == SDEV_QUIESCE)
3051 scsi_device_set_state(sdev, SDEV_RUNNING);
3052 mutex_unlock(&sdev->state_mutex);
3053 }
3054 EXPORT_SYMBOL(scsi_device_resume);
3055
3056 static void
3057 device_quiesce_fn(struct scsi_device *sdev, void *data)
3058 {
3059 scsi_device_quiesce(sdev);
3060 }
3061
3062 void
3063 scsi_target_quiesce(struct scsi_target *starget)
3064 {
3065 starget_for_each_device(starget, NULL, device_quiesce_fn);
3066 }
3067 EXPORT_SYMBOL(scsi_target_quiesce);
3068
3069 static void
3070 device_resume_fn(struct scsi_device *sdev, void *data)
3071 {
3072 scsi_device_resume(sdev);
3073 }
3074
3075 void
3076 scsi_target_resume(struct scsi_target *starget)
3077 {
3078 starget_for_each_device(starget, NULL, device_resume_fn);
3079 }
3080 EXPORT_SYMBOL(scsi_target_resume);
3081
3082 /**
3083 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3084 * @sdev: device to block
3085 *
3086 * Pause SCSI command processing on the specified device. Does not sleep.
3087 *
3088 * Returns zero if successful or a negative error code upon failure.
3089 *
3090 * Notes:
3091 * This routine transitions the device to the SDEV_BLOCK state (which must be
3092 * a legal transition). When the device is in this state, command processing
3093 * is paused until the device leaves the SDEV_BLOCK state. See also
3094 * scsi_internal_device_unblock_nowait().
3095 */
3096 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3097 {
3098 struct request_queue *q = sdev->request_queue;
3099 unsigned long flags;
3100 int err = 0;
3101
3102 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3103 if (err) {
3104 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3105
3106 if (err)
3107 return err;
3108 }
3109
3110 /*
3111 * The device has transitioned to SDEV_BLOCK. Stop the
3112 * block layer from calling the midlayer with this device's
3113 * request queue.
3114 */
3115 if (q->mq_ops) {
3116 blk_mq_quiesce_queue_nowait(q);
3117 } else {
3118 spin_lock_irqsave(q->queue_lock, flags);
3119 blk_stop_queue(q);
3120 spin_unlock_irqrestore(q->queue_lock, flags);
3121 }
3122
3123 return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3126
3127 /**
3128 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3129 * @sdev: device to block
3130 *
3131 * Pause SCSI command processing on the specified device and wait until all
3132 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3133 *
3134 * Returns zero if successful or a negative error code upon failure.
3135 *
3136 * Note:
3137 * This routine transitions the device to the SDEV_BLOCK state (which must be
3138 * a legal transition). When the device is in this state, command processing
3139 * is paused until the device leaves the SDEV_BLOCK state. See also
3140 * scsi_internal_device_unblock().
3141 *
3142 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3143 * scsi_internal_device_block() has blocked a SCSI device and also
3144 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3145 */
3146 static int scsi_internal_device_block(struct scsi_device *sdev)
3147 {
3148 struct request_queue *q = sdev->request_queue;
3149 int err;
3150
3151 mutex_lock(&sdev->state_mutex);
3152 err = scsi_internal_device_block_nowait(sdev);
3153 if (err == 0) {
3154 if (q->mq_ops)
3155 blk_mq_quiesce_queue(q);
3156 else
3157 scsi_wait_for_queuecommand(sdev);
3158 }
3159 mutex_unlock(&sdev->state_mutex);
3160
3161 return err;
3162 }
3163
3164 void scsi_start_queue(struct scsi_device *sdev)
3165 {
3166 struct request_queue *q = sdev->request_queue;
3167 unsigned long flags;
3168
3169 if (q->mq_ops) {
3170 blk_mq_unquiesce_queue(q);
3171 } else {
3172 spin_lock_irqsave(q->queue_lock, flags);
3173 blk_start_queue(q);
3174 spin_unlock_irqrestore(q->queue_lock, flags);
3175 }
3176 }
3177
3178 /**
3179 * scsi_internal_device_unblock_nowait - resume a device after a block request
3180 * @sdev: device to resume
3181 * @new_state: state to set the device to after unblocking
3182 *
3183 * Restart the device queue for a previously suspended SCSI device. Does not
3184 * sleep.
