]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/scsi/scsi_transport_spi.c
scsi: qla2xxx: Fix Async GPN_FT for FCP and FC-NVMe scan
[mirror_ubuntu-hirsute-kernel.git] / drivers / scsi / scsi_transport_spi.c
1 /*
2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3 *
4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <scsi/scsi.h>
31 #include "scsi_priv.h"
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <scsi/scsi_eh.h>
36 #include <scsi/scsi_tcq.h>
37 #include <scsi/scsi_transport.h>
38 #include <scsi/scsi_transport_spi.h>
39
40 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
41 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
42 * on" attributes */
43 #define SPI_HOST_ATTRS 1
44
45 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
46
47 #define DV_LOOPS 3
48 #define DV_TIMEOUT (10*HZ)
49 #define DV_RETRIES 3 /* should only need at most
50 * two cc/ua clears */
51
52 /* Our blacklist flags */
53 enum {
54 SPI_BLIST_NOIUS = (__force blist_flags_t)0x1,
55 };
56
57 /* blacklist table, modelled on scsi_devinfo.c */
58 static struct {
59 char *vendor;
60 char *model;
61 blist_flags_t flags;
62 } spi_static_device_list[] __initdata = {
63 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
64 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
65 {NULL, NULL, 0}
66 };
67
68 /* Private data accessors (keep these out of the header file) */
69 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
70 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
71
72 struct spi_internal {
73 struct scsi_transport_template t;
74 struct spi_function_template *f;
75 };
76
77 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
78
79 static const int ppr_to_ps[] = {
80 /* The PPR values 0-6 are reserved, fill them in when
81 * the committee defines them */
82 -1, /* 0x00 */
83 -1, /* 0x01 */
84 -1, /* 0x02 */
85 -1, /* 0x03 */
86 -1, /* 0x04 */
87 -1, /* 0x05 */
88 -1, /* 0x06 */
89 3125, /* 0x07 */
90 6250, /* 0x08 */
91 12500, /* 0x09 */
92 25000, /* 0x0a */
93 30300, /* 0x0b */
94 50000, /* 0x0c */
95 };
96 /* The PPR values at which you calculate the period in ns by multiplying
97 * by 4 */
98 #define SPI_STATIC_PPR 0x0c
99
100 static int sprint_frac(char *dest, int value, int denom)
101 {
102 int frac = value % denom;
103 int result = sprintf(dest, "%d", value / denom);
104
105 if (frac == 0)
106 return result;
107 dest[result++] = '.';
108
109 do {
110 denom /= 10;
111 sprintf(dest + result, "%d", frac / denom);
112 result++;
113 frac %= denom;
114 } while (frac);
115
116 dest[result++] = '\0';
117 return result;
118 }
119
120 static int spi_execute(struct scsi_device *sdev, const void *cmd,
121 enum dma_data_direction dir,
122 void *buffer, unsigned bufflen,
123 struct scsi_sense_hdr *sshdr)
124 {
125 int i, result;
126 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
127 struct scsi_sense_hdr sshdr_tmp;
128
129 if (!sshdr)
130 sshdr = &sshdr_tmp;
131
132 for(i = 0; i < DV_RETRIES; i++) {
133 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, sense,
134 sshdr, DV_TIMEOUT, /* retries */ 1,
135 REQ_FAILFAST_DEV |
136 REQ_FAILFAST_TRANSPORT |
137 REQ_FAILFAST_DRIVER,
138 0, NULL);
139 if (!(driver_byte(result) & DRIVER_SENSE) ||
140 sshdr->sense_key != UNIT_ATTENTION)
141 break;
142 }
143 return result;
144 }
145
146 static struct {
147 enum spi_signal_type value;
148 char *name;
149 } signal_types[] = {
150 { SPI_SIGNAL_UNKNOWN, "unknown" },
151 { SPI_SIGNAL_SE, "SE" },
152 { SPI_SIGNAL_LVD, "LVD" },
153 { SPI_SIGNAL_HVD, "HVD" },
154 };
155
156 static inline const char *spi_signal_to_string(enum spi_signal_type type)
157 {
158 int i;
159
160 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
161 if (type == signal_types[i].value)
162 return signal_types[i].name;
163 }
164 return NULL;
165 }
166 static inline enum spi_signal_type spi_signal_to_value(const char *name)
167 {
168 int i, len;
169
170 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
171 len = strlen(signal_types[i].name);
172 if (strncmp(name, signal_types[i].name, len) == 0 &&
173 (name[len] == '\n' || name[len] == '\0'))
174 return signal_types[i].value;
175 }
176 return SPI_SIGNAL_UNKNOWN;
177 }
178
179 static int spi_host_setup(struct transport_container *tc, struct device *dev,
180 struct device *cdev)
181 {
182 struct Scsi_Host *shost = dev_to_shost(dev);
183
184 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
185
186 return 0;
187 }
188
189 static int spi_host_configure(struct transport_container *tc,
190 struct device *dev,
191 struct device *cdev);
192
193 static DECLARE_TRANSPORT_CLASS(spi_host_class,
194 "spi_host",
195 spi_host_setup,
196 NULL,
197 spi_host_configure);
198
199 static int spi_host_match(struct attribute_container *cont,
200 struct device *dev)
201 {
202 struct Scsi_Host *shost;
203
204 if (!scsi_is_host_device(dev))
205 return 0;
206
207 shost = dev_to_shost(dev);
208 if (!shost->transportt || shost->transportt->host_attrs.ac.class
209 != &spi_host_class.class)
210 return 0;
211
212 return &shost->transportt->host_attrs.ac == cont;
213 }
214
215 static int spi_target_configure(struct transport_container *tc,
216 struct device *dev,
217 struct device *cdev);
218
219 static int spi_device_configure(struct transport_container *tc,
220 struct device *dev,
221 struct device *cdev)
222 {
223 struct scsi_device *sdev = to_scsi_device(dev);
224 struct scsi_target *starget = sdev->sdev_target;
225 blist_flags_t bflags;
226
227 bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
228 &sdev->inquiry[16],
229 SCSI_DEVINFO_SPI);
230
231 /* Populate the target capability fields with the values
232 * gleaned from the device inquiry */
233
234 spi_support_sync(starget) = scsi_device_sync(sdev);
235 spi_support_wide(starget) = scsi_device_wide(sdev);
236 spi_support_dt(starget) = scsi_device_dt(sdev);
237 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
238 spi_support_ius(starget) = scsi_device_ius(sdev);
239 if (bflags & SPI_BLIST_NOIUS) {
240 dev_info(dev, "Information Units disabled by blacklist\n");
241 spi_support_ius(starget) = 0;
242 }
243 spi_support_qas(starget) = scsi_device_qas(sdev);
244
245 return 0;
246 }
247
248 static int spi_setup_transport_attrs(struct transport_container *tc,
