2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
36 #include <trace/events/scsi.h>
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
42 static struct kmem_cache
*scsi_sdb_cache
;
43 static struct kmem_cache
*scsi_sense_cache
;
44 static struct kmem_cache
*scsi_sense_isadma_cache
;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex
);
47 static inline struct kmem_cache
*
48 scsi_select_sense_cache(bool unchecked_isa_dma
)
50 return unchecked_isa_dma
? scsi_sense_isadma_cache
: scsi_sense_cache
;
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma
,
54 unsigned char *sense_buffer
)
56 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma
),
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma
,
61 gfp_t gfp_mask
, int numa_node
)
63 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma
),
67 int scsi_init_sense_cache(struct Scsi_Host
*shost
)
69 struct kmem_cache
*cache
;
72 cache
= scsi_select_sense_cache(shost
->unchecked_isa_dma
);
76 mutex_lock(&scsi_sense_cache_mutex
);
77 if (shost
->unchecked_isa_dma
) {
78 scsi_sense_isadma_cache
=
79 kmem_cache_create("scsi_sense_cache(DMA)",
80 SCSI_SENSE_BUFFERSIZE
, 0,
81 SLAB_HWCACHE_ALIGN
| SLAB_CACHE_DMA
, NULL
);
82 if (!scsi_sense_isadma_cache
)
86 kmem_cache_create("scsi_sense_cache",
87 SCSI_SENSE_BUFFERSIZE
, 0, SLAB_HWCACHE_ALIGN
, NULL
);
88 if (!scsi_sense_cache
)
92 mutex_unlock(&scsi_sense_cache_mutex
);
97 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98 * not change behaviour from the previous unplug mechanism, experimentation
99 * may prove this needs changing.
101 #define SCSI_QUEUE_DELAY 3
104 scsi_set_blocked(struct scsi_cmnd
*cmd
, int reason
)
106 struct Scsi_Host
*host
= cmd
->device
->host
;
107 struct scsi_device
*device
= cmd
->device
;
108 struct scsi_target
*starget
= scsi_target(device
);
111 * Set the appropriate busy bit for the device/host.
113 * If the host/device isn't busy, assume that something actually
114 * completed, and that we should be able to queue a command now.
116 * Note that the prior mid-layer assumption that any host could
117 * always queue at least one command is now broken. The mid-layer
118 * will implement a user specifiable stall (see
119 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120 * if a command is requeued with no other commands outstanding
121 * either for the device or for the host.
124 case SCSI_MLQUEUE_HOST_BUSY
:
125 atomic_set(&host
->host_blocked
, host
->max_host_blocked
);
127 case SCSI_MLQUEUE_DEVICE_BUSY
:
128 case SCSI_MLQUEUE_EH_RETRY
:
129 atomic_set(&device
->device_blocked
,
130 device
->max_device_blocked
);
132 case SCSI_MLQUEUE_TARGET_BUSY
:
133 atomic_set(&starget
->target_blocked
,
134 starget
->max_target_blocked
);
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd
*cmd
)
141 struct scsi_device
*sdev
= cmd
->device
;
143 blk_mq_requeue_request(cmd
->request
, true);
144 put_device(&sdev
->sdev_gendev
);
148 * __scsi_queue_insert - private queue insertion
149 * @cmd: The SCSI command being requeued
150 * @reason: The reason for the requeue
151 * @unbusy: Whether the queue should be unbusied
153 * This is a private queue insertion. The public interface
154 * scsi_queue_insert() always assumes the queue should be unbusied
155 * because it's always called before the completion. This function is
156 * for a requeue after completion, which should only occur in this
159 static void __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
161 struct scsi_device
*device
= cmd
->device
;
162 struct request_queue
*q
= device
->request_queue
;
165 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO
, cmd
,
166 "Inserting command %p into mlqueue\n", cmd
));
168 scsi_set_blocked(cmd
, reason
);
171 * Decrement the counters, since these commands are no longer
172 * active on the host/device.
175 scsi_device_unbusy(device
);
178 * Requeue this command. It will go before all other commands
179 * that are already in the queue. Schedule requeue work under
180 * lock such that the kblockd_schedule_work() call happens
181 * before blk_cleanup_queue() finishes.
185 scsi_mq_requeue_cmd(cmd
);
188 spin_lock_irqsave(q
->queue_lock
, flags
);
189 blk_requeue_request(q
, cmd
->request
);
190 kblockd_schedule_work(&device
->requeue_work
);
191 spin_unlock_irqrestore(q
->queue_lock
, flags
);
195 * Function: scsi_queue_insert()
197 * Purpose: Insert a command in the midlevel queue.
199 * Arguments: cmd - command that we are adding to queue.
200 * reason - why we are inserting command to queue.
202 * Lock status: Assumed that lock is not held upon entry.
206 * Notes: We do this for one of two cases. Either the host is busy
207 * and it cannot accept any more commands for the time being,
208 * or the device returned QUEUE_FULL and can accept no more
210 * Notes: This could be called either from an interrupt context or a
211 * normal process context.
213 void scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
215 __scsi_queue_insert(cmd
, reason
, 1);
220 * scsi_execute - insert request and wait for the result
223 * @data_direction: data direction
224 * @buffer: data buffer
225 * @bufflen: len of buffer
226 * @sense: optional sense buffer
227 * @sshdr: optional decoded sense header
228 * @timeout: request timeout in seconds
229 * @retries: number of times to retry request
230 * @flags: flags for ->cmd_flags
231 * @rq_flags: flags for ->rq_flags
232 * @resid: optional residual length
234 * Returns the scsi_cmnd result field if a command was executed, or a negative
235 * Linux error code if we didn't get that far.
237 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
238 int data_direction
, void *buffer
, unsigned bufflen
,
239 unsigned char *sense
, struct scsi_sense_hdr
*sshdr
,
240 int timeout
, int retries
, u64 flags
, req_flags_t rq_flags
,
244 struct scsi_request
*rq
;
245 int ret
= DRIVER_ERROR
<< 24;
247 req
= blk_get_request(sdev
->request_queue
,
248 data_direction
== DMA_TO_DEVICE
?
249 REQ_OP_SCSI_OUT
: REQ_OP_SCSI_IN
, __GFP_RECLAIM
);
254 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
255 buffer
, bufflen
, __GFP_RECLAIM
))
258 rq
->cmd_len
= COMMAND_SIZE(cmd
[0]);
259 memcpy(rq
->cmd
, cmd
, rq
->cmd_len
);
260 rq
->retries
= retries
;
261 req
->timeout
= timeout
;
262 req
->cmd_flags
|= flags
;
263 req
->rq_flags
|= rq_flags
| RQF_QUIET
| RQF_PREEMPT
;
266 * head injection *required* here otherwise quiesce won't work
268 blk_execute_rq(req
->q
, NULL
, req
, 1);
271 * Some devices (USB mass-storage in particular) may transfer
272 * garbage data together with a residue indicating that the data
273 * is invalid. Prevent the garbage from being misinterpreted
274 * and prevent security leaks by zeroing out the excess data.
276 if (unlikely(rq
->resid_len
> 0 && rq
->resid_len
<= bufflen
))
277 memset(buffer
+ (bufflen
- rq
->resid_len
), 0, rq
->resid_len
);
280 *resid
= rq
->resid_len
;
281 if (sense
&& rq
->sense_len
)
282 memcpy(sense
, rq
->sense
, SCSI_SENSE_BUFFERSIZE
);
284 scsi_normalize_sense(rq
->sense
, rq
->sense_len
, sshdr
);
287 blk_put_request(req
);
291 EXPORT_SYMBOL(scsi_execute
);
294 * Function: scsi_init_cmd_errh()
296 * Purpose: Initialize cmd fields related to error handling.
298 * Arguments: cmd - command that is ready to be queued.
300 * Notes: This function has the job of initializing a number of
301 * fields related to error handling. Typically this will
302 * be called once for each command, as required.
304 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
306 cmd
->serial_number
= 0;
307 scsi_set_resid(cmd
, 0);
308 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
309 if (cmd
->cmd_len
== 0)
310 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
313 void scsi_device_unbusy(struct scsi_device
*sdev
)
315 struct Scsi_Host
*shost
= sdev
->host
;
316 struct scsi_target
*starget
= scsi_target(sdev
);
319 atomic_dec(&shost
->host_busy
);
320 if (starget
->can_queue
> 0)
321 atomic_dec(&starget
->target_busy
);
323 if (unlikely(scsi_host_in_recovery(shost
) &&
324 (shost
->host_failed
|| shost
->host_eh_scheduled
))) {
325 spin_lock_irqsave(shost
->host_lock
, flags
);
326 scsi_eh_wakeup(shost
);
327 spin_unlock_irqrestore(shost
->host_lock
, flags
);
330 atomic_dec(&sdev
->device_busy
);
333 static void scsi_kick_queue(struct request_queue
*q
)
336 blk_mq_start_hw_queues(q
);
342 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343 * and call blk_run_queue for all the scsi_devices on the target -
344 * including current_sdev first.
346 * Called with *no* scsi locks held.
348 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
350 struct Scsi_Host
*shost
= current_sdev
->host
;
351 struct scsi_device
*sdev
, *tmp
;
352 struct scsi_target
*starget
= scsi_target(current_sdev
);
355 spin_lock_irqsave(shost
->host_lock
, flags
);
356 starget
->starget_sdev_user
= NULL
;
357 spin_unlock_irqrestore(shost
->host_lock
, flags
);
360 * Call blk_run_queue for all LUNs on the target, starting with
361 * current_sdev. We race with others (to set starget_sdev_user),
362 * but in most cases, we will be first. Ideally, each LU on the
363 * target would get some limited time or requests on the target.
365 scsi_kick_queue(current_sdev
->request_queue
);
367 spin_lock_irqsave(shost
->host_lock
, flags
);
368 if (starget
->starget_sdev_user
)
370 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
371 same_target_siblings
) {
372 if (sdev
== current_sdev
)
374 if (scsi_device_get(sdev
))
377 spin_unlock_irqrestore(shost
->host_lock
, flags
);
378 scsi_kick_queue(sdev
->request_queue
);
379 spin_lock_irqsave(shost
->host_lock
, flags
);
381 scsi_device_put(sdev
);
384 spin_unlock_irqrestore(shost
->host_lock
, flags
);
387 static inline bool scsi_device_is_busy(struct scsi_device
*sdev
)
389 if (atomic_read(&sdev
->device_busy
) >= sdev
->queue_depth
)
391 if (atomic_read(&sdev
->device_blocked
) > 0)
396 static inline bool scsi_target_is_busy(struct scsi_target
*starget
)
398 if (starget
->can_queue
> 0) {
399 if (atomic_read(&starget
->target_busy
) >= starget
->can_queue
)
401 if (atomic_read(&starget
->target_blocked
) > 0)
407 static inline bool scsi_host_is_busy(struct Scsi_Host
*shost
)
409 if (shost
->can_queue
> 0 &&
410 atomic_read(&shost
->host_busy
) >= shost
->can_queue
)
412 if (atomic_read(&shost
->host_blocked
) > 0)
414 if (shost
->host_self_blocked
)
419 static void scsi_starved_list_run(struct Scsi_Host
*shost
)
421 LIST_HEAD(starved_list
);
422 struct scsi_device
*sdev
;
425 spin_lock_irqsave(shost
->host_lock
, flags
);
426 list_splice_init(&shost
->starved_list
, &starved_list
);
428 while (!list_empty(&starved_list
)) {
429 struct request_queue
*slq
;
432 * As long as shost is accepting commands and we have
433 * starved queues, call blk_run_queue. scsi_request_fn
434 * drops the queue_lock and can add us back to the
437 * host_lock protects the starved_list and starved_entry.
