]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/scsi/scsi_lib.c
Merge branch 'for-linus-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad...
[mirror_ubuntu-kernels.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 unsigned char *sense_buffer)
70 {
71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 sense_buffer);
73 }
74
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 gfp_t gfp_mask, int numa_node)
77 {
78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 gfp_mask, numa_node);
80 }
81
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 struct kmem_cache *cache;
85 int ret = 0;
86
87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 if (cache)
89 return 0;
90
91 mutex_lock(&scsi_sense_cache_mutex);
92 if (shost->unchecked_isa_dma) {
93 scsi_sense_isadma_cache =
94 kmem_cache_create("scsi_sense_cache(DMA)",
95 SCSI_SENSE_BUFFERSIZE, 0,
96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 if (!scsi_sense_isadma_cache)
98 ret = -ENOMEM;
99 } else {
100 scsi_sense_cache =
101 kmem_cache_create_usercopy("scsi_sense_cache",
102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 0, SCSI_SENSE_BUFFERSIZE, NULL);
104 if (!scsi_sense_cache)
105 ret = -ENOMEM;
106 }
107
108 mutex_unlock(&scsi_sense_cache_mutex);
109 return ret;
110 }
111
112 /*
113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114 * not change behaviour from the previous unplug mechanism, experimentation
115 * may prove this needs changing.
116 */
117 #define SCSI_QUEUE_DELAY 3
118
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 struct Scsi_Host *host = cmd->device->host;
123 struct scsi_device *device = cmd->device;
124 struct scsi_target *starget = scsi_target(device);
125
126 /*
127 * Set the appropriate busy bit for the device/host.
128 *
129 * If the host/device isn't busy, assume that something actually
130 * completed, and that we should be able to queue a command now.
131 *
132 * Note that the prior mid-layer assumption that any host could
133 * always queue at least one command is now broken. The mid-layer
134 * will implement a user specifiable stall (see
135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 * if a command is requeued with no other commands outstanding
137 * either for the device or for the host.
138 */
139 switch (reason) {
140 case SCSI_MLQUEUE_HOST_BUSY:
141 atomic_set(&host->host_blocked, host->max_host_blocked);
142 break;
143 case SCSI_MLQUEUE_DEVICE_BUSY:
144 case SCSI_MLQUEUE_EH_RETRY:
145 atomic_set(&device->device_blocked,
146 device->max_device_blocked);
147 break;
148 case SCSI_MLQUEUE_TARGET_BUSY:
149 atomic_set(&starget->target_blocked,
150 starget->max_target_blocked);
151 break;
152 }
153 }
154
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 if (cmd->request->rq_flags & RQF_DONTPREP) {
158 cmd->request->rq_flags &= ~RQF_DONTPREP;
159 scsi_mq_uninit_cmd(cmd);
160 } else {
161 WARN_ON_ONCE(true);
162 }
163 blk_mq_requeue_request(cmd->request, true);
164 }
165
166 /**
167 * __scsi_queue_insert - private queue insertion
168 * @cmd: The SCSI command being requeued
169 * @reason: The reason for the requeue
170 * @unbusy: Whether the queue should be unbusied
171 *
172 * This is a private queue insertion. The public interface
173 * scsi_queue_insert() always assumes the queue should be unbusied
174 * because it's always called before the completion. This function is
175 * for a requeue after completion, which should only occur in this
176 * file.
177 */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 struct scsi_device *device = cmd->device;
181
182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 "Inserting command %p into mlqueue\n", cmd));
184
185 scsi_set_blocked(cmd, reason);
186
187 /*
188 * Decrement the counters, since these commands are no longer
189 * active on the host/device.
190 */
191 if (unbusy)
192 scsi_device_unbusy(device);
193
194 /*
195 * Requeue this command. It will go before all other commands
196 * that are already in the queue. Schedule requeue work under
197 * lock such that the kblockd_schedule_work() call happens
198 * before blk_cleanup_queue() finishes.
199 */
200 cmd->result = 0;
201
202 blk_mq_requeue_request(cmd->request, true);
203 }
204
205 /*
206 * Function: scsi_queue_insert()
207 *
208 * Purpose: Insert a command in the midlevel queue.
209 *
210 * Arguments: cmd - command that we are adding to queue.
211 * reason - why we are inserting command to queue.
212 *
213 * Lock status: Assumed that lock is not held upon entry.
214 *
215 * Returns: Nothing.
216 *
217 * Notes: We do this for one of two cases. Either the host is busy
218 * and it cannot accept any more commands for the time being,
219 * or the device returned QUEUE_FULL and can accept no more
220 * commands.
221 * Notes: This could be called either from an interrupt context or a
222 * normal process context.
223 */
224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
225 {
226 __scsi_queue_insert(cmd, reason, true);
227 }
228
229
230 /**
231 * __scsi_execute - insert request and wait for the result
232 * @sdev: scsi device
233 * @cmd: scsi command
234 * @data_direction: data direction
235 * @buffer: data buffer
236 * @bufflen: len of buffer
237 * @sense: optional sense buffer
238 * @sshdr: optional decoded sense header
239 * @timeout: request timeout in seconds
240 * @retries: number of times to retry request
241 * @flags: flags for ->cmd_flags
242 * @rq_flags: flags for ->rq_flags
243 * @resid: optional residual length
244 *
245 * Returns the scsi_cmnd result field if a command was executed, or a negative
246 * Linux error code if we didn't get that far.
247 */
248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
249 int data_direction, void *buffer, unsigned bufflen,
250 unsigned char *sense, struct scsi_sense_hdr *sshdr,
251 int timeout, int retries, u64 flags, req_flags_t rq_flags,
252 int *resid)
253 {
254 struct request *req;
255 struct scsi_request *rq;
256 int ret = DRIVER_ERROR << 24;
257
258 req = blk_get_request(sdev->request_queue,
259 data_direction == DMA_TO_DEVICE ?
260 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
261 if (IS_ERR(req))
262 return ret;
263 rq = scsi_req(req);
264
265 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
266 buffer, bufflen, GFP_NOIO))
267 goto out;
268
269 rq->cmd_len = COMMAND_SIZE(cmd[0]);
270 memcpy(rq->cmd, cmd, rq->cmd_len);
271 rq->retries = retries;
272 req->timeout = timeout;
273 req->cmd_flags |= flags;
274 req->rq_flags |= rq_flags | RQF_QUIET;
275
276 /*
277 * head injection *required* here otherwise quiesce won't work
278 */
279 blk_execute_rq(req->q, NULL, req, 1);
280
281 /*
282 * Some devices (USB mass-storage in particular) may transfer
283 * garbage data together with a residue indicating that the data
284 * is invalid. Prevent the garbage from being misinterpreted
285 * and prevent security leaks by zeroing out the excess data.
286 */
287 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
288 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
289
290 if (resid)
291 *resid = rq->resid_len;
292 if (sense && rq->sense_len)
293 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
294 if (sshdr)
295 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
296 ret = rq->result;
297 out:
298 blk_put_request(req);
299
300 return ret;
301 }
302 EXPORT_SYMBOL(__scsi_execute);
303
304 /*
305 * Function: scsi_init_cmd_errh()
306 *
307 * Purpose: Initialize cmd fields related to error handling.
308 *
309 * Arguments: cmd - command that is ready to be queued.
310 *
311 * Notes: This function has the job of initializing a number of
312 * fields related to error handling. Typically this will
313 * be called once for each command, as required.
314 */
315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
316 {
317 scsi_set_resid(cmd, 0);
318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 if (cmd->cmd_len == 0)
320 cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322
323 /*
324 * Decrement the host_busy counter and wake up the error handler if necessary.
325 * Avoid as follows that the error handler is not woken up if shost->host_busy
326 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
327 * with an RCU read lock in this function to ensure that this function in its
328 * entirety either finishes before scsi_eh_scmd_add() increases the
329 * host_failed counter or that it notices the shost state change made by
330 * scsi_eh_scmd_add().
331 */
332 static void scsi_dec_host_busy(struct Scsi_Host *shost)
333 {
334 unsigned long flags;
335
336 rcu_read_lock();
337 atomic_dec(&shost->host_busy);
338 if (unlikely(scsi_host_in_recovery(shost))) {
339 spin_lock_irqsave(shost->host_lock, flags);
340 if (shost->host_failed || shost->host_eh_scheduled)
341 scsi_eh_wakeup(shost);
342 spin_unlock_irqrestore(shost->host_lock, flags);
343 }
344 rcu_read_unlock();
345 }
346
347 void scsi_device_unbusy(struct scsi_device *sdev)
348 {
349 struct Scsi_Host *shost = sdev->host;
350 struct scsi_target *starget = scsi_target(sdev);
351
352 scsi_dec_host_busy(shost);
353
354 if (starget->can_queue > 0)
355 atomic_dec(&starget->target_busy);
356
357 atomic_dec(&sdev->device_busy);
358 }
359
360 static void scsi_kick_queue(struct request_queue *q)
361 {
362 blk_mq_run_hw_queues(q, false);
363 }
364
365 /*
366 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
367 * and call blk_run_queue for all the scsi_devices on the target -
368 * including current_sdev first.
369 *
370 * Called with *no* scsi locks held.
371 */
372 static void scsi_single_lun_run(struct scsi_device *current_sdev)
373 {
374 struct Scsi_Host *shost = current_sdev->host;
375 struct scsi_device *sdev, *tmp;
376 struct scsi_target *starget = scsi_target(current_sdev);
377 unsigned long flags;
378
379 spin_lock_irqsave(shost->host_lock, flags);
380 starget->starget_sdev_user = NULL;
381 spin_unlock_irqrestore(shost->host_lock, flags);
382
383 /*
384 * Call blk_run_queue for all LUNs on the target, starting with
385 * current_sdev. We race with others (to set starget_sdev_user),
386 * but in most cases, we will be first. Ideally, each LU on the
387 * target would get some limited time or requests on the target.
388 */
389 scsi_kick_queue(current_sdev->request_queue);
390
391 spin_lock_irqsave(shost->host_lock, flags);
392 if (starget->starget_sdev_user)
393 goto out;
394 list_for_each_entry_safe(sdev, tmp, &starget->devices,
395 same_target_siblings) {
396 if (sdev == current_sdev)
397 continue;
398 if (scsi_device_get(sdev))
399 continue;
400
401 spin_unlock_irqrestore(shost->host_lock, flags);
402 scsi_kick_queue(sdev->request_queue);
403 spin_lock_irqsave(shost->host_lock, flags);
404
405 scsi_device_put(sdev);
406 }
407 out:
408 spin_unlock_irqrestore(shost->host_lock, flags);
409 }
410
411 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
412 {
413 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
414 return true;
415 if (atomic_read(&sdev->device_blocked) > 0)
416 return true;
417 return false;
418 }
419
420 static inline bool scsi_target_is_busy(struct scsi_target *starget)
421 {
422 if (starget->can_queue > 0) {
423 if (atomic_read(&starget->target_busy) >= starget->can_queue)
424 return true;
425 if (atomic_read(&starget->target_blocked) > 0)
426 return true;
427 }
428 return false;
429 }
430
431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
432 {
433 if (shost->can_queue > 0 &&
434 atomic_read(&shost->host_busy) >= shost->can_queue)
435 return true;
436 if (atomic_read(&shost->host_blocked) > 0)
437 return true;
438 if (shost->host_self_blocked)
439 return true;
440 return false;
441 }
442
443 static void scsi_starved_list_run(struct Scsi_Host *shost)
444 {
445 LIST_HEAD(starved_list);
446 struct scsi_device *sdev;
447 unsigned long flags;
448
449 spin_lock_irqsave(shost->host_lock, flags);
450 list_splice_init(&shost->starved_list, &starved_list);
451
452 while (!list_empty(&starved_list)) {
453 struct request_queue *slq;
454
455 /*
456 * As long as shost is accepting commands and we have
457 * starved queues, call blk_run_queue. scsi_request_fn
458 * drops the queue_lock and can add us back to the
459 * starved_list.
