]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge tag 'for-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(bool unchecked_isa_dma)
49 {
50 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
54 unsigned char *sense_buffer)
55 {
56 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
57 sense_buffer);
58 }
59
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
61 gfp_t gfp_mask, int numa_node)
62 {
63 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
64 gfp_mask, numa_node);
65 }
66
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69 struct kmem_cache *cache;
70 int ret = 0;
71
72 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
73 if (cache)
74 return 0;
75
76 mutex_lock(&scsi_sense_cache_mutex);
77 if (shost->unchecked_isa_dma) {
78 scsi_sense_isadma_cache =
79 kmem_cache_create("scsi_sense_cache(DMA)",
80 SCSI_SENSE_BUFFERSIZE, 0,
81 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82 if (!scsi_sense_isadma_cache)
83 ret = -ENOMEM;
84 } else {
85 scsi_sense_cache =
86 kmem_cache_create("scsi_sense_cache",
87 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88 if (!scsi_sense_cache)
89 ret = -ENOMEM;
90 }
91
92 mutex_unlock(&scsi_sense_cache_mutex);
93 return ret;
94 }
95
96 /*
97 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98 * not change behaviour from the previous unplug mechanism, experimentation
99 * may prove this needs changing.
100 */
101 #define SCSI_QUEUE_DELAY 3
102
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106 struct Scsi_Host *host = cmd->device->host;
107 struct scsi_device *device = cmd->device;
108 struct scsi_target *starget = scsi_target(device);
109
110 /*
111 * Set the appropriate busy bit for the device/host.
112 *
113 * If the host/device isn't busy, assume that something actually
114 * completed, and that we should be able to queue a command now.
115 *
116 * Note that the prior mid-layer assumption that any host could
117 * always queue at least one command is now broken. The mid-layer
118 * will implement a user specifiable stall (see
119 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120 * if a command is requeued with no other commands outstanding
121 * either for the device or for the host.
122 */
123 switch (reason) {
124 case SCSI_MLQUEUE_HOST_BUSY:
125 atomic_set(&host->host_blocked, host->max_host_blocked);
126 break;
127 case SCSI_MLQUEUE_DEVICE_BUSY:
128 case SCSI_MLQUEUE_EH_RETRY:
129 atomic_set(&device->device_blocked,
130 device->max_device_blocked);
131 break;
132 case SCSI_MLQUEUE_TARGET_BUSY:
133 atomic_set(&starget->target_blocked,
134 starget->max_target_blocked);
135 break;
136 }
137 }
138
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141 struct scsi_device *sdev = cmd->device;
142
143 blk_mq_requeue_request(cmd->request, true);
144 put_device(&sdev->sdev_gendev);
145 }
146
147 /**
148 * __scsi_queue_insert - private queue insertion
149 * @cmd: The SCSI command being requeued
150 * @reason: The reason for the requeue
151 * @unbusy: Whether the queue should be unbusied
152 *
153 * This is a private queue insertion. The public interface
154 * scsi_queue_insert() always assumes the queue should be unbusied
155 * because it's always called before the completion. This function is
156 * for a requeue after completion, which should only occur in this
157 * file.
158 */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161 struct scsi_device *device = cmd->device;
162 struct request_queue *q = device->request_queue;
163 unsigned long flags;
164
165 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166 "Inserting command %p into mlqueue\n", cmd));
167
168 scsi_set_blocked(cmd, reason);
169
170 /*
171 * Decrement the counters, since these commands are no longer
172 * active on the host/device.
173 */
174 if (unbusy)
175 scsi_device_unbusy(device);
176
177 /*
178 * Requeue this command. It will go before all other commands
179 * that are already in the queue. Schedule requeue work under
180 * lock such that the kblockd_schedule_work() call happens
181 * before blk_cleanup_queue() finishes.
182 */
183 cmd->result = 0;
184 if (q->mq_ops) {
185 scsi_mq_requeue_cmd(cmd);
186 return;
187 }
188 spin_lock_irqsave(q->queue_lock, flags);
189 blk_requeue_request(q, cmd->request);
190 kblockd_schedule_work(&device->requeue_work);
191 spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193
194 /*
195 * Function: scsi_queue_insert()
196 *
197 * Purpose: Insert a command in the midlevel queue.
198 *
199 * Arguments: cmd - command that we are adding to queue.
200 * reason - why we are inserting command to queue.
201 *
202 * Lock status: Assumed that lock is not held upon entry.
203 *
204 * Returns: Nothing.
205 *
206 * Notes: We do this for one of two cases. Either the host is busy
207 * and it cannot accept any more commands for the time being,
208 * or the device returned QUEUE_FULL and can accept no more
209 * commands.
210 * Notes: This could be called either from an interrupt context or a
211 * normal process context.
212 */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215 __scsi_queue_insert(cmd, reason, 1);
216 }
217
218
219 /**
220 * scsi_execute - insert request and wait for the result
221 * @sdev: scsi device
222 * @cmd: scsi command
223 * @data_direction: data direction
224 * @buffer: data buffer
225 * @bufflen: len of buffer
226 * @sense: optional sense buffer
227 * @sshdr: optional decoded sense header
228 * @timeout: request timeout in seconds
229 * @retries: number of times to retry request
230 * @flags: flags for ->cmd_flags
231 * @rq_flags: flags for ->rq_flags
232 * @resid: optional residual length
233 *
234 * Returns the scsi_cmnd result field if a command was executed, or a negative
235 * Linux error code if we didn't get that far.
236 */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238 int data_direction, void *buffer, unsigned bufflen,
239 unsigned char *sense, struct scsi_sense_hdr *sshdr,
240 int timeout, int retries, u64 flags, req_flags_t rq_flags,
241 int *resid)
242 {
243 struct request *req;
244 struct scsi_request *rq;
245 int ret = DRIVER_ERROR << 24;
246
247 req = blk_get_request(sdev->request_queue,
248 data_direction == DMA_TO_DEVICE ?
249 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250 if (IS_ERR(req))
251 return ret;
252 rq = scsi_req(req);
253
254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
255 buffer, bufflen, __GFP_RECLAIM))
256 goto out;
257
258 rq->cmd_len = COMMAND_SIZE(cmd[0]);
259 memcpy(rq->cmd, cmd, rq->cmd_len);
260 rq->retries = retries;
261 req->timeout = timeout;
262 req->cmd_flags |= flags;
263 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264
265 /*
266 * head injection *required* here otherwise quiesce won't work
267 */
268 blk_execute_rq(req->q, NULL, req, 1);
269
270 /*
271 * Some devices (USB mass-storage in particular) may transfer
272 * garbage data together with a residue indicating that the data
273 * is invalid. Prevent the garbage from being misinterpreted
274 * and prevent security leaks by zeroing out the excess data.
275 */
276 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278
279 if (resid)
280 *resid = rq->resid_len;
281 if (sense && rq->sense_len)
282 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283 if (sshdr)
284 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285 ret = rq->result;
286 out:
287 blk_put_request(req);
288
289 return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292
293 /*
294 * Function: scsi_init_cmd_errh()
295 *
296 * Purpose: Initialize cmd fields related to error handling.
297 *
298 * Arguments: cmd - command that is ready to be queued.
299 *
300 * Notes: This function has the job of initializing a number of
301 * fields related to error handling. Typically this will
302 * be called once for each command, as required.
303 */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 cmd->serial_number = 0;
307 scsi_set_resid(cmd, 0);
308 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309 if (cmd->cmd_len == 0)
310 cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315 struct Scsi_Host *shost = sdev->host;
316 struct scsi_target *starget = scsi_target(sdev);
317 unsigned long flags;
318
319 atomic_dec(&shost->host_busy);
320 if (starget->can_queue > 0)
321 atomic_dec(&starget->target_busy);
322
323 if (unlikely(scsi_host_in_recovery(shost) &&
324 (shost->host_failed || shost->host_eh_scheduled))) {
325 spin_lock_irqsave(shost->host_lock, flags);
326 scsi_eh_wakeup(shost);
327 spin_unlock_irqrestore(shost->host_lock, flags);
328 }
329
330 atomic_dec(&sdev->device_busy);
331 }
332
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 if (q->mq_ops)
336 blk_mq_start_hw_queues(q);
337 else
338 blk_run_queue(q);
339 }
340
341 /*
342 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343 * and call blk_run_queue for all the scsi_devices on the target -
344 * including current_sdev first.
345 *
346 * Called with *no* scsi locks held.
347 */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 struct Scsi_Host *shost = current_sdev->host;
351 struct scsi_device *sdev, *tmp;
352 struct scsi_target *starget = scsi_target(current_sdev);
353 unsigned long flags;
354
355 spin_lock_irqsave(shost->host_lock, flags);
356 starget->starget_sdev_user = NULL;
357 spin_unlock_irqrestore(shost->host_lock, flags);
358
359 /*
360 * Call blk_run_queue for all LUNs on the target, starting with
361 * current_sdev. We race with others (to set starget_sdev_user),
362 * but in most cases, we will be first. Ideally, each LU on the
363 * target would get some limited time or requests on the target.
364 */
365 scsi_kick_queue(current_sdev->request_queue);
366
367 spin_lock_irqsave(shost->host_lock, flags);
368 if (starget->starget_sdev_user)
369 goto out;
370 list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 same_target_siblings) {
372 if (sdev == current_sdev)
373 continue;
374 if (scsi_device_get(sdev))
375 continue;
376
377 spin_unlock_irqrestore(shost->host_lock, flags);
378 scsi_kick_queue(sdev->request_queue);
379 spin_lock_irqsave(shost->host_lock, flags);
380
381 scsi_device_put(sdev);
382 }
383 out:
384 spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390 return true;
391 if (atomic_read(&sdev->device_blocked) > 0)
392 return true;
393 return false;
394 }
395
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398 if (starget->can_queue > 0) {
399 if (atomic_read(&starget->target_busy) >= starget->can_queue)
400 return true;
401 if (atomic_read(&starget->target_blocked) > 0)
402 return true;
403 }
404 return false;
405 }
406
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409 if (shost->can_queue > 0 &&
410 atomic_read(&shost->host_busy) >= shost->can_queue)
411 return true;
412 if (atomic_read(&shost->host_blocked) > 0)
413 return true;
414 if (shost->host_self_blocked)
415 return true;
416 return false;
417 }
418
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421 LIST_HEAD(starved_list);
422 struct scsi_device *sdev;
423 unsigned long flags;
424
425 spin_lock_irqsave(shost->host_lock, flags);
426 list_splice_init(&shost->starved_list, &starved_list);
427
428 while (!list_empty(&starved_list)) {
429 struct request_queue *slq;
430
431 /*
432 * As long as shost is accepting commands and we have
433 * starved queues, call blk_run_queue. scsi_request_fn
434 * drops the queue_lock and can add us back to the
435 * starved_list.
436 *
437 * host_lock protects the starved_list and starved_entry.
438 * scsi_request_fn must get the host_lock before checking
439 * or modifying starved_list or starved_entry.
440 */
441 if (scsi_host_is_busy(shost))
442 break;
443
444 sdev = list_entry(starved_list.next,
445 struct scsi_device, starved_entry);
446 list_del_init(&sdev->starved_entry);
447 if (scsi_target_is_busy(scsi_target(sdev))) {
448 list_move_tail(&sdev->starved_entry,
449 &shost->starved_list);
450 continue;
451 }
452
453 /*
454 * Once we drop the host lock, a racing scsi_remove_device()
455 * call may remove the sdev from the starved list and destroy
456 * it and the queue. Mitigate by taking a reference to the
457 * queue and never touching the sdev again after we drop the
458 * host lock. Note: if __scsi_remove_device() invokes
459 * blk_cleanup_queue() before the queue is run from this
460 * function then blk_run_queue() will return immediately since
461 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462 */
463 slq = sdev->request_queue;
464 if (!blk_get_queue(slq))
465 continue;
466 spin_unlock_irqrestore(shost->host_lock, flags);
467
468 scsi_kick_queue(slq);
469 blk_put_queue(slq);
470
471 spin_lock_irqsave(shost->host_lock, flags);
472 }
473 /* put any unprocessed entries back */
474 list_splice(&starved_list, &shost->starved_list);
475 spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477
478 /*
479 * Function: scsi_run_queue()
480 *
481 * Purpose: Select a proper request queue to serve next
482 *
483 * Arguments: q - last request's queue
484 *
485 * Returns: Nothing
486 *
487 * Notes: The previous command was completely finished, start
488 * a new one if possible.