438 * scsi_request_fn must get the host_lock before checking
439 * or modifying starved_list or starved_entry.
441 if (scsi_host_is_busy(shost
))
444 sdev
= list_entry(starved_list
.next
,
445 struct scsi_device
, starved_entry
);
446 list_del_init(&sdev
->starved_entry
);
447 if (scsi_target_is_busy(scsi_target(sdev
))) {
448 list_move_tail(&sdev
->starved_entry
,
449 &shost
->starved_list
);
454 * Once we drop the host lock, a racing scsi_remove_device()
455 * call may remove the sdev from the starved list and destroy
456 * it and the queue. Mitigate by taking a reference to the
457 * queue and never touching the sdev again after we drop the
458 * host lock. Note: if __scsi_remove_device() invokes
459 * blk_cleanup_queue() before the queue is run from this
460 * function then blk_run_queue() will return immediately since
461 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
463 slq
= sdev
->request_queue
;
464 if (!blk_get_queue(slq
))
466 spin_unlock_irqrestore(shost
->host_lock
, flags
);
468 scsi_kick_queue(slq
);
471 spin_lock_irqsave(shost
->host_lock
, flags
);
473 /* put any unprocessed entries back */
474 list_splice(&starved_list
, &shost
->starved_list
);
475 spin_unlock_irqrestore(shost
->host_lock
, flags
);
479 * Function: scsi_run_queue()
481 * Purpose: Select a proper request queue to serve next
483 * Arguments: q - last request's queue
487 * Notes: The previous command was completely finished, start
488 * a new one if possible.
490 static void scsi_run_queue(struct request_queue
*q
)
492 struct scsi_device
*sdev
= q
->queuedata
;
494 if (scsi_target(sdev
)->single_lun
)
495 scsi_single_lun_run(sdev
);
496 if (!list_empty(&sdev
->host
->starved_list
))
497 scsi_starved_list_run(sdev
->host
);
500 blk_mq_run_hw_queues(q
, false);
505 void scsi_requeue_run_queue(struct work_struct
*work
)
507 struct scsi_device
*sdev
;
508 struct request_queue
*q
;
510 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
511 q
= sdev
->request_queue
;
516 * Function: scsi_requeue_command()
518 * Purpose: Handle post-processing of completed commands.
520 * Arguments: q - queue to operate on
521 * cmd - command that may need to be requeued.
525 * Notes: After command completion, there may be blocks left
526 * over which weren't finished by the previous command
527 * this can be for a number of reasons - the main one is
528 * I/O errors in the middle of the request, in which case
529 * we need to request the blocks that come after the bad
531 * Notes: Upon return, cmd is a stale pointer.
533 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
535 struct scsi_device
*sdev
= cmd
->device
;
536 struct request
*req
= cmd
->request
;
539 spin_lock_irqsave(q
->queue_lock
, flags
);
540 blk_unprep_request(req
);
542 scsi_put_command(cmd
);
543 blk_requeue_request(q
, req
);
544 spin_unlock_irqrestore(q
->queue_lock
, flags
);
548 put_device(&sdev
->sdev_gendev
);
551 void scsi_run_host_queues(struct Scsi_Host
*shost
)
553 struct scsi_device
*sdev
;
555 shost_for_each_device(sdev
, shost
)
556 scsi_run_queue(sdev
->request_queue
);
559 static void scsi_uninit_cmd(struct scsi_cmnd
*cmd
)
561 if (!blk_rq_is_passthrough(cmd
->request
)) {
562 struct scsi_driver
*drv
= scsi_cmd_to_driver(cmd
);
564 if (drv
->uninit_command
)
565 drv
->uninit_command(cmd
);
569 static void scsi_mq_free_sgtables(struct scsi_cmnd
*cmd
)
571 struct scsi_data_buffer
*sdb
;
573 if (cmd
->sdb
.table
.nents
)
574 sg_free_table_chained(&cmd
->sdb
.table
, true);
575 if (cmd
->request
->next_rq
) {
576 sdb
= cmd
->request
->next_rq
->special
;
578 sg_free_table_chained(&sdb
->table
, true);
580 if (scsi_prot_sg_count(cmd
))
581 sg_free_table_chained(&cmd
->prot_sdb
->table
, true);
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd
*cmd
)
586 scsi_mq_free_sgtables(cmd
);
587 scsi_uninit_cmd(cmd
);
588 scsi_del_cmd_from_list(cmd
);
592 * Function: scsi_release_buffers()
594 * Purpose: Free resources allocate for a scsi_command.
596 * Arguments: cmd - command that we are bailing.
598 * Lock status: Assumed that no lock is held upon entry.
602 * Notes: In the event that an upper level driver rejects a
603 * command, we must release resources allocated during
604 * the __init_io() function. Primarily this would involve
605 * the scatter-gather table.
607 static void scsi_release_buffers(struct scsi_cmnd
*cmd
)
609 if (cmd
->sdb
.table
.nents
)
610 sg_free_table_chained(&cmd
->sdb
.table
, false);
612 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
614 if (scsi_prot_sg_count(cmd
))
615 sg_free_table_chained(&cmd
->prot_sdb
->table
, false);
618 static void scsi_release_bidi_buffers(struct scsi_cmnd
*cmd
)
620 struct scsi_data_buffer
*bidi_sdb
= cmd
->request
->next_rq
->special
;
622 sg_free_table_chained(&bidi_sdb
->table
, false);
623 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
624 cmd
->request
->next_rq
->special
= NULL
;
627 static bool scsi_end_request(struct request
*req
, blk_status_t error
,
628 unsigned int bytes
, unsigned int bidi_bytes
)
630 struct scsi_cmnd
*cmd
= req
->special
;
631 struct scsi_device
*sdev
= cmd
->device
;
632 struct request_queue
*q
= sdev
->request_queue
;
634 if (blk_update_request(req
, error
, bytes
))
637 /* Bidi request must be completed as a whole */
638 if (unlikely(bidi_bytes
) &&
639 blk_update_request(req
->next_rq
, error
, bidi_bytes
))
642 if (blk_queue_add_random(q
))
643 add_disk_randomness(req
->rq_disk
);
647 * In the MQ case the command gets freed by __blk_mq_end_request,
648 * so we have to do all cleanup that depends on it earlier.
650 * We also can't kick the queues from irq context, so we
651 * will have to defer it to a workqueue.
653 scsi_mq_uninit_cmd(cmd
);
655 __blk_mq_end_request(req
, error
);
657 if (scsi_target(sdev
)->single_lun
||
658 !list_empty(&sdev
->host
->starved_list
))
659 kblockd_schedule_work(&sdev
->requeue_work
);
661 blk_mq_run_hw_queues(q
, true);
666 scsi_release_bidi_buffers(cmd
);
667 scsi_release_buffers(cmd
);
668 scsi_put_command(cmd
);
670 spin_lock_irqsave(q
->queue_lock
, flags
);
671 blk_finish_request(req
, error
);
672 spin_unlock_irqrestore(q
->queue_lock
, flags
);
677 put_device(&sdev
->sdev_gendev
);
682 * __scsi_error_from_host_byte - translate SCSI error code into errno
683 * @cmd: SCSI command (unused)
684 * @result: scsi error code
686 * Translate SCSI error code into block errors.
688 static blk_status_t
__scsi_error_from_host_byte(struct scsi_cmnd
*cmd
,
691 switch (host_byte(result
)) {
692 case DID_TRANSPORT_FAILFAST
:
693 return BLK_STS_TRANSPORT
;
694 case DID_TARGET_FAILURE
:
695 set_host_byte(cmd
, DID_OK
);
696 return BLK_STS_TARGET
;
697 case DID_NEXUS_FAILURE
:
698 return BLK_STS_NEXUS
;
699 case DID_ALLOC_FAILURE
:
700 set_host_byte(cmd
, DID_OK
);
701 return BLK_STS_NOSPC
;
702 case DID_MEDIUM_ERROR
:
703 set_host_byte(cmd
, DID_OK
);
704 return BLK_STS_MEDIUM
;
706 return BLK_STS_IOERR
;
711 * Function: scsi_io_completion()
713 * Purpose: Completion processing for block device I/O requests.
715 * Arguments: cmd - command that is finished.
717 * Lock status: Assumed that no lock is held upon entry.
721 * Notes: We will finish off the specified number of sectors. If we
722 * are done, the command block will be released and the queue
723 * function will be goosed. If we are not done then we have to
724 * figure out what to do next:
726 * a) We can call scsi_requeue_command(). The request
727 * will be unprepared and put back on the queue. Then
728 * a new command will be created for it. This should
729 * be used if we made forward progress, or if we want
730 * to switch from READ(10) to READ(6) for example.
732 * b) We can call __scsi_queue_insert(). The request will
733 * be put back on the queue and retried using the same
734 * command as before, possibly after a delay.
736 * c) We can call scsi_end_request() with -EIO to fail
737 * the remainder of the request.
739 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
741 int result
= cmd
->result
;
742 struct request_queue
*q
= cmd
->device
->request_queue
;
743 struct request
*req
= cmd
->request
;
744 blk_status_t error
= BLK_STS_OK
;
745 struct scsi_sense_hdr sshdr
;
746 bool sense_valid
= false;
747 int sense_deferred
= 0, level
= 0;
748 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
749 ACTION_DELAYED_RETRY
} action
;
750 unsigned long wait_for
= (cmd
->allowed
+ 1) * req
->timeout
;
753 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
755 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
758 if (blk_rq_is_passthrough(req
)) {
762 * SG_IO wants current and deferred errors
764 scsi_req(req
)->sense_len
=
765 min(8 + cmd
->sense_buffer
[7],
766 SCSI_SENSE_BUFFERSIZE
);
769 error
= __scsi_error_from_host_byte(cmd
, result
);
772 * __scsi_error_from_host_byte may have reset the host_byte
774 scsi_req(req
)->result
= cmd
->result
;
775 scsi_req(req
)->resid_len
= scsi_get_resid(cmd
);
777 if (scsi_bidi_cmnd(cmd
)) {
779 * Bidi commands Must be complete as a whole,
780 * both sides at once.
782 scsi_req(req
->next_rq
)->resid_len
= scsi_in(cmd
)->resid
;
783 if (scsi_end_request(req
, BLK_STS_OK
, blk_rq_bytes(req
),
784 blk_rq_bytes(req
->next_rq
)))
788 } else if (blk_rq_bytes(req
) == 0 && result
&& !sense_deferred
) {
790 * Flush commands do not transfers any data, and thus cannot use
791 * good_bytes != blk_rq_bytes(req) as the signal for an error.
792 * This sets the error explicitly for the problem case.
794 error
= __scsi_error_from_host_byte(cmd
, result
);
797 /* no bidi support for !blk_rq_is_passthrough yet */
798 BUG_ON(blk_bidi_rq(req
));
801 * Next deal with any sectors which we were able to correctly
804 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO
, cmd
,
805 "%u sectors total, %d bytes done.\n",
806 blk_rq_sectors(req
), good_bytes
));
809 * Recovered errors need reporting, but they're always treated as
810 * success, so fiddle the result code here. For passthrough requests
811 * we already took a copy of the original into sreq->result which
812 * is what gets returned to the user
814 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
815 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816 * print since caller wants ATA registers. Only occurs on
817 * SCSI ATA PASS_THROUGH commands when CK_COND=1
819 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
821 else if (!(req
->rq_flags
& RQF_QUIET
))
822 scsi_print_sense(cmd
);
824 /* for passthrough error may be set */
829 * special case: failed zero length commands always need to
830 * drop down into the retry code. Otherwise, if we finished
831 * all bytes in the request we are done now.