460 *
461 * host_lock protects the starved_list and starved_entry.
462 * scsi_request_fn must get the host_lock before checking
463 * or modifying starved_list or starved_entry.
464 */
465 if (scsi_host_is_busy(shost))
466 break;
467
468 sdev = list_entry(starved_list.next,
469 struct scsi_device, starved_entry);
470 list_del_init(&sdev->starved_entry);
471 if (scsi_target_is_busy(scsi_target(sdev))) {
472 list_move_tail(&sdev->starved_entry,
473 &shost->starved_list);
474 continue;
475 }
476
477 /*
478 * Once we drop the host lock, a racing scsi_remove_device()
479 * call may remove the sdev from the starved list and destroy
480 * it and the queue. Mitigate by taking a reference to the
481 * queue and never touching the sdev again after we drop the
482 * host lock. Note: if __scsi_remove_device() invokes
483 * blk_cleanup_queue() before the queue is run from this
484 * function then blk_run_queue() will return immediately since
485 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
486 */
487 slq = sdev->request_queue;
488 if (!blk_get_queue(slq))
489 continue;
490 spin_unlock_irqrestore(shost->host_lock, flags);
491
492 scsi_kick_queue(slq);
493 blk_put_queue(slq);
494
495 spin_lock_irqsave(shost->host_lock, flags);
496 }
497 /* put any unprocessed entries back */
498 list_splice(&starved_list, &shost->starved_list);
499 spin_unlock_irqrestore(shost->host_lock, flags);
500 }
501
502 /*
503 * Function: scsi_run_queue()
504 *
505 * Purpose: Select a proper request queue to serve next
506 *
507 * Arguments: q - last request's queue
508 *
509 * Returns: Nothing
510 *
511 * Notes: The previous command was completely finished, start
512 * a new one if possible.
513 */
514 static void scsi_run_queue(struct request_queue *q)
515 {
516 struct scsi_device *sdev = q->queuedata;
517
518 if (scsi_target(sdev)->single_lun)
519 scsi_single_lun_run(sdev);
520 if (!list_empty(&sdev->host->starved_list))
521 scsi_starved_list_run(sdev->host);
522
523 blk_mq_run_hw_queues(q, false);
524 }
525
526 void scsi_requeue_run_queue(struct work_struct *work)
527 {
528 struct scsi_device *sdev;
529 struct request_queue *q;
530
531 sdev = container_of(work, struct scsi_device, requeue_work);
532 q = sdev->request_queue;
533 scsi_run_queue(q);
534 }
535
536 void scsi_run_host_queues(struct Scsi_Host *shost)
537 {
538 struct scsi_device *sdev;
539
540 shost_for_each_device(sdev, shost)
541 scsi_run_queue(sdev->request_queue);
542 }
543
544 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
545 {
546 if (!blk_rq_is_passthrough(cmd->request)) {
547 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
548
549 if (drv->uninit_command)
550 drv->uninit_command(cmd);
551 }
552 }
553
554 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
555 {
556 if (cmd->sdb.table.nents)
557 sg_free_table_chained(&cmd->sdb.table,
558 SCSI_INLINE_SG_CNT);
559 if (scsi_prot_sg_count(cmd))
560 sg_free_table_chained(&cmd->prot_sdb->table,
561 SCSI_INLINE_PROT_SG_CNT);
562 }
563
564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
565 {
566 scsi_mq_free_sgtables(cmd);
567 scsi_uninit_cmd(cmd);
568 scsi_del_cmd_from_list(cmd);
569 }
570
571 /* Returns false when no more bytes to process, true if there are more */
572 static bool scsi_end_request(struct request *req, blk_status_t error,
573 unsigned int bytes)
574 {
575 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
576 struct scsi_device *sdev = cmd->device;
577 struct request_queue *q = sdev->request_queue;
578
579 if (blk_update_request(req, error, bytes))
580 return true;
581
582 if (blk_queue_add_random(q))
583 add_disk_randomness(req->rq_disk);
584
585 if (!blk_rq_is_scsi(req)) {
586 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
587 cmd->flags &= ~SCMD_INITIALIZED;
588 }
589
590 /*
591 * Calling rcu_barrier() is not necessary here because the
592 * SCSI error handler guarantees that the function called by
593 * call_rcu() has been called before scsi_end_request() is
594 * called.
595 */
596 destroy_rcu_head(&cmd->rcu);
597
598 /*
599 * In the MQ case the command gets freed by __blk_mq_end_request,
600 * so we have to do all cleanup that depends on it earlier.
601 *
602 * We also can't kick the queues from irq context, so we
603 * will have to defer it to a workqueue.
604 */
605 scsi_mq_uninit_cmd(cmd);
606
607 /*
608 * queue is still alive, so grab the ref for preventing it
609 * from being cleaned up during running queue.
610 */
611 percpu_ref_get(&q->q_usage_counter);
612
613 __blk_mq_end_request(req, error);
614
615 if (scsi_target(sdev)->single_lun ||
616 !list_empty(&sdev->host->starved_list))
617 kblockd_schedule_work(&sdev->requeue_work);
618 else
619 blk_mq_run_hw_queues(q, true);
620
621 percpu_ref_put(&q->q_usage_counter);
622 return false;
623 }
624
625 /**
626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
627 * @cmd: SCSI command
628 * @result: scsi error code
629 *
630 * Translate a SCSI result code into a blk_status_t value. May reset the host
631 * byte of @cmd->result.
632 */
633 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
634 {
635 switch (host_byte(result)) {
636 case DID_OK:
637 /*
638 * Also check the other bytes than the status byte in result
639 * to handle the case when a SCSI LLD sets result to
640 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
641 */
642 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
643 return BLK_STS_OK;
644 return BLK_STS_IOERR;
645 case DID_TRANSPORT_FAILFAST:
646 return BLK_STS_TRANSPORT;
647 case DID_TARGET_FAILURE:
648 set_host_byte(cmd, DID_OK);
649 return BLK_STS_TARGET;
650 case DID_NEXUS_FAILURE:
651 set_host_byte(cmd, DID_OK);
652 return BLK_STS_NEXUS;
653 case DID_ALLOC_FAILURE:
654 set_host_byte(cmd, DID_OK);
655 return BLK_STS_NOSPC;
656 case DID_MEDIUM_ERROR:
657 set_host_byte(cmd, DID_OK);
658 return BLK_STS_MEDIUM;
659 default:
660 return BLK_STS_IOERR;
661 }
662 }
663
664 /* Helper for scsi_io_completion() when "reprep" action required. */
665 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
666 struct request_queue *q)
667 {
668 /* A new command will be prepared and issued. */
669 scsi_mq_requeue_cmd(cmd);
670 }
671
672 /* Helper for scsi_io_completion() when special action required. */
673 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
674 {
675 struct request_queue *q = cmd->device->request_queue;
676 struct request *req = cmd->request;
677 int level = 0;
678 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
679 ACTION_DELAYED_RETRY} action;
680 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
681 struct scsi_sense_hdr sshdr;
682 bool sense_valid;
683 bool sense_current = true; /* false implies "deferred sense" */
684 blk_status_t blk_stat;
685
686 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
687 if (sense_valid)
688 sense_current = !scsi_sense_is_deferred(&sshdr);
689
690 blk_stat = scsi_result_to_blk_status(cmd, result);
691
692 if (host_byte(result) == DID_RESET) {
693 /* Third party bus reset or reset for error recovery
694 * reasons. Just retry the command and see what
695 * happens.
696 */
697 action = ACTION_RETRY;
698 } else if (sense_valid && sense_current) {
699 switch (sshdr.sense_key) {
700 case UNIT_ATTENTION:
701 if (cmd->device->removable) {
702 /* Detected disc change. Set a bit
703 * and quietly refuse further access.
704 */
705 cmd->device->changed = 1;
706 action = ACTION_FAIL;
707 } else {
708 /* Must have been a power glitch, or a
709 * bus reset. Could not have been a
710 * media change, so we just retry the
711 * command and see what happens.
712 */
713 action = ACTION_RETRY;
714 }
715 break;
716 case ILLEGAL_REQUEST:
717 /* If we had an ILLEGAL REQUEST returned, then
718 * we may have performed an unsupported
719 * command. The only thing this should be
720 * would be a ten byte read where only a six
721 * byte read was supported. Also, on a system
722 * where READ CAPACITY failed, we may have
723 * read past the end of the disk.
724 */
725 if ((cmd->device->use_10_for_rw &&
726 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
727 (cmd->cmnd[0] == READ_10 ||
728 cmd->cmnd[0] == WRITE_10)) {
729 /* This will issue a new 6-byte command. */
730 cmd->device->use_10_for_rw = 0;
731 action = ACTION_REPREP;
732 } else if (sshdr.asc == 0x10) /* DIX */ {
733 action = ACTION_FAIL;
734 blk_stat = BLK_STS_PROTECTION;
735 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
736 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
737 action = ACTION_FAIL;
738 blk_stat = BLK_STS_TARGET;
739 } else
740 action = ACTION_FAIL;
741 break;
742 case ABORTED_COMMAND:
743 action = ACTION_FAIL;
744 if (sshdr.asc == 0x10) /* DIF */
745 blk_stat = BLK_STS_PROTECTION;
746 break;
747 case NOT_READY:
748 /* If the device is in the process of becoming
749 * ready, or has a temporary blockage, retry.
750 */
751 if (sshdr.asc == 0x04) {
752 switch (sshdr.ascq) {
753 case 0x01: /* becoming ready */
754 case 0x04: /* format in progress */
755 case 0x05: /* rebuild in progress */
756 case 0x06: /* recalculation in progress */
757 case 0x07: /* operation in progress */
758 case 0x08: /* Long write in progress */
759 case 0x09: /* self test in progress */
760 case 0x14: /* space allocation in progress */
761 case 0x1a: /* start stop unit in progress */
762 case 0x1b: /* sanitize in progress */
763 case 0x1d: /* configuration in progress */
764 case 0x24: /* depopulation in progress */
765 action = ACTION_DELAYED_RETRY;
766 break;
767 default:
768 action = ACTION_FAIL;
769 break;
770 }
771 } else
772 action = ACTION_FAIL;
773 break;
774 case VOLUME_OVERFLOW:
775 /* See SSC3rXX or current. */
776 action = ACTION_FAIL;
777 break;
778 default:
779 action = ACTION_FAIL;
780 break;
781 }
782 } else
783 action = ACTION_FAIL;
784
785 if (action != ACTION_FAIL &&
786 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
787 action = ACTION_FAIL;
788
789 switch (action) {
790 case ACTION_FAIL:
791 /* Give up and fail the remainder of the request */
792 if (!(req->rq_flags & RQF_QUIET)) {
793 static DEFINE_RATELIMIT_STATE(_rs,
794 DEFAULT_RATELIMIT_INTERVAL,
795 DEFAULT_RATELIMIT_BURST);
796
797 if (unlikely(scsi_logging_level))
798 level =
799 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
800 SCSI_LOG_MLCOMPLETE_BITS);
801
802 /*
803 * if logging is enabled the failure will be printed
804 * in scsi_log_completion(), so avoid duplicate messages
805 */
806 if (!level && __ratelimit(&_rs)) {
807 scsi_print_result(cmd, NULL, FAILED);
808 if (driver_byte(result) == DRIVER_SENSE)
809 scsi_print_sense(cmd);
810 scsi_print_command(cmd);
811 }
812 }
813 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
814 return;
815 /*FALLTHRU*/
816 case ACTION_REPREP:
817 scsi_io_completion_reprep(cmd, q);
818 break;
819 case ACTION_RETRY:
820 /* Retry the same command immediately */
821 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
822 break;
823 case ACTION_DELAYED_RETRY:
824 /* Retry the same command after a delay */
825 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
826 break;
827 }
828 }
829
830 /*
831 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
832 * new result that may suppress further error checking. Also modifies
833 * *blk_statp in some cases.