249 struct device *dev,
250 struct device *cdev)
251 {
252 struct scsi_target *starget = to_scsi_target(dev);
253
254 spi_period(starget) = -1; /* illegal value */
255 spi_min_period(starget) = 0;
256 spi_offset(starget) = 0; /* async */
257 spi_max_offset(starget) = 255;
258 spi_width(starget) = 0; /* narrow */
259 spi_max_width(starget) = 1;
260 spi_iu(starget) = 0; /* no IU */
261 spi_max_iu(starget) = 1;
262 spi_dt(starget) = 0; /* ST */
263 spi_qas(starget) = 0;
264 spi_max_qas(starget) = 1;
265 spi_wr_flow(starget) = 0;
266 spi_rd_strm(starget) = 0;
267 spi_rti(starget) = 0;
268 spi_pcomp_en(starget) = 0;
269 spi_hold_mcs(starget) = 0;
270 spi_dv_pending(starget) = 0;
271 spi_dv_in_progress(starget) = 0;
272 spi_initial_dv(starget) = 0;
273 mutex_init(&spi_dv_mutex(starget));
274
275 return 0;
276 }
277
278 #define spi_transport_show_simple(field, format_string) \
279 \
280 static ssize_t \
281 show_spi_transport_##field(struct device *dev, \
282 struct device_attribute *attr, char *buf) \
283 { \
284 struct scsi_target *starget = transport_class_to_starget(dev); \
285 struct spi_transport_attrs *tp; \
286 \
287 tp = (struct spi_transport_attrs *)&starget->starget_data; \
288 return snprintf(buf, 20, format_string, tp->field); \
289 }
290
291 #define spi_transport_store_simple(field, format_string) \
292 \
293 static ssize_t \
294 store_spi_transport_##field(struct device *dev, \
295 struct device_attribute *attr, \
296 const char *buf, size_t count) \
297 { \
298 int val; \
299 struct scsi_target *starget = transport_class_to_starget(dev); \
300 struct spi_transport_attrs *tp; \
301 \
302 tp = (struct spi_transport_attrs *)&starget->starget_data; \
303 val = simple_strtoul(buf, NULL, 0); \
304 tp->field = val; \
305 return count; \
306 }
307
308 #define spi_transport_show_function(field, format_string) \
309 \
310 static ssize_t \
311 show_spi_transport_##field(struct device *dev, \
312 struct device_attribute *attr, char *buf) \
313 { \
314 struct scsi_target *starget = transport_class_to_starget(dev); \
315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
316 struct spi_transport_attrs *tp; \
317 struct spi_internal *i = to_spi_internal(shost->transportt); \
318 tp = (struct spi_transport_attrs *)&starget->starget_data; \
319 if (i->f->get_##field) \
320 i->f->get_##field(starget); \
321 return snprintf(buf, 20, format_string, tp->field); \
322 }
323
324 #define spi_transport_store_function(field, format_string) \
325 static ssize_t \
326 store_spi_transport_##field(struct device *dev, \
327 struct device_attribute *attr, \
328 const char *buf, size_t count) \
329 { \
330 int val; \
331 struct scsi_target *starget = transport_class_to_starget(dev); \
332 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
333 struct spi_internal *i = to_spi_internal(shost->transportt); \
334 \
335 if (!i->f->set_##field) \
336 return -EINVAL; \
337 val = simple_strtoul(buf, NULL, 0); \
338 i->f->set_##field(starget, val); \
339 return count; \
340 }
341
342 #define spi_transport_store_max(field, format_string) \
343 static ssize_t \
344 store_spi_transport_##field(struct device *dev, \
345 struct device_attribute *attr, \
346 const char *buf, size_t count) \
347 { \
348 int val; \
349 struct scsi_target *starget = transport_class_to_starget(dev); \
350 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
351 struct spi_internal *i = to_spi_internal(shost->transportt); \
352 struct spi_transport_attrs *tp \
353 = (struct spi_transport_attrs *)&starget->starget_data; \
354 \
355 if (i->f->set_##field) \
356 return -EINVAL; \
357 val = simple_strtoul(buf, NULL, 0); \
358 if (val > tp->max_##field) \
359 val = tp->max_##field; \
360 i->f->set_##field(starget, val); \
361 return count; \
362 }
363
364 #define spi_transport_rd_attr(field, format_string) \
365 spi_transport_show_function(field, format_string) \
366 spi_transport_store_function(field, format_string) \
367 static DEVICE_ATTR(field, S_IRUGO, \
368 show_spi_transport_##field, \
369 store_spi_transport_##field);
370
371 #define spi_transport_simple_attr(field, format_string) \
372 spi_transport_show_simple(field, format_string) \
373 spi_transport_store_simple(field, format_string) \
374 static DEVICE_ATTR(field, S_IRUGO, \
375 show_spi_transport_##field, \
376 store_spi_transport_##field);
377
378 #define spi_transport_max_attr(field, format_string) \
379 spi_transport_show_function(field, format_string) \
380 spi_transport_store_max(field, format_string) \
381 spi_transport_simple_attr(max_##field, format_string) \
382 static DEVICE_ATTR(field, S_IRUGO, \
383 show_spi_transport_##field, \
384 store_spi_transport_##field);
385
386 /* The Parallel SCSI Tranport Attributes: */
387 spi_transport_max_attr(offset, "%d\n");
388 spi_transport_max_attr(width, "%d\n");
389 spi_transport_max_attr(iu, "%d\n");
390 spi_transport_rd_attr(dt, "%d\n");
391 spi_transport_max_attr(qas, "%d\n");
392 spi_transport_rd_attr(wr_flow, "%d\n");
393 spi_transport_rd_attr(rd_strm, "%d\n");
394 spi_transport_rd_attr(rti, "%d\n");
395 spi_transport_rd_attr(pcomp_en, "%d\n");
396 spi_transport_rd_attr(hold_mcs, "%d\n");
397
398 /* we only care about the first child device that's a real SCSI device
399 * so we return 1 to terminate the iteration when we find it */
400 static int child_iter(struct device *dev, void *data)
401 {
402 if (!scsi_is_sdev_device(dev))
403 return 0;
404
405 spi_dv_device(to_scsi_device(dev));
406 return 1;
407 }
408
409 static ssize_t
410 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
411 const char *buf, size_t count)
412 {
413 struct scsi_target *starget = transport_class_to_starget(dev);
414
415 device_for_each_child(&starget->dev, NULL, child_iter);
416 return count;
417 }
418 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
419
420 /* Translate the period into ns according to the current spec
421 * for SDTR/PPR messages */
422 static int period_to_str(char *buf, int period)
423 {
424 int len, picosec;
425
426 if (period < 0 || period > 0xff) {
427 picosec = -1;
428 } else if (period <= SPI_STATIC_PPR) {
429 picosec = ppr_to_ps[period];
430 } else {
431 picosec = period * 4000;
432 }
433
434 if (picosec == -1) {