833 if (!(blk_rq_bytes(req
) == 0 && error
) &&
834 !scsi_end_request(req
, error
, good_bytes
, 0))
838 * Kill remainder if no retrys.
840 if (error
&& scsi_noretry_cmd(cmd
)) {
841 if (scsi_end_request(req
, error
, blk_rq_bytes(req
), 0))
847 * If there had been no error, but we have leftover bytes in the
848 * requeues just queue the command up again.
853 error
= __scsi_error_from_host_byte(cmd
, result
);
855 if (host_byte(result
) == DID_RESET
) {
856 /* Third party bus reset or reset for error recovery
857 * reasons. Just retry the command and see what
860 action
= ACTION_RETRY
;
861 } else if (sense_valid
&& !sense_deferred
) {
862 switch (sshdr
.sense_key
) {
864 if (cmd
->device
->removable
) {
865 /* Detected disc change. Set a bit
866 * and quietly refuse further access.
868 cmd
->device
->changed
= 1;
869 action
= ACTION_FAIL
;
871 /* Must have been a power glitch, or a
872 * bus reset. Could not have been a
873 * media change, so we just retry the
874 * command and see what happens.
876 action
= ACTION_RETRY
;
879 case ILLEGAL_REQUEST
:
880 /* If we had an ILLEGAL REQUEST returned, then
881 * we may have performed an unsupported
882 * command. The only thing this should be
883 * would be a ten byte read where only a six
884 * byte read was supported. Also, on a system
885 * where READ CAPACITY failed, we may have
886 * read past the end of the disk.
888 if ((cmd
->device
->use_10_for_rw
&&
889 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
890 (cmd
->cmnd
[0] == READ_10
||
891 cmd
->cmnd
[0] == WRITE_10
)) {
892 /* This will issue a new 6-byte command. */
893 cmd
->device
->use_10_for_rw
= 0;
894 action
= ACTION_REPREP
;
895 } else if (sshdr
.asc
== 0x10) /* DIX */ {
896 action
= ACTION_FAIL
;
897 error
= BLK_STS_PROTECTION
;
898 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
899 } else if (sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) {
900 action
= ACTION_FAIL
;
901 error
= BLK_STS_TARGET
;
903 action
= ACTION_FAIL
;
905 case ABORTED_COMMAND
:
906 action
= ACTION_FAIL
;
907 if (sshdr
.asc
== 0x10) /* DIF */
908 error
= BLK_STS_PROTECTION
;
911 /* If the device is in the process of becoming
912 * ready, or has a temporary blockage, retry.
914 if (sshdr
.asc
== 0x04) {
915 switch (sshdr
.ascq
) {
916 case 0x01: /* becoming ready */
917 case 0x04: /* format in progress */
918 case 0x05: /* rebuild in progress */
919 case 0x06: /* recalculation in progress */
920 case 0x07: /* operation in progress */
921 case 0x08: /* Long write in progress */
922 case 0x09: /* self test in progress */
923 case 0x14: /* space allocation in progress */
924 action
= ACTION_DELAYED_RETRY
;
927 action
= ACTION_FAIL
;
931 action
= ACTION_FAIL
;
933 case VOLUME_OVERFLOW
:
934 /* See SSC3rXX or current. */
935 action
= ACTION_FAIL
;
938 action
= ACTION_FAIL
;
942 action
= ACTION_FAIL
;
944 if (action
!= ACTION_FAIL
&&
945 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
))
946 action
= ACTION_FAIL
;
950 /* Give up and fail the remainder of the request */
951 if (!(req
->rq_flags
& RQF_QUIET
)) {
952 static DEFINE_RATELIMIT_STATE(_rs
,
953 DEFAULT_RATELIMIT_INTERVAL
,
954 DEFAULT_RATELIMIT_BURST
);
956 if (unlikely(scsi_logging_level
))
957 level
= SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT
,
958 SCSI_LOG_MLCOMPLETE_BITS
);
961 * if logging is enabled the failure will be printed
962 * in scsi_log_completion(), so avoid duplicate messages
964 if (!level
&& __ratelimit(&_rs
)) {
965 scsi_print_result(cmd
, NULL
, FAILED
);
966 if (driver_byte(result
) & DRIVER_SENSE
)
967 scsi_print_sense(cmd
);
968 scsi_print_command(cmd
);
971 if (!scsi_end_request(req
, error
, blk_rq_err_bytes(req
), 0))
976 /* Unprep the request and put it back at the head of the queue.
977 * A new command will be prepared and issued.
980 cmd
->request
->rq_flags
&= ~RQF_DONTPREP
;
981 scsi_mq_uninit_cmd(cmd
);
982 scsi_mq_requeue_cmd(cmd
);
984 scsi_release_buffers(cmd
);
985 scsi_requeue_command(q
, cmd
);
989 /* Retry the same command immediately */
990 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
992 case ACTION_DELAYED_RETRY
:
993 /* Retry the same command after a delay */
994 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
999 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
)
1004 * If sg table allocation fails, requeue request later.
1006 if (unlikely(sg_alloc_table_chained(&sdb
->table
,
1007 blk_rq_nr_phys_segments(req
), sdb
->table
.sgl
)))
1008 return BLKPREP_DEFER
;
1011 * Next, walk the list, and fill in the addresses and sizes of
1014 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1015 BUG_ON(count
> sdb
->table
.nents
);
1016 sdb
->table
.nents
= count
;
1017 sdb
->length
= blk_rq_payload_bytes(req
);
1022 * Function: scsi_init_io()
1024 * Purpose: SCSI I/O initialize function.
1026 * Arguments: cmd - Command descriptor we wish to initialize
1028 * Returns: 0 on success
1029 * BLKPREP_DEFER if the failure is retryable
1030 * BLKPREP_KILL if the failure is fatal
1032 int scsi_init_io(struct scsi_cmnd
*cmd
)
1034 struct scsi_device
*sdev
= cmd
->device
;
1035 struct request
*rq
= cmd
->request
;
1036 bool is_mq
= (rq
->mq_ctx
!= NULL
);
1037 int error
= BLKPREP_KILL
;
1039 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq
)))
1042 error
= scsi_init_sgtable(rq
, &cmd
->sdb
);
1046 if (blk_bidi_rq(rq
)) {
1047 if (!rq
->q
->mq_ops
) {
1048 struct scsi_data_buffer
*bidi_sdb
=
1049 kmem_cache_zalloc(scsi_sdb_cache
, GFP_ATOMIC
);
1051 error
= BLKPREP_DEFER
;
1055 rq
->next_rq
->special
= bidi_sdb
;
1058 error
= scsi_init_sgtable(rq
->next_rq
, rq
->next_rq
->special
);
1063 if (blk_integrity_rq(rq
)) {
1064 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1067 if (prot_sdb
== NULL
) {
1069 * This can happen if someone (e.g. multipath)
1070 * queues a command to a device on an adapter
1071 * that does not support DIX.
1074 error
= BLKPREP_KILL
;
1078 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1080 if (sg_alloc_table_chained(&prot_sdb
->table
, ivecs
,
1081 prot_sdb
->table
.sgl
)) {
1082 error
= BLKPREP_DEFER
;
1086 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1087 prot_sdb
->table
.sgl
);
1088 BUG_ON(unlikely(count
> ivecs
));
1089 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1091 cmd
->prot_sdb
= prot_sdb
;
1092 cmd
->prot_sdb
->table
.nents
= count
;
1098 scsi_mq_free_sgtables(cmd
);
1100 scsi_release_buffers(cmd
);
1101 cmd
->request
->special
= NULL
;
1102 scsi_put_command(cmd
);
1103 put_device(&sdev
->sdev_gendev
);
1107 EXPORT_SYMBOL(scsi_init_io
);
1110 * scsi_initialize_rq - initialize struct scsi_cmnd.req
1112 * Called from inside blk_get_request().
1114 void scsi_initialize_rq(struct request
*rq
)
1116 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
1118 scsi_req_init(&cmd
->req
);
1120 EXPORT_SYMBOL(scsi_initialize_rq
);
1122 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1123 void scsi_add_cmd_to_list(struct scsi_cmnd
*cmd
)
1125 struct scsi_device
*sdev
= cmd
->device
;
1126 struct Scsi_Host
*shost
= sdev
->host
;
1127 unsigned long flags
;
1129 if (shost
->use_cmd_list
) {
1130 spin_lock_irqsave(&sdev
->list_lock
, flags
);
1131 list_add_tail(&cmd
->list
, &sdev
->cmd_list
);
1132 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
1136 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1137 void scsi_del_cmd_from_list(struct scsi_cmnd
*cmd
)
1139 struct scsi_device
*sdev
= cmd
->device
;
1140 struct Scsi_Host
*shost
= sdev
->host
;
1141 unsigned long flags
;
1143 if (shost
->use_cmd_list
) {
1144 spin_lock_irqsave(&sdev
->list_lock
, flags
);
1145 BUG_ON(list_empty(&cmd
->list
));
1146 list_del_init(&cmd
->list
);
1147 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
1151 /* Called after a request has been started. */
1152 void scsi_init_command(struct scsi_device
*dev
, struct scsi_cmnd
*cmd
)
1154 void *buf
= cmd
->sense_buffer
;
1155 void *prot
= cmd
->prot_sdb
;
1156 unsigned int unchecked_isa_dma
= cmd
->flags
& SCMD_UNCHECKED_ISA_DMA
;
1158 /* zero out the cmd, except for the embedded scsi_request */
1159 memset((char *)cmd
+ sizeof(cmd
->req
), 0,
1160 sizeof(*cmd
) - sizeof(cmd
->req
) + dev
->host
->hostt
->cmd_size
);
1163 cmd
->sense_buffer
= buf
;
1164 cmd
->prot_sdb
= prot
;
1165 cmd
->flags
= unchecked_isa_dma
;
1166 INIT_DELAYED_WORK(&cmd
->abort_work
, scmd_eh_abort_handler
);
1167 cmd
->jiffies_at_alloc
= jiffies
;
1169 scsi_add_cmd_to_list(cmd
);
1172 static int scsi_setup_scsi_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1174 struct scsi_cmnd
*cmd
= req
->special
;
1177 * Passthrough requests may transfer data, in which case they must
1178 * a bio attached to them. Or they might contain a SCSI command
1179 * that does not transfer data, in which case they may optionally
1180 * submit a request without an attached bio.
1183 int ret
= scsi_init_io(cmd
);
1187 BUG_ON(blk_rq_bytes(req
));
1189 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1192 cmd
->cmd_len
= scsi_req(req
)->cmd_len
;
1193 cmd
->cmnd
= scsi_req(req
)->cmd
;
1194 cmd
->transfersize
= blk_rq_bytes(req
);
1195 cmd
->allowed
= scsi_req(req
)->retries
;
1200 * Setup a normal block command. These are simple request from filesystems
1201 * that still need to be translated to SCSI CDBs from the ULD.