834 */
835 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
836 blk_status_t *blk_statp)
837 {
838 bool sense_valid;
839 bool sense_current = true; /* false implies "deferred sense" */
840 struct request *req = cmd->request;
841 struct scsi_sense_hdr sshdr;
842
843 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
844 if (sense_valid)
845 sense_current = !scsi_sense_is_deferred(&sshdr);
846
847 if (blk_rq_is_passthrough(req)) {
848 if (sense_valid) {
849 /*
850 * SG_IO wants current and deferred errors
851 */
852 scsi_req(req)->sense_len =
853 min(8 + cmd->sense_buffer[7],
854 SCSI_SENSE_BUFFERSIZE);
855 }
856 if (sense_current)
857 *blk_statp = scsi_result_to_blk_status(cmd, result);
858 } else if (blk_rq_bytes(req) == 0 && sense_current) {
859 /*
860 * Flush commands do not transfers any data, and thus cannot use
861 * good_bytes != blk_rq_bytes(req) as the signal for an error.
862 * This sets *blk_statp explicitly for the problem case.
863 */
864 *blk_statp = scsi_result_to_blk_status(cmd, result);
865 }
866 /*
867 * Recovered errors need reporting, but they're always treated as
868 * success, so fiddle the result code here. For passthrough requests
869 * we already took a copy of the original into sreq->result which
870 * is what gets returned to the user
871 */
872 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
873 bool do_print = true;
874 /*
875 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
876 * skip print since caller wants ATA registers. Only occurs
877 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
878 */
879 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
880 do_print = false;
881 else if (req->rq_flags & RQF_QUIET)
882 do_print = false;
883 if (do_print)
884 scsi_print_sense(cmd);
885 result = 0;
886 /* for passthrough, *blk_statp may be set */
887 *blk_statp = BLK_STS_OK;
888 }
889 /*
890 * Another corner case: the SCSI status byte is non-zero but 'good'.
891 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
892 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
893 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
894 * intermediate statuses (both obsolete in SAM-4) as good.
895 */
896 if (status_byte(result) && scsi_status_is_good(result)) {
897 result = 0;
898 *blk_statp = BLK_STS_OK;
899 }
900 return result;
901 }
902
903 /*
904 * Function: scsi_io_completion()
905 *
906 * Purpose: Completion processing for block device I/O requests.
907 *
908 * Arguments: cmd - command that is finished.
909 *
910 * Lock status: Assumed that no lock is held upon entry.
911 *
912 * Returns: Nothing
913 *
914 * Notes: We will finish off the specified number of sectors. If we
915 * are done, the command block will be released and the queue
916 * function will be goosed. If we are not done then we have to
917 * figure out what to do next:
918 *
919 * a) We can call scsi_requeue_command(). The request
920 * will be unprepared and put back on the queue. Then
921 * a new command will be created for it. This should
922 * be used if we made forward progress, or if we want
923 * to switch from READ(10) to READ(6) for example.
924 *
925 * b) We can call __scsi_queue_insert(). The request will
926 * be put back on the queue and retried using the same
927 * command as before, possibly after a delay.
928 *
929 * c) We can call scsi_end_request() with blk_stat other than
930 * BLK_STS_OK, to fail the remainder of the request.
931 */
932 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
933 {
934 int result = cmd->result;
935 struct request_queue *q = cmd->device->request_queue;
936 struct request *req = cmd->request;
937 blk_status_t blk_stat = BLK_STS_OK;
938
939 if (unlikely(result)) /* a nz result may or may not be an error */
940 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
941
942 if (unlikely(blk_rq_is_passthrough(req))) {
943 /*
944 * scsi_result_to_blk_status may have reset the host_byte
945 */
946 scsi_req(req)->result = cmd->result;
947 }
948
949 /*
950 * Next deal with any sectors which we were able to correctly
951 * handle.
952 */
953 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
954 "%u sectors total, %d bytes done.\n",
955 blk_rq_sectors(req), good_bytes));
956
957 /*
958 * Next deal with any sectors which we were able to correctly
959 * handle. Failed, zero length commands always need to drop down
960 * to retry code. Fast path should return in this block.
961 */
962 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
963 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
964 return; /* no bytes remaining */
965 }
966
967 /* Kill remainder if no retries. */
968 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
969 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
970 WARN_ONCE(true,
971 "Bytes remaining after failed, no-retry command");
972 return;
973 }
974
975 /*
976 * If there had been no error, but we have leftover bytes in the
977 * requeues just queue the command up again.
978 */
979 if (likely(result == 0))
980 scsi_io_completion_reprep(cmd, q);
981 else
982 scsi_io_completion_action(cmd, result);
983 }
984
985 static blk_status_t scsi_init_sgtable(struct request *req,
986 struct scsi_data_buffer *sdb)
987 {
988 int count;
989
990 /*
991 * If sg table allocation fails, requeue request later.
992 */
993 if (unlikely(sg_alloc_table_chained(&sdb->table,
994 blk_rq_nr_phys_segments(req), sdb->table.sgl,
995 SCSI_INLINE_SG_CNT)))
996 return BLK_STS_RESOURCE;
997
998 /*
999 * Next, walk the list, and fill in the addresses and sizes of
1000 * each segment.
1001 */
1002 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1003 BUG_ON(count > sdb->table.nents);
1004 sdb->table.nents = count;
1005 sdb->length = blk_rq_payload_bytes(req);
1006 return BLK_STS_OK;
1007 }
1008
1009 /*
1010 * Function: scsi_init_io()
1011 *
1012 * Purpose: SCSI I/O initialize function.
1013 *
1014 * Arguments: cmd - Command descriptor we wish to initialize
1015 *
1016 * Returns: BLK_STS_OK on success
1017 * BLK_STS_RESOURCE if the failure is retryable
1018 * BLK_STS_IOERR if the failure is fatal
1019 */
1020 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1021 {
1022 struct request *rq = cmd->request;
1023 blk_status_t ret;
1024
1025 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1026 return BLK_STS_IOERR;
1027
1028 ret = scsi_init_sgtable(rq, &cmd->sdb);
1029 if (ret)
1030 return ret;
1031
1032 if (blk_integrity_rq(rq)) {
1033 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034 int ivecs, count;
1035
1036 if (WARN_ON_ONCE(!prot_sdb)) {
1037 /*
1038 * This can happen if someone (e.g. multipath)
1039 * queues a command to a device on an adapter
1040 * that does not support DIX.
1041 */
1042 ret = BLK_STS_IOERR;
1043 goto out_free_sgtables;
1044 }
1045
1046 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049 prot_sdb->table.sgl,
1050 SCSI_INLINE_PROT_SG_CNT)) {
1051 ret = BLK_STS_RESOURCE;
1052 goto out_free_sgtables;
1053 }
1054
1055 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056 prot_sdb->table.sgl);
1057 BUG_ON(count > ivecs);
1058 BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060 cmd->prot_sdb = prot_sdb;
1061 cmd->prot_sdb->table.nents = count;
1062 }
1063
1064 return BLK_STS_OK;
1065 out_free_sgtables:
1066 scsi_mq_free_sgtables(cmd);
1067 return ret;
1068 }
1069 EXPORT_SYMBOL(scsi_init_io);
1070
1071 /**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082 static void scsi_initialize_rq(struct request *rq)
1083 {
1084 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086 scsi_req_init(&cmd->req);
1087 init_rcu_head(&cmd->rcu);
1088 cmd->jiffies_at_alloc = jiffies;
1089 cmd->retries = 0;
1090 }
1091
1092 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1093 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1094 {
1095 struct scsi_device *sdev = cmd->device;
1096 struct Scsi_Host *shost = sdev->host;
1097 unsigned long flags;
1098
1099 if (shost->use_cmd_list) {
1100 spin_lock_irqsave(&sdev->list_lock, flags);
1101 list_add_tail(&cmd->list, &sdev->cmd_list);
1102 spin_unlock_irqrestore(&sdev->list_lock, flags);
1103 }
1104 }
1105
1106 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1107 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1108 {
1109 struct scsi_device *sdev = cmd->device;
1110 struct Scsi_Host *shost = sdev->host;
1111 unsigned long flags;
1112
1113 if (shost->use_cmd_list) {
1114 spin_lock_irqsave(&sdev->list_lock, flags);
1115 BUG_ON(list_empty(&cmd->list));
1116 list_del_init(&cmd->list);
1117 spin_unlock_irqrestore(&sdev->list_lock, flags);
1118 }
1119 }
1120
1121 /* Called after a request has been started. */
1122 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1123 {
1124 void *buf = cmd->sense_buffer;
1125 void *prot = cmd->prot_sdb;
1126 struct request *rq = blk_mq_rq_from_pdu(cmd);
1127 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1128 unsigned long jiffies_at_alloc;
1129 int retries;
1130
1131 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1132 flags |= SCMD_INITIALIZED;
1133 scsi_initialize_rq(rq);
1134 }
1135
1136 jiffies_at_alloc = cmd->jiffies_at_alloc;
1137 retries = cmd->retries;
1138 /* zero out the cmd, except for the embedded scsi_request */
1139 memset((char *)cmd + sizeof(cmd->req), 0,
1140 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1141
1142 cmd->device = dev;
1143 cmd->sense_buffer = buf;
1144 cmd->prot_sdb = prot;
1145 cmd->flags = flags;
1146 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1147 cmd->jiffies_at_alloc = jiffies_at_alloc;
1148 cmd->retries = retries;
1149
1150 scsi_add_cmd_to_list(cmd);
1151 }
1152
1153 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1154 struct request *req)
1155 {
1156 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1157
1158 /*
1159 * Passthrough requests may transfer data, in which case they must
1160 * a bio attached to them. Or they might contain a SCSI command
1161 * that does not transfer data, in which case they may optionally
1162 * submit a request without an attached bio.
1163 */
1164 if (req->bio) {
1165 blk_status_t ret = scsi_init_io(cmd);
1166 if (unlikely(ret != BLK_STS_OK))
1167 return ret;
1168 } else {
1169 BUG_ON(blk_rq_bytes(req));
1170
1171 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1172 }
1173
1174 cmd->cmd_len = scsi_req(req)->cmd_len;
1175 cmd->cmnd = scsi_req(req)->cmd;
1176 cmd->transfersize = blk_rq_bytes(req);
1177 cmd->allowed = scsi_req(req)->retries;
1178 return BLK_STS_OK;
1179 }
1180
1181 /*
1182 * Setup a normal block command. These are simple request from filesystems
1183 * that still need to be translated to SCSI CDBs from the ULD.
