]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/scsi_transport_spi.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / scsi_transport_spi.c
1 /*
2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3 *
4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <linux/slab.h>
29 #include <scsi/scsi.h>
30 #include "scsi_priv.h"
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_eh.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport.h>
37 #include <scsi/scsi_transport_spi.h>
38
39 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
40 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
41 * on" attributes */
42 #define SPI_HOST_ATTRS 1
43
44 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
45
46 #define DV_LOOPS 3
47 #define DV_TIMEOUT (10*HZ)
48 #define DV_RETRIES 3 /* should only need at most
49 * two cc/ua clears */
50
51 /* Our blacklist flags */
52 enum {
53 SPI_BLIST_NOIUS = 0x1,
54 };
55
56 /* blacklist table, modelled on scsi_devinfo.c */
57 static struct {
58 char *vendor;
59 char *model;
60 unsigned flags;
61 } spi_static_device_list[] __initdata = {
62 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
63 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
64 {NULL, NULL, 0}
65 };
66
67 /* Private data accessors (keep these out of the header file) */
68 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
69 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
70
71 struct spi_internal {
72 struct scsi_transport_template t;
73 struct spi_function_template *f;
74 };
75
76 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
77
78 static const int ppr_to_ps[] = {
79 /* The PPR values 0-6 are reserved, fill them in when
80 * the committee defines them */
81 -1, /* 0x00 */
82 -1, /* 0x01 */
83 -1, /* 0x02 */
84 -1, /* 0x03 */
85 -1, /* 0x04 */
86 -1, /* 0x05 */
87 -1, /* 0x06 */
88 3125, /* 0x07 */
89 6250, /* 0x08 */
90 12500, /* 0x09 */
91 25000, /* 0x0a */
92 30300, /* 0x0b */
93 50000, /* 0x0c */
94 };
95 /* The PPR values at which you calculate the period in ns by multiplying
96 * by 4 */
97 #define SPI_STATIC_PPR 0x0c
98
99 static int sprint_frac(char *dest, int value, int denom)
100 {
101 int frac = value % denom;
102 int result = sprintf(dest, "%d", value / denom);
103
104 if (frac == 0)
105 return result;
106 dest[result++] = '.';
107
108 do {
109 denom /= 10;
110 sprintf(dest + result, "%d", frac / denom);
111 result++;
112 frac %= denom;
113 } while (frac);
114
115 dest[result++] = '\0';
116 return result;
117 }
118
119 static int spi_execute(struct scsi_device *sdev, const void *cmd,
120 enum dma_data_direction dir,
121 void *buffer, unsigned bufflen,
122 struct scsi_sense_hdr *sshdr)
123 {
124 int i, result;
125 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
126
127 for(i = 0; i < DV_RETRIES; i++) {
128 result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
129 sense, DV_TIMEOUT, /* retries */ 1,
130 REQ_FAILFAST_DEV |
131 REQ_FAILFAST_TRANSPORT |
132 REQ_FAILFAST_DRIVER,
133 NULL);
134 if (driver_byte(result) & DRIVER_SENSE) {
135 struct scsi_sense_hdr sshdr_tmp;
136 if (!sshdr)
137 sshdr = &sshdr_tmp;
138
139 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
140 sshdr)
141 && sshdr->sense_key == UNIT_ATTENTION)
142 continue;
143 }
144 break;
145 }
146 return result;
147 }
148
149 static struct {
150 enum spi_signal_type value;
151 char *name;
152 } signal_types[] = {
153 { SPI_SIGNAL_UNKNOWN, "unknown" },
154 { SPI_SIGNAL_SE, "SE" },
155 { SPI_SIGNAL_LVD, "LVD" },
156 { SPI_SIGNAL_HVD, "HVD" },
157 };
158
159 static inline const char *spi_signal_to_string(enum spi_signal_type type)
160 {
161 int i;
162
163 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
164 if (type == signal_types[i].value)
165 return signal_types[i].name;
166 }
167 return NULL;
168 }
169 static inline enum spi_signal_type spi_signal_to_value(const char *name)
170 {
171 int i, len;
172
173 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
174 len = strlen(signal_types[i].name);
175 if (strncmp(name, signal_types[i].name, len) == 0 &&
176 (name[len] == '\n' || name[len] == '\0'))
177 return signal_types[i].value;
178 }
179 return SPI_SIGNAL_UNKNOWN;
180 }
181
182 static int spi_host_setup(struct transport_container *tc, struct device *dev,
183 struct device *cdev)
184 {
185 struct Scsi_Host *shost = dev_to_shost(dev);
186
187 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
188
189 return 0;
190 }
191
192 static int spi_host_configure(struct transport_container *tc,
193 struct device *dev,
194 struct device *cdev);
195
196 static DECLARE_TRANSPORT_CLASS(spi_host_class,
197 "spi_host",
198 spi_host_setup,
199 NULL,
200 spi_host_configure);
201
202 static int spi_host_match(struct attribute_container *cont,
203 struct device *dev)
204 {
205 struct Scsi_Host *shost;
206
207 if (!scsi_is_host_device(dev))
208 return 0;
209
210 shost = dev_to_shost(dev);
211 if (!shost->transportt || shost->transportt->host_attrs.ac.class
212 != &spi_host_class.class)
213 return 0;
214
215 return &shost->transportt->host_attrs.ac == cont;
216 }
217
218 static int spi_target_configure(struct transport_container *tc,