1203 static int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1205 struct scsi_cmnd
*cmd
= req
->special
;
1207 if (unlikely(sdev
->handler
&& sdev
->handler
->prep_fn
)) {
1208 int ret
= sdev
->handler
->prep_fn(sdev
, req
);
1209 if (ret
!= BLKPREP_OK
)
1213 cmd
->cmnd
= scsi_req(req
)->cmd
= scsi_req(req
)->__cmd
;
1214 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1215 return scsi_cmd_to_driver(cmd
)->init_command(cmd
);
1218 static int scsi_setup_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1220 struct scsi_cmnd
*cmd
= req
->special
;
1222 if (!blk_rq_bytes(req
))
1223 cmd
->sc_data_direction
= DMA_NONE
;
1224 else if (rq_data_dir(req
) == WRITE
)
1225 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1227 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1229 if (blk_rq_is_scsi(req
))
1230 return scsi_setup_scsi_cmnd(sdev
, req
);
1232 return scsi_setup_fs_cmnd(sdev
, req
);
1236 scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1238 int ret
= BLKPREP_OK
;
1241 * If the device is not in running state we will reject some
1244 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1245 switch (sdev
->sdev_state
) {
1247 case SDEV_TRANSPORT_OFFLINE
:
1249 * If the device is offline we refuse to process any
1250 * commands. The device must be brought online
1251 * before trying any recovery commands.
1253 sdev_printk(KERN_ERR
, sdev
,
1254 "rejecting I/O to offline device\n");
1259 * If the device is fully deleted, we refuse to
1260 * process any commands as well.
1262 sdev_printk(KERN_ERR
, sdev
,
1263 "rejecting I/O to dead device\n");
1267 case SDEV_CREATED_BLOCK
:
1268 ret
= BLKPREP_DEFER
;
1272 * If the devices is blocked we defer normal commands.
1274 if (!(req
->rq_flags
& RQF_PREEMPT
))
1275 ret
= BLKPREP_DEFER
;
1279 * For any other not fully online state we only allow
1280 * special commands. In particular any user initiated
1281 * command is not allowed.
1283 if (!(req
->rq_flags
& RQF_PREEMPT
))
1292 scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1294 struct scsi_device
*sdev
= q
->queuedata
;
1298 case BLKPREP_INVALID
:
1299 scsi_req(req
)->result
= DID_NO_CONNECT
<< 16;
1300 /* release the command and kill it */
1302 struct scsi_cmnd
*cmd
= req
->special
;
1303 scsi_release_buffers(cmd
);
1304 scsi_put_command(cmd
);
1305 put_device(&sdev
->sdev_gendev
);
1306 req
->special
= NULL
;
1311 * If we defer, the blk_peek_request() returns NULL, but the
1312 * queue must be restarted, so we schedule a callback to happen
1315 if (atomic_read(&sdev
->device_busy
) == 0)
1316 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1319 req
->rq_flags
|= RQF_DONTPREP
;
1325 static int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1327 struct scsi_device
*sdev
= q
->queuedata
;
1328 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(req
);
1331 ret
= scsi_prep_state_check(sdev
, req
);
1332 if (ret
!= BLKPREP_OK
)
1335 if (!req
->special
) {
1336 /* Bail if we can't get a reference to the device */
1337 if (unlikely(!get_device(&sdev
->sdev_gendev
))) {
1338 ret
= BLKPREP_DEFER
;
1342 scsi_init_command(sdev
, cmd
);
1346 cmd
->tag
= req
->tag
;
1348 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1350 ret
= scsi_setup_cmnd(sdev
, req
);
1352 return scsi_prep_return(q
, req
, ret
);
1355 static void scsi_unprep_fn(struct request_queue
*q
, struct request
*req
)
1357 scsi_uninit_cmd(req
->special
);
1361 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1364 * Called with the queue_lock held.
1366 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1367 struct scsi_device
*sdev
)
1371 busy
= atomic_inc_return(&sdev
->device_busy
) - 1;
1372 if (atomic_read(&sdev
->device_blocked
)) {
1377 * unblock after device_blocked iterates to zero
1379 if (atomic_dec_return(&sdev
->device_blocked
) > 0) {
1381 * For the MQ case we take care of this in the caller.
1384 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1387 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO
, sdev
,
1388 "unblocking device at zero depth\n"));
1391 if (busy
>= sdev
->queue_depth
)
1396 atomic_dec(&sdev
->device_busy
);
1401 * scsi_target_queue_ready: checks if there we can send commands to target
1402 * @sdev: scsi device on starget to check.
1404 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1405 struct scsi_device
*sdev
)
1407 struct scsi_target
*starget
= scsi_target(sdev
);
1410 if (starget
->single_lun
) {
1411 spin_lock_irq(shost
->host_lock
);
1412 if (starget
->starget_sdev_user
&&
1413 starget
->starget_sdev_user
!= sdev
) {
1414 spin_unlock_irq(shost
->host_lock
);
1417 starget
->starget_sdev_user
= sdev
;
1418 spin_unlock_irq(shost
->host_lock
);
1421 if (starget
->can_queue
<= 0)
1424 busy
= atomic_inc_return(&starget
->target_busy
) - 1;
1425 if (atomic_read(&starget
->target_blocked
) > 0) {
1430 * unblock after target_blocked iterates to zero
1432 if (atomic_dec_return(&starget
->target_blocked
) > 0)
1435 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1436 "unblocking target at zero depth\n"));
1439 if (busy
>= starget
->can_queue
)
1445 spin_lock_irq(shost
->host_lock
);
1446 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1447 spin_unlock_irq(shost
->host_lock
);
1449 if (starget
->can_queue
> 0)
1450 atomic_dec(&starget
->target_busy
);
1455 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1456 * return 0. We must end up running the queue again whenever 0 is
1457 * returned, else IO can hang.
1459 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1460 struct Scsi_Host
*shost
,
1461 struct scsi_device
*sdev
)
1465 if (scsi_host_in_recovery(shost
))
1468 busy
= atomic_inc_return(&shost
->host_busy
) - 1;
1469 if (atomic_read(&shost
->host_blocked
) > 0) {
1474 * unblock after host_blocked iterates to zero
1476 if (atomic_dec_return(&shost
->host_blocked
) > 0)
1480 shost_printk(KERN_INFO
, shost
,
1481 "unblocking host at zero depth\n"));
1484 if (shost
->can_queue
> 0 && busy
>= shost
->can_queue
)
1486 if (shost
->host_self_blocked
)
1489 /* We're OK to process the command, so we can't be starved */
1490 if (!list_empty(&sdev
->starved_entry
)) {
1491 spin_lock_irq(shost
->host_lock
);
1492 if (!list_empty(&sdev
->starved_entry
))
1493 list_del_init(&sdev
->starved_entry
);
1494 spin_unlock_irq(shost
->host_lock
);
1500 spin_lock_irq(shost
->host_lock
);
1501 if (list_empty(&sdev
->starved_entry
))
1502 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1503 spin_unlock_irq(shost
->host_lock
);
1505 atomic_dec(&shost
->host_busy
);
1510 * Busy state exporting function for request stacking drivers.
1512 * For efficiency, no lock is taken to check the busy state of
1513 * shost/starget/sdev, since the returned value is not guaranteed and
1514 * may be changed after request stacking drivers call the function,
1515 * regardless of taking lock or not.
1517 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1518 * needs to return 'not busy'. Otherwise, request stacking drivers
1519 * may hold requests forever.
1521 static int scsi_lld_busy(struct request_queue
*q
)
1523 struct scsi_device
*sdev
= q
->queuedata
;
1524 struct Scsi_Host
*shost
;
1526 if (blk_queue_dying(q
))
1532 * Ignore host/starget busy state.
1533 * Since block layer does not have a concept of fairness across
1534 * multiple queues, congestion of host/starget needs to be handled
1537 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1544 * Kill a request for a dead device
1546 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1548 struct scsi_cmnd
*cmd
= req
->special
;
1549 struct scsi_device
*sdev
;
1550 struct scsi_target
*starget
;
1551 struct Scsi_Host
*shost
;
1553 blk_start_request(req
);
1555 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1558 starget
= scsi_target(sdev
);
1560 scsi_init_cmd_errh(cmd
);
1561 cmd
->result
= DID_NO_CONNECT
<< 16;
1562 atomic_inc(&cmd
->device
->iorequest_cnt
);
1565 * SCSI request completion path will do scsi_device_unbusy(),
1566 * bump busy counts. To bump the counters, we need to dance
1567 * with the locks as normal issue path does.
1569 atomic_inc(&sdev
->device_busy
);
1570 atomic_inc(&shost
->host_busy
);
1571 if (starget
->can_queue
> 0)
1572 atomic_inc(&starget
->target_busy
);
1574 blk_complete_request(req
);
1577 static void scsi_softirq_done(struct request
*rq
)
1579 struct scsi_cmnd
*cmd
= rq
->special
;
1580 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1583 INIT_LIST_HEAD(&cmd
->eh_entry
);
1585 atomic_inc(&cmd
->device
->iodone_cnt
);
1587 atomic_inc(&cmd
->device
->ioerr_cnt
);
1589 disposition
= scsi_decide_disposition(cmd
);
1590 if (disposition
!= SUCCESS
&&
1591 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1592 sdev_printk(KERN_ERR
, cmd
->device
,
1593 "timing out command, waited %lus\n",
1595 disposition
= SUCCESS
;
1598 scsi_log_completion(cmd
, disposition
);
1600 switch (disposition
) {
1602 scsi_finish_command(cmd
);
1605 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1607 case ADD_TO_MLQUEUE
:
1608 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1611 scsi_eh_scmd_add(cmd
);
1617 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1618 * @cmd: command block we are dispatching.
1620 * Return: nonzero return request was rejected and device's queue needs to be
1623 static int scsi_dispatch_cmd(struct scsi_cmnd
*cmd
)
1625 struct Scsi_Host
*host
= cmd
->device
->host
;
1628 atomic_inc(&cmd
->device
->iorequest_cnt
);
1630 /* check if the device is still usable */
1631 if (unlikely(cmd
->device
->sdev_state
== SDEV_DEL
)) {
1632 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1633 * returns an immediate error upwards, and signals
1634 * that the device is no longer present */
1635 cmd
->result
= DID_NO_CONNECT
<< 16;
1639 /* Check to see if the scsi lld made this device blocked. */
1640 if (unlikely(scsi_device_blocked(cmd
->device
))) {
1642 * in blocked state, the command is just put back on
1643 * the device queue. The suspend state has already
1644 * blocked the queue so future requests should not
1645 * occur until the device transitions out of the
1648 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1649 "queuecommand : device blocked\n"));
1650 return SCSI_MLQUEUE_DEVICE_BUSY
;
1653 /* Store the LUN value in cmnd, if needed. */
1654 if (cmd
->device
->lun_in_cdb
)
1655 cmd
->cmnd
[1] = (cmd
->cmnd
[1] & 0x1f) |
1656 (cmd
->device
->lun
<< 5 & 0xe0);
1661 * Before we queue this command, check if the command
1662 * length exceeds what the host adapter can handle.