489 */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492 struct scsi_device *sdev = q->queuedata;
493
494 if (scsi_target(sdev)->single_lun)
495 scsi_single_lun_run(sdev);
496 if (!list_empty(&sdev->host->starved_list))
497 scsi_starved_list_run(sdev->host);
498
499 if (q->mq_ops)
500 blk_mq_run_hw_queues(q, false);
501 else
502 blk_run_queue(q);
503 }
504
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 struct scsi_device *sdev;
508 struct request_queue *q;
509
510 sdev = container_of(work, struct scsi_device, requeue_work);
511 q = sdev->request_queue;
512 scsi_run_queue(q);
513 }
514
515 /*
516 * Function: scsi_requeue_command()
517 *
518 * Purpose: Handle post-processing of completed commands.
519 *
520 * Arguments: q - queue to operate on
521 * cmd - command that may need to be requeued.
522 *
523 * Returns: Nothing
524 *
525 * Notes: After command completion, there may be blocks left
526 * over which weren't finished by the previous command
527 * this can be for a number of reasons - the main one is
528 * I/O errors in the middle of the request, in which case
529 * we need to request the blocks that come after the bad
530 * sector.
531 * Notes: Upon return, cmd is a stale pointer.
532 */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535 struct scsi_device *sdev = cmd->device;
536 struct request *req = cmd->request;
537 unsigned long flags;
538
539 spin_lock_irqsave(q->queue_lock, flags);
540 blk_unprep_request(req);
541 req->special = NULL;
542 scsi_put_command(cmd);
543 blk_requeue_request(q, req);
544 spin_unlock_irqrestore(q->queue_lock, flags);
545
546 scsi_run_queue(q);
547
548 put_device(&sdev->sdev_gendev);
549 }
550
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553 struct scsi_device *sdev;
554
555 shost_for_each_device(sdev, shost)
556 scsi_run_queue(sdev->request_queue);
557 }
558
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561 if (!blk_rq_is_passthrough(cmd->request)) {
562 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563
564 if (drv->uninit_command)
565 drv->uninit_command(cmd);
566 }
567 }
568
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571 struct scsi_data_buffer *sdb;
572
573 if (cmd->sdb.table.nents)
574 sg_free_table_chained(&cmd->sdb.table, true);
575 if (cmd->request->next_rq) {
576 sdb = cmd->request->next_rq->special;
577 if (sdb)
578 sg_free_table_chained(&sdb->table, true);
579 }
580 if (scsi_prot_sg_count(cmd))
581 sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 scsi_mq_free_sgtables(cmd);
587 scsi_uninit_cmd(cmd);
588 scsi_del_cmd_from_list(cmd);
589 }
590
591 /*
592 * Function: scsi_release_buffers()
593 *
594 * Purpose: Free resources allocate for a scsi_command.
595 *
596 * Arguments: cmd - command that we are bailing.
597 *
598 * Lock status: Assumed that no lock is held upon entry.
599 *
600 * Returns: Nothing
601 *
602 * Notes: In the event that an upper level driver rejects a
603 * command, we must release resources allocated during
604 * the __init_io() function. Primarily this would involve
605 * the scatter-gather table.
606 */
607 static void scsi_release_buffers(struct scsi_cmnd *cmd)
608 {
609 if (cmd->sdb.table.nents)
610 sg_free_table_chained(&cmd->sdb.table, false);
611
612 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
613
614 if (scsi_prot_sg_count(cmd))
615 sg_free_table_chained(&cmd->prot_sdb->table, false);
616 }
617
618 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
619 {
620 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
621
622 sg_free_table_chained(&bidi_sdb->table, false);
623 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
624 cmd->request->next_rq->special = NULL;
625 }
626
627 static bool scsi_end_request(struct request *req, blk_status_t error,
628 unsigned int bytes, unsigned int bidi_bytes)
629 {
630 struct scsi_cmnd *cmd = req->special;
631 struct scsi_device *sdev = cmd->device;
632 struct request_queue *q = sdev->request_queue;
633
634 if (blk_update_request(req, error, bytes))
635 return true;
636
637 /* Bidi request must be completed as a whole */
638 if (unlikely(bidi_bytes) &&
639 blk_update_request(req->next_rq, error, bidi_bytes))
640 return true;
641
642 if (blk_queue_add_random(q))
643 add_disk_randomness(req->rq_disk);
644
645 if (req->mq_ctx) {
646 /*
647 * In the MQ case the command gets freed by __blk_mq_end_request,
648 * so we have to do all cleanup that depends on it earlier.
649 *
650 * We also can't kick the queues from irq context, so we
651 * will have to defer it to a workqueue.
652 */
653 scsi_mq_uninit_cmd(cmd);
654
655 __blk_mq_end_request(req, error);
656
657 if (scsi_target(sdev)->single_lun ||
658 !list_empty(&sdev->host->starved_list))
659 kblockd_schedule_work(&sdev->requeue_work);
660 else
661 blk_mq_run_hw_queues(q, true);
662 } else {
663 unsigned long flags;
664
665 if (bidi_bytes)
666 scsi_release_bidi_buffers(cmd);
667 scsi_release_buffers(cmd);
668 scsi_put_command(cmd);
669
670 spin_lock_irqsave(q->queue_lock, flags);
671 blk_finish_request(req, error);
672 spin_unlock_irqrestore(q->queue_lock, flags);
673
674 scsi_run_queue(q);
675 }
676
677 put_device(&sdev->sdev_gendev);
678 return false;
679 }
680
681 /**
682 * __scsi_error_from_host_byte - translate SCSI error code into errno
683 * @cmd: SCSI command (unused)
684 * @result: scsi error code
685 *
686 * Translate SCSI error code into block errors.
687 */
688 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
689 int result)
690 {
691 switch (host_byte(result)) {
692 case DID_TRANSPORT_FAILFAST:
693 return BLK_STS_TRANSPORT;
694 case DID_TARGET_FAILURE:
695 set_host_byte(cmd, DID_OK);
696 return BLK_STS_TARGET;
697 case DID_NEXUS_FAILURE:
698 return BLK_STS_NEXUS;
699 case DID_ALLOC_FAILURE:
700 set_host_byte(cmd, DID_OK);
701 return BLK_STS_NOSPC;
702 case DID_MEDIUM_ERROR:
703 set_host_byte(cmd, DID_OK);
704 return BLK_STS_MEDIUM;
705 default:
706 return BLK_STS_IOERR;
707 }
708 }
709
710 /*
711 * Function: scsi_io_completion()
712 *
713 * Purpose: Completion processing for block device I/O requests.
714 *
715 * Arguments: cmd - command that is finished.
716 *
717 * Lock status: Assumed that no lock is held upon entry.
718 *
719 * Returns: Nothing
720 *
721 * Notes: We will finish off the specified number of sectors. If we
722 * are done, the command block will be released and the queue
723 * function will be goosed. If we are not done then we have to
724 * figure out what to do next:
725 *
726 * a) We can call scsi_requeue_command(). The request
727 * will be unprepared and put back on the queue. Then
728 * a new command will be created for it. This should
729 * be used if we made forward progress, or if we want
730 * to switch from READ(10) to READ(6) for example.
731 *
732 * b) We can call __scsi_queue_insert(). The request will
733 * be put back on the queue and retried using the same
734 * command as before, possibly after a delay.
735 *
736 * c) We can call scsi_end_request() with -EIO to fail
737 * the remainder of the request.
738 */
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
740 {
741 int result = cmd->result;
742 struct request_queue *q = cmd->device->request_queue;
743 struct request *req = cmd->request;
744 blk_status_t error = BLK_STS_OK;
745 struct scsi_sense_hdr sshdr;
746 bool sense_valid = false;
747 int sense_deferred = 0, level = 0;
748 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
749 ACTION_DELAYED_RETRY} action;
750 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
751
752 if (result) {
753 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
754 if (sense_valid)
755 sense_deferred = scsi_sense_is_deferred(&sshdr);
756 }
757
758 if (blk_rq_is_passthrough(req)) {
759 if (result) {
760 if (sense_valid) {
761 /*
762 * SG_IO wants current and deferred errors
763 */
764 scsi_req(req)->sense_len =
765 min(8 + cmd->sense_buffer[7],
766 SCSI_SENSE_BUFFERSIZE);
767 }
768 if (!sense_deferred)
769 error = __scsi_error_from_host_byte(cmd, result);
770 }
771 /*
772 * __scsi_error_from_host_byte may have reset the host_byte
773 */
774 scsi_req(req)->result = cmd->result;
775 scsi_req(req)->resid_len = scsi_get_resid(cmd);
776
777 if (scsi_bidi_cmnd(cmd)) {
778 /*
779 * Bidi commands Must be complete as a whole,
780 * both sides at once.
781 */
782 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
783 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
784 blk_rq_bytes(req->next_rq)))
785 BUG();
786 return;
787 }
788 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
789 /*
790 * Flush commands do not transfers any data, and thus cannot use
791 * good_bytes != blk_rq_bytes(req) as the signal for an error.
792 * This sets the error explicitly for the problem case.
793 */
794 error = __scsi_error_from_host_byte(cmd, result);
795 }
796
797 /* no bidi support for !blk_rq_is_passthrough yet */
798 BUG_ON(blk_bidi_rq(req));
799
800 /*
801 * Next deal with any sectors which we were able to correctly
802 * handle.
803 */
804 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
805 "%u sectors total, %d bytes done.\n",
806 blk_rq_sectors(req), good_bytes));
807
808 /*
809 * Recovered errors need reporting, but they're always treated as
810 * success, so fiddle the result code here. For passthrough requests
811 * we already took a copy of the original into sreq->result which
812 * is what gets returned to the user
813 */
814 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
815 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816 * print since caller wants ATA registers. Only occurs on
817 * SCSI ATA PASS_THROUGH commands when CK_COND=1
818 */
819 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
820 ;
821 else if (!(req->rq_flags & RQF_QUIET))
822 scsi_print_sense(cmd);
823 result = 0;
824 /* for passthrough error may be set */
825 error = BLK_STS_OK;
826 }
827
828 /*
829 * special case: failed zero length commands always need to
830 * drop down into the retry code. Otherwise, if we finished
831 * all bytes in the request we are done now.
832 */
833 if (!(blk_rq_bytes(req) == 0 && error) &&
834 !scsi_end_request(req, error, good_bytes, 0))
835 return;
836
837 /*
838 * Kill remainder if no retrys.
839 */
840 if (error && scsi_noretry_cmd(cmd)) {
841 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
842 BUG();
843 return;
844 }
845
846 /*
847 * If there had been no error, but we have leftover bytes in the
848 * requeues just queue the command up again.
849 */
850 if (result == 0)
851 goto requeue;
852
853 error = __scsi_error_from_host_byte(cmd, result);
854
855 if (host_byte(result) == DID_RESET) {
856 /* Third party bus reset or reset for error recovery
857 * reasons. Just retry the command and see what
858 * happens.
859 */
860 action = ACTION_RETRY;
861 } else if (sense_valid && !sense_deferred) {
862 switch (sshdr.sense_key) {
863 case UNIT_ATTENTION:
864 if (cmd->device->removable) {
865 /* Detected disc change. Set a bit
866 * and quietly refuse further access.
867 */
868 cmd->device->changed = 1;
869 action = ACTION_FAIL;
870 } else {
871 /* Must have been a power glitch, or a
872 * bus reset. Could not have been a
873 * media change, so we just retry the
874 * command and see what happens.
875 */
876 action = ACTION_RETRY;
877 }
878 break;
879 case ILLEGAL_REQUEST:
880 /* If we had an ILLEGAL REQUEST returned, then
881 * we may have performed an unsupported
882 * command. The only thing this should be
883 * would be a ten byte read where only a six
884 * byte read was supported. Also, on a system
885 * where READ CAPACITY failed, we may have
886 * read past the end of the disk.
887 */
888 if ((cmd->device->use_10_for_rw &&
889 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
890 (cmd->cmnd[0] == READ_10 ||
891 cmd->cmnd[0] == WRITE_10)) {
892 /* This will issue a new 6-byte command. */
893 cmd->device->use_10_for_rw = 0;
894 action = ACTION_REPREP;
895 } else if (sshdr.asc == 0x10) /* DIX */ {
896 action = ACTION_FAIL;
897 error = BLK_STS_PROTECTION;
898 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
899 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
900 action = ACTION_FAIL;
901 error = BLK_STS_TARGET;
902 } else
903 action = ACTION_FAIL;
904 break;
905 case ABORTED_COMMAND:
906 action = ACTION_FAIL;
907 if (sshdr.asc == 0x10) /* DIF */
908 error = BLK_STS_PROTECTION;
909 break;
910 case NOT_READY:
911 /* If the device is in the process of becoming
912 * ready, or has a temporary blockage, retry.