219 struct device *dev,
220 struct device *cdev);
221
222 static int spi_device_configure(struct transport_container *tc,
223 struct device *dev,
224 struct device *cdev)
225 {
226 struct scsi_device *sdev = to_scsi_device(dev);
227 struct scsi_target *starget = sdev->sdev_target;
228 unsigned bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
229 &sdev->inquiry[16],
230 SCSI_DEVINFO_SPI);
231
232 /* Populate the target capability fields with the values
233 * gleaned from the device inquiry */
234
235 spi_support_sync(starget) = scsi_device_sync(sdev);
236 spi_support_wide(starget) = scsi_device_wide(sdev);
237 spi_support_dt(starget) = scsi_device_dt(sdev);
238 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
239 spi_support_ius(starget) = scsi_device_ius(sdev);
240 if (bflags & SPI_BLIST_NOIUS) {
241 dev_info(dev, "Information Units disabled by blacklist\n");
242 spi_support_ius(starget) = 0;
243 }
244 spi_support_qas(starget) = scsi_device_qas(sdev);
245
246 return 0;
247 }
248
249 static int spi_setup_transport_attrs(struct transport_container *tc,
250 struct device *dev,
251 struct device *cdev)
252 {
253 struct scsi_target *starget = to_scsi_target(dev);
254
255 spi_period(starget) = -1; /* illegal value */
256 spi_min_period(starget) = 0;
257 spi_offset(starget) = 0; /* async */
258 spi_max_offset(starget) = 255;
259 spi_width(starget) = 0; /* narrow */
260 spi_max_width(starget) = 1;
261 spi_iu(starget) = 0; /* no IU */
262 spi_max_iu(starget) = 1;
263 spi_dt(starget) = 0; /* ST */
264 spi_qas(starget) = 0;
265 spi_max_qas(starget) = 1;
266 spi_wr_flow(starget) = 0;
267 spi_rd_strm(starget) = 0;
268 spi_rti(starget) = 0;
269 spi_pcomp_en(starget) = 0;
270 spi_hold_mcs(starget) = 0;
271 spi_dv_pending(starget) = 0;
272 spi_dv_in_progress(starget) = 0;
273 spi_initial_dv(starget) = 0;
274 mutex_init(&spi_dv_mutex(starget));
275
276 return 0;
277 }
278
279 #define spi_transport_show_simple(field, format_string) \
280 \
281 static ssize_t \
282 show_spi_transport_##field(struct device *dev, \
283 struct device_attribute *attr, char *buf) \
284 { \
285 struct scsi_target *starget = transport_class_to_starget(dev); \
286 struct spi_transport_attrs *tp; \
287 \
288 tp = (struct spi_transport_attrs *)&starget->starget_data; \
289 return snprintf(buf, 20, format_string, tp->field); \
290 }
291
292 #define spi_transport_store_simple(field, format_string) \
293 \
294 static ssize_t \
295 store_spi_transport_##field(struct device *dev, \
296 struct device_attribute *attr, \
297 const char *buf, size_t count) \
298 { \
299 int val; \
300 struct scsi_target *starget = transport_class_to_starget(dev); \
301 struct spi_transport_attrs *tp; \
302 \
303 tp = (struct spi_transport_attrs *)&starget->starget_data; \
304 val = simple_strtoul(buf, NULL, 0); \
305 tp->field = val; \
306 return count; \
307 }
308
309 #define spi_transport_show_function(field, format_string) \
310 \
311 static ssize_t \
312 show_spi_transport_##field(struct device *dev, \
313 struct device_attribute *attr, char *buf) \
314 { \
315 struct scsi_target *starget = transport_class_to_starget(dev); \
316 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
317 struct spi_transport_attrs *tp; \
318 struct spi_internal *i = to_spi_internal(shost->transportt); \
319 tp = (struct spi_transport_attrs *)&starget->starget_data; \
320 if (i->f->get_##field) \
321 i->f->get_##field(starget); \
322 return snprintf(buf, 20, format_string, tp->field); \
323 }
324
325 #define spi_transport_store_function(field, format_string) \
326 static ssize_t \
327 store_spi_transport_##field(struct device *dev, \
328 struct device_attribute *attr, \
329 const char *buf, size_t count) \
330 { \
331 int val; \
332 struct scsi_target *starget = transport_class_to_starget(dev); \
333 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
334 struct spi_internal *i = to_spi_internal(shost->transportt); \
335 \
336 if (!i->f->set_##field) \
337 return -EINVAL; \
338 val = simple_strtoul(buf, NULL, 0); \
339 i->f->set_##field(starget, val); \
340 return count; \
341 }
342
343 #define spi_transport_store_max(field, format_string) \
344 static ssize_t \
345 store_spi_transport_##field(struct device *dev, \
346 struct device_attribute *attr, \
347 const char *buf, size_t count) \
348 { \
349 int val; \
350 struct scsi_target *starget = transport_class_to_starget(dev); \
351 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
352 struct spi_internal *i = to_spi_internal(shost->transportt); \
353 struct spi_transport_attrs *tp \
354 = (struct spi_transport_attrs *)&starget->starget_data; \
355 \
356 if (i->f->set_##field) \
357 return -EINVAL; \
358 val = simple_strtoul(buf, NULL, 0); \
359 if (val > tp->max_##field) \
360 val = tp->max_##field; \
361 i->f->set_##field(starget, val); \
362 return count; \
363 }
364
365 #define spi_transport_rd_attr(field, format_string) \
366 spi_transport_show_function(field, format_string) \
367 spi_transport_store_function(field, format_string) \
368 static DEVICE_ATTR(field, S_IRUGO, \
369 show_spi_transport_##field, \