1184 */
1185 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1186 struct request *req)
1187 {
1188 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1189
1190 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1191 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1192 if (ret != BLK_STS_OK)
1193 return ret;
1194 }
1195
1196 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1197 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1198 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1199 }
1200
1201 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1202 struct request *req)
1203 {
1204 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1205
1206 if (!blk_rq_bytes(req))
1207 cmd->sc_data_direction = DMA_NONE;
1208 else if (rq_data_dir(req) == WRITE)
1209 cmd->sc_data_direction = DMA_TO_DEVICE;
1210 else
1211 cmd->sc_data_direction = DMA_FROM_DEVICE;
1212
1213 if (blk_rq_is_scsi(req))
1214 return scsi_setup_scsi_cmnd(sdev, req);
1215 else
1216 return scsi_setup_fs_cmnd(sdev, req);
1217 }
1218
1219 static blk_status_t
1220 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1221 {
1222 switch (sdev->sdev_state) {
1223 case SDEV_OFFLINE:
1224 case SDEV_TRANSPORT_OFFLINE:
1225 /*
1226 * If the device is offline we refuse to process any
1227 * commands. The device must be brought online
1228 * before trying any recovery commands.
1229 */
1230 sdev_printk(KERN_ERR, sdev,
1231 "rejecting I/O to offline device\n");
1232 return BLK_STS_IOERR;
1233 case SDEV_DEL:
1234 /*
1235 * If the device is fully deleted, we refuse to
1236 * process any commands as well.
1237 */
1238 sdev_printk(KERN_ERR, sdev,
1239 "rejecting I/O to dead device\n");
1240 return BLK_STS_IOERR;
1241 case SDEV_BLOCK:
1242 case SDEV_CREATED_BLOCK:
1243 return BLK_STS_RESOURCE;
1244 case SDEV_QUIESCE:
1245 /*
1246 * If the devices is blocked we defer normal commands.
1247 */
1248 if (req && !(req->rq_flags & RQF_PREEMPT))
1249 return BLK_STS_RESOURCE;
1250 return BLK_STS_OK;
1251 default:
1252 /*
1253 * For any other not fully online state we only allow
1254 * special commands. In particular any user initiated
1255 * command is not allowed.
1256 */
1257 if (req && !(req->rq_flags & RQF_PREEMPT))
1258 return BLK_STS_IOERR;
1259 return BLK_STS_OK;
1260 }
1261 }
1262
1263 /*
1264 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1265 * return 0.
1266 *
1267 * Called with the queue_lock held.
1268 */
1269 static inline int scsi_dev_queue_ready(struct request_queue *q,
1270 struct scsi_device *sdev)
1271 {
1272 unsigned int busy;
1273
1274 busy = atomic_inc_return(&sdev->device_busy) - 1;
1275 if (atomic_read(&sdev->device_blocked)) {
1276 if (busy)
1277 goto out_dec;
1278
1279 /*
1280 * unblock after device_blocked iterates to zero
1281 */
1282 if (atomic_dec_return(&sdev->device_blocked) > 0)
1283 goto out_dec;
1284 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1285 "unblocking device at zero depth\n"));
1286 }
1287
1288 if (busy >= sdev->queue_depth)
1289 goto out_dec;
1290
1291 return 1;
1292 out_dec:
1293 atomic_dec(&sdev->device_busy);
1294 return 0;
1295 }
1296
1297 /*
1298 * scsi_target_queue_ready: checks if there we can send commands to target
1299 * @sdev: scsi device on starget to check.
1300 */
1301 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1302 struct scsi_device *sdev)
1303 {
1304 struct scsi_target *starget = scsi_target(sdev);
1305 unsigned int busy;
1306
1307 if (starget->single_lun) {
1308 spin_lock_irq(shost->host_lock);
1309 if (starget->starget_sdev_user &&
1310 starget->starget_sdev_user != sdev) {
1311 spin_unlock_irq(shost->host_lock);
1312 return 0;
1313 }
1314 starget->starget_sdev_user = sdev;
1315 spin_unlock_irq(shost->host_lock);
1316 }
1317
1318 if (starget->can_queue <= 0)
1319 return 1;
1320
1321 busy = atomic_inc_return(&starget->target_busy) - 1;
1322 if (atomic_read(&starget->target_blocked) > 0) {
1323 if (busy)
1324 goto starved;
1325
1326 /*
1327 * unblock after target_blocked iterates to zero
1328 */
1329 if (atomic_dec_return(&starget->target_blocked) > 0)
1330 goto out_dec;
1331
1332 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1333 "unblocking target at zero depth\n"));
1334 }
1335
1336 if (busy >= starget->can_queue)
1337 goto starved;
1338
1339 return 1;
1340
1341 starved:
1342 spin_lock_irq(shost->host_lock);
1343 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1344 spin_unlock_irq(shost->host_lock);
1345 out_dec:
1346 if (starget->can_queue > 0)
1347 atomic_dec(&starget->target_busy);
1348 return 0;
1349 }
1350
1351 /*
1352 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1353 * return 0. We must end up running the queue again whenever 0 is
1354 * returned, else IO can hang.
1355 */
1356 static inline int scsi_host_queue_ready(struct request_queue *q,
1357 struct Scsi_Host *shost,
1358 struct scsi_device *sdev)
1359 {
1360 unsigned int busy;
1361
1362 if (scsi_host_in_recovery(shost))
1363 return 0;
1364
1365 busy = atomic_inc_return(&shost->host_busy) - 1;
1366 if (atomic_read(&shost->host_blocked) > 0) {
1367 if (busy)
1368 goto starved;
1369
1370 /*
1371 * unblock after host_blocked iterates to zero
1372 */
1373 if (atomic_dec_return(&shost->host_blocked) > 0)
1374 goto out_dec;
1375
1376 SCSI_LOG_MLQUEUE(3,
1377 shost_printk(KERN_INFO, shost,
1378 "unblocking host at zero depth\n"));
1379 }
1380
1381 if (shost->can_queue > 0 && busy >= shost->can_queue)
1382 goto starved;
1383 if (shost->host_self_blocked)
1384 goto starved;
1385
1386 /* We're OK to process the command, so we can't be starved */
1387 if (!list_empty(&sdev->starved_entry)) {
1388 spin_lock_irq(shost->host_lock);
1389 if (!list_empty(&sdev->starved_entry))
1390 list_del_init(&sdev->starved_entry);
1391 spin_unlock_irq(shost->host_lock);
1392 }
1393
1394 return 1;
1395
1396 starved:
1397 spin_lock_irq(shost->host_lock);
1398 if (list_empty(&sdev->starved_entry))
1399 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1400 spin_unlock_irq(shost->host_lock);
1401 out_dec:
1402 scsi_dec_host_busy(shost);
1403 return 0;
1404 }
1405
1406 /*
1407 * Busy state exporting function for request stacking drivers.
1408 *
1409 * For efficiency, no lock is taken to check the busy state of
1410 * shost/starget/sdev, since the returned value is not guaranteed and
1411 * may be changed after request stacking drivers call the function,
1412 * regardless of taking lock or not.
1413 *
1414 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1415 * needs to return 'not busy'. Otherwise, request stacking drivers
1416 * may hold requests forever.
1417 */
1418 static bool scsi_mq_lld_busy(struct request_queue *q)
1419 {
1420 struct scsi_device *sdev = q->queuedata;
1421 struct Scsi_Host *shost;
1422
1423 if (blk_queue_dying(q))
1424 return false;
1425
1426 shost = sdev->host;
1427
1428 /*
1429 * Ignore host/starget busy state.
1430 * Since block layer does not have a concept of fairness across
1431 * multiple queues, congestion of host/starget needs to be handled
1432 * in SCSI layer.
1433 */
1434 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1435 return true;
1436
1437 return false;
1438 }
1439
1440 static void scsi_softirq_done(struct request *rq)
1441 {
1442 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1443 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1444 int disposition;
1445
1446 INIT_LIST_HEAD(&cmd->eh_entry);
1447
1448 atomic_inc(&cmd->device->iodone_cnt);
1449 if (cmd->result)
1450 atomic_inc(&cmd->device->ioerr_cnt);
1451
1452 disposition = scsi_decide_disposition(cmd);
1453 if (disposition != SUCCESS &&
1454 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455 sdev_printk(KERN_ERR, cmd->device,
1456 "timing out command, waited %lus\n",
1457 wait_for/HZ);
1458 disposition = SUCCESS;
1459 }
1460
1461 scsi_log_completion(cmd, disposition);
1462
1463 switch (disposition) {
1464 case SUCCESS:
1465 scsi_finish_command(cmd);
1466 break;
1467 case NEEDS_RETRY:
1468 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1469 break;
1470 case ADD_TO_MLQUEUE:
1471 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472 break;
1473 default:
1474 scsi_eh_scmd_add(cmd);
1475 break;
1476 }
1477 }
1478
1479 /**
1480 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1481 * @cmd: command block we are dispatching.
1482 *
1483 * Return: nonzero return request was rejected and device's queue needs to be
1484 * plugged.
1485 */
1486 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1487 {
1488 struct Scsi_Host *host = cmd->device->host;
1489 int rtn = 0;
1490
1491 atomic_inc(&cmd->device->iorequest_cnt);
1492
1493 /* check if the device is still usable */
1494 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1495 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1496 * returns an immediate error upwards, and signals
1497 * that the device is no longer present */
1498 cmd->result = DID_NO_CONNECT << 16;
1499 goto done;
1500 }
1501
1502 /* Check to see if the scsi lld made this device blocked. */
1503 if (unlikely(scsi_device_blocked(cmd->device))) {
1504 /*
1505 * in blocked state, the command is just put back on
1506 * the device queue. The suspend state has already
1507 * blocked the queue so future requests should not
1508 * occur until the device transitions out of the
1509 * suspend state.
1510 */
1511 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512 "queuecommand : device blocked\n"));
1513 return SCSI_MLQUEUE_DEVICE_BUSY;
1514 }
1515
1516 /* Store the LUN value in cmnd, if needed. */
1517 if (cmd->device->lun_in_cdb)
1518 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1519 (cmd->device->lun << 5 & 0xe0);
1520
1521 scsi_log_send(cmd);
1522
1523 /*
1524 * Before we queue this command, check if the command
1525 * length exceeds what the host adapter can handle.
1526 */
1527 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1528 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1529 "queuecommand : command too long. "
1530 "cdb_size=%d host->max_cmd_len=%d\n",
1531 cmd->cmd_len, cmd->device->host->max_cmd_len));
1532 cmd->result = (DID_ABORT << 16);
1533 goto done;
1534 }
1535
1536 if (unlikely(host->shost_state == SHOST_DEL)) {
1537 cmd->result = (DID_NO_CONNECT << 16);
1538 goto done;
1539
1540 }
1541
1542 trace_scsi_dispatch_cmd_start(cmd);
1543 rtn = host->hostt->queuecommand(host, cmd);
1544 if (rtn) {
1545 trace_scsi_dispatch_cmd_error(cmd, rtn);
1546 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1547 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1548 rtn = SCSI_MLQUEUE_HOST_BUSY;
1549
1550 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1551 "queuecommand : request rejected\n"));
1552 }
1553
1554 return rtn;
1555 done:
1556 cmd->scsi_done(cmd);
1557 return 0;
1558 }
1559
1560 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1561 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1562 {
1563 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1564 sizeof(struct scatterlist);
1565 }
1566
1567 static blk_status_t scsi_mq_prep_fn(struct request *req)
1568 {
1569 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1570 struct scsi_device *sdev = req->q->queuedata;
1571 struct Scsi_Host *shost = sdev->host;
1572 struct scatterlist *sg;
1573
1574 scsi_init_command(sdev, cmd);
1575
1576 cmd->request = req;
1577 cmd->tag = req->tag;
1578 cmd->prot_op = SCSI_PROT_NORMAL;
1579
1580 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1581 cmd->sdb.table.sgl = sg;
1582
1583 if (scsi_host_get_prot(shost)) {
1584 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1585
1586 cmd->prot_sdb->table.sgl =
1587 (struct scatterlist *)(cmd->prot_sdb + 1);
1588 }
1589
1590 blk_mq_start_request(req);
1591
1592 return scsi_setup_cmnd(sdev, req);
1593 }
1594
1595 static void scsi_mq_done(struct scsi_cmnd *cmd)
1596 {
1597 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1598 return;
1599 trace_scsi_dispatch_cmd_done(cmd);
1600
1601 /*
1602 * If the block layer didn't complete the request due to a timeout
1603 * injection, scsi must clear its internal completed state so that the
1604 * timeout handler will see it needs to escalate its own error
1605 * recovery.