435 len = sprintf(buf, "reserved");
436 } else {
437 len = sprint_frac(buf, picosec, 1000);
438 }
439
440 return len;
441 }
442
443 static ssize_t
444 show_spi_transport_period_helper(char *buf, int period)
445 {
446 int len = period_to_str(buf, period);
447 buf[len++] = '\n';
448 buf[len] = '\0';
449 return len;
450 }
451
452 static ssize_t
453 store_spi_transport_period_helper(struct device *dev, const char *buf,
454 size_t count, int *periodp)
455 {
456 int j, picosec, period = -1;
457 char *endp;
458
459 picosec = simple_strtoul(buf, &endp, 10) * 1000;
460 if (*endp == '.') {
461 int mult = 100;
462 do {
463 endp++;
464 if (!isdigit(*endp))
465 break;
466 picosec += (*endp - '0') * mult;
467 mult /= 10;
468 } while (mult > 0);
469 }
470
471 for (j = 0; j <= SPI_STATIC_PPR; j++) {
472 if (ppr_to_ps[j] < picosec)
473 continue;
474 period = j;
475 break;
476 }
477
478 if (period == -1)
479 period = picosec / 4000;
480
481 if (period > 0xff)
482 period = 0xff;
483
484 *periodp = period;
485
486 return count;
487 }
488
489 static ssize_t
490 show_spi_transport_period(struct device *dev,
491 struct device_attribute *attr, char *buf)
492 {
493 struct scsi_target *starget = transport_class_to_starget(dev);
494 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
495 struct spi_internal *i = to_spi_internal(shost->transportt);
496 struct spi_transport_attrs *tp =
497 (struct spi_transport_attrs *)&starget->starget_data;
498
499 if (i->f->get_period)
500 i->f->get_period(starget);
501
502 return show_spi_transport_period_helper(buf, tp->period);
503 }
504
505 static ssize_t
506 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
507 const char *buf, size_t count)
508 {
509 struct scsi_target *starget = transport_class_to_starget(cdev);
510 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
511 struct spi_internal *i = to_spi_internal(shost->transportt);
512 struct spi_transport_attrs *tp =
513 (struct spi_transport_attrs *)&starget->starget_data;
514 int period, retval;
515
516 if (!i->f->set_period)
517 return -EINVAL;
518
519 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
520
521 if (period < tp->min_period)
522 period = tp->min_period;
523
524 i->f->set_period(starget, period);
525
526 return retval;
527 }
528
529 static DEVICE_ATTR(period, S_IRUGO,
530 show_spi_transport_period,
531 store_spi_transport_period);
532
533 static ssize_t
534 show_spi_transport_min_period(struct device *cdev,
535 struct device_attribute *attr, char *buf)
536 {
537 struct scsi_target *starget = transport_class_to_starget(cdev);
538 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
539 struct spi_internal *i = to_spi_internal(shost->transportt);
540 struct spi_transport_attrs *tp =
541 (struct spi_transport_attrs *)&starget->starget_data;
542
543 if (!i->f->set_period)
544 return -EINVAL;
545
546 return show_spi_transport_period_helper(buf, tp->min_period);
547 }
548
549 static ssize_t
550 store_spi_transport_min_period(struct device *cdev,
551 struct device_attribute *attr,
552 const char *buf, size_t count)
553 {
554 struct scsi_target *starget = transport_class_to_starget(cdev);
555 struct spi_transport_attrs *tp =
556 (struct spi_transport_attrs *)&starget->starget_data;
557
558 return store_spi_transport_period_helper(cdev, buf, count,
559 &tp->min_period);
560 }
561
562
563 static DEVICE_ATTR(min_period, S_IRUGO,
564 show_spi_transport_min_period,
565 store_spi_transport_min_period);
566
567
568 static ssize_t show_spi_host_signalling(struct device *cdev,
569 struct device_attribute *attr,
570 char *buf)
571 {
572 struct Scsi_Host *shost = transport_class_to_shost(cdev);
573 struct spi_internal *i = to_spi_internal(shost->transportt);
574
575 if (i->f->get_signalling)
576 i->f->get_signalling(shost);
577
578 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
579 }
580 static ssize_t store_spi_host_signalling(struct device *dev,
581 struct device_attribute *attr,
582 const char *buf, size_t count)
583 {
584 struct Scsi_Host *shost = transport_class_to_shost(dev);
585 struct spi_internal *i = to_spi_internal(shost->transportt);
586 enum spi_signal_type type = spi_signal_to_value(buf);
587
588 if (!i->f->set_signalling)
589 return -EINVAL;
590
591 if (type != SPI_SIGNAL_UNKNOWN)
592 i->f->set_signalling(shost, type);
593
594 return count;
595 }
596 static DEVICE_ATTR(signalling, S_IRUGO,
597 show_spi_host_signalling,
598 store_spi_host_signalling);
599
600 static ssize_t show_spi_host_width(struct device *cdev,
601 struct device_attribute *attr,
602 char *buf)
603 {
604 struct Scsi_Host *shost = transport_class_to_shost(cdev);
605
606 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
607 }
608 static DEVICE_ATTR(host_width, S_IRUGO,
609 show_spi_host_width, NULL);
610
611 static ssize_t show_spi_host_hba_id(struct device *cdev,
612 struct device_attribute *attr,
613 char *buf)
614 {
615 struct Scsi_Host *shost = transport_class_to_shost(cdev);
616
617 return sprintf(buf, "%d\n", shost->this_id);
618 }
619 static DEVICE_ATTR(hba_id, S_IRUGO,
620 show_spi_host_hba_id, NULL);
621
622 #define DV_SET(x, y) \
623 if(i->f->set_##x) \
624 i->f->set_##x(sdev->sdev_target, y)
625
626 enum spi_compare_returns {
627 SPI_COMPARE_SUCCESS,
628 SPI_COMPARE_FAILURE,
629 SPI_COMPARE_SKIP_TEST,
630 };
631
632
633 /* This is for read/write Domain Validation: If the device supports
634 * an echo buffer, we do read/write tests to it */
635 static enum spi_compare_returns
636 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
637 u8 *ptr, const int retries)
638 {
639 int len = ptr - buffer;
640 int j, k, r, result;
641 unsigned int pattern = 0x0000ffff;
642 struct scsi_sense_hdr sshdr;
643
644 const char spi_write_buffer[] = {
645 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
646 };
647 const char spi_read_buffer[] = {
648 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
649 };
650
651 /* set up the pattern buffer. Doesn't matter if we spill
652 * slightly beyond since that's where the read buffer is */
653 for (j = 0; j < len; ) {
654
655 /* fill the buffer with counting (test a) */
656 for ( ; j < min(len, 32); j++)
657 buffer[j] = j;
658 k = j;
659 /* fill the buffer with alternating words of 0x0 and