3185 *
3186 * Returns zero if successful or a negative error code upon failure.
3187 *
3188 * Notes:
3189 * This routine transitions the device to the SDEV_RUNNING state or to one of
3190 * the offline states (which must be a legal transition) allowing the midlayer
3191 * to goose the queue for this device.
3192 */
3193 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3194 enum scsi_device_state new_state)
3195 {
3196 /*
3197 * Try to transition the scsi device to SDEV_RUNNING or one of the
3198 * offlined states and goose the device queue if successful.
3199 */
3200 switch (sdev->sdev_state) {
3201 case SDEV_BLOCK:
3202 case SDEV_TRANSPORT_OFFLINE:
3203 sdev->sdev_state = new_state;
3204 break;
3205 case SDEV_CREATED_BLOCK:
3206 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3207 new_state == SDEV_OFFLINE)
3208 sdev->sdev_state = new_state;
3209 else
3210 sdev->sdev_state = SDEV_CREATED;
3211 break;
3212 case SDEV_CANCEL:
3213 case SDEV_OFFLINE:
3214 break;
3215 default:
3216 return -EINVAL;
3217 }
3218 scsi_start_queue(sdev);
3219
3220 return 0;
3221 }
3222 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3223
3224 /**
3225 * scsi_internal_device_unblock - resume a device after a block request
3226 * @sdev: device to resume
3227 * @new_state: state to set the device to after unblocking
3228 *
3229 * Restart the device queue for a previously suspended SCSI device. May sleep.
3230 *
3231 * Returns zero if successful or a negative error code upon failure.
3232 *
3233 * Notes:
3234 * This routine transitions the device to the SDEV_RUNNING state or to one of
3235 * the offline states (which must be a legal transition) allowing the midlayer
3236 * to goose the queue for this device.
3237 */
3238 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3239 enum scsi_device_state new_state)
3240 {
3241 int ret;
3242
3243 mutex_lock(&sdev->state_mutex);
3244 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3245 mutex_unlock(&sdev->state_mutex);
3246
3247 return ret;
3248 }
3249
3250 static void
3251 device_block(struct scsi_device *sdev, void *data)
3252 {
3253 scsi_internal_device_block(sdev);
3254 }
3255
3256 static int
3257 target_block(struct device *dev, void *data)
3258 {
3259 if (scsi_is_target_device(dev))
3260 starget_for_each_device(to_scsi_target(dev), NULL,
3261 device_block);
3262 return 0;
3263 }
3264
3265 void
3266 scsi_target_block(struct device *dev)
3267 {
3268 if (scsi_is_target_device(dev))
3269 starget_for_each_device(to_scsi_target(dev), NULL,
3270 device_block);
3271 else
3272 device_for_each_child(dev, NULL, target_block);
3273 }
3274 EXPORT_SYMBOL_GPL(scsi_target_block);
3275
3276 static void
3277 device_unblock(struct scsi_device *sdev, void *data)
3278 {
3279 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3280 }
3281
3282 static int
3283 target_unblock(struct device *dev, void *data)
3284 {
3285 if (scsi_is_target_device(dev))
3286 starget_for_each_device(to_scsi_target(dev), data,
3287 device_unblock);
3288 return 0;
3289 }
3290
3291 void
3292 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3293 {
3294 if (scsi_is_target_device(dev))
3295 starget_for_each_device(to_scsi_target(dev), &new_state,
3296 device_unblock);
3297 else
3298 device_for_each_child(dev, &new_state, target_unblock);
3299 }
3300 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3301
3302 /**
3303 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3304 * @sgl: scatter-gather list