1606 */
1607 if (unlikely(!blk_mq_complete_request(cmd->request)))
1608 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1609 }
1610
1611 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1612 {
1613 struct request_queue *q = hctx->queue;
1614 struct scsi_device *sdev = q->queuedata;
1615
1616 atomic_dec(&sdev->device_busy);
1617 }
1618
1619 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1620 {
1621 struct request_queue *q = hctx->queue;
1622 struct scsi_device *sdev = q->queuedata;
1623
1624 if (scsi_dev_queue_ready(q, sdev))
1625 return true;
1626
1627 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1628 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1629 return false;
1630 }
1631
1632 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1633 const struct blk_mq_queue_data *bd)
1634 {
1635 struct request *req = bd->rq;
1636 struct request_queue *q = req->q;
1637 struct scsi_device *sdev = q->queuedata;
1638 struct Scsi_Host *shost = sdev->host;
1639 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1640 blk_status_t ret;
1641 int reason;
1642
1643 /*
1644 * If the device is not in running state we will reject some or all
1645 * commands.
1646 */
1647 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1648 ret = scsi_prep_state_check(sdev, req);
1649 if (ret != BLK_STS_OK)
1650 goto out_put_budget;
1651 }
1652
1653 ret = BLK_STS_RESOURCE;
1654 if (!scsi_target_queue_ready(shost, sdev))
1655 goto out_put_budget;
1656 if (!scsi_host_queue_ready(q, shost, sdev))
1657 goto out_dec_target_busy;
1658
1659 if (!(req->rq_flags & RQF_DONTPREP)) {
1660 ret = scsi_mq_prep_fn(req);
1661 if (ret != BLK_STS_OK)
1662 goto out_dec_host_busy;
1663 req->rq_flags |= RQF_DONTPREP;
1664 } else {
1665 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1666 blk_mq_start_request(req);
1667 }
1668
1669 if (sdev->simple_tags)
1670 cmd->flags |= SCMD_TAGGED;
1671 else
1672 cmd->flags &= ~SCMD_TAGGED;
1673
1674 scsi_init_cmd_errh(cmd);
1675 cmd->scsi_done = scsi_mq_done;
1676
1677 reason = scsi_dispatch_cmd(cmd);
1678 if (reason) {
1679 scsi_set_blocked(cmd, reason);
1680 ret = BLK_STS_RESOURCE;
1681 goto out_dec_host_busy;
1682 }
1683
1684 return BLK_STS_OK;
1685
1686 out_dec_host_busy:
1687 scsi_dec_host_busy(shost);
1688 out_dec_target_busy:
1689 if (scsi_target(sdev)->can_queue > 0)
1690 atomic_dec(&scsi_target(sdev)->target_busy);
1691 out_put_budget:
1692 scsi_mq_put_budget(hctx);
1693 switch (ret) {
1694 case BLK_STS_OK:
1695 break;
1696 case BLK_STS_RESOURCE:
1697 if (atomic_read(&sdev->device_busy) ||
1698 scsi_device_blocked(sdev))
1699 ret = BLK_STS_DEV_RESOURCE;
1700 break;
1701 default:
1702 if (unlikely(!scsi_device_online(sdev)))
1703 scsi_req(req)->result = DID_NO_CONNECT << 16;
1704 else
1705 scsi_req(req)->result = DID_ERROR << 16;
1706 /*
1707 * Make sure to release all allocated resources when
1708 * we hit an error, as we will never see this command
1709 * again.
1710 */
1711 if (req->rq_flags & RQF_DONTPREP)
1712 scsi_mq_uninit_cmd(cmd);
1713 break;
1714 }
1715 return ret;
1716 }
1717
1718 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1719 bool reserved)
1720 {
1721 if (reserved)
1722 return BLK_EH_RESET_TIMER;
1723 return scsi_times_out(req);
1724 }
1725
1726 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1727 unsigned int hctx_idx, unsigned int numa_node)
1728 {
1729 struct Scsi_Host *shost = set->driver_data;
1730 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1731 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1732 struct scatterlist *sg;
1733
1734 if (unchecked_isa_dma)
1735 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1736 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1737 GFP_KERNEL, numa_node);
1738 if (!cmd->sense_buffer)
1739 return -ENOMEM;
1740 cmd->req.sense = cmd->sense_buffer;
1741
1742 if (scsi_host_get_prot(shost)) {
1743 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1744 shost->hostt->cmd_size;
1745 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1746 }
1747
1748 return 0;
1749 }
1750
1751 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1752 unsigned int hctx_idx)
1753 {
1754 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1755
1756 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1757 cmd->sense_buffer);
1758 }
1759
1760 static int scsi_map_queues(struct blk_mq_tag_set *set)
1761 {
1762 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1763
1764 if (shost->hostt->map_queues)
1765 return shost->hostt->map_queues(shost);
1766 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1767 }
1768
1769 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1770 {
1771 struct device *dev = shost->dma_dev;
1772
1773 /*
1774 * this limit is imposed by hardware restrictions
1775 */
1776 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1777 SG_MAX_SEGMENTS));
1778
1779 if (scsi_host_prot_dma(shost)) {
1780 shost->sg_prot_tablesize =
1781 min_not_zero(shost->sg_prot_tablesize,
1782 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1783 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1784 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1785 }
1786
1787 blk_queue_max_hw_sectors(q, shost->max_sectors);
1788 if (shost->unchecked_isa_dma)
1789 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1790 blk_queue_segment_boundary(q, shost->dma_boundary);
1791 dma_set_seg_boundary(dev, shost->dma_boundary);
1792
1793 blk_queue_max_segment_size(q, shost->max_segment_size);
1794 dma_set_max_seg_size(dev, shost->max_segment_size);
1795
1796 /*
1797 * Set a reasonable default alignment: The larger of 32-byte (dword),
1798 * which is a common minimum for HBAs, and the minimum DMA alignment,
1799 * which is set by the platform.
1800 *
1801 * Devices that require a bigger alignment can increase it later.
1802 */
1803 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1804 }
1805 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1806
1807 static const struct blk_mq_ops scsi_mq_ops = {
1808 .get_budget = scsi_mq_get_budget,
1809 .put_budget = scsi_mq_put_budget,
1810 .queue_rq = scsi_queue_rq,
1811 .complete = scsi_softirq_done,
1812 .timeout = scsi_timeout,
1813 #ifdef CONFIG_BLK_DEBUG_FS
1814 .show_rq = scsi_show_rq,
1815 #endif
1816 .init_request = scsi_mq_init_request,
1817 .exit_request = scsi_mq_exit_request,
1818 .initialize_rq_fn = scsi_initialize_rq,
1819 .busy = scsi_mq_lld_busy,
1820 .map_queues = scsi_map_queues,
1821 };
1822
1823 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1824 {
1825 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1826 if (IS_ERR(sdev->request_queue))
1827 return NULL;
1828
1829 sdev->request_queue->queuedata = sdev;
1830 __scsi_init_queue(sdev->host, sdev->request_queue);
1831 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1832 return sdev->request_queue;
1833 }
1834
1835 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1836 {
1837 unsigned int cmd_size, sgl_size;
1838
1839 sgl_size = scsi_mq_inline_sgl_size(shost);
1840 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1841 if (scsi_host_get_prot(shost))
1842 cmd_size += sizeof(struct scsi_data_buffer) +
1843 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1844
1845 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1846 shost->tag_set.ops = &scsi_mq_ops;
1847 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1848 shost->tag_set.queue_depth = shost->can_queue;
1849 shost->tag_set.cmd_size = cmd_size;
1850 shost->tag_set.numa_node = NUMA_NO_NODE;
1851 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1852 shost->tag_set.flags |=
1853 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1854 shost->tag_set.driver_data = shost;
1855
1856 return blk_mq_alloc_tag_set(&shost->tag_set);
1857 }
1858
1859 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1860 {
1861 blk_mq_free_tag_set(&shost->tag_set);
1862 }
1863
1864 /**
1865 * scsi_device_from_queue - return sdev associated with a request_queue
1866 * @q: The request queue to return the sdev from
1867 *
1868 * Return the sdev associated with a request queue or NULL if the
1869 * request_queue does not reference a SCSI device.
1870 */
1871 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1872 {
1873 struct scsi_device *sdev = NULL;
1874
1875 if (q->mq_ops == &scsi_mq_ops)
1876 sdev = q->queuedata;
1877 if (!sdev || !get_device(&sdev->sdev_gendev))
1878 sdev = NULL;
1879
1880 return sdev;
1881 }
1882 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1883
1884 /*
1885 * Function: scsi_block_requests()
1886 *
1887 * Purpose: Utility function used by low-level drivers to prevent further
1888 * commands from being queued to the device.
1889 *
1890 * Arguments: shost - Host in question
1891 *
1892 * Returns: Nothing
1893 *
1894 * Lock status: No locks are assumed held.
1895 *
1896 * Notes: There is no timer nor any other means by which the requests
1897 * get unblocked other than the low-level driver calling
1898 * scsi_unblock_requests().
1899 */
1900 void scsi_block_requests(struct Scsi_Host *shost)
1901 {
1902 shost->host_self_blocked = 1;
1903 }
1904 EXPORT_SYMBOL(scsi_block_requests);
1905
1906 /*
1907 * Function: scsi_unblock_requests()
1908 *
1909 * Purpose: Utility function used by low-level drivers to allow further
1910 * commands from being queued to the device.
1911 *
1912 * Arguments: shost - Host in question
1913 *
1914 * Returns: Nothing
1915 *
1916 * Lock status: No locks are assumed held.
1917 *
1918 * Notes: There is no timer nor any other means by which the requests
1919 * get unblocked other than the low-level driver calling
1920 * scsi_unblock_requests().
1921 *
1922 * This is done as an API function so that changes to the
1923 * internals of the scsi mid-layer won't require wholesale
1924 * changes to drivers that use this feature.