660 * 0xffff (test b) */
661 for ( ; j < min(len, k + 32); j += 2) {
662 u16 *word = (u16 *)&buffer[j];
663
664 *word = (j & 0x02) ? 0x0000 : 0xffff;
665 }
666 k = j;
667 /* fill with crosstalk (alternating 0x5555 0xaaa)
668 * (test c) */
669 for ( ; j < min(len, k + 32); j += 2) {
670 u16 *word = (u16 *)&buffer[j];
671
672 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
673 }
674 k = j;
675 /* fill with shifting bits (test d) */
676 for ( ; j < min(len, k + 32); j += 4) {
677 u32 *word = (unsigned int *)&buffer[j];
678 u32 roll = (pattern & 0x80000000) ? 1 : 0;
679
680 *word = pattern;
681 pattern = (pattern << 1) | roll;
682 }
683 /* don't bother with random data (test e) */
684 }
685
686 for (r = 0; r < retries; r++) {
687 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
688 buffer, len, &sshdr);
689 if(result || !scsi_device_online(sdev)) {
690
691 scsi_device_set_state(sdev, SDEV_QUIESCE);
692 if (scsi_sense_valid(&sshdr)
693 && sshdr.sense_key == ILLEGAL_REQUEST
694 /* INVALID FIELD IN CDB */
695 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
696 /* This would mean that the drive lied
697 * to us about supporting an echo
698 * buffer (unfortunately some Western
699 * Digital drives do precisely this)
700 */
701 return SPI_COMPARE_SKIP_TEST;
702
703
704 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
705 return SPI_COMPARE_FAILURE;
706 }
707
708 memset(ptr, 0, len);
709 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
710 ptr, len, NULL);
711 scsi_device_set_state(sdev, SDEV_QUIESCE);
712
713 if (memcmp(buffer, ptr, len) != 0)
714 return SPI_COMPARE_FAILURE;
715 }
716 return SPI_COMPARE_SUCCESS;
717 }
718
719 /* This is for the simplest form of Domain Validation: a read test
720 * on the inquiry data from the device */
721 static enum spi_compare_returns
722 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
723 u8 *ptr, const int retries)
724 {
725 int r, result;
726 const int len = sdev->inquiry_len;
727 const char spi_inquiry[] = {
728 INQUIRY, 0, 0, 0, len, 0
729 };
730
731 for (r = 0; r < retries; r++) {
732 memset(ptr, 0, len);
733
734 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
735 ptr, len, NULL);
736
737 if(result || !scsi_device_online(sdev)) {
738 scsi_device_set_state(sdev, SDEV_QUIESCE);
739 return SPI_COMPARE_FAILURE;
740 }
741
742 /* If we don't have the inquiry data already, the
743 * first read gets it */
744 if (ptr == buffer) {
745 ptr += len;
746 --r;
747 continue;
748 }
749
750 if (memcmp(buffer, ptr, len) != 0)
751 /* failure */
752 return SPI_COMPARE_FAILURE;
753 }
754 return SPI_COMPARE_SUCCESS;
755 }
756
757 static enum spi_compare_returns
758 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
759 enum spi_compare_returns
760 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
761 {
762 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
763 struct scsi_target *starget = sdev->sdev_target;
764 int period = 0, prevperiod = 0;
765 enum spi_compare_returns retval;
766
767
768 for (;;) {
769 int newperiod;
770 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
771
772 if (retval == SPI_COMPARE_SUCCESS
773 || retval == SPI_COMPARE_SKIP_TEST)
774 break;
775
776 /* OK, retrain, fallback */
777 if (i->f->get_iu)
778 i->f->get_iu(starget);
779 if (i->f->get_qas)
780 i->f->get_qas(starget);
781 if (i->f->get_period)
782 i->f->get_period(sdev->sdev_target);
783
784 /* Here's the fallback sequence; first try turning off
785 * IU, then QAS (if we can control them), then finally
786 * fall down the periods */
787 if (i->f->set_iu && spi_iu(starget)) {
788 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n");
789 DV_SET(iu, 0);
790 } else if (i->f->set_qas && spi_qas(starget)) {
791 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n");
792 DV_SET(qas, 0);
793 } else {
794 newperiod = spi_period(starget);
795 period = newperiod > period ? newperiod : period;
796 if (period < 0x0d)
797 period++;
798 else
799 period += period >> 1;
800
801 if (unlikely(period > 0xff || period == prevperiod)) {
802 /* Total failure; set to async and return */
803 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
804 DV_SET(offset, 0);
805 return SPI_COMPARE_FAILURE;
806 }
807 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
808 DV_SET(period, period);
809 prevperiod = period;
810 }
811 }
812 return retval;
813 }
814
815 static int
816 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
817 {
818 int l, result;
819
820 /* first off do a test unit ready. This can error out
821 * because of reservations or some other reason. If it
822 * fails, the device won't let us write to the echo buffer
823 * so just return failure */
824
825 static const char spi_test_unit_ready[] = {
826 TEST_UNIT_READY, 0, 0, 0, 0, 0
827 };
828
829 static const char spi_read_buffer_descriptor[] = {
830 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
831 };
832
833
834 /* We send a set of three TURs to clear any outstanding
835 * unit attention conditions if they exist (Otherwise the
836 * buffer tests won't be happy). If the TUR still fails
837 * (reservation conflict, device not ready, etc) just
838 * skip the write tests */
839 for (l = 0; ; l++) {
840 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
841 NULL, 0, NULL);
842
843 if(result) {
844 if(l >= 3)
845 return 0;
846 } else {
847 /* TUR succeeded */
848 break;
849 }
850 }
851
852 result = spi_execute(sdev, spi_read_buffer_descriptor,
853 DMA_FROM_DEVICE, buffer, 4, NULL);
854
855 if (result)
856 /* Device has no echo buffer */
857 return 0;
858
859 return buffer[3] + ((buffer[2] & 0x1f) << 8);
860 }
861
862 static void
863 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
864 {
865 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
866 struct scsi_target *starget = sdev->sdev_target;
867 struct Scsi_Host *shost = sdev->host;
868 int len = sdev->inquiry_len;
869 int min_period = spi_min_period(starget);
870 int max_width = spi_max_width(starget);
871 /* first set us up for narrow async */
872 DV_SET(offset, 0);
873 DV_SET(width, 0);
874
875 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
876 != SPI_COMPARE_SUCCESS) {
877 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