913 */
914 if (sshdr.asc == 0x04) {
915 switch (sshdr.ascq) {
916 case 0x01: /* becoming ready */
917 case 0x04: /* format in progress */
918 case 0x05: /* rebuild in progress */
919 case 0x06: /* recalculation in progress */
920 case 0x07: /* operation in progress */
921 case 0x08: /* Long write in progress */
922 case 0x09: /* self test in progress */
923 case 0x14: /* space allocation in progress */
924 action = ACTION_DELAYED_RETRY;
925 break;
926 default:
927 action = ACTION_FAIL;
928 break;
929 }
930 } else
931 action = ACTION_FAIL;
932 break;
933 case VOLUME_OVERFLOW:
934 /* See SSC3rXX or current. */
935 action = ACTION_FAIL;
936 break;
937 default:
938 action = ACTION_FAIL;
939 break;
940 }
941 } else
942 action = ACTION_FAIL;
943
944 if (action != ACTION_FAIL &&
945 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
946 action = ACTION_FAIL;
947
948 switch (action) {
949 case ACTION_FAIL:
950 /* Give up and fail the remainder of the request */
951 if (!(req->rq_flags & RQF_QUIET)) {
952 static DEFINE_RATELIMIT_STATE(_rs,
953 DEFAULT_RATELIMIT_INTERVAL,
954 DEFAULT_RATELIMIT_BURST);
955
956 if (unlikely(scsi_logging_level))
957 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
958 SCSI_LOG_MLCOMPLETE_BITS);
959
960 /*
961 * if logging is enabled the failure will be printed
962 * in scsi_log_completion(), so avoid duplicate messages
963 */
964 if (!level && __ratelimit(&_rs)) {
965 scsi_print_result(cmd, NULL, FAILED);
966 if (driver_byte(result) & DRIVER_SENSE)
967 scsi_print_sense(cmd);
968 scsi_print_command(cmd);
969 }
970 }
971 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
972 return;
973 /*FALLTHRU*/
974 case ACTION_REPREP:
975 requeue:
976 /* Unprep the request and put it back at the head of the queue.
977 * A new command will be prepared and issued.
978 */
979 if (q->mq_ops) {
980 cmd->request->rq_flags &= ~RQF_DONTPREP;
981 scsi_mq_uninit_cmd(cmd);
982 scsi_mq_requeue_cmd(cmd);
983 } else {
984 scsi_release_buffers(cmd);
985 scsi_requeue_command(q, cmd);
986 }
987 break;
988 case ACTION_RETRY:
989 /* Retry the same command immediately */
990 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
991 break;
992 case ACTION_DELAYED_RETRY:
993 /* Retry the same command after a delay */
994 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
995 break;
996 }
997 }
998
999 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1000 {
1001 int count;
1002
1003 /*
1004 * If sg table allocation fails, requeue request later.
1005 */
1006 if (unlikely(sg_alloc_table_chained(&sdb->table,
1007 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1008 return BLKPREP_DEFER;
1009
1010 /*
1011 * Next, walk the list, and fill in the addresses and sizes of
1012 * each segment.
1013 */
1014 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1015 BUG_ON(count > sdb->table.nents);
1016 sdb->table.nents = count;
1017 sdb->length = blk_rq_payload_bytes(req);
1018 return BLKPREP_OK;
1019 }
1020
1021 /*
1022 * Function: scsi_init_io()
1023 *
1024 * Purpose: SCSI I/O initialize function.
1025 *
1026 * Arguments: cmd - Command descriptor we wish to initialize
1027 *
1028 * Returns: 0 on success
1029 * BLKPREP_DEFER if the failure is retryable
1030 * BLKPREP_KILL if the failure is fatal
1031 */
1032 int scsi_init_io(struct scsi_cmnd *cmd)
1033 {
1034 struct scsi_device *sdev = cmd->device;
1035 struct request *rq = cmd->request;
1036 bool is_mq = (rq->mq_ctx != NULL);
1037 int error = BLKPREP_KILL;
1038
1039 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1040 goto err_exit;
1041
1042 error = scsi_init_sgtable(rq, &cmd->sdb);
1043 if (error)
1044 goto err_exit;
1045
1046 if (blk_bidi_rq(rq)) {
1047 if (!rq->q->mq_ops) {
1048 struct scsi_data_buffer *bidi_sdb =
1049 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1050 if (!bidi_sdb) {
1051 error = BLKPREP_DEFER;
1052 goto err_exit;
1053 }
1054
1055 rq->next_rq->special = bidi_sdb;
1056 }
1057
1058 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1059 if (error)
1060 goto err_exit;
1061 }
1062
1063 if (blk_integrity_rq(rq)) {
1064 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065 int ivecs, count;
1066
1067 if (prot_sdb == NULL) {
1068 /*
1069 * This can happen if someone (e.g. multipath)
1070 * queues a command to a device on an adapter
1071 * that does not support DIX.
1072 */
1073 WARN_ON_ONCE(1);
1074 error = BLKPREP_KILL;
1075 goto err_exit;
1076 }
1077
1078 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079
1080 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081 prot_sdb->table.sgl)) {
1082 error = BLKPREP_DEFER;
1083 goto err_exit;
1084 }
1085
1086 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087 prot_sdb->table.sgl);
1088 BUG_ON(unlikely(count > ivecs));
1089 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1090
1091 cmd->prot_sdb = prot_sdb;
1092 cmd->prot_sdb->table.nents = count;
1093 }
1094
1095 return BLKPREP_OK;
1096 err_exit:
1097 if (is_mq) {
1098 scsi_mq_free_sgtables(cmd);
1099 } else {
1100 scsi_release_buffers(cmd);
1101 cmd->request->special = NULL;
1102 scsi_put_command(cmd);
1103 put_device(&sdev->sdev_gendev);
1104 }
1105 return error;
1106 }
1107 EXPORT_SYMBOL(scsi_init_io);
1108
1109 /**
1110 * scsi_initialize_rq - initialize struct scsi_cmnd.req
1111 *
1112 * Called from inside blk_get_request().
1113 */
1114 void scsi_initialize_rq(struct request *rq)
1115 {
1116 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1117
1118 scsi_req_init(&cmd->req);
1119 }
1120 EXPORT_SYMBOL(scsi_initialize_rq);
1121
1122 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1123 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1124 {
1125 struct scsi_device *sdev = cmd->device;
1126 struct Scsi_Host *shost = sdev->host;
1127 unsigned long flags;
1128
1129 if (shost->use_cmd_list) {
1130 spin_lock_irqsave(&sdev->list_lock, flags);
1131 list_add_tail(&cmd->list, &sdev->cmd_list);
1132 spin_unlock_irqrestore(&sdev->list_lock, flags);
1133 }
1134 }
1135
1136 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1137 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1138 {
1139 struct scsi_device *sdev = cmd->device;
1140 struct Scsi_Host *shost = sdev->host;
1141 unsigned long flags;
1142
1143 if (shost->use_cmd_list) {
1144 spin_lock_irqsave(&sdev->list_lock, flags);
1145 BUG_ON(list_empty(&cmd->list));
1146 list_del_init(&cmd->list);
1147 spin_unlock_irqrestore(&sdev->list_lock, flags);
1148 }
1149 }
1150
1151 /* Called after a request has been started. */
1152 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1153 {
1154 void *buf = cmd->sense_buffer;
1155 void *prot = cmd->prot_sdb;
1156 unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1157
1158 /* zero out the cmd, except for the embedded scsi_request */
1159 memset((char *)cmd + sizeof(cmd->req), 0,
1160 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1161
1162 cmd->device = dev;
1163 cmd->sense_buffer = buf;
1164 cmd->prot_sdb = prot;
1165 cmd->flags = unchecked_isa_dma;
1166 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167 cmd->jiffies_at_alloc = jiffies;
1168
1169 scsi_add_cmd_to_list(cmd);
1170 }
1171
1172 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1173 {
1174 struct scsi_cmnd *cmd = req->special;
1175
1176 /*
1177 * Passthrough requests may transfer data, in which case they must
1178 * a bio attached to them. Or they might contain a SCSI command
1179 * that does not transfer data, in which case they may optionally
1180 * submit a request without an attached bio.
1181 */
1182 if (req->bio) {
1183 int ret = scsi_init_io(cmd);
1184 if (unlikely(ret))
1185 return ret;
1186 } else {
1187 BUG_ON(blk_rq_bytes(req));
1188
1189 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190 }
1191
1192 cmd->cmd_len = scsi_req(req)->cmd_len;
1193 cmd->cmnd = scsi_req(req)->cmd;
1194 cmd->transfersize = blk_rq_bytes(req);
1195 cmd->allowed = scsi_req(req)->retries;
1196 return BLKPREP_OK;
1197 }
1198
1199 /*
1200 * Setup a normal block command. These are simple request from filesystems
1201 * that still need to be translated to SCSI CDBs from the ULD.
1202 */
1203 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1204 {
1205 struct scsi_cmnd *cmd = req->special;
1206
1207 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1208 int ret = sdev->handler->prep_fn(sdev, req);
1209 if (ret != BLKPREP_OK)
1210 return ret;
1211 }
1212
1213 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1214 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1215 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1216 }
1217
1218 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1219 {
1220 struct scsi_cmnd *cmd = req->special;
1221
1222 if (!blk_rq_bytes(req))
1223 cmd->sc_data_direction = DMA_NONE;
1224 else if (rq_data_dir(req) == WRITE)
1225 cmd->sc_data_direction = DMA_TO_DEVICE;
1226 else
1227 cmd->sc_data_direction = DMA_FROM_DEVICE;
1228
1229 if (blk_rq_is_scsi(req))
1230 return scsi_setup_scsi_cmnd(sdev, req);
1231 else
1232 return scsi_setup_fs_cmnd(sdev, req);
1233 }
1234
1235 static int
1236 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1237 {
1238 int ret = BLKPREP_OK;
1239
1240 /*
1241 * If the device is not in running state we will reject some
1242 * or all commands.
1243 */
1244 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1245 switch (sdev->sdev_state) {
1246 case SDEV_OFFLINE:
1247 case SDEV_TRANSPORT_OFFLINE:
1248 /*
1249 * If the device is offline we refuse to process any
1250 * commands. The device must be brought online
1251 * before trying any recovery commands.
1252 */
1253 sdev_printk(KERN_ERR, sdev,
1254 "rejecting I/O to offline device\n");
1255 ret = BLKPREP_KILL;
1256 break;
1257 case SDEV_DEL:
1258 /*
1259 * If the device is fully deleted, we refuse to
1260 * process any commands as well.
1261 */
1262 sdev_printk(KERN_ERR, sdev,
1263 "rejecting I/O to dead device\n");
1264 ret = BLKPREP_KILL;
1265 break;
1266 case SDEV_BLOCK:
1267 case SDEV_CREATED_BLOCK:
1268 ret = BLKPREP_DEFER;
1269 break;
1270 case SDEV_QUIESCE:
1271 /*
1272 * If the devices is blocked we defer normal commands.
1273 */
1274 if (!(req->rq_flags & RQF_PREEMPT))
1275 ret = BLKPREP_DEFER;
1276 break;
1277 default:
1278 /*
1279 * For any other not fully online state we only allow
1280 * special commands. In particular any user initiated
1281 * command is not allowed.
1282 */
1283 if (!(req->rq_flags & RQF_PREEMPT))
1284 ret = BLKPREP_KILL;
1285 break;
1286 }
1287 }
1288 return ret;
1289 }
1290
1291 static int
1292 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1293 {
1294 struct scsi_device *sdev = q->queuedata;
1295
1296 switch (ret) {
1297 case BLKPREP_KILL:
1298 case BLKPREP_INVALID:
1299 scsi_req(req)->result = DID_NO_CONNECT << 16;
1300 /* release the command and kill it */
1301 if (req->special) {
1302 struct scsi_cmnd *cmd = req->special;
1303 scsi_release_buffers(cmd);
1304 scsi_put_command(cmd);
1305 put_device(&sdev->sdev_gendev);
1306 req->special = NULL;
1307 }
1308 break;
1309 case BLKPREP_DEFER:
1310 /*
1311 * If we defer, the blk_peek_request() returns NULL, but the
1312 * queue must be restarted, so we schedule a callback to happen
1313 * shortly.
1314 */
1315 if (atomic_read(&sdev->device_busy) == 0)
1316 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1317 break;
1318 default:
1319 req->rq_flags |= RQF_DONTPREP;
1320 }
1321
1322 return ret;
1323 }
1324
1325 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1326 {
1327 struct scsi_device *sdev = q->queuedata;
1328 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1329 int ret;
1330
1331 ret = scsi_prep_state_check(sdev, req);
1332 if (ret != BLKPREP_OK)
1333 goto out;
1334
1335 if (!req->special) {
1336 /* Bail if we can't get a reference to the device */
1337 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1338 ret = BLKPREP_DEFER;
1339 goto out;
1340 }
1341
1342 scsi_init_command(sdev, cmd);
1343 req->special = cmd;
1344 }
1345
1346 cmd->tag = req->tag;
1347 cmd->request = req;
1348 cmd->prot_op = SCSI_PROT_NORMAL;
1349
1350 ret = scsi_setup_cmnd(sdev, req);
1351 out:
1352 return scsi_prep_return(q, req, ret);
1353 }
1354
1355 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1356 {
1357 scsi_uninit_cmd(req->special);
1358 }
1359
1360 /*
1361 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1362 * return 0.