1925 */
1926 void scsi_unblock_requests(struct Scsi_Host *shost)
1927 {
1928 shost->host_self_blocked = 0;
1929 scsi_run_host_queues(shost);
1930 }
1931 EXPORT_SYMBOL(scsi_unblock_requests);
1932
1933 int __init scsi_init_queue(void)
1934 {
1935 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1936 sizeof(struct scsi_data_buffer),
1937 0, 0, NULL);
1938 if (!scsi_sdb_cache) {
1939 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1940 return -ENOMEM;
1941 }
1942
1943 return 0;
1944 }
1945
1946 void scsi_exit_queue(void)
1947 {
1948 kmem_cache_destroy(scsi_sense_cache);
1949 kmem_cache_destroy(scsi_sense_isadma_cache);
1950 kmem_cache_destroy(scsi_sdb_cache);
1951 }
1952
1953 /**
1954 * scsi_mode_select - issue a mode select
1955 * @sdev: SCSI device to be queried
1956 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1957 * @sp: Save page bit (0 == don't save, 1 == save)
1958 * @modepage: mode page being requested
1959 * @buffer: request buffer (may not be smaller than eight bytes)
1960 * @len: length of request buffer.
1961 * @timeout: command timeout
1962 * @retries: number of retries before failing
1963 * @data: returns a structure abstracting the mode header data
1964 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1965 * must be SCSI_SENSE_BUFFERSIZE big.
1966 *
1967 * Returns zero if successful; negative error number or scsi
1968 * status on error
1969 *
1970 */
1971 int
1972 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1973 unsigned char *buffer, int len, int timeout, int retries,
1974 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1975 {
1976 unsigned char cmd[10];
1977 unsigned char *real_buffer;
1978 int ret;
1979
1980 memset(cmd, 0, sizeof(cmd));
1981 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1982
1983 if (sdev->use_10_for_ms) {
1984 if (len > 65535)
1985 return -EINVAL;
1986 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1987 if (!real_buffer)
1988 return -ENOMEM;
1989 memcpy(real_buffer + 8, buffer, len);
1990 len += 8;
1991 real_buffer[0] = 0;
1992 real_buffer[1] = 0;
1993 real_buffer[2] = data->medium_type;
1994 real_buffer[3] = data->device_specific;
1995 real_buffer[4] = data->longlba ? 0x01 : 0;
1996 real_buffer[5] = 0;
1997 real_buffer[6] = data->block_descriptor_length >> 8;
1998 real_buffer[7] = data->block_descriptor_length;
1999
2000 cmd[0] = MODE_SELECT_10;
2001 cmd[7] = len >> 8;
2002 cmd[8] = len;
2003 } else {
2004 if (len > 255 || data->block_descriptor_length > 255 ||
2005 data->longlba)
2006 return -EINVAL;
2007
2008 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2009 if (!real_buffer)
2010 return -ENOMEM;
2011 memcpy(real_buffer + 4, buffer, len);
2012 len += 4;
2013 real_buffer[0] = 0;
2014 real_buffer[1] = data->medium_type;
2015 real_buffer[2] = data->device_specific;
2016 real_buffer[3] = data->block_descriptor_length;
2017
2018
2019 cmd[0] = MODE_SELECT;
2020 cmd[4] = len;
2021 }
2022
2023 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2024 sshdr, timeout, retries, NULL);
2025 kfree(real_buffer);
2026 return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(scsi_mode_select);
2029
2030 /**
2031 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2032 * @sdev: SCSI device to be queried
2033 * @dbd: set if mode sense will allow block descriptors to be returned
2034 * @modepage: mode page being requested
2035 * @buffer: request buffer (may not be smaller than eight bytes)
2036 * @len: length of request buffer.
2037 * @timeout: command timeout
2038 * @retries: number of retries before failing
2039 * @data: returns a structure abstracting the mode header data
2040 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2041 * must be SCSI_SENSE_BUFFERSIZE big.
2042 *
2043 * Returns zero if unsuccessful, or the header offset (either 4
2044 * or 8 depending on whether a six or ten byte command was
2045 * issued) if successful.
2046 */
2047 int
2048 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2049 unsigned char *buffer, int len, int timeout, int retries,
2050 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2051 {
2052 unsigned char cmd[12];
2053 int use_10_for_ms;
2054 int header_length;
2055 int result, retry_count = retries;
2056 struct scsi_sense_hdr my_sshdr;
2057
2058 memset(data, 0, sizeof(*data));
2059 memset(&cmd[0], 0, 12);
2060 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2061 cmd[2] = modepage;
2062
2063 /* caller might not be interested in sense, but we need it */
2064 if (!sshdr)
2065 sshdr = &my_sshdr;
2066
2067 retry:
2068 use_10_for_ms = sdev->use_10_for_ms;
2069
2070 if (use_10_for_ms) {
2071 if (len < 8)
2072 len = 8;
2073
2074 cmd[0] = MODE_SENSE_10;
2075 cmd[8] = len;
2076 header_length = 8;
2077 } else {
2078 if (len < 4)
2079 len = 4;
2080
2081 cmd[0] = MODE_SENSE;
2082 cmd[4] = len;
2083 header_length = 4;
2084 }
2085
2086 memset(buffer, 0, len);
2087
2088 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2089 sshdr, timeout, retries, NULL);
2090
2091 /* This code looks awful: what it's doing is making sure an
2092 * ILLEGAL REQUEST sense return identifies the actual command
2093 * byte as the problem. MODE_SENSE commands can return
2094 * ILLEGAL REQUEST if the code page isn't supported */
2095
2096 if (use_10_for_ms && !scsi_status_is_good(result) &&
2097 driver_byte(result) == DRIVER_SENSE) {
2098 if (scsi_sense_valid(sshdr)) {
2099 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2100 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2101 /*
2102 * Invalid command operation code
2103 */
2104 sdev->use_10_for_ms = 0;
2105 goto retry;
2106 }
2107 }
2108 }
2109
2110 if(scsi_status_is_good(result)) {
2111 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2112 (modepage == 6 || modepage == 8))) {
2113 /* Initio breakage? */
2114 header_length = 0;
2115 data->length = 13;
2116 data->medium_type = 0;
2117 data->device_specific = 0;
2118 data->longlba = 0;
2119 data->block_descriptor_length = 0;
2120 } else if(use_10_for_ms) {
2121 data->length = buffer[0]*256 + buffer[1] + 2;
2122 data->medium_type = buffer[2];
2123 data->device_specific = buffer[3];
2124 data->longlba = buffer[4] & 0x01;
2125 data->block_descriptor_length = buffer[6]*256
2126 + buffer[7];
2127 } else {
2128 data->length = buffer[0] + 1;
2129 data->medium_type = buffer[1];
2130 data->device_specific = buffer[2];
2131 data->block_descriptor_length = buffer[3];
2132 }
2133 data->header_length = header_length;
2134 } else if ((status_byte(result) == CHECK_CONDITION) &&
2135 scsi_sense_valid(sshdr) &&
2136 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2137 retry_count--;
2138 goto retry;
2139 }
2140
2141 return result;
2142 }
2143 EXPORT_SYMBOL(scsi_mode_sense);
2144
2145 /**
2146 * scsi_test_unit_ready - test if unit is ready
2147 * @sdev: scsi device to change the state of.
2148 * @timeout: command timeout
2149 * @retries: number of retries before failing
2150 * @sshdr: outpout pointer for decoded sense information.
2151 *
2152 * Returns zero if unsuccessful or an error if TUR failed. For
2153 * removable media, UNIT_ATTENTION sets ->changed flag.
2154 **/
2155 int
2156 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2157 struct scsi_sense_hdr *sshdr)
2158 {
2159 char cmd[] = {
2160 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2161 };
2162 int result;
2163
2164 /* try to eat the UNIT_ATTENTION if there are enough retries */
2165 do {
2166 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2167 timeout, 1, NULL);
2168 if (sdev->removable && scsi_sense_valid(sshdr) &&
2169 sshdr->sense_key == UNIT_ATTENTION)
2170 sdev->changed = 1;
2171 } while (scsi_sense_valid(sshdr) &&
2172 sshdr->sense_key == UNIT_ATTENTION && --retries);
2173
2174 return result;
2175 }
2176 EXPORT_SYMBOL(scsi_test_unit_ready);
2177
2178 /**
2179 * scsi_device_set_state - Take the given device through the device state model.
2180 * @sdev: scsi device to change the state of.
2181 * @state: state to change to.
2182 *
2183 * Returns zero if successful or an error if the requested
2184 * transition is illegal.
2185 */
2186 int
2187 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2188 {
2189 enum scsi_device_state oldstate = sdev->sdev_state;
2190
2191 if (state == oldstate)
2192 return 0;
2193
2194 switch (state) {
2195 case SDEV_CREATED:
2196 switch (oldstate) {
2197 case SDEV_CREATED_BLOCK:
2198 break;
2199 default:
2200 goto illegal;
2201 }
2202 break;
2203
2204 case SDEV_RUNNING:
2205 switch (oldstate) {
2206 case SDEV_CREATED:
2207 case SDEV_OFFLINE:
2208 case SDEV_TRANSPORT_OFFLINE:
2209 case SDEV_QUIESCE:
2210 case SDEV_BLOCK:
2211 break;
2212 default:
2213 goto illegal;
2214 }
2215 break;
2216
2217 case SDEV_QUIESCE:
2218 switch (oldstate) {
2219 case SDEV_RUNNING:
2220 case SDEV_OFFLINE:
2221 case SDEV_TRANSPORT_OFFLINE:
2222 break;
2223 default:
2224 goto illegal;
2225 }
2226 break;
2227
2228 case SDEV_OFFLINE:
2229 case SDEV_TRANSPORT_OFFLINE:
2230 switch (oldstate) {
2231 case SDEV_CREATED:
2232 case SDEV_RUNNING:
2233 case SDEV_QUIESCE:
2234 case SDEV_BLOCK:
2235 break;
2236 default:
2237 goto illegal;
2238 }
2239 break;
2240
2241 case SDEV_BLOCK:
2242 switch (oldstate) {
2243 case SDEV_RUNNING:
2244 case SDEV_CREATED_BLOCK:
2245 case SDEV_OFFLINE:
2246 break;
2247 default:
2248 goto illegal;
2249 }
2250 break;
2251
2252 case SDEV_CREATED_BLOCK:
2253 switch (oldstate) {
2254 case SDEV_CREATED:
2255 break;
2256 default:
2257 goto illegal;
2258 }
2259 break;
2260
2261 case SDEV_CANCEL:
2262 switch (oldstate) {
2263 case SDEV_CREATED:
2264 case SDEV_RUNNING:
2265 case SDEV_QUIESCE:
2266 case SDEV_OFFLINE:
2267 case SDEV_TRANSPORT_OFFLINE:
2268 break;
2269 default:
2270 goto illegal;
2271 }
2272 break;
2273
2274 case SDEV_DEL:
2275 switch (oldstate) {
2276 case SDEV_CREATED:
2277 case SDEV_RUNNING:
2278 case SDEV_OFFLINE:
2279 case SDEV_TRANSPORT_OFFLINE:
2280 case SDEV_CANCEL:
2281 case SDEV_BLOCK:
2282 case SDEV_CREATED_BLOCK:
2283 break;
2284 default:
2285 goto illegal;
2286 }
2287 break;
2288
2289 }
2290 sdev->sdev_state = state;
2291 return 0;
2292
2293 illegal:
2294 SCSI_LOG_ERROR_RECOVERY(1,
2295 sdev_printk(KERN_ERR, sdev,
2296 "Illegal state transition %s->%s",
2297 scsi_device_state_name(oldstate),
2298 scsi_device_state_name(state))
2299 );
2300 return -EINVAL;
2301 }
2302 EXPORT_SYMBOL(scsi_device_set_state);
2303
2304 /**
2305 * sdev_evt_emit - emit a single SCSI device uevent
2306 * @sdev: associated SCSI device
2307 * @evt: event to emit
2308 *
2309 * Send a single uevent (scsi_event) to the associated scsi_device.