370 store_spi_transport_##field);
371
372 #define spi_transport_simple_attr(field, format_string) \
373 spi_transport_show_simple(field, format_string) \
374 spi_transport_store_simple(field, format_string) \
375 static DEVICE_ATTR(field, S_IRUGO, \
376 show_spi_transport_##field, \
377 store_spi_transport_##field);
378
379 #define spi_transport_max_attr(field, format_string) \
380 spi_transport_show_function(field, format_string) \
381 spi_transport_store_max(field, format_string) \
382 spi_transport_simple_attr(max_##field, format_string) \
383 static DEVICE_ATTR(field, S_IRUGO, \
384 show_spi_transport_##field, \
385 store_spi_transport_##field);
386
387 /* The Parallel SCSI Tranport Attributes: */
388 spi_transport_max_attr(offset, "%d\n");
389 spi_transport_max_attr(width, "%d\n");
390 spi_transport_max_attr(iu, "%d\n");
391 spi_transport_rd_attr(dt, "%d\n");
392 spi_transport_max_attr(qas, "%d\n");
393 spi_transport_rd_attr(wr_flow, "%d\n");
394 spi_transport_rd_attr(rd_strm, "%d\n");
395 spi_transport_rd_attr(rti, "%d\n");
396 spi_transport_rd_attr(pcomp_en, "%d\n");
397 spi_transport_rd_attr(hold_mcs, "%d\n");
398
399 /* we only care about the first child device that's a real SCSI device
400 * so we return 1 to terminate the iteration when we find it */
401 static int child_iter(struct device *dev, void *data)
402 {
403 if (!scsi_is_sdev_device(dev))
404 return 0;
405
406 spi_dv_device(to_scsi_device(dev));
407 return 1;
408 }
409
410 static ssize_t
411 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
412 const char *buf, size_t count)
413 {
414 struct scsi_target *starget = transport_class_to_starget(dev);
415
416 device_for_each_child(&starget->dev, NULL, child_iter);
417 return count;
418 }
419 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
420
421 /* Translate the period into ns according to the current spec
422 * for SDTR/PPR messages */
423 static int period_to_str(char *buf, int period)
424 {
425 int len, picosec;
426
427 if (period < 0 || period > 0xff) {
428 picosec = -1;
429 } else if (period <= SPI_STATIC_PPR) {
430 picosec = ppr_to_ps[period];
431 } else {
432 picosec = period * 4000;
433 }
434
435 if (picosec == -1) {
436 len = sprintf(buf, "reserved");
437 } else {
438 len = sprint_frac(buf, picosec, 1000);
439 }
440
441 return len;
442 }
443
444 static ssize_t
445 show_spi_transport_period_helper(char *buf, int period)
446 {
447 int len = period_to_str(buf, period);
448 buf[len++] = '\n';
449 buf[len] = '\0';
450 return len;
451 }
452
453 static ssize_t
454 store_spi_transport_period_helper(struct device *dev, const char *buf,
455 size_t count, int *periodp)
456 {
457 int j, picosec, period = -1;
458 char *endp;
459
460 picosec = simple_strtoul(buf, &endp, 10) * 1000;
461 if (*endp == '.') {
462 int mult = 100;
463 do {
464 endp++;
465 if (!isdigit(*endp))
466 break;
467 picosec += (*endp - '0') * mult;
468 mult /= 10;
469 } while (mult > 0);
470 }
471
472 for (j = 0; j <= SPI_STATIC_PPR; j++) {
473 if (ppr_to_ps[j] < picosec)
474 continue;
475 period = j;
476 break;
477 }
478
479 if (period == -1)
480 period = picosec / 4000;
481
482 if (period > 0xff)
483 period = 0xff;
484
485 *periodp = period;
486
487 return count;
488 }
489
490 static ssize_t
491 show_spi_transport_period(struct device *dev,
492 struct device_attribute *attr, char *buf)
493 {
494 struct scsi_target *starget = transport_class_to_starget(dev);
495 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
496 struct spi_internal *i = to_spi_internal(shost->transportt);
497 struct spi_transport_attrs *tp =
498 (struct spi_transport_attrs *)&starget->starget_data;
499
500 if (i->f->get_period)
501 i->f->get_period(starget);
502
503 return show_spi_transport_period_helper(buf, tp->period);
504 }
505
506 static ssize_t
507 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
508 const char *buf, size_t count)
509 {
510 struct scsi_target *starget = transport_class_to_starget(cdev);
511 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
512 struct spi_internal *i = to_spi_internal(shost->transportt);
513 struct spi_transport_attrs *tp =
514 (struct spi_transport_attrs *)&starget->starget_data;
515 int period, retval;
516
517 if (!i->f->set_period)
518 return -EINVAL;
519
520 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
521
522 if (period < tp->min_period)
523 period = tp->min_period;
524
525 i->f->set_period(starget, period);
526
527 return retval;
528 }
529
530 static DEVICE_ATTR(period, S_IRUGO,
531 show_spi_transport_period,
532 store_spi_transport_period);
533
534 static ssize_t
535 show_spi_transport_min_period(struct device *cdev,
536 struct device_attribute *attr, char *buf)
537 {
538 struct scsi_target *starget = transport_class_to_starget(cdev);
539 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
540 struct spi_internal *i = to_spi_internal(shost->transportt);
541 struct spi_transport_attrs *tp =
542 (struct spi_transport_attrs *)&starget->starget_data;
543
544 if (!i->f->set_period)
545 return -EINVAL;
546
547 return show_spi_transport_period_helper(buf, tp->min_period);
548 }
549
550 static ssize_t