878 /* FIXME: should probably offline the device here? */
879 return;
880 }
881
882 if (!spi_support_wide(starget)) {
883 spi_max_width(starget) = 0;
884 max_width = 0;
885 }
886
887 /* test width */
888 if (i->f->set_width && max_width) {
889 i->f->set_width(starget, 1);
890
891 if (spi_dv_device_compare_inquiry(sdev, buffer,
892 buffer + len,
893 DV_LOOPS)
894 != SPI_COMPARE_SUCCESS) {
895 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
896 i->f->set_width(starget, 0);
897 /* Make sure we don't force wide back on by asking
898 * for a transfer period that requires it */
899 max_width = 0;
900 if (min_period < 10)
901 min_period = 10;
902 }
903 }
904
905 if (!i->f->set_period)
906 return;
907
908 /* device can't handle synchronous */
909 if (!spi_support_sync(starget) && !spi_support_dt(starget))
910 return;
911
912 /* len == -1 is the signal that we need to ascertain the
913 * presence of an echo buffer before trying to use it. len ==
914 * 0 means we don't have an echo buffer */
915 len = -1;
916
917 retry:
918
919 /* now set up to the maximum */
920 DV_SET(offset, spi_max_offset(starget));
921 DV_SET(period, min_period);
922
923 /* try QAS requests; this should be harmless to set if the
924 * target supports it */
925 if (spi_support_qas(starget) && spi_max_qas(starget)) {
926 DV_SET(qas, 1);
927 } else {
928 DV_SET(qas, 0);
929 }
930
931 if (spi_support_ius(starget) && spi_max_iu(starget) &&
932 min_period < 9) {
933 /* This u320 (or u640). Set IU transfers */
934 DV_SET(iu, 1);
935 /* Then set the optional parameters */
936 DV_SET(rd_strm, 1);
937 DV_SET(wr_flow, 1);
938 DV_SET(rti, 1);
939 if (min_period == 8)
940 DV_SET(pcomp_en, 1);
941 } else {
942 DV_SET(iu, 0);
943 }
944
945 /* now that we've done all this, actually check the bus
946 * signal type (if known). Some devices are stupid on
947 * a SE bus and still claim they can try LVD only settings */
948 if (i->f->get_signalling)
949 i->f->get_signalling(shost);
950 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
951 spi_signalling(shost) == SPI_SIGNAL_HVD ||
952 !spi_support_dt(starget)) {
953 DV_SET(dt, 0);
954 } else {
955 DV_SET(dt, 1);
956 }
957 /* set width last because it will pull all the other
958 * parameters down to required values */
959 DV_SET(width, max_width);
960
961 /* Do the read only INQUIRY tests */
962 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
963 spi_dv_device_compare_inquiry);
964 /* See if we actually managed to negotiate and sustain DT */
965 if (i->f->get_dt)
966 i->f->get_dt(starget);
967
968 /* see if the device has an echo buffer. If it does we can do
969 * the SPI pattern write tests. Because of some broken
970 * devices, we *only* try this on a device that has actually
971 * negotiated DT */
972
973 if (len == -1 && spi_dt(starget))
974 len = spi_dv_device_get_echo_buffer(sdev, buffer);
975
976 if (len <= 0) {
977 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
978 return;
979 }
980
981 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
982 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
983 len = SPI_MAX_ECHO_BUFFER_SIZE;
984 }
985
986 if (spi_dv_retrain(sdev, buffer, buffer + len,
987 spi_dv_device_echo_buffer)
988 == SPI_COMPARE_SKIP_TEST) {
989 /* OK, the stupid drive can't do a write echo buffer
990 * test after all, fall back to the read tests */
991 len = 0;
992 goto retry;
993 }
994 }
995
996
997 /** spi_dv_device - Do Domain Validation on the device
998 * @sdev: scsi device to validate
999 *
1000 * Performs the domain validation on the given device in the
1001 * current execution thread. Since DV operations may sleep,
1002 * the current thread must have user context. Also no SCSI
1003 * related locks that would deadlock I/O issued by the DV may
1004 * be held.
1005 */
1006 void
1007 spi_dv_device(struct scsi_device *sdev)
1008 {
1009 struct scsi_target *starget = sdev->sdev_target;
1010 u8 *buffer;
1011 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
1012
1013 /*
1014 * Because this function and the power management code both call
1015 * scsi_device_quiesce(), it is not safe to perform domain validation
1016 * while suspend or resume is in progress. Hence the
1017 * lock/unlock_system_sleep() calls.
1018 */
1019 lock_system_sleep();
1020
1021 if (unlikely(spi_dv_in_progress(starget)))
1022 goto unlock;
1023
1024 if (unlikely(scsi_device_get(sdev)))
1025 goto unlock;
1026
1027 spi_dv_in_progress(starget) = 1;
1028
1029 buffer = kzalloc(len, GFP_KERNEL);
1030
1031 if (unlikely(!buffer))
1032 goto out_put;
1033
1034 /* We need to verify that the actual device will quiesce; the
1035 * later target quiesce is just a nice to have */
1036 if (unlikely(scsi_device_quiesce(sdev)))
1037 goto out_free;
1038
1039 scsi_target_quiesce(starget);
1040
1041 spi_dv_pending(starget) = 1;
1042 mutex_lock(&spi_dv_mutex(starget));
1043
1044 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1045
1046 spi_dv_device_internal(sdev, buffer);
1047
1048 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1049
1050 mutex_unlock(&spi_dv_mutex(starget));
1051 spi_dv_pending(starget) = 0;
1052
1053 scsi_target_resume(starget);
1054
1055 spi_initial_dv(starget) = 1;
1056
1057 out_free:
1058 kfree(buffer);
1059 out_put:
1060 spi_dv_in_progress(starget) = 0;
1061 scsi_device_put(sdev);
1062 unlock:
1063 unlock_system_sleep();
1064 }
1065 EXPORT_SYMBOL(spi_dv_device);
1066
1067 struct work_queue_wrapper {
1068 struct work_struct work;
1069 struct scsi_device *sdev;
1070 };
1071
1072 static void
1073 spi_dv_device_work_wrapper(struct work_struct *work)
1074 {
1075 struct work_queue_wrapper *wqw =
1076 container_of(work, struct work_queue_wrapper, work);
1077 struct scsi_device *sdev = wqw->sdev;
1078
1079 kfree(wqw);
1080 spi_dv_device(sdev);
1081 spi_dv_pending(sdev->sdev_target) = 0;
1082 scsi_device_put(sdev);
1083 }
1084
1085
1086 /**
1087 * spi_schedule_dv_device - schedule domain validation to occur on the device
1088 * @sdev: The device to validate
1089 *
1090 * Identical to spi_dv_device() above, except that the DV will be
1091 * scheduled to occur in a workqueue later. All memory allocations
1092 * are atomic, so may be called from any context including those holding
1093 * SCSI locks.