2310 */
2311 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2312 {
2313 int idx = 0;
2314 char *envp[3];
2315
2316 switch (evt->evt_type) {
2317 case SDEV_EVT_MEDIA_CHANGE:
2318 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2319 break;
2320 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2321 scsi_rescan_device(&sdev->sdev_gendev);
2322 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2323 break;
2324 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2325 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2326 break;
2327 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2328 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2329 break;
2330 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2331 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2332 break;
2333 case SDEV_EVT_LUN_CHANGE_REPORTED:
2334 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2335 break;
2336 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2337 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2338 break;
2339 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2340 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2341 break;
2342 default:
2343 /* do nothing */
2344 break;
2345 }
2346
2347 envp[idx++] = NULL;
2348
2349 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2350 }
2351
2352 /**
2353 * sdev_evt_thread - send a uevent for each scsi event
2354 * @work: work struct for scsi_device
2355 *
2356 * Dispatch queued events to their associated scsi_device kobjects
2357 * as uevents.
2358 */
2359 void scsi_evt_thread(struct work_struct *work)
2360 {
2361 struct scsi_device *sdev;
2362 enum scsi_device_event evt_type;
2363 LIST_HEAD(event_list);
2364
2365 sdev = container_of(work, struct scsi_device, event_work);
2366
2367 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2368 if (test_and_clear_bit(evt_type, sdev->pending_events))
2369 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2370
2371 while (1) {
2372 struct scsi_event *evt;
2373 struct list_head *this, *tmp;
2374 unsigned long flags;
2375
2376 spin_lock_irqsave(&sdev->list_lock, flags);
2377 list_splice_init(&sdev->event_list, &event_list);
2378 spin_unlock_irqrestore(&sdev->list_lock, flags);
2379
2380 if (list_empty(&event_list))
2381 break;
2382
2383 list_for_each_safe(this, tmp, &event_list) {
2384 evt = list_entry(this, struct scsi_event, node);
2385 list_del(&evt->node);
2386 scsi_evt_emit(sdev, evt);
2387 kfree(evt);
2388 }
2389 }
2390 }
2391
2392 /**
2393 * sdev_evt_send - send asserted event to uevent thread
2394 * @sdev: scsi_device event occurred on
2395 * @evt: event to send
2396 *
2397 * Assert scsi device event asynchronously.
2398 */
2399 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2400 {
2401 unsigned long flags;
2402
2403 #if 0
2404 /* FIXME: currently this check eliminates all media change events
2405 * for polled devices. Need to update to discriminate between AN
2406 * and polled events */
2407 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2408 kfree(evt);
2409 return;
2410 }
2411 #endif
2412
2413 spin_lock_irqsave(&sdev->list_lock, flags);
2414 list_add_tail(&evt->node, &sdev->event_list);
2415 schedule_work(&sdev->event_work);
2416 spin_unlock_irqrestore(&sdev->list_lock, flags);
2417 }
2418 EXPORT_SYMBOL_GPL(sdev_evt_send);
2419
2420 /**
2421 * sdev_evt_alloc - allocate a new scsi event
2422 * @evt_type: type of event to allocate
2423 * @gfpflags: GFP flags for allocation
2424 *
2425 * Allocates and returns a new scsi_event.
2426 */
2427 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2428 gfp_t gfpflags)
2429 {
2430 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2431 if (!evt)
2432 return NULL;
2433
2434 evt->evt_type = evt_type;
2435 INIT_LIST_HEAD(&evt->node);
2436
2437 /* evt_type-specific initialization, if any */
2438 switch (evt_type) {
2439 case SDEV_EVT_MEDIA_CHANGE:
2440 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2441 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2442 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2443 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2444 case SDEV_EVT_LUN_CHANGE_REPORTED:
2445 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2446 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2447 default:
2448 /* do nothing */
2449 break;
2450 }
2451
2452 return evt;
2453 }
2454 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2455
2456 /**
2457 * sdev_evt_send_simple - send asserted event to uevent thread
2458 * @sdev: scsi_device event occurred on
2459 * @evt_type: type of event to send
2460 * @gfpflags: GFP flags for allocation
2461 *
2462 * Assert scsi device event asynchronously, given an event type.
2463 */
2464 void sdev_evt_send_simple(struct scsi_device *sdev,
2465 enum scsi_device_event evt_type, gfp_t gfpflags)
2466 {
2467 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2468 if (!evt) {
2469 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2470 evt_type);
2471 return;
2472 }
2473
2474 sdev_evt_send(sdev, evt);
2475 }
2476 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2477
2478 /**
2479 * scsi_device_quiesce - Block user issued commands.
2480 * @sdev: scsi device to quiesce.
2481 *
2482 * This works by trying to transition to the SDEV_QUIESCE state
2483 * (which must be a legal transition). When the device is in this
2484 * state, only special requests will be accepted, all others will
2485 * be deferred. Since special requests may also be requeued requests,
2486 * a successful return doesn't guarantee the device will be
2487 * totally quiescent.
2488 *
2489 * Must be called with user context, may sleep.
2490 *
2491 * Returns zero if unsuccessful or an error if not.
2492 */
2493 int
2494 scsi_device_quiesce(struct scsi_device *sdev)
2495 {
2496 struct request_queue *q = sdev->request_queue;
2497 int err;
2498
2499 /*
2500 * It is allowed to call scsi_device_quiesce() multiple times from
2501 * the same context but concurrent scsi_device_quiesce() calls are
2502 * not allowed.
2503 */
2504 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2505
2506 if (sdev->quiesced_by == current)
2507 return 0;
2508
2509 blk_set_pm_only(q);
2510
2511 blk_mq_freeze_queue(q);
2512 /*
2513 * Ensure that the effect of blk_set_pm_only() will be visible
2514 * for percpu_ref_tryget() callers that occur after the queue
2515 * unfreeze even if the queue was already frozen before this function
2516 * was called. See also https://lwn.net/Articles/573497/.
2517 */
2518 synchronize_rcu();
2519 blk_mq_unfreeze_queue(q);
2520
2521 mutex_lock(&sdev->state_mutex);
2522 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2523 if (err == 0)
2524 sdev->quiesced_by = current;
2525 else
2526 blk_clear_pm_only(q);
2527 mutex_unlock(&sdev->state_mutex);
2528
2529 return err;
2530 }
2531 EXPORT_SYMBOL(scsi_device_quiesce);
2532
2533 /**
2534 * scsi_device_resume - Restart user issued commands to a quiesced device.
2535 * @sdev: scsi device to resume.
2536 *
2537 * Moves the device from quiesced back to running and restarts the
2538 * queues.
2539 *
2540 * Must be called with user context, may sleep.
2541 */
2542 void scsi_device_resume(struct scsi_device *sdev)
2543 {
2544 /* check if the device state was mutated prior to resume, and if
2545 * so assume the state is being managed elsewhere (for example
2546 * device deleted during suspend)
2547 */
2548 mutex_lock(&sdev->state_mutex);
2549 if (sdev->quiesced_by) {
2550 sdev->quiesced_by = NULL;
2551 blk_clear_pm_only(sdev->request_queue);
2552 }
2553 if (sdev->sdev_state == SDEV_QUIESCE)
2554 scsi_device_set_state(sdev, SDEV_RUNNING);
2555 mutex_unlock(&sdev->state_mutex);
2556 }
2557 EXPORT_SYMBOL(scsi_device_resume);
2558
2559 static void
2560 device_quiesce_fn(struct scsi_device *sdev, void *data)
2561 {
2562 scsi_device_quiesce(sdev);
2563 }
2564
2565 void
2566 scsi_target_quiesce(struct scsi_target *starget)
2567 {
2568 starget_for_each_device(starget, NULL, device_quiesce_fn);
2569 }
2570 EXPORT_SYMBOL(scsi_target_quiesce);
2571
2572 static void
2573 device_resume_fn(struct scsi_device *sdev, void *data)
2574 {
2575 scsi_device_resume(sdev);
2576 }
2577
2578 void
2579 scsi_target_resume(struct scsi_target *starget)
2580 {
2581 starget_for_each_device(starget, NULL, device_resume_fn);
2582 }
2583 EXPORT_SYMBOL(scsi_target_resume);
2584
2585 /**
2586 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2587 * @sdev: device to block
2588 *
2589 * Pause SCSI command processing on the specified device. Does not sleep.
2590 *
2591 * Returns zero if successful or a negative error code upon failure.
2592 *
2593 * Notes:
2594 * This routine transitions the device to the SDEV_BLOCK state (which must be
2595 * a legal transition). When the device is in this state, command processing
2596 * is paused until the device leaves the SDEV_BLOCK state. See also
2597 * scsi_internal_device_unblock_nowait().
2598 */
2599 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2600 {
2601 struct request_queue *q = sdev->request_queue;
2602 int err = 0;
2603
2604 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2605 if (err) {
2606 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2607
2608 if (err)
2609 return err;
2610 }
2611
2612 /*
2613 * The device has transitioned to SDEV_BLOCK. Stop the
2614 * block layer from calling the midlayer with this device's
2615 * request queue.
2616 */
2617 blk_mq_quiesce_queue_nowait(q);
2618 return 0;
2619 }
2620 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2621
2622 /**
2623 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2624 * @sdev: device to block
2625 *
2626 * Pause SCSI command processing on the specified device and wait until all
2627 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2628 *
2629 * Returns zero if successful or a negative error code upon failure.
2630 *
2631 * Note:
2632 * This routine transitions the device to the SDEV_BLOCK state (which must be
2633 * a legal transition). When the device is in this state, command processing
2634 * is paused until the device leaves the SDEV_BLOCK state. See also
2635 * scsi_internal_device_unblock().
2636 */
2637 static int scsi_internal_device_block(struct scsi_device *sdev)
2638 {
2639 struct request_queue *q = sdev->request_queue;
2640 int err;
2641
2642 mutex_lock(&sdev->state_mutex);
2643 err = scsi_internal_device_block_nowait(sdev);
2644 if (err == 0)
2645 blk_mq_quiesce_queue(q);
2646 mutex_unlock(&sdev->state_mutex);
2647
2648 return err;
2649 }
2650
2651 void scsi_start_queue(struct scsi_device *sdev)
2652 {
2653 struct request_queue *q = sdev->request_queue;
2654
2655 blk_mq_unquiesce_queue(q);
2656 }
2657
2658 /**
2659 * scsi_internal_device_unblock_nowait - resume a device after a block request
2660 * @sdev: device to resume
2661 * @new_state: state to set the device to after unblocking
2662 *
2663 * Restart the device queue for a previously suspended SCSI device. Does not
2664 * sleep.
2665 *
2666 * Returns zero if successful or a negative error code upon failure.
2667 *
2668 * Notes:
2669 * This routine transitions the device to the SDEV_RUNNING state or to one of
2670 * the offline states (which must be a legal transition) allowing the midlayer
2671 * to goose the queue for this device.
2672 */
2673 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2674 enum scsi_device_state new_state)
2675 {
2676 /*
2677 * Try to transition the scsi device to SDEV_RUNNING or one of the
2678 * offlined states and goose the device queue if successful.