551 store_spi_transport_min_period(struct device *cdev,
552 struct device_attribute *attr,
553 const char *buf, size_t count)
554 {
555 struct scsi_target *starget = transport_class_to_starget(cdev);
556 struct spi_transport_attrs *tp =
557 (struct spi_transport_attrs *)&starget->starget_data;
558
559 return store_spi_transport_period_helper(cdev, buf, count,
560 &tp->min_period);
561 }
562
563
564 static DEVICE_ATTR(min_period, S_IRUGO,
565 show_spi_transport_min_period,
566 store_spi_transport_min_period);
567
568
569 static ssize_t show_spi_host_signalling(struct device *cdev,
570 struct device_attribute *attr,
571 char *buf)
572 {
573 struct Scsi_Host *shost = transport_class_to_shost(cdev);
574 struct spi_internal *i = to_spi_internal(shost->transportt);
575
576 if (i->f->get_signalling)
577 i->f->get_signalling(shost);
578
579 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
580 }
581 static ssize_t store_spi_host_signalling(struct device *dev,
582 struct device_attribute *attr,
583 const char *buf, size_t count)
584 {
585 struct Scsi_Host *shost = transport_class_to_shost(dev);
586 struct spi_internal *i = to_spi_internal(shost->transportt);
587 enum spi_signal_type type = spi_signal_to_value(buf);
588
589 if (!i->f->set_signalling)
590 return -EINVAL;
591
592 if (type != SPI_SIGNAL_UNKNOWN)
593 i->f->set_signalling(shost, type);
594
595 return count;
596 }
597 static DEVICE_ATTR(signalling, S_IRUGO,
598 show_spi_host_signalling,
599 store_spi_host_signalling);
600
601 static ssize_t show_spi_host_width(struct device *cdev,
602 struct device_attribute *attr,
603 char *buf)
604 {
605 struct Scsi_Host *shost = transport_class_to_shost(cdev);
606
607 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
608 }
609 static DEVICE_ATTR(host_width, S_IRUGO,
610 show_spi_host_width, NULL);
611
612 static ssize_t show_spi_host_hba_id(struct device *cdev,
613 struct device_attribute *attr,
614 char *buf)
615 {
616 struct Scsi_Host *shost = transport_class_to_shost(cdev);
617
618 return sprintf(buf, "%d\n", shost->this_id);
619 }
620 static DEVICE_ATTR(hba_id, S_IRUGO,
621 show_spi_host_hba_id, NULL);
622
623 #define DV_SET(x, y) \
624 if(i->f->set_##x) \
625 i->f->set_##x(sdev->sdev_target, y)
626
627 enum spi_compare_returns {
628 SPI_COMPARE_SUCCESS,
629 SPI_COMPARE_FAILURE,
630 SPI_COMPARE_SKIP_TEST,
631 };
632
633
634 /* This is for read/write Domain Validation: If the device supports
635 * an echo buffer, we do read/write tests to it */
636 static enum spi_compare_returns
637 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
638 u8 *ptr, const int retries)
639 {
640 int len = ptr - buffer;
641 int j, k, r, result;
642 unsigned int pattern = 0x0000ffff;
643 struct scsi_sense_hdr sshdr;
644
645 const char spi_write_buffer[] = {
646 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
647 };
648 const char spi_read_buffer[] = {
649 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
650 };
651
652 /* set up the pattern buffer. Doesn't matter if we spill
653 * slightly beyond since that's where the read buffer is */
654 for (j = 0; j < len; ) {
655
656 /* fill the buffer with counting (test a) */
657 for ( ; j < min(len, 32); j++)
658 buffer[j] = j;
659 k = j;
660 /* fill the buffer with alternating words of 0x0 and
661 * 0xffff (test b) */
662 for ( ; j < min(len, k + 32); j += 2) {
663 u16 *word = (u16 *)&buffer[j];
664
665 *word = (j & 0x02) ? 0x0000 : 0xffff;
666 }
667 k = j;
668 /* fill with crosstalk (alternating 0x5555 0xaaa)
669 * (test c) */
670 for ( ; j < min(len, k + 32); j += 2) {
671 u16 *word = (u16 *)&buffer[j];
672
673 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
674 }
675 k = j;
676 /* fill with shifting bits (test d) */
677 for ( ; j < min(len, k + 32); j += 4) {
678 u32 *word = (unsigned int *)&buffer[j];
679 u32 roll = (pattern & 0x80000000) ? 1 : 0;
680
681 *word = pattern;
682 pattern = (pattern << 1) | roll;
683 }
684 /* don't bother with random data (test e) */
685 }
686
687 for (r = 0; r < retries; r++) {
688 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
689 buffer, len, &sshdr);
690 if(result || !scsi_device_online(sdev)) {
691
692 scsi_device_set_state(sdev, SDEV_QUIESCE);
693 if (scsi_sense_valid(&sshdr)
694 && sshdr.sense_key == ILLEGAL_REQUEST
695 /* INVALID FIELD IN CDB */
696 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
697 /* This would mean that the drive lied
698 * to us about supporting an echo
699 * buffer (unfortunately some Western
700 * Digital drives do precisely this)
701 */
702 return SPI_COMPARE_SKIP_TEST;
703
704
705 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
706 return SPI_COMPARE_FAILURE;
707 }
708
709 memset(ptr, 0, len);
710 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
711 ptr, len, NULL);
712 scsi_device_set_state(sdev, SDEV_QUIESCE);
713
714 if (memcmp(buffer, ptr, len) != 0)
715 return SPI_COMPARE_FAILURE;
716 }
717 return SPI_COMPARE_SUCCESS;
718 }
719
720 /* This is for the simplest form of Domain Validation: a read test
721 * on the inquiry data from the device */
722 static enum spi_compare_returns