1363 *
1364 * Called with the queue_lock held.
1365 */
1366 static inline int scsi_dev_queue_ready(struct request_queue *q,
1367 struct scsi_device *sdev)
1368 {
1369 unsigned int busy;
1370
1371 busy = atomic_inc_return(&sdev->device_busy) - 1;
1372 if (atomic_read(&sdev->device_blocked)) {
1373 if (busy)
1374 goto out_dec;
1375
1376 /*
1377 * unblock after device_blocked iterates to zero
1378 */
1379 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1380 /*
1381 * For the MQ case we take care of this in the caller.
1382 */
1383 if (!q->mq_ops)
1384 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1385 goto out_dec;
1386 }
1387 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1388 "unblocking device at zero depth\n"));
1389 }
1390
1391 if (busy >= sdev->queue_depth)
1392 goto out_dec;
1393
1394 return 1;
1395 out_dec:
1396 atomic_dec(&sdev->device_busy);
1397 return 0;
1398 }
1399
1400 /*
1401 * scsi_target_queue_ready: checks if there we can send commands to target
1402 * @sdev: scsi device on starget to check.
1403 */
1404 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1405 struct scsi_device *sdev)
1406 {
1407 struct scsi_target *starget = scsi_target(sdev);
1408 unsigned int busy;
1409
1410 if (starget->single_lun) {
1411 spin_lock_irq(shost->host_lock);
1412 if (starget->starget_sdev_user &&
1413 starget->starget_sdev_user != sdev) {
1414 spin_unlock_irq(shost->host_lock);
1415 return 0;
1416 }
1417 starget->starget_sdev_user = sdev;
1418 spin_unlock_irq(shost->host_lock);
1419 }
1420
1421 if (starget->can_queue <= 0)
1422 return 1;
1423
1424 busy = atomic_inc_return(&starget->target_busy) - 1;
1425 if (atomic_read(&starget->target_blocked) > 0) {
1426 if (busy)
1427 goto starved;
1428
1429 /*
1430 * unblock after target_blocked iterates to zero
1431 */
1432 if (atomic_dec_return(&starget->target_blocked) > 0)
1433 goto out_dec;
1434
1435 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1436 "unblocking target at zero depth\n"));
1437 }
1438
1439 if (busy >= starget->can_queue)
1440 goto starved;
1441
1442 return 1;
1443
1444 starved:
1445 spin_lock_irq(shost->host_lock);
1446 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1447 spin_unlock_irq(shost->host_lock);
1448 out_dec:
1449 if (starget->can_queue > 0)
1450 atomic_dec(&starget->target_busy);
1451 return 0;
1452 }
1453
1454 /*
1455 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1456 * return 0. We must end up running the queue again whenever 0 is
1457 * returned, else IO can hang.
1458 */
1459 static inline int scsi_host_queue_ready(struct request_queue *q,
1460 struct Scsi_Host *shost,
1461 struct scsi_device *sdev)
1462 {
1463 unsigned int busy;
1464
1465 if (scsi_host_in_recovery(shost))
1466 return 0;
1467
1468 busy = atomic_inc_return(&shost->host_busy) - 1;
1469 if (atomic_read(&shost->host_blocked) > 0) {
1470 if (busy)
1471 goto starved;
1472
1473 /*
1474 * unblock after host_blocked iterates to zero
1475 */
1476 if (atomic_dec_return(&shost->host_blocked) > 0)
1477 goto out_dec;
1478
1479 SCSI_LOG_MLQUEUE(3,
1480 shost_printk(KERN_INFO, shost,
1481 "unblocking host at zero depth\n"));
1482 }
1483
1484 if (shost->can_queue > 0 && busy >= shost->can_queue)
1485 goto starved;
1486 if (shost->host_self_blocked)
1487 goto starved;
1488
1489 /* We're OK to process the command, so we can't be starved */
1490 if (!list_empty(&sdev->starved_entry)) {
1491 spin_lock_irq(shost->host_lock);
1492 if (!list_empty(&sdev->starved_entry))
1493 list_del_init(&sdev->starved_entry);
1494 spin_unlock_irq(shost->host_lock);
1495 }
1496
1497 return 1;
1498
1499 starved:
1500 spin_lock_irq(shost->host_lock);
1501 if (list_empty(&sdev->starved_entry))
1502 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1503 spin_unlock_irq(shost->host_lock);
1504 out_dec:
1505 atomic_dec(&shost->host_busy);
1506 return 0;
1507 }
1508
1509 /*
1510 * Busy state exporting function for request stacking drivers.
1511 *
1512 * For efficiency, no lock is taken to check the busy state of
1513 * shost/starget/sdev, since the returned value is not guaranteed and
1514 * may be changed after request stacking drivers call the function,
1515 * regardless of taking lock or not.
1516 *
1517 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1518 * needs to return 'not busy'. Otherwise, request stacking drivers
1519 * may hold requests forever.
1520 */
1521 static int scsi_lld_busy(struct request_queue *q)
1522 {
1523 struct scsi_device *sdev = q->queuedata;
1524 struct Scsi_Host *shost;
1525
1526 if (blk_queue_dying(q))
1527 return 0;
1528
1529 shost = sdev->host;
1530
1531 /*
1532 * Ignore host/starget busy state.
1533 * Since block layer does not have a concept of fairness across
1534 * multiple queues, congestion of host/starget needs to be handled
1535 * in SCSI layer.
1536 */
1537 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1538 return 1;
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * Kill a request for a dead device
1545 */
1546 static void scsi_kill_request(struct request *req, struct request_queue *q)
1547 {
1548 struct scsi_cmnd *cmd = req->special;
1549 struct scsi_device *sdev;
1550 struct scsi_target *starget;
1551 struct Scsi_Host *shost;
1552
1553 blk_start_request(req);
1554
1555 scmd_printk(KERN_INFO, cmd, "killing request\n");
1556
1557 sdev = cmd->device;
1558 starget = scsi_target(sdev);
1559 shost = sdev->host;
1560 scsi_init_cmd_errh(cmd);
1561 cmd->result = DID_NO_CONNECT << 16;
1562 atomic_inc(&cmd->device->iorequest_cnt);
1563
1564 /*
1565 * SCSI request completion path will do scsi_device_unbusy(),
1566 * bump busy counts. To bump the counters, we need to dance
1567 * with the locks as normal issue path does.
1568 */
1569 atomic_inc(&sdev->device_busy);
1570 atomic_inc(&shost->host_busy);
1571 if (starget->can_queue > 0)
1572 atomic_inc(&starget->target_busy);
1573
1574 blk_complete_request(req);
1575 }
1576
1577 static void scsi_softirq_done(struct request *rq)
1578 {
1579 struct scsi_cmnd *cmd = rq->special;
1580 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1581 int disposition;
1582
1583 INIT_LIST_HEAD(&cmd->eh_entry);
1584
1585 atomic_inc(&cmd->device->iodone_cnt);
1586 if (cmd->result)
1587 atomic_inc(&cmd->device->ioerr_cnt);
1588
1589 disposition = scsi_decide_disposition(cmd);
1590 if (disposition != SUCCESS &&
1591 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1592 sdev_printk(KERN_ERR, cmd->device,
1593 "timing out command, waited %lus\n",
1594 wait_for/HZ);
1595 disposition = SUCCESS;
1596 }
1597
1598 scsi_log_completion(cmd, disposition);
1599
1600 switch (disposition) {
1601 case SUCCESS:
1602 scsi_finish_command(cmd);
1603 break;
1604 case NEEDS_RETRY:
1605 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1606 break;
1607 case ADD_TO_MLQUEUE:
1608 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1609 break;
1610 default:
1611 scsi_eh_scmd_add(cmd);
1612 break;
1613 }
1614 }
1615
1616 /**
1617 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1618 * @cmd: command block we are dispatching.
1619 *
1620 * Return: nonzero return request was rejected and device's queue needs to be
1621 * plugged.
1622 */
1623 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1624 {
1625 struct Scsi_Host *host = cmd->device->host;
1626 int rtn = 0;
1627
1628 atomic_inc(&cmd->device->iorequest_cnt);
1629
1630 /* check if the device is still usable */
1631 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1632 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1633 * returns an immediate error upwards, and signals
1634 * that the device is no longer present */
1635 cmd->result = DID_NO_CONNECT << 16;
1636 goto done;
1637 }
1638
1639 /* Check to see if the scsi lld made this device blocked. */
1640 if (unlikely(scsi_device_blocked(cmd->device))) {
1641 /*
1642 * in blocked state, the command is just put back on
1643 * the device queue. The suspend state has already
1644 * blocked the queue so future requests should not
1645 * occur until the device transitions out of the
1646 * suspend state.
1647 */
1648 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1649 "queuecommand : device blocked\n"));
1650 return SCSI_MLQUEUE_DEVICE_BUSY;
1651 }
1652
1653 /* Store the LUN value in cmnd, if needed. */
1654 if (cmd->device->lun_in_cdb)
1655 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1656 (cmd->device->lun << 5 & 0xe0);
1657
1658 scsi_log_send(cmd);
1659
1660 /*
1661 * Before we queue this command, check if the command
1662 * length exceeds what the host adapter can handle.
1663 */
1664 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1665 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1666 "queuecommand : command too long. "
1667 "cdb_size=%d host->max_cmd_len=%d\n",
1668 cmd->cmd_len, cmd->device->host->max_cmd_len));
1669 cmd->result = (DID_ABORT << 16);
1670 goto done;
1671 }
1672
1673 if (unlikely(host->shost_state == SHOST_DEL)) {
1674 cmd->result = (DID_NO_CONNECT << 16);
1675 goto done;
1676
1677 }
1678
1679 trace_scsi_dispatch_cmd_start(cmd);
1680 rtn = host->hostt->queuecommand(host, cmd);
1681 if (rtn) {
1682 trace_scsi_dispatch_cmd_error(cmd, rtn);
1683 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1684 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1685 rtn = SCSI_MLQUEUE_HOST_BUSY;
1686
1687 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1688 "queuecommand : request rejected\n"));
1689 }
1690
1691 return rtn;
1692 done:
1693 cmd->scsi_done(cmd);
1694 return 0;
1695 }
1696
1697 /**
1698 * scsi_done - Invoke completion on finished SCSI command.
1699 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1700 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1701 *
1702 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1703 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1704 * calls blk_complete_request() for further processing.
1705 *
1706 * This function is interrupt context safe.
1707 */
1708 static void scsi_done(struct scsi_cmnd *cmd)
1709 {
1710 trace_scsi_dispatch_cmd_done(cmd);
1711 blk_complete_request(cmd->request);
1712 }
1713
1714 /*
1715 * Function: scsi_request_fn()
1716 *
1717 * Purpose: Main strategy routine for SCSI.
1718 *
1719 * Arguments: q - Pointer to actual queue.
1720 *
1721 * Returns: Nothing
1722 *
1723 * Lock status: IO request lock assumed to be held when called.
1724 */
1725 static void scsi_request_fn(struct request_queue *q)
1726 __releases(q->queue_lock)
1727 __acquires(q->queue_lock)
1728 {
1729 struct scsi_device *sdev = q->queuedata;
1730 struct Scsi_Host *shost;
1731 struct scsi_cmnd *cmd;
1732 struct request *req;
1733
1734 /*
1735 * To start with, we keep looping until the queue is empty, or until
1736 * the host is no longer able to accept any more requests.
1737 */
1738 shost = sdev->host;
1739 for (;;) {
1740 int rtn;
1741 /*
1742 * get next queueable request. We do this early to make sure
1743 * that the request is fully prepared even if we cannot
1744 * accept it.
1745 */
1746 req = blk_peek_request(q);
1747 if (!req)
1748 break;
1749
1750 if (unlikely(!scsi_device_online(sdev))) {
1751 sdev_printk(KERN_ERR, sdev,
1752 "rejecting I/O to offline device\n");
1753 scsi_kill_request(req, q);
1754 continue;
1755 }
1756
1757 if (!scsi_dev_queue_ready(q, sdev))
1758 break;
1759
1760 /*
1761 * Remove the request from the request list.