1094 */
1095 void
1096 spi_schedule_dv_device(struct scsi_device *sdev)
1097 {
1098 struct work_queue_wrapper *wqw =
1099 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1100
1101 if (unlikely(!wqw))
1102 return;
1103
1104 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1105 kfree(wqw);
1106 return;
1107 }
1108 /* Set pending early (dv_device doesn't check it, only sets it) */
1109 spi_dv_pending(sdev->sdev_target) = 1;
1110 if (unlikely(scsi_device_get(sdev))) {
1111 kfree(wqw);
1112 spi_dv_pending(sdev->sdev_target) = 0;
1113 return;
1114 }
1115
1116 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1117 wqw->sdev = sdev;
1118
1119 schedule_work(&wqw->work);
1120 }
1121 EXPORT_SYMBOL(spi_schedule_dv_device);
1122
1123 /**
1124 * spi_display_xfer_agreement - Print the current target transfer agreement
1125 * @starget: The target for which to display the agreement
1126 *
1127 * Each SPI port is required to maintain a transfer agreement for each
1128 * other port on the bus. This function prints a one-line summary of
1129 * the current agreement; more detailed information is available in sysfs.
1130 */
1131 void spi_display_xfer_agreement(struct scsi_target *starget)
1132 {
1133 struct spi_transport_attrs *tp;
1134 tp = (struct spi_transport_attrs *)&starget->starget_data;
1135
1136 if (tp->offset > 0 && tp->period > 0) {
1137 unsigned int picosec, kb100;
1138 char *scsi = "FAST-?";
1139 char tmp[8];
1140
1141 if (tp->period <= SPI_STATIC_PPR) {
1142 picosec = ppr_to_ps[tp->period];
1143 switch (tp->period) {
1144 case 7: scsi = "FAST-320"; break;
1145 case 8: scsi = "FAST-160"; break;
1146 case 9: scsi = "FAST-80"; break;
1147 case 10:
1148 case 11: scsi = "FAST-40"; break;
1149 case 12: scsi = "FAST-20"; break;
1150 }
1151 } else {
1152 picosec = tp->period * 4000;
1153 if (tp->period < 25)
1154 scsi = "FAST-20";
1155 else if (tp->period < 50)
1156 scsi = "FAST-10";
1157 else
1158 scsi = "FAST-5";
1159 }
1160
1161 kb100 = (10000000 + picosec / 2) / picosec;
1162 if (tp->width)
1163 kb100 *= 2;
1164 sprint_frac(tmp, picosec, 1000);
1165
1166 dev_info(&starget->dev,
1167 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1168 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1169 tp->dt ? "DT" : "ST",
1170 tp->iu ? " IU" : "",
1171 tp->qas ? " QAS" : "",
1172 tp->rd_strm ? " RDSTRM" : "",
1173 tp->rti ? " RTI" : "",
1174 tp->wr_flow ? " WRFLOW" : "",
1175 tp->pcomp_en ? " PCOMP" : "",
1176 tp->hold_mcs ? " HMCS" : "",
1177 tmp, tp->offset);
1178 } else {
1179 dev_info(&starget->dev, "%sasynchronous\n",
1180 tp->width ? "wide " : "");
1181 }
1182 }
1183 EXPORT_SYMBOL(spi_display_xfer_agreement);
1184
1185 int spi_populate_width_msg(unsigned char *msg, int width)
1186 {
1187 msg[0] = EXTENDED_MESSAGE;
1188 msg[1] = 2;
1189 msg[2] = EXTENDED_WDTR;
1190 msg[3] = width;
1191 return 4;
1192 }
1193 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1194
1195 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1196 {
1197 msg[0] = EXTENDED_MESSAGE;
1198 msg[1] = 3;
1199 msg[2] = EXTENDED_SDTR;
1200 msg[3] = period;
1201 msg[4] = offset;
1202 return 5;
1203 }
1204 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1205
1206 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1207 int width, int options)
1208 {
1209 msg[0] = EXTENDED_MESSAGE;
1210 msg[1] = 6;
1211 msg[2] = EXTENDED_PPR;
1212 msg[3] = period;
1213 msg[4] = 0;
1214 msg[5] = offset;
1215 msg[6] = width;
1216 msg[7] = options;
1217 return 8;
1218 }
1219 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1220
1221 /**
1222 * spi_populate_tag_msg - place a tag message in a buffer
1223 * @msg: pointer to the area to place the tag
1224 * @cmd: pointer to the scsi command for the tag
1225 *
1226 * Notes:
1227 * designed to create the correct type of tag message for the
1228 * particular request. Returns the size of the tag message.
1229 * May return 0 if TCQ is disabled for this device.