2679 */
2680 switch (sdev->sdev_state) {
2681 case SDEV_BLOCK:
2682 case SDEV_TRANSPORT_OFFLINE:
2683 sdev->sdev_state = new_state;
2684 break;
2685 case SDEV_CREATED_BLOCK:
2686 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2687 new_state == SDEV_OFFLINE)
2688 sdev->sdev_state = new_state;
2689 else
2690 sdev->sdev_state = SDEV_CREATED;
2691 break;
2692 case SDEV_CANCEL:
2693 case SDEV_OFFLINE:
2694 break;
2695 default:
2696 return -EINVAL;
2697 }
2698 scsi_start_queue(sdev);
2699
2700 return 0;
2701 }
2702 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2703
2704 /**
2705 * scsi_internal_device_unblock - resume a device after a block request
2706 * @sdev: device to resume
2707 * @new_state: state to set the device to after unblocking
2708 *
2709 * Restart the device queue for a previously suspended SCSI device. May sleep.
2710 *
2711 * Returns zero if successful or a negative error code upon failure.
2712 *
2713 * Notes:
2714 * This routine transitions the device to the SDEV_RUNNING state or to one of
2715 * the offline states (which must be a legal transition) allowing the midlayer
2716 * to goose the queue for this device.
2717 */
2718 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2719 enum scsi_device_state new_state)
2720 {
2721 int ret;
2722
2723 mutex_lock(&sdev->state_mutex);
2724 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2725 mutex_unlock(&sdev->state_mutex);
2726
2727 return ret;
2728 }
2729
2730 static void
2731 device_block(struct scsi_device *sdev, void *data)
2732 {
2733 scsi_internal_device_block(sdev);
2734 }
2735
2736 static int
2737 target_block(struct device *dev, void *data)
2738 {
2739 if (scsi_is_target_device(dev))
2740 starget_for_each_device(to_scsi_target(dev), NULL,
2741 device_block);
2742 return 0;
2743 }
2744
2745 void
2746 scsi_target_block(struct device *dev)
2747 {
2748 if (scsi_is_target_device(dev))
2749 starget_for_each_device(to_scsi_target(dev), NULL,
2750 device_block);
2751 else
2752 device_for_each_child(dev, NULL, target_block);
2753 }
2754 EXPORT_SYMBOL_GPL(scsi_target_block);
2755
2756 static void
2757 device_unblock(struct scsi_device *sdev, void *data)
2758 {
2759 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2760 }
2761
2762 static int
2763 target_unblock(struct device *dev, void *data)
2764 {
2765 if (scsi_is_target_device(dev))
2766 starget_for_each_device(to_scsi_target(dev), data,
2767 device_unblock);
2768 return 0;
2769 }
2770
2771 void
2772 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2773 {
2774 if (scsi_is_target_device(dev))
2775 starget_for_each_device(to_scsi_target(dev), &new_state,
2776 device_unblock);
2777 else
2778 device_for_each_child(dev, &new_state, target_unblock);
2779 }
2780 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2781
2782 /**
2783 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2784 * @sgl: scatter-gather list
2785 * @sg_count: number of segments in sg
2786 * @offset: offset in bytes into sg, on return offset into the mapped area
2787 * @len: bytes to map, on return number of bytes mapped
2788 *
2789 * Returns virtual address of the start of the mapped page
2790 */
2791 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2792 size_t *offset, size_t *len)
2793 {
2794 int i;
2795 size_t sg_len = 0, len_complete = 0;
2796 struct scatterlist *sg;
2797 struct page *page;
2798
2799 WARN_ON(!irqs_disabled());
2800
2801 for_each_sg(sgl, sg, sg_count, i) {
2802 len_complete = sg_len; /* Complete sg-entries */
2803 sg_len += sg->length;
2804 if (sg_len > *offset)
2805 break;
2806 }
2807
2808 if (unlikely(i == sg_count)) {
2809 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2810 "elements %d\n",
2811 __func__, sg_len, *offset, sg_count);
2812 WARN_ON(1);
2813 return NULL;
2814 }
2815
2816 /* Offset starting from the beginning of first page in this sg-entry */
2817 *offset = *offset - len_complete + sg->offset;
2818
2819 /* Assumption: contiguous pages can be accessed as "page + i" */
2820 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2821 *offset &= ~PAGE_MASK;
2822
2823 /* Bytes in this sg-entry from *offset to the end of the page */
2824 sg_len = PAGE_SIZE - *offset;
2825 if (*len > sg_len)
2826 *len = sg_len;
2827
2828 return kmap_atomic(page);
2829 }
2830 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2831
2832 /**
2833 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2834 * @virt: virtual address to be unmapped
2835 */
2836 void scsi_kunmap_atomic_sg(void *virt)
2837 {
2838 kunmap_atomic(virt);
2839 }
2840 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2841
2842 void sdev_disable_disk_events(struct scsi_device *sdev)
2843 {
2844 atomic_inc(&sdev->disk_events_disable_depth);
2845 }
2846 EXPORT_SYMBOL(sdev_disable_disk_events);
2847
2848 void sdev_enable_disk_events(struct scsi_device *sdev)
2849 {
2850 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2851 return;
2852 atomic_dec(&sdev->disk_events_disable_depth);
2853 }
2854 EXPORT_SYMBOL(sdev_enable_disk_events);
2855
2856 /**
2857 * scsi_vpd_lun_id - return a unique device identification
2858 * @sdev: SCSI device
2859 * @id: buffer for the identification
2860 * @id_len: length of the buffer
2861 *
2862 * Copies a unique device identification into @id based
2863 * on the information in the VPD page 0x83 of the device.
2864 * The string will be formatted as a SCSI name string.
2865 *
2866 * Returns the length of the identification or error on failure.
2867 * If the identifier is longer than the supplied buffer the actual
2868 * identifier length is returned and the buffer is not zero-padded.
2869 */
2870 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2871 {
2872 u8 cur_id_type = 0xff;
2873 u8 cur_id_size = 0;
2874 const unsigned char *d, *cur_id_str;
2875 const struct scsi_vpd *vpd_pg83;
2876 int id_size = -EINVAL;
2877
2878 rcu_read_lock();
2879 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2880 if (!vpd_pg83) {
2881 rcu_read_unlock();
2882 return -ENXIO;
2883 }
2884
2885 /*
2886 * Look for the correct descriptor.
2887 * Order of preference for lun descriptor:
2888 * - SCSI name string
2889 * - NAA IEEE Registered Extended
2890 * - EUI-64 based 16-byte
2891 * - EUI-64 based 12-byte
2892 * - NAA IEEE Registered
2893 * - NAA IEEE Extended
2894 * - T10 Vendor ID
2895 * as longer descriptors reduce the likelyhood
2896 * of identification clashes.
2897 */
2898
2899 /* The id string must be at least 20 bytes + terminating NULL byte */
2900 if (id_len < 21) {
2901 rcu_read_unlock();
2902 return -EINVAL;
2903 }
2904
2905 memset(id, 0, id_len);
2906 d = vpd_pg83->data + 4;
2907 while (d < vpd_pg83->data + vpd_pg83->len) {
2908 /* Skip designators not referring to the LUN */
2909 if ((d[1] & 0x30) != 0x00)
2910 goto next_desig;
2911
2912 switch (d[1] & 0xf) {
2913 case 0x1:
2914 /* T10 Vendor ID */
2915 if (cur_id_size > d[3])
2916 break;
2917 /* Prefer anything */
2918 if (cur_id_type > 0x01 && cur_id_type != 0xff)
2919 break;
2920 cur_id_size = d[3];
2921 if (cur_id_size + 4 > id_len)
2922 cur_id_size = id_len - 4;
2923 cur_id_str = d + 4;
2924 cur_id_type = d[1] & 0xf;
2925 id_size = snprintf(id, id_len, "t10.%*pE",
2926 cur_id_size, cur_id_str);
2927 break;
2928 case 0x2:
2929 /* EUI-64 */
2930 if (cur_id_size > d[3])
2931 break;
2932 /* Prefer NAA IEEE Registered Extended */
2933 if (cur_id_type == 0x3 &&
2934 cur_id_size == d[3])
2935 break;
2936 cur_id_size = d[3];
2937 cur_id_str = d + 4;
2938 cur_id_type = d[1] & 0xf;
2939 switch (cur_id_size) {
2940 case 8:
2941 id_size = snprintf(id, id_len,
2942 "eui.%8phN",
2943 cur_id_str);
2944 break;
2945 case 12:
2946 id_size = snprintf(id, id_len,
2947 "eui.%12phN",
2948 cur_id_str);
2949 break;
2950 case 16:
2951 id_size = snprintf(id, id_len,
2952 "eui.%16phN",
2953 cur_id_str);
2954 break;
2955 default:
2956 cur_id_size = 0;
2957 break;
2958 }
2959 break;
2960 case 0x3:
2961 /* NAA */
2962 if (cur_id_size > d[3])
2963 break;
2964 cur_id_size = d[3];
2965 cur_id_str = d + 4;
2966 cur_id_type = d[1] & 0xf;
2967 switch (cur_id_size) {
2968 case 8:
2969 id_size = snprintf(id, id_len,
2970 "naa.%8phN",
2971 cur_id_str);
2972 break;
2973 case 16:
2974 id_size = snprintf(id, id_len,
2975 "naa.%16phN",
2976 cur_id_str);
2977 break;
2978 default:
2979 cur_id_size = 0;
2980 break;
2981 }
2982 break;
2983 case 0x8:
2984 /* SCSI name string */
2985 if (cur_id_size + 4 > d[3])
2986 break;
2987 /* Prefer others for truncated descriptor */
2988 if (cur_id_size && d[3] > id_len)
2989 break;
2990 cur_id_size = id_size = d[3];
2991 cur_id_str = d + 4;
2992 cur_id_type = d[1] & 0xf;
2993 if (cur_id_size >= id_len)
2994 cur_id_size = id_len - 1;
2995 memcpy(id, cur_id_str, cur_id_size);
2996 /* Decrease priority for truncated descriptor */
2997 if (cur_id_size != id_size)
2998 cur_id_size = 6;
2999 break;
3000 default:
3001 break;
3002 }
3003 next_desig:
3004 d += d[3] + 4;
3005 }
3006 rcu_read_unlock();
3007
3008 return id_size;
3009 }
3010 EXPORT_SYMBOL(scsi_vpd_lun_id);
3011
3012 /*
3013 * scsi_vpd_tpg_id - return a target port group identifier
3014 * @sdev: SCSI device
3015 *
3016 * Returns the Target Port Group identifier from the information
3017 * froom VPD page 0x83 of the device.
3018 *
3019 * Returns the identifier or error on failure.
3020 */
3021 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3022 {
3023 const unsigned char *d;
3024 const struct scsi_vpd *vpd_pg83;
3025 int group_id = -EAGAIN, rel_port = -1;
3026
3027 rcu_read_lock();
3028 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3029 if (!vpd_pg83) {
3030 rcu_read_unlock();
3031 return -ENXIO;
3032 }
3033
3034 d = vpd_pg83->data + 4;
3035 while (d < vpd_pg83->data + vpd_pg83->len) {
3036 switch (d[1] & 0xf) {
3037 case 0x4:
3038 /* Relative target port */
3039 rel_port = get_unaligned_be16(&d[6]);
3040 break;
3041 case 0x5:
3042 /* Target port group */
3043 group_id = get_unaligned_be16(&d[6]);
3044 break;
3045 default:
3046 break;
3047 }
3048 d += d[3] + 4;
3049 }
3050 rcu_read_unlock();
3051
3052 if (group_id >= 0 && rel_id && rel_port != -1)
3053 *rel_id = rel_port;
3054
3055 return group_id;
3056 }
3057 EXPORT_SYMBOL(scsi_vpd_tpg_id);