1664 if (cmd
->cmd_len
> cmd
->device
->host
->max_cmd_len
) {
1665 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1666 "queuecommand : command too long. "
1667 "cdb_size=%d host->max_cmd_len=%d\n",
1668 cmd
->cmd_len
, cmd
->device
->host
->max_cmd_len
));
1669 cmd
->result
= (DID_ABORT
<< 16);
1673 if (unlikely(host
->shost_state
== SHOST_DEL
)) {
1674 cmd
->result
= (DID_NO_CONNECT
<< 16);
1679 trace_scsi_dispatch_cmd_start(cmd
);
1680 rtn
= host
->hostt
->queuecommand(host
, cmd
);
1682 trace_scsi_dispatch_cmd_error(cmd
, rtn
);
1683 if (rtn
!= SCSI_MLQUEUE_DEVICE_BUSY
&&
1684 rtn
!= SCSI_MLQUEUE_TARGET_BUSY
)
1685 rtn
= SCSI_MLQUEUE_HOST_BUSY
;
1687 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1688 "queuecommand : request rejected\n"));
1693 cmd
->scsi_done(cmd
);
1698 * scsi_done - Invoke completion on finished SCSI command.
1699 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1700 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1702 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1703 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1704 * calls blk_complete_request() for further processing.
1706 * This function is interrupt context safe.
1708 static void scsi_done(struct scsi_cmnd
*cmd
)
1710 trace_scsi_dispatch_cmd_done(cmd
);
1711 blk_complete_request(cmd
->request
);
1715 * Function: scsi_request_fn()
1717 * Purpose: Main strategy routine for SCSI.
1719 * Arguments: q - Pointer to actual queue.
1723 * Lock status: IO request lock assumed to be held when called.
1725 static void scsi_request_fn(struct request_queue
*q
)
1726 __releases(q
->queue_lock
)
1727 __acquires(q
->queue_lock
)
1729 struct scsi_device
*sdev
= q
->queuedata
;
1730 struct Scsi_Host
*shost
;
1731 struct scsi_cmnd
*cmd
;
1732 struct request
*req
;
1735 * To start with, we keep looping until the queue is empty, or until
1736 * the host is no longer able to accept any more requests.
1742 * get next queueable request. We do this early to make sure
1743 * that the request is fully prepared even if we cannot
1746 req
= blk_peek_request(q
);
1750 if (unlikely(!scsi_device_online(sdev
))) {
1751 sdev_printk(KERN_ERR
, sdev
,
1752 "rejecting I/O to offline device\n");
1753 scsi_kill_request(req
, q
);
1757 if (!scsi_dev_queue_ready(q
, sdev
))
1761 * Remove the request from the request list.
1763 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1764 blk_start_request(req
);
1766 spin_unlock_irq(q
->queue_lock
);
1768 if (unlikely(cmd
== NULL
)) {
1769 printk(KERN_CRIT
"impossible request in %s.\n"
1770 "please mail a stack trace to "
1771 "linux-scsi@vger.kernel.org\n",
1773 blk_dump_rq_flags(req
, "foo");
1778 * We hit this when the driver is using a host wide
1779 * tag map. For device level tag maps the queue_depth check
1780 * in the device ready fn would prevent us from trying
1781 * to allocate a tag. Since the map is a shared host resource
1782 * we add the dev to the starved list so it eventually gets
1783 * a run when a tag is freed.
1785 if (blk_queue_tagged(q
) && !(req
->rq_flags
& RQF_QUEUED
)) {
1786 spin_lock_irq(shost
->host_lock
);
1787 if (list_empty(&sdev
->starved_entry
))
1788 list_add_tail(&sdev
->starved_entry
,
1789 &shost
->starved_list
);
1790 spin_unlock_irq(shost
->host_lock
);
1794 if (!scsi_target_queue_ready(shost
, sdev
))
1797 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1798 goto host_not_ready
;
1800 if (sdev
->simple_tags
)
1801 cmd
->flags
|= SCMD_TAGGED
;
1803 cmd
->flags
&= ~SCMD_TAGGED
;
1806 * Finally, initialize any error handling parameters, and set up
1807 * the timers for timeouts.
1809 scsi_init_cmd_errh(cmd
);
1812 * Dispatch the command to the low-level driver.
1814 cmd
->scsi_done
= scsi_done
;
1815 rtn
= scsi_dispatch_cmd(cmd
);
1817 scsi_queue_insert(cmd
, rtn
);
1818 spin_lock_irq(q
->queue_lock
);
1821 spin_lock_irq(q
->queue_lock
);
1827 if (scsi_target(sdev
)->can_queue
> 0)
1828 atomic_dec(&scsi_target(sdev
)->target_busy
);
1831 * lock q, handle tag, requeue req, and decrement device_busy. We
1832 * must return with queue_lock held.
1834 * Decrementing device_busy without checking it is OK, as all such
1835 * cases (host limits or settings) should run the queue at some
1838 spin_lock_irq(q
->queue_lock
);
1839 blk_requeue_request(q
, req
);
1840 atomic_dec(&sdev
->device_busy
);
1842 if (!atomic_read(&sdev
->device_busy
) && !scsi_device_blocked(sdev
))
1843 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1846 static inline blk_status_t
prep_to_mq(int ret
)
1852 return BLK_STS_RESOURCE
;
1854 return BLK_STS_IOERR
;
1858 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1859 static unsigned int scsi_mq_sgl_size(struct Scsi_Host
*shost
)
1861 return min_t(unsigned int, shost
->sg_tablesize
, SG_CHUNK_SIZE
) *
1862 sizeof(struct scatterlist
);
1865 static int scsi_mq_prep_fn(struct request
*req
)
1867 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(req
);
1868 struct scsi_device
*sdev
= req
->q
->queuedata
;
1869 struct Scsi_Host
*shost
= sdev
->host
;
1870 struct scatterlist
*sg
;
1872 scsi_init_command(sdev
, cmd
);
1878 cmd
->tag
= req
->tag
;
1879 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1881 sg
= (void *)cmd
+ sizeof(struct scsi_cmnd
) + shost
->hostt
->cmd_size
;
1882 cmd
->sdb
.table
.sgl
= sg
;
1884 if (scsi_host_get_prot(shost
)) {
1885 memset(cmd
->prot_sdb
, 0, sizeof(struct scsi_data_buffer
));
1887 cmd
->prot_sdb
->table
.sgl
=
1888 (struct scatterlist
*)(cmd
->prot_sdb
+ 1);
1891 if (blk_bidi_rq(req
)) {
1892 struct request
*next_rq
= req
->next_rq
;
1893 struct scsi_data_buffer
*bidi_sdb
= blk_mq_rq_to_pdu(next_rq
);
1895 memset(bidi_sdb
, 0, sizeof(struct scsi_data_buffer
));
1896 bidi_sdb
->table
.sgl
=
1897 (struct scatterlist
*)(bidi_sdb
+ 1);
1899 next_rq
->special
= bidi_sdb
;
1902 blk_mq_start_request(req
);
1904 return scsi_setup_cmnd(sdev
, req
);
1907 static void scsi_mq_done(struct scsi_cmnd
*cmd
)
1909 trace_scsi_dispatch_cmd_done(cmd
);
1910 blk_mq_complete_request(cmd
->request
);
1913 static blk_status_t
scsi_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1914 const struct blk_mq_queue_data
*bd
)
1916 struct request
*req
= bd
->rq
;
1917 struct request_queue
*q
= req
->q
;
1918 struct scsi_device
*sdev
= q
->queuedata
;
1919 struct Scsi_Host
*shost
= sdev
->host
;
1920 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(req
);
1924 ret
= prep_to_mq(scsi_prep_state_check(sdev
, req
));
1925 if (ret
!= BLK_STS_OK
)
1928 ret
= BLK_STS_RESOURCE
;
1929 if (!get_device(&sdev
->sdev_gendev
))
1932 if (!scsi_dev_queue_ready(q
, sdev
))
1933 goto out_put_device
;
1934 if (!scsi_target_queue_ready(shost
, sdev
))
1935 goto out_dec_device_busy
;
1936 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1937 goto out_dec_target_busy
;
1939 if (!(req
->rq_flags
& RQF_DONTPREP
)) {
1940 ret
= prep_to_mq(scsi_mq_prep_fn(req
));
1941 if (ret
!= BLK_STS_OK
)
1942 goto out_dec_host_busy
;
1943 req
->rq_flags
|= RQF_DONTPREP
;
1945 blk_mq_start_request(req
);
1948 if (sdev
->simple_tags
)
1949 cmd
->flags
|= SCMD_TAGGED
;
1951 cmd
->flags
&= ~SCMD_TAGGED
;
1953 scsi_init_cmd_errh(cmd
);
1954 cmd
->scsi_done
= scsi_mq_done
;
1956 reason
= scsi_dispatch_cmd(cmd
);
1958 scsi_set_blocked(cmd
, reason
);
1959 ret
= BLK_STS_RESOURCE
;
1960 goto out_dec_host_busy
;
1966 atomic_dec(&shost
->host_busy
);
1967 out_dec_target_busy
:
1968 if (scsi_target(sdev
)->can_queue
> 0)
1969 atomic_dec(&scsi_target(sdev
)->target_busy
);
1970 out_dec_device_busy
:
1971 atomic_dec(&sdev
->device_busy
);
1973 put_device(&sdev
->sdev_gendev
);
1978 case BLK_STS_RESOURCE
:
1979 if (atomic_read(&sdev
->device_busy
) == 0 &&
1980 !scsi_device_blocked(sdev
))
1981 blk_mq_delay_run_hw_queue(hctx
, SCSI_QUEUE_DELAY
);
1985 * Make sure to release all allocated ressources when
1986 * we hit an error, as we will never see this command
1989 if (req
->rq_flags
& RQF_DONTPREP
)
1990 scsi_mq_uninit_cmd(cmd
);
1996 static enum blk_eh_timer_return
scsi_timeout(struct request
*req
,
2000 return BLK_EH_RESET_TIMER
;
2001 return scsi_times_out(req
);
2004 static int scsi_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2005 unsigned int hctx_idx
, unsigned int numa_node
)
2007 struct Scsi_Host
*shost
= set
->driver_data
;
2008 const bool unchecked_isa_dma
= shost
->unchecked_isa_dma
;
2009 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2010 struct scatterlist
*sg
;
2012 if (unchecked_isa_dma
)
2013 cmd
->flags
|= SCMD_UNCHECKED_ISA_DMA
;
2014 cmd
->sense_buffer
= scsi_alloc_sense_buffer(unchecked_isa_dma
,
2015 GFP_KERNEL
, numa_node
);
2016 if (!cmd
->sense_buffer
)
2018 cmd
->req
.sense
= cmd
->sense_buffer
;
2020 if (scsi_host_get_prot(shost
)) {
2021 sg
= (void *)cmd
+ sizeof(struct scsi_cmnd
) +
2022 shost
->hostt
->cmd_size
;
2023 cmd
->prot_sdb
= (void *)sg
+ scsi_mq_sgl_size(shost
);
2029 static void scsi_exit_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2030 unsigned int hctx_idx
)
2032 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2034 scsi_free_sense_buffer(cmd
->flags
& SCMD_UNCHECKED_ISA_DMA
,
2038 static int scsi_map_queues(struct blk_mq_tag_set
*set
)
2040 struct Scsi_Host
*shost
= container_of(set
, struct Scsi_Host
, tag_set
);
2042 if (shost
->hostt
->map_queues
)
2043 return shost
->hostt
->map_queues(shost
);
2044 return blk_mq_map_queues(set
);
2047 static u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
2049 struct device
*host_dev
;
2050 u64 bounce_limit
= 0xffffffff;
2052 if (shost
->unchecked_isa_dma
)
2053 return BLK_BOUNCE_ISA
;
2055 * Platforms with virtual-DMA translation
2056 * hardware have no practical limit.