1230 **/
1231 int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd)
1232 {
1233 if (cmd->flags & SCMD_TAGGED) {
1234 *msg++ = SIMPLE_QUEUE_TAG;
1235 *msg++ = cmd->request->tag;
1236 return 2;
1237 }
1238
1239 return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(spi_populate_tag_msg);
1242
1243 #ifdef CONFIG_SCSI_CONSTANTS
1244 static const char * const one_byte_msgs[] = {
1245 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1246 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1247 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1248 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1249 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1250 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1251 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1252 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1253 };
1254
1255 static const char * const two_byte_msgs[] = {
1256 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1257 /* 0x23 */ "Ignore Wide Residue", "ACA"
1258 };
1259
1260 static const char * const extended_msgs[] = {
1261 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1262 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1263 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1264 };
1265
1266 static void print_nego(const unsigned char *msg, int per, int off, int width)
1267 {
1268 if (per) {
1269 char buf[20];
1270 period_to_str(buf, msg[per]);
1271 printk("period = %s ns ", buf);
1272 }
1273
1274 if (off)
1275 printk("offset = %d ", msg[off]);
1276 if (width)
1277 printk("width = %d ", 8 << msg[width]);
1278 }
1279
1280 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1281 {
1282 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1283 msg[msb+3];
1284 printk("%s = %d ", desc, ptr);
1285 }
1286
1287 int spi_print_msg(const unsigned char *msg)
1288 {
1289 int len = 1, i;
1290 if (msg[0] == EXTENDED_MESSAGE) {
1291 len = 2 + msg[1];
1292 if (len == 2)
1293 len += 256;
1294 if (msg[2] < ARRAY_SIZE(extended_msgs))
1295 printk ("%s ", extended_msgs[msg[2]]);
1296 else
1297 printk ("Extended Message, reserved code (0x%02x) ",
1298 (int) msg[2]);
1299 switch (msg[2]) {
1300 case EXTENDED_MODIFY_DATA_POINTER:
1301 print_ptr(msg, 3, "pointer");
1302 break;
1303 case EXTENDED_SDTR:
1304 print_nego(msg, 3, 4, 0);
1305 break;
1306 case EXTENDED_WDTR:
1307 print_nego(msg, 0, 0, 3);
1308 break;
1309 case EXTENDED_PPR:
1310 print_nego(msg, 3, 5, 6);
1311 break;
1312 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1313 print_ptr(msg, 3, "out");
1314 print_ptr(msg, 7, "in");
1315 break;
1316 default:
1317 for (i = 2; i < len; ++i)
1318 printk("%02x ", msg[i]);
1319 }
1320 /* Identify */
1321 } else if (msg[0] & 0x80) {
1322 printk("Identify disconnect %sallowed %s %d ",
1323 (msg[0] & 0x40) ? "" : "not ",
1324 (msg[0] & 0x20) ? "target routine" : "lun",
1325 msg[0] & 0x7);
1326 /* Normal One byte */
1327 } else if (msg[0] < 0x1f) {
1328 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1329 printk("%s ", one_byte_msgs[msg[0]]);
1330 else
1331 printk("reserved (%02x) ", msg[0]);
1332 } else if (msg[0] == 0x55) {
1333 printk("QAS Request ");
1334 /* Two byte */
1335 } else if (msg[0] <= 0x2f) {
1336 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1337 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1338 msg[1]);
1339 else
1340 printk("reserved two byte (%02x %02x) ",
1341 msg[0], msg[1]);
1342 len = 2;
1343 } else
1344 printk("reserved ");
1345 return len;
1346 }
1347 EXPORT_SYMBOL(spi_print_msg);
1348
1349 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1350
1351 int spi_print_msg(const unsigned char *msg)
1352 {
1353 int len = 1, i;
1354
1355 if (msg[0] == EXTENDED_MESSAGE) {
1356 len = 2 + msg[1];
1357 if (len == 2)
1358 len += 256;
1359 for (i = 0; i < len; ++i)
1360 printk("%02x ", msg[i]);
1361 /* Identify */
1362 } else if (msg[0] & 0x80) {
1363 printk("%02x ", msg[0]);
1364 /* Normal One byte */
1365 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1366 printk("%02x ", msg[0]);
1367 /* Two byte */
1368 } else if (msg[0] <= 0x2f) {
1369 printk("%02x %02x", msg[0], msg[1]);
1370 len = 2;
1371 } else
1372 printk("%02x ", msg[0]);
1373 return len;
1374 }
1375 EXPORT_SYMBOL(spi_print_msg);
1376 #endif /* ! CONFIG_SCSI_CONSTANTS */
1377
1378 static int spi_device_match(struct attribute_container *cont,
1379 struct device *dev)
1380 {
1381 struct scsi_device *sdev;
1382 struct Scsi_Host *shost;
1383 struct spi_internal *i;
1384
1385 if (!scsi_is_sdev_device(dev))
1386 return 0;
1387
1388 sdev = to_scsi_device(dev);
1389 shost = sdev->host;
1390 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1391 != &spi_host_class.class)
1392 return 0;
1393 /* Note: this class has no device attributes, so it has
1394 * no per-HBA allocation and thus we don't need to distinguish
1395 * the attribute containers for the device */
1396 i = to_spi_internal(shost->transportt);
1397 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1398 return 0;
1399 return 1;
1400 }
1401
1402 static int spi_target_match(struct attribute_container *cont,
1403 struct device *dev)
1404 {
1405 struct Scsi_Host *shost;
1406 struct scsi_target *starget;
1407 struct spi_internal *i;
1408
1409 if (!scsi_is_target_device(dev))
1410 return 0;
1411
1412 shost = dev_to_shost(dev->parent);
1413 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1414 != &spi_host_class.class)
1415 return 0;
1416
1417 i = to_spi_internal(shost->transportt);
1418 starget = to_scsi_target(dev);
1419
1420 if (i->f->deny_binding && i->f->deny_binding(starget))
1421 return 0;
1422
1423 return &i->t.target_attrs.ac == cont;
1424 }
1425
1426 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1427 "spi_transport",
1428 spi_setup_transport_attrs,
1429 NULL,
1430 spi_target_configure);
1431
1432 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1433 spi_device_match,
1434 spi_device_configure);
1435
1436 static struct attribute *host_attributes[] = {
1437 &dev_attr_signalling.attr,
1438 &dev_attr_host_width.attr,
1439 &dev_attr_hba_id.attr,
1440 NULL
1441 };
1442
1443 static struct attribute_group host_attribute_group = {
1444 .attrs = host_attributes,
1445 };
1446
1447 static int spi_host_configure(struct transport_container *tc,
1448 struct device *dev,
1449 struct device *cdev)
1450 {
1451 struct kobject *kobj = &cdev->kobj;
1452 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1453 struct spi_internal *si = to_spi_internal(shost->transportt);