723 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
724 u8 *ptr, const int retries)
725 {
726 int r, result;
727 const int len = sdev->inquiry_len;
728 const char spi_inquiry[] = {
729 INQUIRY, 0, 0, 0, len, 0
730 };
731
732 for (r = 0; r < retries; r++) {
733 memset(ptr, 0, len);
734
735 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
736 ptr, len, NULL);
737
738 if(result || !scsi_device_online(sdev)) {
739 scsi_device_set_state(sdev, SDEV_QUIESCE);
740 return SPI_COMPARE_FAILURE;
741 }
742
743 /* If we don't have the inquiry data already, the
744 * first read gets it */
745 if (ptr == buffer) {
746 ptr += len;
747 --r;
748 continue;
749 }
750
751 if (memcmp(buffer, ptr, len) != 0)
752 /* failure */
753 return SPI_COMPARE_FAILURE;
754 }
755 return SPI_COMPARE_SUCCESS;
756 }
757
758 static enum spi_compare_returns
759 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
760 enum spi_compare_returns
761 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
762 {
763 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
764 struct scsi_target *starget = sdev->sdev_target;
765 int period = 0, prevperiod = 0;
766 enum spi_compare_returns retval;
767
768
769 for (;;) {
770 int newperiod;
771 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
772
773 if (retval == SPI_COMPARE_SUCCESS
774 || retval == SPI_COMPARE_SKIP_TEST)
775 break;
776
777 /* OK, retrain, fallback */
778 if (i->f->get_iu)
779 i->f->get_iu(starget);
780 if (i->f->get_qas)
781 i->f->get_qas(starget);
782 if (i->f->get_period)
783 i->f->get_period(sdev->sdev_target);
784
785 /* Here's the fallback sequence; first try turning off
786 * IU, then QAS (if we can control them), then finally
787 * fall down the periods */
788 if (i->f->set_iu && spi_iu(starget)) {
789 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n");
790 DV_SET(iu, 0);
791 } else if (i->f->set_qas && spi_qas(starget)) {
792 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n");
793 DV_SET(qas, 0);
794 } else {
795 newperiod = spi_period(starget);
796 period = newperiod > period ? newperiod : period;
797 if (period < 0x0d)
798 period++;
799 else
800 period += period >> 1;
801
802 if (unlikely(period > 0xff || period == prevperiod)) {
803 /* Total failure; set to async and return */
804 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
805 DV_SET(offset, 0);
806 return SPI_COMPARE_FAILURE;
807 }
808 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
809 DV_SET(period, period);
810 prevperiod = period;
811 }
812 }
813 return retval;
814 }
815
816 static int
817 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
818 {
819 int l, result;
820
821 /* first off do a test unit ready. This can error out
822 * because of reservations or some other reason. If it
823 * fails, the device won't let us write to the echo buffer
824 * so just return failure */
825
826 const char spi_test_unit_ready[] = {
827 TEST_UNIT_READY, 0, 0, 0, 0, 0
828 };
829
830 const char spi_read_buffer_descriptor[] = {
831 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
832 };
833
834
835 /* We send a set of three TURs to clear any outstanding
836 * unit attention conditions if they exist (Otherwise the
837 * buffer tests won't be happy). If the TUR still fails
838 * (reservation conflict, device not ready, etc) just
839 * skip the write tests */
840 for (l = 0; ; l++) {
841 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
842 NULL, 0, NULL);
843
844 if(result) {
845 if(l >= 3)
846 return 0;
847 } else {
848 /* TUR succeeded */
849 break;
850 }
851 }
852
853 result = spi_execute(sdev, spi_read_buffer_descriptor,
854 DMA_FROM_DEVICE, buffer, 4, NULL);
855
856 if (result)
857 /* Device has no echo buffer */
858 return 0;
859
860 return buffer[3] + ((buffer[2] & 0x1f) << 8);
861 }
862
863 static void
864 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
865 {
866 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
867 struct scsi_target *starget = sdev->sdev_target;
868 struct Scsi_Host *shost = sdev->host;
869 int len = sdev->inquiry_len;
870 int min_period = spi_min_period(starget);
871 int max_width = spi_max_width(starget);
872 /* first set us up for narrow async */
873 DV_SET(offset, 0);
874 DV_SET(width, 0);
875
876 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
877 != SPI_COMPARE_SUCCESS) {
878 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
879 /* FIXME: should probably offline the device here? */
880 return;
881 }
882
883 if (!spi_support_wide(starget)) {
884 spi_max_width(starget) = 0;
885 max_width = 0;
886 }
887
888 /* test width */
889 if (i->f->set_width && max_width) {
890 i->f->set_width(starget, 1);
891
892 if (spi_dv_device_compare_inquiry(sdev, buffer,
893 buffer + len,
894 DV_LOOPS)
895 != SPI_COMPARE_SUCCESS) {
896 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
897 i->f->set_width(starget, 0);
898 /* Make sure we don't force wide back on by asking
899 * for a transfer period that requires it */
900 max_width = 0;
901 if (min_period < 10)
902 min_period = 10;
903 }
904 }
905
906 if (!i->f->set_period)
907 return;
908
909 /* device can't handle synchronous */