2058 if (!PCI_DMA_BUS_IS_PHYS
)
2059 return BLK_BOUNCE_ANY
;
2061 host_dev
= scsi_get_device(shost
);
2062 if (host_dev
&& host_dev
->dma_mask
)
2063 bounce_limit
= (u64
)dma_max_pfn(host_dev
) << PAGE_SHIFT
;
2065 return bounce_limit
;
2068 void __scsi_init_queue(struct Scsi_Host
*shost
, struct request_queue
*q
)
2070 struct device
*dev
= shost
->dma_dev
;
2072 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH
, q
);
2075 * this limit is imposed by hardware restrictions
2077 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
2080 if (scsi_host_prot_dma(shost
)) {
2081 shost
->sg_prot_tablesize
=
2082 min_not_zero(shost
->sg_prot_tablesize
,
2083 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
2084 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
2085 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
2088 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
2089 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
2090 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
2091 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
2093 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
2095 if (!shost
->use_clustering
)
2096 q
->limits
.cluster
= 0;
2099 * set a reasonable default alignment on word boundaries: the
2100 * host and device may alter it using
2101 * blk_queue_update_dma_alignment() later.
2103 blk_queue_dma_alignment(q
, 0x03);
2105 EXPORT_SYMBOL_GPL(__scsi_init_queue
);
2107 static int scsi_init_rq(struct request_queue
*q
, struct request
*rq
, gfp_t gfp
)
2109 struct Scsi_Host
*shost
= q
->rq_alloc_data
;
2110 const bool unchecked_isa_dma
= shost
->unchecked_isa_dma
;
2111 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2113 memset(cmd
, 0, sizeof(*cmd
));
2115 if (unchecked_isa_dma
)
2116 cmd
->flags
|= SCMD_UNCHECKED_ISA_DMA
;
2117 cmd
->sense_buffer
= scsi_alloc_sense_buffer(unchecked_isa_dma
, gfp
,
2119 if (!cmd
->sense_buffer
)
2121 cmd
->req
.sense
= cmd
->sense_buffer
;
2123 if (scsi_host_get_prot(shost
) >= SHOST_DIX_TYPE0_PROTECTION
) {
2124 cmd
->prot_sdb
= kmem_cache_zalloc(scsi_sdb_cache
, gfp
);
2126 goto fail_free_sense
;
2132 scsi_free_sense_buffer(unchecked_isa_dma
, cmd
->sense_buffer
);
2137 static void scsi_exit_rq(struct request_queue
*q
, struct request
*rq
)
2139 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2142 kmem_cache_free(scsi_sdb_cache
, cmd
->prot_sdb
);
2143 scsi_free_sense_buffer(cmd
->flags
& SCMD_UNCHECKED_ISA_DMA
,
2147 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
2149 struct Scsi_Host
*shost
= sdev
->host
;
2150 struct request_queue
*q
;
2152 q
= blk_alloc_queue_node(GFP_KERNEL
, NUMA_NO_NODE
);
2155 q
->cmd_size
= sizeof(struct scsi_cmnd
) + shost
->hostt
->cmd_size
;
2156 q
->rq_alloc_data
= shost
;
2157 q
->request_fn
= scsi_request_fn
;
2158 q
->init_rq_fn
= scsi_init_rq
;
2159 q
->exit_rq_fn
= scsi_exit_rq
;
2160 q
->initialize_rq_fn
= scsi_initialize_rq
;
2162 if (blk_init_allocated_queue(q
) < 0) {
2163 blk_cleanup_queue(q
);
2167 __scsi_init_queue(shost
, q
);
2168 blk_queue_prep_rq(q
, scsi_prep_fn
);
2169 blk_queue_unprep_rq(q
, scsi_unprep_fn
);
2170 blk_queue_softirq_done(q
, scsi_softirq_done
);
2171 blk_queue_rq_timed_out(q
, scsi_times_out
);
2172 blk_queue_lld_busy(q
, scsi_lld_busy
);
2176 static const struct blk_mq_ops scsi_mq_ops
= {
2177 .queue_rq
= scsi_queue_rq
,
2178 .complete
= scsi_softirq_done
,
2179 .timeout
= scsi_timeout
,
2180 #ifdef CONFIG_BLK_DEBUG_FS
2181 .show_rq
= scsi_show_rq
,
2183 .init_request
= scsi_init_request
,
2184 .exit_request
= scsi_exit_request
,
2185 .initialize_rq_fn
= scsi_initialize_rq
,
2186 .map_queues
= scsi_map_queues
,
2189 struct request_queue
*scsi_mq_alloc_queue(struct scsi_device
*sdev
)
2191 sdev
->request_queue
= blk_mq_init_queue(&sdev
->host
->tag_set
);
2192 if (IS_ERR(sdev
->request_queue
))
2195 sdev
->request_queue
->queuedata
= sdev
;
2196 __scsi_init_queue(sdev
->host
, sdev
->request_queue
);
2197 return sdev
->request_queue
;
2200 int scsi_mq_setup_tags(struct Scsi_Host
*shost
)
2202 unsigned int cmd_size
, sgl_size
;
2204 sgl_size
= scsi_mq_sgl_size(shost
);
2205 cmd_size
= sizeof(struct scsi_cmnd
) + shost
->hostt
->cmd_size
+ sgl_size
;
2206 if (scsi_host_get_prot(shost
))
2207 cmd_size
+= sizeof(struct scsi_data_buffer
) + sgl_size
;
2209 memset(&shost
->tag_set
, 0, sizeof(shost
->tag_set
));
2210 shost
->tag_set
.ops
= &scsi_mq_ops
;
2211 shost
->tag_set
.nr_hw_queues
= shost
->nr_hw_queues
? : 1;
2212 shost
->tag_set
.queue_depth
= shost
->can_queue
;
2213 shost
->tag_set
.cmd_size
= cmd_size
;
2214 shost
->tag_set
.numa_node
= NUMA_NO_NODE
;
2215 shost
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
2216 shost
->tag_set
.flags
|=
2217 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost
->hostt
->tag_alloc_policy
);
2218 shost
->tag_set
.driver_data
= shost
;
2220 return blk_mq_alloc_tag_set(&shost
->tag_set
);
2223 void scsi_mq_destroy_tags(struct Scsi_Host
*shost
)
2225 blk_mq_free_tag_set(&shost
->tag_set
);
2229 * scsi_device_from_queue - return sdev associated with a request_queue
2230 * @q: The request queue to return the sdev from
2232 * Return the sdev associated with a request queue or NULL if the
2233 * request_queue does not reference a SCSI device.
2235 struct scsi_device
*scsi_device_from_queue(struct request_queue
*q
)
2237 struct scsi_device
*sdev
= NULL
;
2240 if (q
->mq_ops
== &scsi_mq_ops
)
2241 sdev
= q
->queuedata
;
2242 } else if (q
->request_fn
== scsi_request_fn
)
2243 sdev
= q
->queuedata
;
2244 if (!sdev
|| !get_device(&sdev
->sdev_gendev
))
2249 EXPORT_SYMBOL_GPL(scsi_device_from_queue
);
2252 * Function: scsi_block_requests()
2254 * Purpose: Utility function used by low-level drivers to prevent further
2255 * commands from being queued to the device.
2257 * Arguments: shost - Host in question
2261 * Lock status: No locks are assumed held.
2263 * Notes: There is no timer nor any other means by which the requests
2264 * get unblocked other than the low-level driver calling
2265 * scsi_unblock_requests().
2267 void scsi_block_requests(struct Scsi_Host
*shost
)
2269 shost
->host_self_blocked
= 1;
2271 EXPORT_SYMBOL(scsi_block_requests
);
2274 * Function: scsi_unblock_requests()
2276 * Purpose: Utility function used by low-level drivers to allow further
2277 * commands from being queued to the device.
2279 * Arguments: shost - Host in question
2283 * Lock status: No locks are assumed held.
2285 * Notes: There is no timer nor any other means by which the requests
2286 * get unblocked other than the low-level driver calling
2287 * scsi_unblock_requests().
2289 * This is done as an API function so that changes to the
2290 * internals of the scsi mid-layer won't require wholesale
2291 * changes to drivers that use this feature.
2293 void scsi_unblock_requests(struct Scsi_Host
*shost
)
2295 shost
->host_self_blocked
= 0;
2296 scsi_run_host_queues(shost
);
2298 EXPORT_SYMBOL(scsi_unblock_requests
);
2300 int __init
scsi_init_queue(void)
2302 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
2303 sizeof(struct scsi_data_buffer
),
2305 if (!scsi_sdb_cache
) {
2306 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
2313 void scsi_exit_queue(void)
2315 kmem_cache_destroy(scsi_sense_cache
);
2316 kmem_cache_destroy(scsi_sense_isadma_cache
);
2317 kmem_cache_destroy(scsi_sdb_cache
);
2321 * scsi_mode_select - issue a mode select
2322 * @sdev: SCSI device to be queried
2323 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2324 * @sp: Save page bit (0 == don't save, 1 == save)
2325 * @modepage: mode page being requested
2326 * @buffer: request buffer (may not be smaller than eight bytes)
2327 * @len: length of request buffer.
2328 * @timeout: command timeout
2329 * @retries: number of retries before failing
2330 * @data: returns a structure abstracting the mode header data
2331 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2332 * must be SCSI_SENSE_BUFFERSIZE big.
2334 * Returns zero if successful; negative error number or scsi
2339 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
2340 unsigned char *buffer
, int len
, int timeout
, int retries
,
2341 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
2343 unsigned char cmd
[10];
2344 unsigned char *real_buffer
;
2347 memset(cmd
, 0, sizeof(cmd
));
2348 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
2350 if (sdev
->use_10_for_ms
) {
2353 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
2356 memcpy(real_buffer
+ 8, buffer
, len
);
2360 real_buffer
[2] = data
->medium_type
;
2361 real_buffer
[3] = data
->device_specific
;
2362 real_buffer
[4] = data
->longlba
? 0x01 : 0;
2364 real_buffer
[6] = data
->block_descriptor_length
>> 8;
2365 real_buffer
[7] = data
->block_descriptor_length
;
2367 cmd
[0] = MODE_SELECT_10
;
2371 if (len
> 255 || data
->block_descriptor_length
> 255 ||
2375 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
2378 memcpy(real_buffer
+ 4, buffer
, len
);
2381 real_buffer
[1] = data
->medium_type
;
2382 real_buffer
[2] = data
->device_specific
;
2383 real_buffer
[3] = data
->block_descriptor_length
;
2386 cmd
[0] = MODE_SELECT
;
2390 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
2391 sshdr
, timeout
, retries
, NULL
);
2395 EXPORT_SYMBOL_GPL(scsi_mode_select
);
2398 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2399 * @sdev: SCSI device to be queried
2400 * @dbd: set if mode sense will allow block descriptors to be returned
2401 * @modepage: mode page being requested
2402 * @buffer: request buffer (may not be smaller than eight bytes)
2403 * @len: length of request buffer.
2404 * @timeout: command timeout
2405 * @retries: number of retries before failing
2406 * @data: returns a structure abstracting the mode header data
2407 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2408 * must be SCSI_SENSE_BUFFERSIZE big.
2410 * Returns zero if unsuccessful, or the header offset (either 4
2411 * or 8 depending on whether a six or ten byte command was
2412 * issued) if successful.