1762 */
1763 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1764 blk_start_request(req);
1765
1766 spin_unlock_irq(q->queue_lock);
1767 cmd = req->special;
1768 if (unlikely(cmd == NULL)) {
1769 printk(KERN_CRIT "impossible request in %s.\n"
1770 "please mail a stack trace to "
1771 "linux-scsi@vger.kernel.org\n",
1772 __func__);
1773 blk_dump_rq_flags(req, "foo");
1774 BUG();
1775 }
1776
1777 /*
1778 * We hit this when the driver is using a host wide
1779 * tag map. For device level tag maps the queue_depth check
1780 * in the device ready fn would prevent us from trying
1781 * to allocate a tag. Since the map is a shared host resource
1782 * we add the dev to the starved list so it eventually gets
1783 * a run when a tag is freed.
1784 */
1785 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1786 spin_lock_irq(shost->host_lock);
1787 if (list_empty(&sdev->starved_entry))
1788 list_add_tail(&sdev->starved_entry,
1789 &shost->starved_list);
1790 spin_unlock_irq(shost->host_lock);
1791 goto not_ready;
1792 }
1793
1794 if (!scsi_target_queue_ready(shost, sdev))
1795 goto not_ready;
1796
1797 if (!scsi_host_queue_ready(q, shost, sdev))
1798 goto host_not_ready;
1799
1800 if (sdev->simple_tags)
1801 cmd->flags |= SCMD_TAGGED;
1802 else
1803 cmd->flags &= ~SCMD_TAGGED;
1804
1805 /*
1806 * Finally, initialize any error handling parameters, and set up
1807 * the timers for timeouts.
1808 */
1809 scsi_init_cmd_errh(cmd);
1810
1811 /*
1812 * Dispatch the command to the low-level driver.
1813 */
1814 cmd->scsi_done = scsi_done;
1815 rtn = scsi_dispatch_cmd(cmd);
1816 if (rtn) {
1817 scsi_queue_insert(cmd, rtn);
1818 spin_lock_irq(q->queue_lock);
1819 goto out_delay;
1820 }
1821 spin_lock_irq(q->queue_lock);
1822 }
1823
1824 return;
1825
1826 host_not_ready:
1827 if (scsi_target(sdev)->can_queue > 0)
1828 atomic_dec(&scsi_target(sdev)->target_busy);
1829 not_ready:
1830 /*
1831 * lock q, handle tag, requeue req, and decrement device_busy. We
1832 * must return with queue_lock held.
1833 *
1834 * Decrementing device_busy without checking it is OK, as all such
1835 * cases (host limits or settings) should run the queue at some
1836 * later time.
1837 */
1838 spin_lock_irq(q->queue_lock);
1839 blk_requeue_request(q, req);
1840 atomic_dec(&sdev->device_busy);
1841 out_delay:
1842 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1843 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1844 }
1845
1846 static inline blk_status_t prep_to_mq(int ret)
1847 {
1848 switch (ret) {
1849 case BLKPREP_OK:
1850 return BLK_STS_OK;
1851 case BLKPREP_DEFER:
1852 return BLK_STS_RESOURCE;
1853 default:
1854 return BLK_STS_IOERR;
1855 }
1856 }
1857
1858 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1859 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1860 {
1861 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1862 sizeof(struct scatterlist);
1863 }
1864
1865 static int scsi_mq_prep_fn(struct request *req)
1866 {
1867 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1868 struct scsi_device *sdev = req->q->queuedata;
1869 struct Scsi_Host *shost = sdev->host;
1870 struct scatterlist *sg;
1871
1872 scsi_init_command(sdev, cmd);
1873
1874 req->special = cmd;
1875
1876 cmd->request = req;
1877
1878 cmd->tag = req->tag;
1879 cmd->prot_op = SCSI_PROT_NORMAL;
1880
1881 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1882 cmd->sdb.table.sgl = sg;
1883
1884 if (scsi_host_get_prot(shost)) {
1885 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1886
1887 cmd->prot_sdb->table.sgl =
1888 (struct scatterlist *)(cmd->prot_sdb + 1);
1889 }
1890
1891 if (blk_bidi_rq(req)) {
1892 struct request *next_rq = req->next_rq;
1893 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1894
1895 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1896 bidi_sdb->table.sgl =
1897 (struct scatterlist *)(bidi_sdb + 1);
1898
1899 next_rq->special = bidi_sdb;
1900 }
1901
1902 blk_mq_start_request(req);
1903
1904 return scsi_setup_cmnd(sdev, req);
1905 }
1906
1907 static void scsi_mq_done(struct scsi_cmnd *cmd)
1908 {
1909 trace_scsi_dispatch_cmd_done(cmd);
1910 blk_mq_complete_request(cmd->request);
1911 }
1912
1913 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1914 const struct blk_mq_queue_data *bd)
1915 {
1916 struct request *req = bd->rq;
1917 struct request_queue *q = req->q;
1918 struct scsi_device *sdev = q->queuedata;
1919 struct Scsi_Host *shost = sdev->host;
1920 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1921 blk_status_t ret;
1922 int reason;
1923
1924 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1925 if (ret != BLK_STS_OK)
1926 goto out;
1927
1928 ret = BLK_STS_RESOURCE;
1929 if (!get_device(&sdev->sdev_gendev))
1930 goto out;
1931
1932 if (!scsi_dev_queue_ready(q, sdev))
1933 goto out_put_device;
1934 if (!scsi_target_queue_ready(shost, sdev))
1935 goto out_dec_device_busy;
1936 if (!scsi_host_queue_ready(q, shost, sdev))
1937 goto out_dec_target_busy;
1938
1939 if (!(req->rq_flags & RQF_DONTPREP)) {
1940 ret = prep_to_mq(scsi_mq_prep_fn(req));
1941 if (ret != BLK_STS_OK)
1942 goto out_dec_host_busy;
1943 req->rq_flags |= RQF_DONTPREP;
1944 } else {
1945 blk_mq_start_request(req);
1946 }
1947
1948 if (sdev->simple_tags)
1949 cmd->flags |= SCMD_TAGGED;
1950 else
1951 cmd->flags &= ~SCMD_TAGGED;
1952
1953 scsi_init_cmd_errh(cmd);
1954 cmd->scsi_done = scsi_mq_done;
1955
1956 reason = scsi_dispatch_cmd(cmd);
1957 if (reason) {
1958 scsi_set_blocked(cmd, reason);
1959 ret = BLK_STS_RESOURCE;
1960 goto out_dec_host_busy;
1961 }
1962
1963 return BLK_STS_OK;
1964
1965 out_dec_host_busy:
1966 atomic_dec(&shost->host_busy);
1967 out_dec_target_busy:
1968 if (scsi_target(sdev)->can_queue > 0)
1969 atomic_dec(&scsi_target(sdev)->target_busy);
1970 out_dec_device_busy:
1971 atomic_dec(&sdev->device_busy);
1972 out_put_device:
1973 put_device(&sdev->sdev_gendev);
1974 out:
1975 switch (ret) {
1976 case BLK_STS_OK:
1977 break;
1978 case BLK_STS_RESOURCE:
1979 if (atomic_read(&sdev->device_busy) == 0 &&
1980 !scsi_device_blocked(sdev))
1981 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1982 break;
1983 default:
1984 /*
1985 * Make sure to release all allocated ressources when
1986 * we hit an error, as we will never see this command
1987 * again.
1988 */
1989 if (req->rq_flags & RQF_DONTPREP)
1990 scsi_mq_uninit_cmd(cmd);
1991 break;
1992 }
1993 return ret;
1994 }
1995
1996 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1997 bool reserved)
1998 {
1999 if (reserved)
2000 return BLK_EH_RESET_TIMER;
2001 return scsi_times_out(req);
2002 }
2003
2004 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2005 unsigned int hctx_idx, unsigned int numa_node)
2006 {
2007 struct Scsi_Host *shost = set->driver_data;
2008 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2009 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2010 struct scatterlist *sg;
2011
2012 if (unchecked_isa_dma)
2013 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2014 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2015 GFP_KERNEL, numa_node);
2016 if (!cmd->sense_buffer)
2017 return -ENOMEM;
2018 cmd->req.sense = cmd->sense_buffer;
2019
2020 if (scsi_host_get_prot(shost)) {
2021 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2022 shost->hostt->cmd_size;
2023 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2024 }
2025
2026 return 0;
2027 }
2028
2029 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2030 unsigned int hctx_idx)
2031 {
2032 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2033
2034 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2035 cmd->sense_buffer);
2036 }
2037
2038 static int scsi_map_queues(struct blk_mq_tag_set *set)
2039 {
2040 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2041
2042 if (shost->hostt->map_queues)
2043 return shost->hostt->map_queues(shost);
2044 return blk_mq_map_queues(set);
2045 }
2046
2047 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2048 {
2049 struct device *host_dev;
2050 u64 bounce_limit = 0xffffffff;
2051
2052 if (shost->unchecked_isa_dma)
2053 return BLK_BOUNCE_ISA;
2054 /*
2055 * Platforms with virtual-DMA translation
2056 * hardware have no practical limit.
2057 */
2058 if (!PCI_DMA_BUS_IS_PHYS)
2059 return BLK_BOUNCE_ANY;
2060
2061 host_dev = scsi_get_device(shost);
2062 if (host_dev && host_dev->dma_mask)
2063 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2064
2065 return bounce_limit;
2066 }
2067
2068 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2069 {
2070 struct device *dev = shost->dma_dev;
2071
2072 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2073
2074 /*
2075 * this limit is imposed by hardware restrictions
2076 */
2077 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2078 SG_MAX_SEGMENTS));
2079
2080 if (scsi_host_prot_dma(shost)) {
2081 shost->sg_prot_tablesize =
2082 min_not_zero(shost->sg_prot_tablesize,
2083 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2084 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2085 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2086 }
2087
2088 blk_queue_max_hw_sectors(q, shost->max_sectors);
2089 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2090 blk_queue_segment_boundary(q, shost->dma_boundary);
2091 dma_set_seg_boundary(dev, shost->dma_boundary);
2092
2093 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2094
2095 if (!shost->use_clustering)
2096 q->limits.cluster = 0;
2097
2098 /*
2099 * set a reasonable default alignment on word boundaries: the
2100 * host and device may alter it using
2101 * blk_queue_update_dma_alignment() later.
2102 */
2103 blk_queue_dma_alignment(q, 0x03);
2104 }
2105 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2106
2107 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2108 {
2109 struct Scsi_Host *shost = q->rq_alloc_data;
2110 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2111 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2112
2113 memset(cmd, 0, sizeof(*cmd));
2114
2115 if (unchecked_isa_dma)
2116 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2117 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2118 NUMA_NO_NODE);
2119 if (!cmd->sense_buffer)
2120 goto fail;
2121 cmd->req.sense = cmd->sense_buffer;
2122
2123 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2124 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2125 if (!cmd->prot_sdb)
2126 goto fail_free_sense;
2127 }
2128
2129 return 0;
2130
2131 fail_free_sense:
2132 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2133 fail:
2134 return -ENOMEM;
2135 }
2136
2137 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2138 {
2139 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2140
2141 if (cmd->prot_sdb)
2142 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2143 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2144 cmd->sense_buffer);
2145 }
2146
2147 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2148 {
2149 struct Scsi_Host *shost = sdev->host;
2150 struct request_queue *q;
2151
2152 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2153 if (!q)
2154 return NULL;
2155 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2156 q->rq_alloc_data = shost;
2157 q->request_fn = scsi_request_fn;
2158 q->init_rq_fn = scsi_init_rq;
2159 q->exit_rq_fn = scsi_exit_rq;
2160 q->initialize_rq_fn = scsi_initialize_rq;
2161
2162 if (blk_init_allocated_queue(q) < 0) {
2163 blk_cleanup_queue(q);
2164 return NULL;
2165 }
2166
2167 __scsi_init_queue(shost, q);
2168 blk_queue_prep_rq(q, scsi_prep_fn);
2169 blk_queue_unprep_rq(q, scsi_unprep_fn);
2170 blk_queue_softirq_done(q, scsi_softirq_done);
2171 blk_queue_rq_timed_out(q, scsi_times_out);
2172 blk_queue_lld_busy(q, scsi_lld_busy);
2173 return q;
2174 }
2175
2176 static const struct blk_mq_ops scsi_mq_ops = {
2177 .queue_rq = scsi_queue_rq,
2178 .complete = scsi_softirq_done,
2179 .timeout = scsi_timeout,
2180 #ifdef CONFIG_BLK_DEBUG_FS
2181 .show_rq = scsi_show_rq,
2182 #endif
2183 .init_request = scsi_init_request,
2184 .exit_request = scsi_exit_request,
2185 .initialize_rq_fn = scsi_initialize_rq,
2186 .map_queues = scsi_map_queues,
2187 };
2188
2189 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2190 {
2191 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2192 if (IS_ERR(sdev->request_queue))
2193 return NULL;
2194
2195 sdev->request_queue->queuedata = sdev;
2196 __scsi_init_queue(sdev->host, sdev->request_queue);
2197 return sdev->request_queue;
2198 }
2199
2200 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2201 {
2202 unsigned int cmd_size, sgl_size;
2203
2204 sgl_size = scsi_mq_sgl_size(shost);
2205 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2206 if (scsi_host_get_prot(shost))
2207 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2208
2209 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2210 shost->tag_set.ops = &scsi_mq_ops;
2211 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2212 shost->tag_set.queue_depth = shost->can_queue;
2213 shost->tag_set.cmd_size = cmd_size;
2214 shost->tag_set.numa_node = NUMA_NO_NODE;
2215 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2216 shost->tag_set.flags |=
2217 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2218 shost->tag_set.driver_data = shost;
2219
2220 return blk_mq_alloc_tag_set(&shost->tag_set);
2221 }
2222
2223 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2224 {
2225 blk_mq_free_tag_set(&shost->tag_set);
2226 }
2227
2228 /**
2229 * scsi_device_from_queue - return sdev associated with a request_queue
2230 * @q: The request queue to return the sdev from
2231 *
2232 * Return the sdev associated with a request queue or NULL if the
2233 * request_queue does not reference a SCSI device.