910 if (!spi_support_sync(starget) && !spi_support_dt(starget))
911 return;
912
913 /* len == -1 is the signal that we need to ascertain the
914 * presence of an echo buffer before trying to use it. len ==
915 * 0 means we don't have an echo buffer */
916 len = -1;
917
918 retry:
919
920 /* now set up to the maximum */
921 DV_SET(offset, spi_max_offset(starget));
922 DV_SET(period, min_period);
923
924 /* try QAS requests; this should be harmless to set if the
925 * target supports it */
926 if (spi_support_qas(starget) && spi_max_qas(starget)) {
927 DV_SET(qas, 1);
928 } else {
929 DV_SET(qas, 0);
930 }
931
932 if (spi_support_ius(starget) && spi_max_iu(starget) &&
933 min_period < 9) {
934 /* This u320 (or u640). Set IU transfers */
935 DV_SET(iu, 1);
936 /* Then set the optional parameters */
937 DV_SET(rd_strm, 1);
938 DV_SET(wr_flow, 1);
939 DV_SET(rti, 1);
940 if (min_period == 8)
941 DV_SET(pcomp_en, 1);
942 } else {
943 DV_SET(iu, 0);
944 }
945
946 /* now that we've done all this, actually check the bus
947 * signal type (if known). Some devices are stupid on
948 * a SE bus and still claim they can try LVD only settings */
949 if (i->f->get_signalling)
950 i->f->get_signalling(shost);
951 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
952 spi_signalling(shost) == SPI_SIGNAL_HVD ||
953 !spi_support_dt(starget)) {
954 DV_SET(dt, 0);
955 } else {
956 DV_SET(dt, 1);
957 }
958 /* set width last because it will pull all the other
959 * parameters down to required values */
960 DV_SET(width, max_width);
961
962 /* Do the read only INQUIRY tests */
963 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
964 spi_dv_device_compare_inquiry);
965 /* See if we actually managed to negotiate and sustain DT */
966 if (i->f->get_dt)
967 i->f->get_dt(starget);
968
969 /* see if the device has an echo buffer. If it does we can do
970 * the SPI pattern write tests. Because of some broken
971 * devices, we *only* try this on a device that has actually
972 * negotiated DT */
973
974 if (len == -1 && spi_dt(starget))
975 len = spi_dv_device_get_echo_buffer(sdev, buffer);
976
977 if (len <= 0) {
978 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
979 return;
980 }
981
982 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
983 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
984 len = SPI_MAX_ECHO_BUFFER_SIZE;
985 }
986
987 if (spi_dv_retrain(sdev, buffer, buffer + len,
988 spi_dv_device_echo_buffer)
989 == SPI_COMPARE_SKIP_TEST) {
990 /* OK, the stupid drive can't do a write echo buffer
991 * test after all, fall back to the read tests */
992 len = 0;
993 goto retry;
994 }
995 }
996
997
998 /** spi_dv_device - Do Domain Validation on the device
999 * @sdev: scsi device to validate
1000 *
1001 * Performs the domain validation on the given device in the
1002 * current execution thread. Since DV operations may sleep,
1003 * the current thread must have user context. Also no SCSI
1004 * related locks that would deadlock I/O issued by the DV may
1005 * be held.
1006 */
1007 void
1008 spi_dv_device(struct scsi_device *sdev)
1009 {
1010 struct scsi_target *starget = sdev->sdev_target;
1011 u8 *buffer;
1012 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
1013
1014 if (unlikely(spi_dv_in_progress(starget)))
1015 return;
1016
1017 if (unlikely(scsi_device_get(sdev)))
1018 return;
1019 spi_dv_in_progress(starget) = 1;
1020
1021 buffer = kzalloc(len, GFP_KERNEL);
1022
1023 if (unlikely(!buffer))
1024 goto out_put;
1025
1026 /* We need to verify that the actual device will quiesce; the
1027 * later target quiesce is just a nice to have */
1028 if (unlikely(scsi_device_quiesce(sdev)))
1029 goto out_free;
1030
1031 scsi_target_quiesce(starget);
1032
1033 spi_dv_pending(starget) = 1;
1034 mutex_lock(&spi_dv_mutex(starget));
1035
1036 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1037
1038 spi_dv_device_internal(sdev, buffer);
1039
1040 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1041
1042 mutex_unlock(&spi_dv_mutex(starget));
1043 spi_dv_pending(starget) = 0;
1044
1045 scsi_target_resume(starget);
1046
1047 spi_initial_dv(starget) = 1;
1048
1049 out_free:
1050 kfree(buffer);
1051 out_put:
1052 spi_dv_in_progress(starget) = 0;
1053 scsi_device_put(sdev);
1054 }
1055 EXPORT_SYMBOL(spi_dv_device);
1056
1057 struct work_queue_wrapper {
1058 struct work_struct work;
1059 struct scsi_device *sdev;
1060 };
1061
1062 static void
1063 spi_dv_device_work_wrapper(struct work_struct *work)
1064 {
1065 struct work_queue_wrapper *wqw =
1066 container_of(work, struct work_queue_wrapper, work);
1067 struct scsi_device *sdev = wqw->sdev;
1068
1069 kfree(wqw);
1070 spi_dv_device(sdev);
1071 spi_dv_pending(sdev->sdev_target) = 0;
1072 scsi_device_put(sdev);
1073 }
1074
1075
1076 /**
1077 * spi_schedule_dv_device - schedule domain validation to occur on the device
1078 * @sdev: The device to validate
1079 *
1080 * Identical to spi_dv_device() above, except that the DV will be
1081 * scheduled to occur in a workqueue later. All memory allocations
1082 * are atomic, so may be called from any context including those holding
1083 * SCSI locks.