3305 * @sg_count: number of segments in sg
3306 * @offset: offset in bytes into sg, on return offset into the mapped area
3307 * @len: bytes to map, on return number of bytes mapped
3308 *
3309 * Returns virtual address of the start of the mapped page
3310 */
3311 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3312 size_t *offset, size_t *len)
3313 {
3314 int i;
3315 size_t sg_len = 0, len_complete = 0;
3316 struct scatterlist *sg;
3317 struct page *page;
3318
3319 WARN_ON(!irqs_disabled());
3320
3321 for_each_sg(sgl, sg, sg_count, i) {
3322 len_complete = sg_len; /* Complete sg-entries */
3323 sg_len += sg->length;
3324 if (sg_len > *offset)
3325 break;
3326 }
3327
3328 if (unlikely(i == sg_count)) {
3329 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3330 "elements %d\n",
3331 __func__, sg_len, *offset, sg_count);
3332 WARN_ON(1);
3333 return NULL;
3334 }
3335
3336 /* Offset starting from the beginning of first page in this sg-entry */
3337 *offset = *offset - len_complete + sg->offset;
3338
3339 /* Assumption: contiguous pages can be accessed as "page + i" */
3340 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3341 *offset &= ~PAGE_MASK;
3342
3343 /* Bytes in this sg-entry from *offset to the end of the page */
3344 sg_len = PAGE_SIZE - *offset;
3345 if (*len > sg_len)
3346 *len = sg_len;
3347
3348 return kmap_atomic(page);
3349 }
3350 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3351
3352 /**
3353 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3354 * @virt: virtual address to be unmapped
3355 */
3356 void scsi_kunmap_atomic_sg(void *virt)
3357 {
3358 kunmap_atomic(virt);
3359 }
3360 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3361
3362 void sdev_disable_disk_events(struct scsi_device *sdev)
3363 {
3364 atomic_inc(&sdev->disk_events_disable_depth);
3365 }
3366 EXPORT_SYMBOL(sdev_disable_disk_events);
3367
3368 void sdev_enable_disk_events(struct scsi_device *sdev)
3369 {
3370 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3371 return;
3372 atomic_dec(&sdev->disk_events_disable_depth);
3373 }
3374 EXPORT_SYMBOL(sdev_enable_disk_events);
3375
3376 /**
3377 * scsi_vpd_lun_id - return a unique device identification
3378 * @sdev: SCSI device
3379 * @id: buffer for the identification
3380 * @id_len: length of the buffer
3381 *
3382 * Copies a unique device identification into @id based
3383 * on the information in the VPD page 0x83 of the device.
3384 * The string will be formatted as a SCSI name string.
3385 *
3386 * Returns the length of the identification or error on failure.
3387 * If the identifier is longer than the supplied buffer the actual
3388 * identifier length is returned and the buffer is not zero-padded.
3389 */
3390 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3391 {
3392 u8 cur_id_type = 0xff;
3393 u8 cur_id_size = 0;
3394 const unsigned char *d, *cur_id_str;
3395 const struct scsi_vpd *vpd_pg83;
3396 int id_size = -EINVAL;
3397
3398 rcu_read_lock();
3399 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3400 if (!vpd_pg83) {
3401 rcu_read_unlock();
3402 return -ENXIO;
3403 }
3404
3405 /*
3406 * Look for the correct descriptor.
3407 * Order of preference for lun descriptor:
3408 * - SCSI name string
3409 * - NAA IEEE Registered Extended
3410 * - EUI-64 based 16-byte
3411 * - EUI-64 based 12-byte
3412 * - NAA IEEE Registered
3413 * - NAA IEEE Extended
3414 * - T10 Vendor ID
3415 * as longer descriptors reduce the likelyhood
3416 * of identification clashes.