2234 */
2235 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2236 {
2237 struct scsi_device *sdev = NULL;
2238
2239 if (q->mq_ops) {
2240 if (q->mq_ops == &scsi_mq_ops)
2241 sdev = q->queuedata;
2242 } else if (q->request_fn == scsi_request_fn)
2243 sdev = q->queuedata;
2244 if (!sdev || !get_device(&sdev->sdev_gendev))
2245 sdev = NULL;
2246
2247 return sdev;
2248 }
2249 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2250
2251 /*
2252 * Function: scsi_block_requests()
2253 *
2254 * Purpose: Utility function used by low-level drivers to prevent further
2255 * commands from being queued to the device.
2256 *
2257 * Arguments: shost - Host in question
2258 *
2259 * Returns: Nothing
2260 *
2261 * Lock status: No locks are assumed held.
2262 *
2263 * Notes: There is no timer nor any other means by which the requests
2264 * get unblocked other than the low-level driver calling
2265 * scsi_unblock_requests().
2266 */
2267 void scsi_block_requests(struct Scsi_Host *shost)
2268 {
2269 shost->host_self_blocked = 1;
2270 }
2271 EXPORT_SYMBOL(scsi_block_requests);
2272
2273 /*
2274 * Function: scsi_unblock_requests()
2275 *
2276 * Purpose: Utility function used by low-level drivers to allow further
2277 * commands from being queued to the device.
2278 *
2279 * Arguments: shost - Host in question
2280 *
2281 * Returns: Nothing
2282 *
2283 * Lock status: No locks are assumed held.
2284 *
2285 * Notes: There is no timer nor any other means by which the requests
2286 * get unblocked other than the low-level driver calling
2287 * scsi_unblock_requests().
2288 *
2289 * This is done as an API function so that changes to the
2290 * internals of the scsi mid-layer won't require wholesale
2291 * changes to drivers that use this feature.
2292 */
2293 void scsi_unblock_requests(struct Scsi_Host *shost)
2294 {
2295 shost->host_self_blocked = 0;
2296 scsi_run_host_queues(shost);
2297 }
2298 EXPORT_SYMBOL(scsi_unblock_requests);
2299
2300 int __init scsi_init_queue(void)
2301 {
2302 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2303 sizeof(struct scsi_data_buffer),
2304 0, 0, NULL);
2305 if (!scsi_sdb_cache) {
2306 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2307 return -ENOMEM;
2308 }
2309
2310 return 0;
2311 }
2312
2313 void scsi_exit_queue(void)
2314 {
2315 kmem_cache_destroy(scsi_sense_cache);
2316 kmem_cache_destroy(scsi_sense_isadma_cache);
2317 kmem_cache_destroy(scsi_sdb_cache);
2318 }
2319
2320 /**
2321 * scsi_mode_select - issue a mode select
2322 * @sdev: SCSI device to be queried
2323 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2324 * @sp: Save page bit (0 == don't save, 1 == save)
2325 * @modepage: mode page being requested
2326 * @buffer: request buffer (may not be smaller than eight bytes)
2327 * @len: length of request buffer.
2328 * @timeout: command timeout
2329 * @retries: number of retries before failing
2330 * @data: returns a structure abstracting the mode header data
2331 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2332 * must be SCSI_SENSE_BUFFERSIZE big.
2333 *
2334 * Returns zero if successful; negative error number or scsi
2335 * status on error
2336 *
2337 */
2338 int
2339 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2340 unsigned char *buffer, int len, int timeout, int retries,
2341 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2342 {
2343 unsigned char cmd[10];
2344 unsigned char *real_buffer;
2345 int ret;
2346
2347 memset(cmd, 0, sizeof(cmd));
2348 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2349
2350 if (sdev->use_10_for_ms) {
2351 if (len > 65535)
2352 return -EINVAL;
2353 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2354 if (!real_buffer)
2355 return -ENOMEM;
2356 memcpy(real_buffer + 8, buffer, len);
2357 len += 8;
2358 real_buffer[0] = 0;
2359 real_buffer[1] = 0;
2360 real_buffer[2] = data->medium_type;
2361 real_buffer[3] = data->device_specific;
2362 real_buffer[4] = data->longlba ? 0x01 : 0;
2363 real_buffer[5] = 0;
2364 real_buffer[6] = data->block_descriptor_length >> 8;
2365 real_buffer[7] = data->block_descriptor_length;
2366
2367 cmd[0] = MODE_SELECT_10;
2368 cmd[7] = len >> 8;
2369 cmd[8] = len;
2370 } else {
2371 if (len > 255 || data->block_descriptor_length > 255 ||
2372 data->longlba)
2373 return -EINVAL;
2374
2375 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2376 if (!real_buffer)
2377 return -ENOMEM;
2378 memcpy(real_buffer + 4, buffer, len);
2379 len += 4;
2380 real_buffer[0] = 0;
2381 real_buffer[1] = data->medium_type;
2382 real_buffer[2] = data->device_specific;
2383 real_buffer[3] = data->block_descriptor_length;
2384
2385
2386 cmd[0] = MODE_SELECT;
2387 cmd[4] = len;
2388 }
2389
2390 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2391 sshdr, timeout, retries, NULL);
2392 kfree(real_buffer);
2393 return ret;
2394 }
2395 EXPORT_SYMBOL_GPL(scsi_mode_select);
2396
2397 /**
2398 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2399 * @sdev: SCSI device to be queried
2400 * @dbd: set if mode sense will allow block descriptors to be returned
2401 * @modepage: mode page being requested
2402 * @buffer: request buffer (may not be smaller than eight bytes)
2403 * @len: length of request buffer.
2404 * @timeout: command timeout
2405 * @retries: number of retries before failing
2406 * @data: returns a structure abstracting the mode header data
2407 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2408 * must be SCSI_SENSE_BUFFERSIZE big.
2409 *
2410 * Returns zero if unsuccessful, or the header offset (either 4
2411 * or 8 depending on whether a six or ten byte command was
2412 * issued) if successful.
2413 */
2414 int
2415 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2416 unsigned char *buffer, int len, int timeout, int retries,
2417 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2418 {
2419 unsigned char cmd[12];
2420 int use_10_for_ms;
2421 int header_length;
2422 int result, retry_count = retries;
2423 struct scsi_sense_hdr my_sshdr;
2424
2425 memset(data, 0, sizeof(*data));
2426 memset(&cmd[0], 0, 12);
2427 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2428 cmd[2] = modepage;
2429
2430 /* caller might not be interested in sense, but we need it */
2431 if (!sshdr)
2432 sshdr = &my_sshdr;
2433
2434 retry:
2435 use_10_for_ms = sdev->use_10_for_ms;
2436
2437 if (use_10_for_ms) {
2438 if (len < 8)
2439 len = 8;
2440
2441 cmd[0] = MODE_SENSE_10;
2442 cmd[8] = len;
2443 header_length = 8;
2444 } else {
2445 if (len < 4)
2446 len = 4;
2447
2448 cmd[0] = MODE_SENSE;
2449 cmd[4] = len;
2450 header_length = 4;
2451 }
2452
2453 memset(buffer, 0, len);
2454
2455 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2456 sshdr, timeout, retries, NULL);
2457
2458 /* This code looks awful: what it's doing is making sure an
2459 * ILLEGAL REQUEST sense return identifies the actual command
2460 * byte as the problem. MODE_SENSE commands can return
2461 * ILLEGAL REQUEST if the code page isn't supported */
2462
2463 if (use_10_for_ms && !scsi_status_is_good(result) &&
2464 (driver_byte(result) & DRIVER_SENSE)) {
2465 if (scsi_sense_valid(sshdr)) {
2466 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2467 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2468 /*
2469 * Invalid command operation code
2470 */
2471 sdev->use_10_for_ms = 0;
2472 goto retry;
2473 }
2474 }
2475 }
2476
2477 if(scsi_status_is_good(result)) {
2478 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2479 (modepage == 6 || modepage == 8))) {
2480 /* Initio breakage? */
2481 header_length = 0;
2482 data->length = 13;
2483 data->medium_type = 0;
2484 data->device_specific = 0;
2485 data->longlba = 0;
2486 data->block_descriptor_length = 0;
2487 } else if(use_10_for_ms) {
2488 data->length = buffer[0]*256 + buffer[1] + 2;
2489 data->medium_type = buffer[2];
2490 data->device_specific = buffer[3];
2491 data->longlba = buffer[4] & 0x01;
2492 data->block_descriptor_length = buffer[6]*256
2493 + buffer[7];
2494 } else {
2495 data->length = buffer[0] + 1;
2496 data->medium_type = buffer[1];
2497 data->device_specific = buffer[2];
2498 data->block_descriptor_length = buffer[3];
2499 }
2500 data->header_length = header_length;
2501 } else if ((status_byte(result) == CHECK_CONDITION) &&
2502 scsi_sense_valid(sshdr) &&
2503 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2504 retry_count--;
2505 goto retry;
2506 }
2507
2508 return result;
2509 }
2510 EXPORT_SYMBOL(scsi_mode_sense);
2511
2512 /**
2513 * scsi_test_unit_ready - test if unit is ready
2514 * @sdev: scsi device to change the state of.
2515 * @timeout: command timeout
2516 * @retries: number of retries before failing
2517 * @sshdr: outpout pointer for decoded sense information.
2518 *
2519 * Returns zero if unsuccessful or an error if TUR failed. For
2520 * removable media, UNIT_ATTENTION sets ->changed flag.
2521 **/
2522 int
2523 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2524 struct scsi_sense_hdr *sshdr)
2525 {
2526 char cmd[] = {
2527 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2528 };
2529 int result;
2530
2531 /* try to eat the UNIT_ATTENTION if there are enough retries */
2532 do {
2533 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2534 timeout, retries, NULL);
2535 if (sdev->removable && scsi_sense_valid(sshdr) &&
2536 sshdr->sense_key == UNIT_ATTENTION)
2537 sdev->changed = 1;
2538 } while (scsi_sense_valid(sshdr) &&
2539 sshdr->sense_key == UNIT_ATTENTION && --retries);
2540
2541 return result;
2542 }
2543 EXPORT_SYMBOL(scsi_test_unit_ready);
2544
2545 /**
2546 * scsi_device_set_state - Take the given device through the device state model.
2547 * @sdev: scsi device to change the state of.
2548 * @state: state to change to.
2549 *
2550 * Returns zero if unsuccessful or an error if the requested
2551 * transition is illegal.