1084 */
1085 void
1086 spi_schedule_dv_device(struct scsi_device *sdev)
1087 {
1088 struct work_queue_wrapper *wqw =
1089 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1090
1091 if (unlikely(!wqw))
1092 return;
1093
1094 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1095 kfree(wqw);
1096 return;
1097 }
1098 /* Set pending early (dv_device doesn't check it, only sets it) */
1099 spi_dv_pending(sdev->sdev_target) = 1;
1100 if (unlikely(scsi_device_get(sdev))) {
1101 kfree(wqw);
1102 spi_dv_pending(sdev->sdev_target) = 0;
1103 return;
1104 }
1105
1106 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1107 wqw->sdev = sdev;
1108
1109 schedule_work(&wqw->work);
1110 }
1111 EXPORT_SYMBOL(spi_schedule_dv_device);
1112
1113 /**
1114 * spi_display_xfer_agreement - Print the current target transfer agreement
1115 * @starget: The target for which to display the agreement
1116 *
1117 * Each SPI port is required to maintain a transfer agreement for each
1118 * other port on the bus. This function prints a one-line summary of
1119 * the current agreement; more detailed information is available in sysfs.
1120 */
1121 void spi_display_xfer_agreement(struct scsi_target *starget)
1122 {
1123 struct spi_transport_attrs *tp;
1124 tp = (struct spi_transport_attrs *)&starget->starget_data;
1125
1126 if (tp->offset > 0 && tp->period > 0) {
1127 unsigned int picosec, kb100;
1128 char *scsi = "FAST-?";
1129 char tmp[8];
1130
1131 if (tp->period <= SPI_STATIC_PPR) {
1132 picosec = ppr_to_ps[tp->period];
1133 switch (tp->period) {
1134 case 7: scsi = "FAST-320"; break;
1135 case 8: scsi = "FAST-160"; break;
1136 case 9: scsi = "FAST-80"; break;
1137 case 10:
1138 case 11: scsi = "FAST-40"; break;
1139 case 12: scsi = "FAST-20"; break;
1140 }
1141 } else {
1142 picosec = tp->period * 4000;
1143 if (tp->period < 25)
1144 scsi = "FAST-20";
1145 else if (tp->period < 50)
1146 scsi = "FAST-10";
1147 else
1148 scsi = "FAST-5";
1149 }
1150
1151 kb100 = (10000000 + picosec / 2) / picosec;
1152 if (tp->width)
1153 kb100 *= 2;
1154 sprint_frac(tmp, picosec, 1000);
1155
1156 dev_info(&starget->dev,
1157 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1158 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1159 tp->dt ? "DT" : "ST",
1160 tp->iu ? " IU" : "",
1161 tp->qas ? " QAS" : "",
1162 tp->rd_strm ? " RDSTRM" : "",
1163 tp->rti ? " RTI" : "",
1164 tp->wr_flow ? " WRFLOW" : "",
1165 tp->pcomp_en ? " PCOMP" : "",
1166 tp->hold_mcs ? " HMCS" : "",
1167 tmp, tp->offset);
1168 } else {
1169 dev_info(&starget->dev, "%sasynchronous\n",
1170 tp->width ? "wide " : "");
1171 }
1172 }
1173 EXPORT_SYMBOL(spi_display_xfer_agreement);
1174
1175 int spi_populate_width_msg(unsigned char *msg, int width)
1176 {
1177 msg[0] = EXTENDED_MESSAGE;
1178 msg[1] = 2;
1179 msg[2] = EXTENDED_WDTR;
1180 msg[3] = width;
1181 return 4;
1182 }
1183 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1184
1185 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1186 {
1187 msg[0] = EXTENDED_MESSAGE;
1188 msg[1] = 3;
1189 msg[2] = EXTENDED_SDTR;
1190 msg[3] = period;
1191 msg[4] = offset;
1192 return 5;
1193 }
1194 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1195
1196 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1197 int width, int options)
1198 {
1199 msg[0] = EXTENDED_MESSAGE;
1200 msg[1] = 6;
1201 msg[2] = EXTENDED_PPR;
1202 msg[3] = period;
1203 msg[4] = 0;
1204 msg[5] = offset;
1205 msg[6] = width;
1206 msg[7] = options;
1207 return 8;
1208 }
1209 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1210
1211 /**
1212 * spi_populate_tag_msg - place a tag message in a buffer
1213 * @msg: pointer to the area to place the tag
1214 * @cmd: pointer to the scsi command for the tag
1215 *
1216 * Notes:
1217 * designed to create the correct type of tag message for the
1218 * particular request. Returns the size of the tag message.