2415 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
2416 unsigned char *buffer
, int len
, int timeout
, int retries
,
2417 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
2419 unsigned char cmd
[12];
2422 int result
, retry_count
= retries
;
2423 struct scsi_sense_hdr my_sshdr
;
2425 memset(data
, 0, sizeof(*data
));
2426 memset(&cmd
[0], 0, 12);
2427 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
2430 /* caller might not be interested in sense, but we need it */
2435 use_10_for_ms
= sdev
->use_10_for_ms
;
2437 if (use_10_for_ms
) {
2441 cmd
[0] = MODE_SENSE_10
;
2448 cmd
[0] = MODE_SENSE
;
2453 memset(buffer
, 0, len
);
2455 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
2456 sshdr
, timeout
, retries
, NULL
);
2458 /* This code looks awful: what it's doing is making sure an
2459 * ILLEGAL REQUEST sense return identifies the actual command
2460 * byte as the problem. MODE_SENSE commands can return
2461 * ILLEGAL REQUEST if the code page isn't supported */
2463 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
2464 (driver_byte(result
) & DRIVER_SENSE
)) {
2465 if (scsi_sense_valid(sshdr
)) {
2466 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
2467 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
2469 * Invalid command operation code
2471 sdev
->use_10_for_ms
= 0;
2477 if(scsi_status_is_good(result
)) {
2478 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
2479 (modepage
== 6 || modepage
== 8))) {
2480 /* Initio breakage? */
2483 data
->medium_type
= 0;
2484 data
->device_specific
= 0;
2486 data
->block_descriptor_length
= 0;
2487 } else if(use_10_for_ms
) {
2488 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
2489 data
->medium_type
= buffer
[2];
2490 data
->device_specific
= buffer
[3];
2491 data
->longlba
= buffer
[4] & 0x01;
2492 data
->block_descriptor_length
= buffer
[6]*256
2495 data
->length
= buffer
[0] + 1;
2496 data
->medium_type
= buffer
[1];
2497 data
->device_specific
= buffer
[2];
2498 data
->block_descriptor_length
= buffer
[3];
2500 data
->header_length
= header_length
;
2501 } else if ((status_byte(result
) == CHECK_CONDITION
) &&
2502 scsi_sense_valid(sshdr
) &&
2503 sshdr
->sense_key
== UNIT_ATTENTION
&& retry_count
) {
2510 EXPORT_SYMBOL(scsi_mode_sense
);
2513 * scsi_test_unit_ready - test if unit is ready
2514 * @sdev: scsi device to change the state of.
2515 * @timeout: command timeout
2516 * @retries: number of retries before failing
2517 * @sshdr: outpout pointer for decoded sense information.
2519 * Returns zero if unsuccessful or an error if TUR failed. For
2520 * removable media, UNIT_ATTENTION sets ->changed flag.
2523 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2524 struct scsi_sense_hdr
*sshdr
)
2527 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2531 /* try to eat the UNIT_ATTENTION if there are enough retries */
2533 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2534 timeout
, retries
, NULL
);
2535 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2536 sshdr
->sense_key
== UNIT_ATTENTION
)
2538 } while (scsi_sense_valid(sshdr
) &&
2539 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2543 EXPORT_SYMBOL(scsi_test_unit_ready
);
2546 * scsi_device_set_state - Take the given device through the device state model.
2547 * @sdev: scsi device to change the state of.
2548 * @state: state to change to.
2550 * Returns zero if unsuccessful or an error if the requested
2551 * transition is illegal.
2554 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2556 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2558 if (state
== oldstate
)
2564 case SDEV_CREATED_BLOCK
:
2575 case SDEV_TRANSPORT_OFFLINE
:
2588 case SDEV_TRANSPORT_OFFLINE
:
2596 case SDEV_TRANSPORT_OFFLINE
:
2611 case SDEV_CREATED_BLOCK
:
2618 case SDEV_CREATED_BLOCK
:
2633 case SDEV_TRANSPORT_OFFLINE
:
2645 case SDEV_TRANSPORT_OFFLINE
:
2648 case SDEV_CREATED_BLOCK
:
2656 sdev
->sdev_state
= state
;
2660 SCSI_LOG_ERROR_RECOVERY(1,
2661 sdev_printk(KERN_ERR
, sdev
,
2662 "Illegal state transition %s->%s",
2663 scsi_device_state_name(oldstate
),
2664 scsi_device_state_name(state
))
2668 EXPORT_SYMBOL(scsi_device_set_state
);
2671 * sdev_evt_emit - emit a single SCSI device uevent
2672 * @sdev: associated SCSI device
2673 * @evt: event to emit
2675 * Send a single uevent (scsi_event) to the associated scsi_device.
2677 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2682 switch (evt
->evt_type
) {
2683 case SDEV_EVT_MEDIA_CHANGE
:
2684 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2686 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2687 scsi_rescan_device(&sdev
->sdev_gendev
);
2688 envp
[idx
++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2690 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2691 envp
[idx
++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2693 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2694 envp
[idx
++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2696 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2697 envp
[idx
++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2699 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2700 envp
[idx
++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2702 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED
:
2703 envp
[idx
++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2712 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2716 * sdev_evt_thread - send a uevent for each scsi event
2717 * @work: work struct for scsi_device
2719 * Dispatch queued events to their associated scsi_device kobjects
2722 void scsi_evt_thread(struct work_struct
*work
)
2724 struct scsi_device
*sdev
;
2725 enum scsi_device_event evt_type
;
2726 LIST_HEAD(event_list
);
2728 sdev
= container_of(work
, struct scsi_device
, event_work
);
2730 for (evt_type
= SDEV_EVT_FIRST
; evt_type
<= SDEV_EVT_LAST
; evt_type
++)
2731 if (test_and_clear_bit(evt_type
, sdev
->pending_events
))
2732 sdev_evt_send_simple(sdev
, evt_type
, GFP_KERNEL
);
2735 struct scsi_event
*evt
;
2736 struct list_head
*this, *tmp
;
2737 unsigned long flags
;
2739 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2740 list_splice_init(&sdev
->event_list
, &event_list
);
2741 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2743 if (list_empty(&event_list
))
2746 list_for_each_safe(this, tmp
, &event_list
) {
2747 evt
= list_entry(this, struct scsi_event
, node
);
2748 list_del(&evt
->node
);
2749 scsi_evt_emit(sdev
, evt
);
2756 * sdev_evt_send - send asserted event to uevent thread
2757 * @sdev: scsi_device event occurred on
2758 * @evt: event to send
2760 * Assert scsi device event asynchronously.
2762 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2764 unsigned long flags
;
2767 /* FIXME: currently this check eliminates all media change events
2768 * for polled devices. Need to update to discriminate between AN
2769 * and polled events */
2770 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2776 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2777 list_add_tail(&evt
->node
, &sdev
->event_list
);
2778 schedule_work(&sdev
->event_work
);
2779 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2781 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2784 * sdev_evt_alloc - allocate a new scsi event
2785 * @evt_type: type of event to allocate
2786 * @gfpflags: GFP flags for allocation
2788 * Allocates and returns a new scsi_event.
2790 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2793 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2797 evt
->evt_type
= evt_type
;
2798 INIT_LIST_HEAD(&evt
->node
);
2800 /* evt_type-specific initialization, if any */
2802 case SDEV_EVT_MEDIA_CHANGE
:
2803 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2804 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2805 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2806 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2807 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2808 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED
:
2816 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2819 * sdev_evt_send_simple - send asserted event to uevent thread
2820 * @sdev: scsi_device event occurred on
2821 * @evt_type: type of event to send
2822 * @gfpflags: GFP flags for allocation
2824 * Assert scsi device event asynchronously, given an event type.
2826 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2827 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2829 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2831 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2836 sdev_evt_send(sdev
, evt
);
2838 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2841 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2842 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2844 static int scsi_request_fn_active(struct scsi_device
*sdev
)
2846 struct request_queue
*q
= sdev
->request_queue
;
2847 int request_fn_active
;
2849 WARN_ON_ONCE(sdev
->host
->use_blk_mq
);
2851 spin_lock_irq(q
->queue_lock
);
2852 request_fn_active
= q
->request_fn_active
;
2853 spin_unlock_irq(q
->queue_lock
);
2855 return request_fn_active
;
2859 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2860 * @sdev: SCSI device pointer.
2862 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2863 * invoked from scsi_request_fn() have finished.
2865 static void scsi_wait_for_queuecommand(struct scsi_device
*sdev
)
2867 WARN_ON_ONCE(sdev
->host
->use_blk_mq
);
2869 while (scsi_request_fn_active(sdev
))
2874 * scsi_device_quiesce - Block user issued commands.
2875 * @sdev: scsi device to quiesce.
2877 * This works by trying to transition to the SDEV_QUIESCE state
2878 * (which must be a legal transition). When the device is in this
2879 * state, only special requests will be accepted, all others will
2880 * be deferred. Since special requests may also be requeued requests,
2881 * a successful return doesn't guarantee the device will be
2882 * totally quiescent.
2884 * Must be called with user context, may sleep.
2886 * Returns zero if unsuccessful or an error if not.
2889 scsi_device_quiesce(struct scsi_device
*sdev
)
2893 mutex_lock(&sdev
->state_mutex
);
2894 err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2895 mutex_unlock(&sdev
->state_mutex
);
2900 scsi_run_queue(sdev
->request_queue
);
2901 while (atomic_read(&sdev
->device_busy
)) {
2902 msleep_interruptible(200);
2903 scsi_run_queue(sdev
->request_queue
);
2907 EXPORT_SYMBOL(scsi_device_quiesce
);
2910 * scsi_device_resume - Restart user issued commands to a quiesced device.
2911 * @sdev: scsi device to resume.
2913 * Moves the device from quiesced back to running and restarts the
2916 * Must be called with user context, may sleep.
2918 void scsi_device_resume(struct scsi_device
*sdev
)
2920 /* check if the device state was mutated prior to resume, and if
2921 * so assume the state is being managed elsewhere (for example
2922 * device deleted during suspend)
2924 mutex_lock(&sdev
->state_mutex
);
2925 if (sdev
->sdev_state
== SDEV_QUIESCE
&&
2926 scsi_device_set_state(sdev
, SDEV_RUNNING
) == 0)
2927 scsi_run_queue(sdev
->request_queue
);
2928 mutex_unlock(&sdev
->state_mutex
);
2930 EXPORT_SYMBOL(scsi_device_resume
);
2933 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2935 scsi_device_quiesce(sdev
);
2939 scsi_target_quiesce(struct scsi_target
*starget
)
2941 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2943 EXPORT_SYMBOL(scsi_target_quiesce
);
2946 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2948 scsi_device_resume(sdev
);
2952 scsi_target_resume(struct scsi_target
*starget
)
2954 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2956 EXPORT_SYMBOL(scsi_target_resume
);
2959 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2960 * @sdev: device to block
2962 * Pause SCSI command processing on the specified device. Does not sleep.
2964 * Returns zero if successful or a negative error code upon failure.
2967 * This routine transitions the device to the SDEV_BLOCK state (which must be
2968 * a legal transition). When the device is in this state, command processing
2969 * is paused until the device leaves the SDEV_BLOCK state. See also
2970 * scsi_internal_device_unblock_nowait().
2972 int scsi_internal_device_block_nowait(struct scsi_device
*sdev
)
2974 struct request_queue
*q
= sdev
->request_queue
;
2975 unsigned long flags
;
2978 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2980 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2987 * The device has transitioned to SDEV_BLOCK. Stop the
2988 * block layer from calling the midlayer with this device's
2992 blk_mq_quiesce_queue_nowait(q
);
2994 spin_lock_irqsave(q
->queue_lock
, flags
);
2996 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3001 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait
);
3004 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3005 * @sdev: device to block
3007 * Pause SCSI command processing on the specified device and wait until all
3008 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3010 * Returns zero if successful or a negative error code upon failure.