2552 */
2553 int
2554 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2555 {
2556 enum scsi_device_state oldstate = sdev->sdev_state;
2557
2558 if (state == oldstate)
2559 return 0;
2560
2561 switch (state) {
2562 case SDEV_CREATED:
2563 switch (oldstate) {
2564 case SDEV_CREATED_BLOCK:
2565 break;
2566 default:
2567 goto illegal;
2568 }
2569 break;
2570
2571 case SDEV_RUNNING:
2572 switch (oldstate) {
2573 case SDEV_CREATED:
2574 case SDEV_OFFLINE:
2575 case SDEV_TRANSPORT_OFFLINE:
2576 case SDEV_QUIESCE:
2577 case SDEV_BLOCK:
2578 break;
2579 default:
2580 goto illegal;
2581 }
2582 break;
2583
2584 case SDEV_QUIESCE:
2585 switch (oldstate) {
2586 case SDEV_RUNNING:
2587 case SDEV_OFFLINE:
2588 case SDEV_TRANSPORT_OFFLINE:
2589 break;
2590 default:
2591 goto illegal;
2592 }
2593 break;
2594
2595 case SDEV_OFFLINE:
2596 case SDEV_TRANSPORT_OFFLINE:
2597 switch (oldstate) {
2598 case SDEV_CREATED:
2599 case SDEV_RUNNING:
2600 case SDEV_QUIESCE:
2601 case SDEV_BLOCK:
2602 break;
2603 default:
2604 goto illegal;
2605 }
2606 break;
2607
2608 case SDEV_BLOCK:
2609 switch (oldstate) {
2610 case SDEV_RUNNING:
2611 case SDEV_CREATED_BLOCK:
2612 break;
2613 default:
2614 goto illegal;
2615 }
2616 break;
2617
2618 case SDEV_CREATED_BLOCK:
2619 switch (oldstate) {
2620 case SDEV_CREATED:
2621 break;
2622 default:
2623 goto illegal;
2624 }
2625 break;
2626
2627 case SDEV_CANCEL:
2628 switch (oldstate) {
2629 case SDEV_CREATED:
2630 case SDEV_RUNNING:
2631 case SDEV_QUIESCE:
2632 case SDEV_OFFLINE:
2633 case SDEV_TRANSPORT_OFFLINE:
2634 break;
2635 default:
2636 goto illegal;
2637 }
2638 break;
2639
2640 case SDEV_DEL:
2641 switch (oldstate) {
2642 case SDEV_CREATED:
2643 case SDEV_RUNNING:
2644 case SDEV_OFFLINE:
2645 case SDEV_TRANSPORT_OFFLINE:
2646 case SDEV_CANCEL:
2647 case SDEV_BLOCK:
2648 case SDEV_CREATED_BLOCK:
2649 break;
2650 default:
2651 goto illegal;
2652 }
2653 break;
2654
2655 }
2656 sdev->sdev_state = state;
2657 return 0;
2658
2659 illegal:
2660 SCSI_LOG_ERROR_RECOVERY(1,
2661 sdev_printk(KERN_ERR, sdev,
2662 "Illegal state transition %s->%s",
2663 scsi_device_state_name(oldstate),
2664 scsi_device_state_name(state))
2665 );
2666 return -EINVAL;
2667 }
2668 EXPORT_SYMBOL(scsi_device_set_state);
2669
2670 /**
2671 * sdev_evt_emit - emit a single SCSI device uevent
2672 * @sdev: associated SCSI device
2673 * @evt: event to emit
2674 *
2675 * Send a single uevent (scsi_event) to the associated scsi_device.
2676 */
2677 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2678 {
2679 int idx = 0;
2680 char *envp[3];
2681
2682 switch (evt->evt_type) {
2683 case SDEV_EVT_MEDIA_CHANGE:
2684 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2685 break;
2686 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2687 scsi_rescan_device(&sdev->sdev_gendev);
2688 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2689 break;
2690 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2691 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2692 break;
2693 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2694 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2695 break;
2696 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2697 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2698 break;
2699 case SDEV_EVT_LUN_CHANGE_REPORTED:
2700 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2701 break;
2702 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2703 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2704 break;
2705 default:
2706 /* do nothing */
2707 break;
2708 }
2709
2710 envp[idx++] = NULL;
2711
2712 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2713 }
2714
2715 /**
2716 * sdev_evt_thread - send a uevent for each scsi event
2717 * @work: work struct for scsi_device
2718 *
2719 * Dispatch queued events to their associated scsi_device kobjects
2720 * as uevents.
2721 */
2722 void scsi_evt_thread(struct work_struct *work)
2723 {
2724 struct scsi_device *sdev;
2725 enum scsi_device_event evt_type;
2726 LIST_HEAD(event_list);
2727
2728 sdev = container_of(work, struct scsi_device, event_work);
2729
2730 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2731 if (test_and_clear_bit(evt_type, sdev->pending_events))
2732 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2733
2734 while (1) {
2735 struct scsi_event *evt;
2736 struct list_head *this, *tmp;
2737 unsigned long flags;
2738
2739 spin_lock_irqsave(&sdev->list_lock, flags);
2740 list_splice_init(&sdev->event_list, &event_list);
2741 spin_unlock_irqrestore(&sdev->list_lock, flags);
2742
2743 if (list_empty(&event_list))
2744 break;
2745
2746 list_for_each_safe(this, tmp, &event_list) {
2747 evt = list_entry(this, struct scsi_event, node);
2748 list_del(&evt->node);
2749 scsi_evt_emit(sdev, evt);
2750 kfree(evt);
2751 }
2752 }
2753 }
2754
2755 /**
2756 * sdev_evt_send - send asserted event to uevent thread
2757 * @sdev: scsi_device event occurred on
2758 * @evt: event to send
2759 *
2760 * Assert scsi device event asynchronously.
2761 */
2762 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2763 {
2764 unsigned long flags;
2765
2766 #if 0
2767 /* FIXME: currently this check eliminates all media change events
2768 * for polled devices. Need to update to discriminate between AN
2769 * and polled events */
2770 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2771 kfree(evt);
2772 return;
2773 }
2774 #endif
2775
2776 spin_lock_irqsave(&sdev->list_lock, flags);
2777 list_add_tail(&evt->node, &sdev->event_list);
2778 schedule_work(&sdev->event_work);
2779 spin_unlock_irqrestore(&sdev->list_lock, flags);
2780 }
2781 EXPORT_SYMBOL_GPL(sdev_evt_send);
2782
2783 /**
2784 * sdev_evt_alloc - allocate a new scsi event
2785 * @evt_type: type of event to allocate
2786 * @gfpflags: GFP flags for allocation
2787 *
2788 * Allocates and returns a new scsi_event.
2789 */
2790 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2791 gfp_t gfpflags)
2792 {
2793 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2794 if (!evt)
2795 return NULL;
2796
2797 evt->evt_type = evt_type;
2798 INIT_LIST_HEAD(&evt->node);
2799
2800 /* evt_type-specific initialization, if any */
2801 switch (evt_type) {
2802 case SDEV_EVT_MEDIA_CHANGE:
2803 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2804 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2805 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2806 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807 case SDEV_EVT_LUN_CHANGE_REPORTED:
2808 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2809 default:
2810 /* do nothing */
2811 break;
2812 }
2813
2814 return evt;
2815 }
2816 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2817
2818 /**
2819 * sdev_evt_send_simple - send asserted event to uevent thread
2820 * @sdev: scsi_device event occurred on
2821 * @evt_type: type of event to send
2822 * @gfpflags: GFP flags for allocation
2823 *
2824 * Assert scsi device event asynchronously, given an event type.
2825 */
2826 void sdev_evt_send_simple(struct scsi_device *sdev,
2827 enum scsi_device_event evt_type, gfp_t gfpflags)
2828 {
2829 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2830 if (!evt) {
2831 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2832 evt_type);
2833 return;
2834 }
2835
2836 sdev_evt_send(sdev, evt);
2837 }
2838 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2839
2840 /**
2841 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2842 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2843 */
2844 static int scsi_request_fn_active(struct scsi_device *sdev)
2845 {
2846 struct request_queue *q = sdev->request_queue;
2847 int request_fn_active;
2848
2849 WARN_ON_ONCE(sdev->host->use_blk_mq);
2850
2851 spin_lock_irq(q->queue_lock);
2852 request_fn_active = q->request_fn_active;
2853 spin_unlock_irq(q->queue_lock);
2854
2855 return request_fn_active;
2856 }
2857
2858 /**
2859 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2860 * @sdev: SCSI device pointer.
2861 *
2862 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2863 * invoked from scsi_request_fn() have finished.
2864 */
2865 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2866 {
2867 WARN_ON_ONCE(sdev->host->use_blk_mq);
2868
2869 while (scsi_request_fn_active(sdev))
2870 msleep(20);
2871 }
2872
2873 /**
2874 * scsi_device_quiesce - Block user issued commands.
2875 * @sdev: scsi device to quiesce.
2876 *
2877 * This works by trying to transition to the SDEV_QUIESCE state
2878 * (which must be a legal transition). When the device is in this
2879 * state, only special requests will be accepted, all others will
2880 * be deferred. Since special requests may also be requeued requests,
2881 * a successful return doesn't guarantee the device will be
2882 * totally quiescent.
2883 *
2884 * Must be called with user context, may sleep.
2885 *
2886 * Returns zero if unsuccessful or an error if not.
2887 */
2888 int
2889 scsi_device_quiesce(struct scsi_device *sdev)
2890 {
2891 int err;
2892
2893 mutex_lock(&sdev->state_mutex);
2894 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2895 mutex_unlock(&sdev->state_mutex);
2896
2897 if (err)
2898 return err;
2899
2900 scsi_run_queue(sdev->request_queue);
2901 while (atomic_read(&sdev->device_busy)) {
2902 msleep_interruptible(200);
2903 scsi_run_queue(sdev->request_queue);
2904 }
2905 return 0;
2906 }
2907 EXPORT_SYMBOL(scsi_device_quiesce);
2908
2909 /**
2910 * scsi_device_resume - Restart user issued commands to a quiesced device.
2911 * @sdev: scsi device to resume.
2912 *
2913 * Moves the device from quiesced back to running and restarts the
2914 * queues.
2915 *
2916 * Must be called with user context, may sleep.
2917 */
2918 void scsi_device_resume(struct scsi_device *sdev)
2919 {
2920 /* check if the device state was mutated prior to resume, and if
2921 * so assume the state is being managed elsewhere (for example
2922 * device deleted during suspend)
2923 */
2924 mutex_lock(&sdev->state_mutex);
2925 if (sdev->sdev_state == SDEV_QUIESCE &&
2926 scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2927 scsi_run_queue(sdev->request_queue);
2928 mutex_unlock(&sdev->state_mutex);
2929 }
2930 EXPORT_SYMBOL(scsi_device_resume);
2931
2932 static void
2933 device_quiesce_fn(struct scsi_device *sdev, void *data)
2934 {
2935 scsi_device_quiesce(sdev);
2936 }
2937
2938 void
2939 scsi_target_quiesce(struct scsi_target *starget)
2940 {
2941 starget_for_each_device(starget, NULL, device_quiesce_fn);
2942 }
2943 EXPORT_SYMBOL(scsi_target_quiesce);
2944
2945 static void
2946 device_resume_fn(struct scsi_device *sdev, void *data)
2947 {
2948 scsi_device_resume(sdev);
2949 }
2950
2951 void
2952 scsi_target_resume(struct scsi_target *starget)
2953 {
2954 starget_for_each_device(starget, NULL, device_resume_fn);
2955 }
2956 EXPORT_SYMBOL(scsi_target_resume);
2957
2958 /**
2959 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2960 * @sdev: device to block
2961 *
2962 * Pause SCSI command processing on the specified device. Does not sleep.
2963 *
2964 * Returns zero if successful or a negative error code upon failure.
2965 *
2966 * Notes:
2967 * This routine transitions the device to the SDEV_BLOCK state (which must be
2968 * a legal transition). When the device is in this state, command processing
2969 * is paused until the device leaves the SDEV_BLOCK state. See also
2970 * scsi_internal_device_unblock_nowait().
2971 */
2972 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2973 {
2974 struct request_queue *q = sdev->request_queue;
2975 unsigned long flags;
2976 int err = 0;
2977
2978 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2979 if (err) {
2980 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2981
2982 if (err)
2983 return err;
2984 }
2985
2986 /*
2987 * The device has transitioned to SDEV_BLOCK. Stop the
2988 * block layer from calling the midlayer with this device's
2989 * request queue.
2990 */
2991 if (q->mq_ops) {
2992 blk_mq_quiesce_queue_nowait(q);
2993 } else {
2994 spin_lock_irqsave(q->queue_lock, flags);
2995 blk_stop_queue(q);
2996 spin_unlock_irqrestore(q->queue_lock, flags);
2997 }
2998
2999 return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3002
3003 /**
3004 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3005 * @sdev: device to block
3006 *
3007 * Pause SCSI command processing on the specified device and wait until all
3008 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3009 *
3010 * Returns zero if successful or a negative error code upon failure.
3011 *
3012 * Note:
3013 * This routine transitions the device to the SDEV_BLOCK state (which must be
3014 * a legal transition). When the device is in this state, command processing
3015 * is paused until the device leaves the SDEV_BLOCK state. See also
3016 * scsi_internal_device_unblock().