3417 */
3418
3419 /* The id string must be at least 20 bytes + terminating NULL byte */
3420 if (id_len < 21) {
3421 rcu_read_unlock();
3422 return -EINVAL;
3423 }
3424
3425 memset(id, 0, id_len);
3426 d = vpd_pg83->data + 4;
3427 while (d < vpd_pg83->data + vpd_pg83->len) {
3428 /* Skip designators not referring to the LUN */
3429 if ((d[1] & 0x30) != 0x00)
3430 goto next_desig;
3431
3432 switch (d[1] & 0xf) {
3433 case 0x1:
3434 /* T10 Vendor ID */
3435 if (cur_id_size > d[3])
3436 break;
3437 /* Prefer anything */
3438 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3439 break;
3440 cur_id_size = d[3];
3441 if (cur_id_size + 4 > id_len)
3442 cur_id_size = id_len - 4;
3443 cur_id_str = d + 4;
3444 cur_id_type = d[1] & 0xf;
3445 id_size = snprintf(id, id_len, "t10.%*pE",
3446 cur_id_size, cur_id_str);
3447 break;
3448 case 0x2:
3449 /* EUI-64 */
3450 if (cur_id_size > d[3])
3451 break;
3452 /* Prefer NAA IEEE Registered Extended */
3453 if (cur_id_type == 0x3 &&
3454 cur_id_size == d[3])
3455 break;
3456 cur_id_size = d[3];
3457 cur_id_str = d + 4;
3458 cur_id_type = d[1] & 0xf;
3459 switch (cur_id_size) {
3460 case 8:
3461 id_size = snprintf(id, id_len,
3462 "eui.%8phN",
3463 cur_id_str);
3464 break;
3465 case 12:
3466 id_size = snprintf(id, id_len,
3467 "eui.%12phN",
3468 cur_id_str);
3469 break;
3470 case 16:
3471 id_size = snprintf(id, id_len,
3472 "eui.%16phN",
3473 cur_id_str);
3474 break;
3475 default:
3476 cur_id_size = 0;
3477 break;
3478 }
3479 break;
3480 case 0x3:
3481 /* NAA */
3482 if (cur_id_size > d[3])
3483 break;
3484 cur_id_size = d[3];
3485 cur_id_str = d + 4;
3486 cur_id_type = d[1] & 0xf;
3487 switch (cur_id_size) {
3488 case 8:
3489 id_size = snprintf(id, id_len,
3490 "naa.%8phN",
3491 cur_id_str);
3492 break;
3493 case 16:
3494 id_size = snprintf(id, id_len,
3495 "naa.%16phN",
3496 cur_id_str);
3497 break;
3498 default:
3499 cur_id_size = 0;
3500 break;
3501 }
3502 break;
3503 case 0x8:
3504 /* SCSI name string */
3505 if (cur_id_size + 4 > d[3])
3506 break;
3507 /* Prefer others for truncated descriptor */
3508 if (cur_id_size && d[3] > id_len)
3509 break;
3510 cur_id_size = id_size = d[3];
3511 cur_id_str = d + 4;
3512 cur_id_type = d[1] & 0xf;
3513 if (cur_id_size >= id_len)
3514 cur_id_size = id_len - 1;
3515 memcpy(id, cur_id_str, cur_id_size);
3516 /* Decrease priority for truncated descriptor */
3517 if (cur_id_size != id_size)
3518 cur_id_size = 6;
3519 break;
3520 default:
3521 break;
3522 }
3523 next_desig:
3524 d += d[3] + 4;
3525 }
3526 rcu_read_unlock();
3527
3528 return id_size;
3529 }
3530 EXPORT_SYMBOL(scsi_vpd_lun_id);
3531
3532 /*
3533 * scsi_vpd_tpg_id - return a target port group identifier
3534 * @sdev: SCSI device
3535 *
3536 * Returns the Target Port Group identifier from the information
3537 * froom VPD page 0x83 of the device.
3538 *
3539 * Returns the identifier or error on failure.
3540 */
3541 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3542 {
3543 const unsigned char *d;
3544 const struct scsi_vpd *vpd_pg83;
3545 int group_id = -EAGAIN, rel_port = -1;
3546
3547 rcu_read_lock();
3548 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3549 if (!vpd_pg83) {
3550 rcu_read_unlock();
3551 return -ENXIO;
3552 }
3553
3554 d = vpd_pg83->data + 4;
3555 while (d < vpd_pg83->data + vpd_pg83->len) {
3556 switch (d[1] & 0xf) {
3557 case 0x4:
3558 /* Relative target port */
3559 rel_port = get_unaligned_be16(&d[6]);
3560 break;
3561 case 0x5:
3562 /* Target port group */
3563 group_id = get_unaligned_be16(&d[6]);
3564 break;
3565 default:
3566 break;
3567 }
3568 d += d[3] + 4;
3569 }
3570 rcu_read_unlock();
3571
3572 if (group_id >= 0 && rel_id && rel_port != -1)
3573 *rel_id = rel_port;
3574
3575 return group_id;
3576 }
3577 EXPORT_SYMBOL(scsi_vpd_tpg_id);