3013 * This routine transitions the device to the SDEV_BLOCK state (which must be
3014 * a legal transition). When the device is in this state, command processing
3015 * is paused until the device leaves the SDEV_BLOCK state. See also
3016 * scsi_internal_device_unblock().
3018 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3019 * scsi_internal_device_block() has blocked a SCSI device and also
3020 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3022 static int scsi_internal_device_block(struct scsi_device
*sdev
)
3024 struct request_queue
*q
= sdev
->request_queue
;
3027 mutex_lock(&sdev
->state_mutex
);
3028 err
= scsi_internal_device_block_nowait(sdev
);
3031 blk_mq_quiesce_queue(q
);
3033 scsi_wait_for_queuecommand(sdev
);
3035 mutex_unlock(&sdev
->state_mutex
);
3040 void scsi_start_queue(struct scsi_device
*sdev
)
3042 struct request_queue
*q
= sdev
->request_queue
;
3043 unsigned long flags
;
3046 blk_mq_unquiesce_queue(q
);
3048 spin_lock_irqsave(q
->queue_lock
, flags
);
3050 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3055 * scsi_internal_device_unblock_nowait - resume a device after a block request
3056 * @sdev: device to resume
3057 * @new_state: state to set the device to after unblocking
3059 * Restart the device queue for a previously suspended SCSI device. Does not
3062 * Returns zero if successful or a negative error code upon failure.
3065 * This routine transitions the device to the SDEV_RUNNING state or to one of
3066 * the offline states (which must be a legal transition) allowing the midlayer
3067 * to goose the queue for this device.
3069 int scsi_internal_device_unblock_nowait(struct scsi_device
*sdev
,
3070 enum scsi_device_state new_state
)
3073 * Try to transition the scsi device to SDEV_RUNNING or one of the
3074 * offlined states and goose the device queue if successful.
3076 if ((sdev
->sdev_state
== SDEV_BLOCK
) ||
3077 (sdev
->sdev_state
== SDEV_TRANSPORT_OFFLINE
))
3078 sdev
->sdev_state
= new_state
;
3079 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
) {
3080 if (new_state
== SDEV_TRANSPORT_OFFLINE
||
3081 new_state
== SDEV_OFFLINE
)
3082 sdev
->sdev_state
= new_state
;
3084 sdev
->sdev_state
= SDEV_CREATED
;
3085 } else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
3086 sdev
->sdev_state
!= SDEV_OFFLINE
)
3089 scsi_start_queue(sdev
);
3093 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait
);
3096 * scsi_internal_device_unblock - resume a device after a block request
3097 * @sdev: device to resume
3098 * @new_state: state to set the device to after unblocking
3100 * Restart the device queue for a previously suspended SCSI device. May sleep.
3102 * Returns zero if successful or a negative error code upon failure.
3105 * This routine transitions the device to the SDEV_RUNNING state or to one of
3106 * the offline states (which must be a legal transition) allowing the midlayer
3107 * to goose the queue for this device.
3109 static int scsi_internal_device_unblock(struct scsi_device
*sdev
,
3110 enum scsi_device_state new_state
)
3114 mutex_lock(&sdev
->state_mutex
);
3115 ret
= scsi_internal_device_unblock_nowait(sdev
, new_state
);
3116 mutex_unlock(&sdev
->state_mutex
);
3122 device_block(struct scsi_device
*sdev
, void *data
)
3124 scsi_internal_device_block(sdev
);
3128 target_block(struct device
*dev
, void *data
)
3130 if (scsi_is_target_device(dev
))
3131 starget_for_each_device(to_scsi_target(dev
), NULL
,
3137 scsi_target_block(struct device
*dev
)
3139 if (scsi_is_target_device(dev
))
3140 starget_for_each_device(to_scsi_target(dev
), NULL
,
3143 device_for_each_child(dev
, NULL
, target_block
);
3145 EXPORT_SYMBOL_GPL(scsi_target_block
);
3148 device_unblock(struct scsi_device
*sdev
, void *data
)
3150 scsi_internal_device_unblock(sdev
, *(enum scsi_device_state
*)data
);
3154 target_unblock(struct device
*dev
, void *data
)
3156 if (scsi_is_target_device(dev
))
3157 starget_for_each_device(to_scsi_target(dev
), data
,
3163 scsi_target_unblock(struct device
*dev
, enum scsi_device_state new_state
)
3165 if (scsi_is_target_device(dev
))
3166 starget_for_each_device(to_scsi_target(dev
), &new_state
,
3169 device_for_each_child(dev
, &new_state
, target_unblock
);
3171 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
3174 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3175 * @sgl: scatter-gather list
3176 * @sg_count: number of segments in sg
3177 * @offset: offset in bytes into sg, on return offset into the mapped area
3178 * @len: bytes to map, on return number of bytes mapped
3180 * Returns virtual address of the start of the mapped page
3182 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
3183 size_t *offset
, size_t *len
)
3186 size_t sg_len
= 0, len_complete
= 0;
3187 struct scatterlist
*sg
;
3190 WARN_ON(!irqs_disabled());
3192 for_each_sg(sgl
, sg
, sg_count
, i
) {
3193 len_complete
= sg_len
; /* Complete sg-entries */
3194 sg_len
+= sg
->length
;
3195 if (sg_len
> *offset
)
3199 if (unlikely(i
== sg_count
)) {
3200 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
3202 __func__
, sg_len
, *offset
, sg_count
);
3207 /* Offset starting from the beginning of first page in this sg-entry */
3208 *offset
= *offset
- len_complete
+ sg
->offset
;
3210 /* Assumption: contiguous pages can be accessed as "page + i" */
3211 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
3212 *offset
&= ~PAGE_MASK
;
3214 /* Bytes in this sg-entry from *offset to the end of the page */
3215 sg_len
= PAGE_SIZE
- *offset
;
3219 return kmap_atomic(page
);
3221 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
3224 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3225 * @virt: virtual address to be unmapped
3227 void scsi_kunmap_atomic_sg(void *virt
)
3229 kunmap_atomic(virt
);
3231 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);
3233 void sdev_disable_disk_events(struct scsi_device
*sdev
)
3235 atomic_inc(&sdev
->disk_events_disable_depth
);
3237 EXPORT_SYMBOL(sdev_disable_disk_events
);
3239 void sdev_enable_disk_events(struct scsi_device
*sdev
)
3241 if (WARN_ON_ONCE(atomic_read(&sdev
->disk_events_disable_depth
) <= 0))
3243 atomic_dec(&sdev
->disk_events_disable_depth
);
3245 EXPORT_SYMBOL(sdev_enable_disk_events
);
3248 * scsi_vpd_lun_id - return a unique device identification
3249 * @sdev: SCSI device
3250 * @id: buffer for the identification
3251 * @id_len: length of the buffer
3253 * Copies a unique device identification into @id based
3254 * on the information in the VPD page 0x83 of the device.
3255 * The string will be formatted as a SCSI name string.
3257 * Returns the length of the identification or error on failure.
3258 * If the identifier is longer than the supplied buffer the actual
3259 * identifier length is returned and the buffer is not zero-padded.
3261 int scsi_vpd_lun_id(struct scsi_device
*sdev
, char *id
, size_t id_len
)
3263 u8 cur_id_type
= 0xff;
3265 unsigned char *d
, *cur_id_str
;
3266 unsigned char __rcu
*vpd_pg83
;
3267 int id_size
= -EINVAL
;
3270 vpd_pg83
= rcu_dereference(sdev
->vpd_pg83
);
3277 * Look for the correct descriptor.
3278 * Order of preference for lun descriptor:
3279 * - SCSI name string
3280 * - NAA IEEE Registered Extended
3281 * - EUI-64 based 16-byte
3282 * - EUI-64 based 12-byte
3283 * - NAA IEEE Registered
3284 * - NAA IEEE Extended
3286 * as longer descriptors reduce the likelyhood
3287 * of identification clashes.
3290 /* The id string must be at least 20 bytes + terminating NULL byte */
3296 memset(id
, 0, id_len
);
3298 while (d
< vpd_pg83
+ sdev
->vpd_pg83_len
) {
3299 /* Skip designators not referring to the LUN */
3300 if ((d
[1] & 0x30) != 0x00)
3303 switch (d
[1] & 0xf) {
3306 if (cur_id_size
> d
[3])
3308 /* Prefer anything */
3309 if (cur_id_type
> 0x01 && cur_id_type
!= 0xff)
3312 if (cur_id_size
+ 4 > id_len
)
3313 cur_id_size
= id_len
- 4;
3315 cur_id_type
= d
[1] & 0xf;
3316 id_size
= snprintf(id
, id_len
, "t10.%*pE",
3317 cur_id_size
, cur_id_str
);
3321 if (cur_id_size
> d
[3])
3323 /* Prefer NAA IEEE Registered Extended */
3324 if (cur_id_type
== 0x3 &&
3325 cur_id_size
== d
[3])
3329 cur_id_type
= d
[1] & 0xf;
3330 switch (cur_id_size
) {
3332 id_size
= snprintf(id
, id_len
,
3337 id_size
= snprintf(id
, id_len
,
3342 id_size
= snprintf(id
, id_len
,
3353 if (cur_id_size
> d
[3])
3357 cur_id_type
= d
[1] & 0xf;
3358 switch (cur_id_size
) {
3360 id_size
= snprintf(id
, id_len
,
3365 id_size
= snprintf(id
, id_len
,
3375 /* SCSI name string */
3376 if (cur_id_size
+ 4 > d
[3])
3378 /* Prefer others for truncated descriptor */
3379 if (cur_id_size
&& d
[3] > id_len
)
3381 cur_id_size
= id_size
= d
[3];
3383 cur_id_type
= d
[1] & 0xf;
3384 if (cur_id_size
>= id_len
)
3385 cur_id_size
= id_len
- 1;
3386 memcpy(id
, cur_id_str
, cur_id_size
);
3387 /* Decrease priority for truncated descriptor */
3388 if (cur_id_size
!= id_size
)
3401 EXPORT_SYMBOL(scsi_vpd_lun_id
);
3404 * scsi_vpd_tpg_id - return a target port group identifier
3405 * @sdev: SCSI device
3407 * Returns the Target Port Group identifier from the information
3408 * froom VPD page 0x83 of the device.
3410 * Returns the identifier or error on failure.
3412 int scsi_vpd_tpg_id(struct scsi_device
*sdev
, int *rel_id
)
3415 unsigned char __rcu
*vpd_pg83
;
3416 int group_id
= -EAGAIN
, rel_port
= -1;
3419 vpd_pg83
= rcu_dereference(sdev
->vpd_pg83
);
3425 d
= sdev
->vpd_pg83
+ 4;
3426 while (d
< sdev
->vpd_pg83
+ sdev
->vpd_pg83_len
) {
3427 switch (d
[1] & 0xf) {
3429 /* Relative target port */
3430 rel_port
= get_unaligned_be16(&d
[6]);
3433 /* Target port group */
3434 group_id
= get_unaligned_be16(&d
[6]);
3443 if (group_id
>= 0 && rel_id
&& rel_port
!= -1)
3448 EXPORT_SYMBOL(scsi_vpd_tpg_id
);