3017 *
3018 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3019 * scsi_internal_device_block() has blocked a SCSI device and also
3020 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3021 */
3022 static int scsi_internal_device_block(struct scsi_device *sdev)
3023 {
3024 struct request_queue *q = sdev->request_queue;
3025 int err;
3026
3027 mutex_lock(&sdev->state_mutex);
3028 err = scsi_internal_device_block_nowait(sdev);
3029 if (err == 0) {
3030 if (q->mq_ops)
3031 blk_mq_quiesce_queue(q);
3032 else
3033 scsi_wait_for_queuecommand(sdev);
3034 }
3035 mutex_unlock(&sdev->state_mutex);
3036
3037 return err;
3038 }
3039
3040 void scsi_start_queue(struct scsi_device *sdev)
3041 {
3042 struct request_queue *q = sdev->request_queue;
3043 unsigned long flags;
3044
3045 if (q->mq_ops) {
3046 blk_mq_unquiesce_queue(q);
3047 } else {
3048 spin_lock_irqsave(q->queue_lock, flags);
3049 blk_start_queue(q);
3050 spin_unlock_irqrestore(q->queue_lock, flags);
3051 }
3052 }
3053
3054 /**
3055 * scsi_internal_device_unblock_nowait - resume a device after a block request
3056 * @sdev: device to resume
3057 * @new_state: state to set the device to after unblocking
3058 *
3059 * Restart the device queue for a previously suspended SCSI device. Does not
3060 * sleep.
3061 *
3062 * Returns zero if successful or a negative error code upon failure.
3063 *
3064 * Notes:
3065 * This routine transitions the device to the SDEV_RUNNING state or to one of
3066 * the offline states (which must be a legal transition) allowing the midlayer
3067 * to goose the queue for this device.
3068 */
3069 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3070 enum scsi_device_state new_state)
3071 {
3072 /*
3073 * Try to transition the scsi device to SDEV_RUNNING or one of the
3074 * offlined states and goose the device queue if successful.
3075 */
3076 if ((sdev->sdev_state == SDEV_BLOCK) ||
3077 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3078 sdev->sdev_state = new_state;
3079 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3080 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3081 new_state == SDEV_OFFLINE)
3082 sdev->sdev_state = new_state;
3083 else
3084 sdev->sdev_state = SDEV_CREATED;
3085 } else if (sdev->sdev_state != SDEV_CANCEL &&
3086 sdev->sdev_state != SDEV_OFFLINE)
3087 return -EINVAL;
3088
3089 scsi_start_queue(sdev);
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3094
3095 /**
3096 * scsi_internal_device_unblock - resume a device after a block request
3097 * @sdev: device to resume
3098 * @new_state: state to set the device to after unblocking
3099 *
3100 * Restart the device queue for a previously suspended SCSI device. May sleep.
3101 *
3102 * Returns zero if successful or a negative error code upon failure.
3103 *
3104 * Notes:
3105 * This routine transitions the device to the SDEV_RUNNING state or to one of
3106 * the offline states (which must be a legal transition) allowing the midlayer
3107 * to goose the queue for this device.
3108 */
3109 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3110 enum scsi_device_state new_state)
3111 {
3112 int ret;
3113
3114 mutex_lock(&sdev->state_mutex);
3115 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3116 mutex_unlock(&sdev->state_mutex);
3117
3118 return ret;
3119 }
3120
3121 static void
3122 device_block(struct scsi_device *sdev, void *data)
3123 {
3124 scsi_internal_device_block(sdev);
3125 }
3126
3127 static int
3128 target_block(struct device *dev, void *data)
3129 {
3130 if (scsi_is_target_device(dev))
3131 starget_for_each_device(to_scsi_target(dev), NULL,
3132 device_block);
3133 return 0;
3134 }
3135
3136 void
3137 scsi_target_block(struct device *dev)
3138 {
3139 if (scsi_is_target_device(dev))
3140 starget_for_each_device(to_scsi_target(dev), NULL,
3141 device_block);
3142 else
3143 device_for_each_child(dev, NULL, target_block);
3144 }
3145 EXPORT_SYMBOL_GPL(scsi_target_block);
3146
3147 static void
3148 device_unblock(struct scsi_device *sdev, void *data)
3149 {
3150 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3151 }
3152
3153 static int
3154 target_unblock(struct device *dev, void *data)
3155 {
3156 if (scsi_is_target_device(dev))
3157 starget_for_each_device(to_scsi_target(dev), data,
3158 device_unblock);
3159 return 0;
3160 }
3161
3162 void
3163 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3164 {
3165 if (scsi_is_target_device(dev))
3166 starget_for_each_device(to_scsi_target(dev), &new_state,
3167 device_unblock);
3168 else
3169 device_for_each_child(dev, &new_state, target_unblock);
3170 }
3171 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3172
3173 /**
3174 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3175 * @sgl: scatter-gather list
3176 * @sg_count: number of segments in sg
3177 * @offset: offset in bytes into sg, on return offset into the mapped area
3178 * @len: bytes to map, on return number of bytes mapped
3179 *
3180 * Returns virtual address of the start of the mapped page
3181 */
3182 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3183 size_t *offset, size_t *len)
3184 {
3185 int i;
3186 size_t sg_len = 0, len_complete = 0;
3187 struct scatterlist *sg;
3188 struct page *page;
3189
3190 WARN_ON(!irqs_disabled());
3191
3192 for_each_sg(sgl, sg, sg_count, i) {
3193 len_complete = sg_len; /* Complete sg-entries */
3194 sg_len += sg->length;
3195 if (sg_len > *offset)
3196 break;
3197 }
3198
3199 if (unlikely(i == sg_count)) {
3200 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3201 "elements %d\n",
3202 __func__, sg_len, *offset, sg_count);
3203 WARN_ON(1);
3204 return NULL;
3205 }
3206
3207 /* Offset starting from the beginning of first page in this sg-entry */
3208 *offset = *offset - len_complete + sg->offset;
3209
3210 /* Assumption: contiguous pages can be accessed as "page + i" */
3211 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3212 *offset &= ~PAGE_MASK;
3213
3214 /* Bytes in this sg-entry from *offset to the end of the page */
3215 sg_len = PAGE_SIZE - *offset;
3216 if (*len > sg_len)
3217 *len = sg_len;
3218
3219 return kmap_atomic(page);
3220 }
3221 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3222
3223 /**
3224 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3225 * @virt: virtual address to be unmapped
3226 */
3227 void scsi_kunmap_atomic_sg(void *virt)
3228 {
3229 kunmap_atomic(virt);
3230 }
3231 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3232
3233 void sdev_disable_disk_events(struct scsi_device *sdev)
3234 {
3235 atomic_inc(&sdev->disk_events_disable_depth);
3236 }
3237 EXPORT_SYMBOL(sdev_disable_disk_events);
3238
3239 void sdev_enable_disk_events(struct scsi_device *sdev)
3240 {
3241 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3242 return;
3243 atomic_dec(&sdev->disk_events_disable_depth);
3244 }
3245 EXPORT_SYMBOL(sdev_enable_disk_events);
3246
3247 /**
3248 * scsi_vpd_lun_id - return a unique device identification
3249 * @sdev: SCSI device
3250 * @id: buffer for the identification
3251 * @id_len: length of the buffer
3252 *
3253 * Copies a unique device identification into @id based
3254 * on the information in the VPD page 0x83 of the device.
3255 * The string will be formatted as a SCSI name string.
3256 *
3257 * Returns the length of the identification or error on failure.
3258 * If the identifier is longer than the supplied buffer the actual
3259 * identifier length is returned and the buffer is not zero-padded.
3260 */
3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262 {
3263 u8 cur_id_type = 0xff;
3264 u8 cur_id_size = 0;
3265 unsigned char *d, *cur_id_str;
3266 unsigned char __rcu *vpd_pg83;
3267 int id_size = -EINVAL;
3268
3269 rcu_read_lock();
3270 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271 if (!vpd_pg83) {
3272 rcu_read_unlock();
3273 return -ENXIO;
3274 }
3275
3276 /*
3277 * Look for the correct descriptor.
3278 * Order of preference for lun descriptor:
3279 * - SCSI name string
3280 * - NAA IEEE Registered Extended
3281 * - EUI-64 based 16-byte
3282 * - EUI-64 based 12-byte
3283 * - NAA IEEE Registered
3284 * - NAA IEEE Extended
3285 * - T10 Vendor ID
3286 * as longer descriptors reduce the likelyhood
3287 * of identification clashes.
3288 */
3289
3290 /* The id string must be at least 20 bytes + terminating NULL byte */
3291 if (id_len < 21) {
3292 rcu_read_unlock();
3293 return -EINVAL;
3294 }
3295
3296 memset(id, 0, id_len);
3297 d = vpd_pg83 + 4;
3298 while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3299 /* Skip designators not referring to the LUN */
3300 if ((d[1] & 0x30) != 0x00)
3301 goto next_desig;
3302
3303 switch (d[1] & 0xf) {
3304 case 0x1:
3305 /* T10 Vendor ID */
3306 if (cur_id_size > d[3])
3307 break;
3308 /* Prefer anything */
3309 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3310 break;
3311 cur_id_size = d[3];
3312 if (cur_id_size + 4 > id_len)
3313 cur_id_size = id_len - 4;
3314 cur_id_str = d + 4;
3315 cur_id_type = d[1] & 0xf;
3316 id_size = snprintf(id, id_len, "t10.%*pE",
3317 cur_id_size, cur_id_str);
3318 break;
3319 case 0x2:
3320 /* EUI-64 */
3321 if (cur_id_size > d[3])
3322 break;
3323 /* Prefer NAA IEEE Registered Extended */
3324 if (cur_id_type == 0x3 &&
3325 cur_id_size == d[3])
3326 break;
3327 cur_id_size = d[3];
3328 cur_id_str = d + 4;
3329 cur_id_type = d[1] & 0xf;
3330 switch (cur_id_size) {
3331 case 8:
3332 id_size = snprintf(id, id_len,
3333 "eui.%8phN",
3334 cur_id_str);
3335 break;
3336 case 12:
3337 id_size = snprintf(id, id_len,
3338 "eui.%12phN",
3339 cur_id_str);
3340 break;
3341 case 16:
3342 id_size = snprintf(id, id_len,
3343 "eui.%16phN",
3344 cur_id_str);
3345 break;
3346 default:
3347 cur_id_size = 0;
3348 break;
3349 }
3350 break;
3351 case 0x3:
3352 /* NAA */
3353 if (cur_id_size > d[3])
3354 break;
3355 cur_id_size = d[3];
3356 cur_id_str = d + 4;
3357 cur_id_type = d[1] & 0xf;
3358 switch (cur_id_size) {
3359 case 8:
3360 id_size = snprintf(id, id_len,
3361 "naa.%8phN",
3362 cur_id_str);
3363 break;
3364 case 16:
3365 id_size = snprintf(id, id_len,
3366 "naa.%16phN",
3367 cur_id_str);
3368 break;
3369 default:
3370 cur_id_size = 0;
3371 break;
3372 }
3373 break;
3374 case 0x8:
3375 /* SCSI name string */
3376 if (cur_id_size + 4 > d[3])
3377 break;
3378 /* Prefer others for truncated descriptor */
3379 if (cur_id_size && d[3] > id_len)
3380 break;
3381 cur_id_size = id_size = d[3];
3382 cur_id_str = d + 4;
3383 cur_id_type = d[1] & 0xf;
3384 if (cur_id_size >= id_len)
3385 cur_id_size = id_len - 1;
3386 memcpy(id, cur_id_str, cur_id_size);
3387 /* Decrease priority for truncated descriptor */
3388 if (cur_id_size != id_size)
3389 cur_id_size = 6;
3390 break;
3391 default:
3392 break;
3393 }
3394 next_desig:
3395 d += d[3] + 4;
3396 }
3397 rcu_read_unlock();
3398
3399 return id_size;
3400 }
3401 EXPORT_SYMBOL(scsi_vpd_lun_id);
3402
3403 /*
3404 * scsi_vpd_tpg_id - return a target port group identifier
3405 * @sdev: SCSI device
3406 *
3407 * Returns the Target Port Group identifier from the information
3408 * froom VPD page 0x83 of the device.
3409 *
3410 * Returns the identifier or error on failure.
3411 */
3412 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3413 {
3414 unsigned char *d;
3415 unsigned char __rcu *vpd_pg83;
3416 int group_id = -EAGAIN, rel_port = -1;
3417
3418 rcu_read_lock();
3419 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3420 if (!vpd_pg83) {
3421 rcu_read_unlock();
3422 return -ENXIO;
3423 }
3424
3425 d = sdev->vpd_pg83 + 4;
3426 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3427 switch (d[1] & 0xf) {
3428 case 0x4:
3429 /* Relative target port */
3430 rel_port = get_unaligned_be16(&d[6]);
3431 break;
3432 case 0x5:
3433 /* Target port group */
3434 group_id = get_unaligned_be16(&d[6]);
3435 break;
3436 default:
3437 break;
3438 }
3439 d += d[3] + 4;
3440 }
3441 rcu_read_unlock();
3442
3443 if (group_id >= 0 && rel_id && rel_port != -1)
3444 *rel_id = rel_port;
3445
3446 return group_id;
3447 }
3448 EXPORT_SYMBOL(scsi_vpd_tpg_id);