1454 struct attribute *attr = &dev_attr_signalling.attr;
1455 int rc = 0;
1456
1457 if (si->f->set_signalling)
1458 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1459
1460 return rc;
1461 }
1462
1463 /* returns true if we should be showing the variable. Also
1464 * overloads the return by setting 1<<1 if the attribute should
1465 * be writeable */
1466 #define TARGET_ATTRIBUTE_HELPER(name) \
1467 (si->f->show_##name ? S_IRUGO : 0) | \
1468 (si->f->set_##name ? S_IWUSR : 0)
1469
1470 static umode_t target_attribute_is_visible(struct kobject *kobj,
1471 struct attribute *attr, int i)
1472 {
1473 struct device *cdev = container_of(kobj, struct device, kobj);
1474 struct scsi_target *starget = transport_class_to_starget(cdev);
1475 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1476 struct spi_internal *si = to_spi_internal(shost->transportt);
1477
1478 if (attr == &dev_attr_period.attr &&
1479 spi_support_sync(starget))
1480 return TARGET_ATTRIBUTE_HELPER(period);
1481 else if (attr == &dev_attr_min_period.attr &&
1482 spi_support_sync(starget))
1483 return TARGET_ATTRIBUTE_HELPER(period);
1484 else if (attr == &dev_attr_offset.attr &&
1485 spi_support_sync(starget))
1486 return TARGET_ATTRIBUTE_HELPER(offset);
1487 else if (attr == &dev_attr_max_offset.attr &&
1488 spi_support_sync(starget))
1489 return TARGET_ATTRIBUTE_HELPER(offset);
1490 else if (attr == &dev_attr_width.attr &&
1491 spi_support_wide(starget))
1492 return TARGET_ATTRIBUTE_HELPER(width);
1493 else if (attr == &dev_attr_max_width.attr &&
1494 spi_support_wide(starget))
1495 return TARGET_ATTRIBUTE_HELPER(width);
1496 else if (attr == &dev_attr_iu.attr &&
1497 spi_support_ius(starget))
1498 return TARGET_ATTRIBUTE_HELPER(iu);
1499 else if (attr == &dev_attr_max_iu.attr &&
1500 spi_support_ius(starget))
1501 return TARGET_ATTRIBUTE_HELPER(iu);
1502 else if (attr == &dev_attr_dt.attr &&
1503 spi_support_dt(starget))
1504 return TARGET_ATTRIBUTE_HELPER(dt);
1505 else if (attr == &dev_attr_qas.attr &&
1506 spi_support_qas(starget))
1507 return TARGET_ATTRIBUTE_HELPER(qas);
1508 else if (attr == &dev_attr_max_qas.attr &&
1509 spi_support_qas(starget))
1510 return TARGET_ATTRIBUTE_HELPER(qas);
1511 else if (attr == &dev_attr_wr_flow.attr &&
1512 spi_support_ius(starget))
1513 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1514 else if (attr == &dev_attr_rd_strm.attr &&
1515 spi_support_ius(starget))
1516 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1517 else if (attr == &dev_attr_rti.attr &&
1518 spi_support_ius(starget))
1519 return TARGET_ATTRIBUTE_HELPER(rti);
1520 else if (attr == &dev_attr_pcomp_en.attr &&
1521 spi_support_ius(starget))
1522 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1523 else if (attr == &dev_attr_hold_mcs.attr &&
1524 spi_support_ius(starget))
1525 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1526 else if (attr == &dev_attr_revalidate.attr)
1527 return S_IWUSR;
1528
1529 return 0;
1530 }
1531
1532 static struct attribute *target_attributes[] = {
1533 &dev_attr_period.attr,
1534 &dev_attr_min_period.attr,
1535 &dev_attr_offset.attr,
1536 &dev_attr_max_offset.attr,
1537 &dev_attr_width.attr,
1538 &dev_attr_max_width.attr,
1539 &dev_attr_iu.attr,
1540 &dev_attr_max_iu.attr,
1541 &dev_attr_dt.attr,
1542 &dev_attr_qas.attr,
1543 &dev_attr_max_qas.attr,
1544 &dev_attr_wr_flow.attr,
1545 &dev_attr_rd_strm.attr,
1546 &dev_attr_rti.attr,
1547 &dev_attr_pcomp_en.attr,
1548 &dev_attr_hold_mcs.attr,
1549 &dev_attr_revalidate.attr,
1550 NULL
1551 };
1552
1553 static struct attribute_group target_attribute_group = {
1554 .attrs = target_attributes,
1555 .is_visible = target_attribute_is_visible,
1556 };
1557
1558 static int spi_target_configure(struct transport_container *tc,
1559 struct device *dev,
1560 struct device *cdev)
1561 {
1562 struct kobject *kobj = &cdev->kobj;
1563
1564 /* force an update based on parameters read from the device */
1565 sysfs_update_group(kobj, &target_attribute_group);
1566
1567 return 0;
1568 }
1569
1570 struct scsi_transport_template *
1571 spi_attach_transport(struct spi_function_template *ft)
1572 {
1573 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1574 GFP_KERNEL);
1575
1576 if (unlikely(!i))
1577 return NULL;
1578
1579 i->t.target_attrs.ac.class = &spi_transport_class.class;
1580 i->t.target_attrs.ac.grp = &target_attribute_group;
1581 i->t.target_attrs.ac.match = spi_target_match;
1582 transport_container_register(&i->t.target_attrs);
1583 i->t.target_size = sizeof(struct spi_transport_attrs);
1584 i->t.host_attrs.ac.class = &spi_host_class.class;
1585 i->t.host_attrs.ac.grp = &host_attribute_group;
1586 i->t.host_attrs.ac.match = spi_host_match;
1587 transport_container_register(&i->t.host_attrs);
1588 i->t.host_size = sizeof(struct spi_host_attrs);
1589 i->f = ft;
1590
1591 return &i->t;
1592 }
1593 EXPORT_SYMBOL(spi_attach_transport);
1594
1595 void spi_release_transport(struct scsi_transport_template *t)
1596 {
1597 struct spi_internal *i = to_spi_internal(t);
1598
1599 transport_container_unregister(&i->t.target_attrs);
1600 transport_container_unregister(&i->t.host_attrs);
1601
1602 kfree(i);
1603 }
1604 EXPORT_SYMBOL(spi_release_transport);
1605
1606 static __init int spi_transport_init(void)
1607 {
1608 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1609 "SCSI Parallel Transport Class");
1610 if (!error) {
1611 int i;
1612
1613 for (i = 0; spi_static_device_list[i].vendor; i++)
1614 scsi_dev_info_list_add_keyed(1, /* compatible */
1615 spi_static_device_list[i].vendor,
1616 spi_static_device_list[i].model,
1617 NULL,
1618 spi_static_device_list[i].flags,
1619 SCSI_DEVINFO_SPI);
1620 }
1621
1622 error = transport_class_register(&spi_transport_class);
1623 if (error)
1624 return error;
1625 error = anon_transport_class_register(&spi_device_class);
1626 return transport_class_register(&spi_host_class);
1627 }
1628
1629 static void __exit spi_transport_exit(void)
1630 {
1631 transport_class_unregister(&spi_transport_class);
1632 anon_transport_class_unregister(&spi_device_class);
1633 transport_class_unregister(&spi_host_class);
1634 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1635 }
1636
1637 MODULE_AUTHOR("Martin Hicks");
1638 MODULE_DESCRIPTION("SPI Transport Attributes");
1639 MODULE_LICENSE("GPL");
1640
1641 module_init(spi_transport_init);
1642 module_exit(spi_transport_exit);