1219 * May return 0 if TCQ is disabled for this device.
1220 **/
1221 int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd)
1222 {
1223 if (cmd->flags & SCMD_TAGGED) {
1224 *msg++ = SIMPLE_QUEUE_TAG;
1225 *msg++ = cmd->request->tag;
1226 return 2;
1227 }
1228
1229 return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(spi_populate_tag_msg);
1232
1233 #ifdef CONFIG_SCSI_CONSTANTS
1234 static const char * const one_byte_msgs[] = {
1235 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1236 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1237 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1238 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1239 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1240 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1241 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1242 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1243 };
1244
1245 static const char * const two_byte_msgs[] = {
1246 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1247 /* 0x23 */ "Ignore Wide Residue", "ACA"
1248 };
1249
1250 static const char * const extended_msgs[] = {
1251 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1252 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1253 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1254 };
1255
1256 static void print_nego(const unsigned char *msg, int per, int off, int width)
1257 {
1258 if (per) {
1259 char buf[20];
1260 period_to_str(buf, msg[per]);
1261 printk("period = %s ns ", buf);
1262 }
1263
1264 if (off)
1265 printk("offset = %d ", msg[off]);
1266 if (width)
1267 printk("width = %d ", 8 << msg[width]);
1268 }
1269
1270 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1271 {
1272 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1273 msg[msb+3];
1274 printk("%s = %d ", desc, ptr);
1275 }
1276
1277 int spi_print_msg(const unsigned char *msg)
1278 {
1279 int len = 1, i;
1280 if (msg[0] == EXTENDED_MESSAGE) {
1281 len = 2 + msg[1];
1282 if (len == 2)
1283 len += 256;
1284 if (msg[2] < ARRAY_SIZE(extended_msgs))
1285 printk ("%s ", extended_msgs[msg[2]]);
1286 else
1287 printk ("Extended Message, reserved code (0x%02x) ",
1288 (int) msg[2]);
1289 switch (msg[2]) {
1290 case EXTENDED_MODIFY_DATA_POINTER:
1291 print_ptr(msg, 3, "pointer");
1292 break;
1293 case EXTENDED_SDTR:
1294 print_nego(msg, 3, 4, 0);
1295 break;
1296 case EXTENDED_WDTR:
1297 print_nego(msg, 0, 0, 3);
1298 break;
1299 case EXTENDED_PPR:
1300 print_nego(msg, 3, 5, 6);
1301 break;
1302 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1303 print_ptr(msg, 3, "out");
1304 print_ptr(msg, 7, "in");
1305 break;
1306 default:
1307 for (i = 2; i < len; ++i)
1308 printk("%02x ", msg[i]);
1309 }
1310 /* Identify */
1311 } else if (msg[0] & 0x80) {
1312 printk("Identify disconnect %sallowed %s %d ",
1313 (msg[0] & 0x40) ? "" : "not ",
1314 (msg[0] & 0x20) ? "target routine" : "lun",
1315 msg[0] & 0x7);
1316 /* Normal One byte */
1317 } else if (msg[0] < 0x1f) {
1318 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1319 printk("%s ", one_byte_msgs[msg[0]]);
1320 else
1321 printk("reserved (%02x) ", msg[0]);
1322 } else if (msg[0] == 0x55) {
1323 printk("QAS Request ");
1324 /* Two byte */
1325 } else if (msg[0] <= 0x2f) {
1326 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1327 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1328 msg[1]);
1329 else
1330 printk("reserved two byte (%02x %02x) ",
1331 msg[0], msg[1]);
1332 len = 2;
1333 } else
1334 printk("reserved ");
1335 return len;
1336 }
1337 EXPORT_SYMBOL(spi_print_msg);
1338
1339 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1340
1341 int spi_print_msg(const unsigned char *msg)
1342 {
1343 int len = 1, i;
1344
1345 if (msg[0] == EXTENDED_MESSAGE) {
1346 len = 2 + msg[1];
1347 if (len == 2)
1348 len += 256;
1349 for (i = 0; i < len; ++i)
1350 printk("%02x ", msg[i]);
1351 /* Identify */
1352 } else if (msg[0] & 0x80) {
1353 printk("%02x ", msg[0]);
1354 /* Normal One byte */
1355 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1356 printk("%02x ", msg[0]);
1357 /* Two byte */
1358 } else if (msg[0] <= 0x2f) {
1359 printk("%02x %02x", msg[0], msg[1]);
1360 len = 2;
1361 } else
1362 printk("%02x ", msg[0]);
1363 return len;
1364 }
1365 EXPORT_SYMBOL(spi_print_msg);
1366 #endif /* ! CONFIG_SCSI_CONSTANTS */
1367
1368 static int spi_device_match(struct attribute_container *cont,
1369 struct device *dev)
1370 {
1371 struct scsi_device *sdev;
1372 struct Scsi_Host *shost;
1373 struct spi_internal *i;
1374
1375 if (!scsi_is_sdev_device(dev))
1376 return 0;
1377
1378 sdev = to_scsi_device(dev);
1379 shost = sdev->host;
1380 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1381 != &spi_host_class.class)
1382 return 0;
1383 /* Note: this class has no device attributes, so it has
1384 * no per-HBA allocation and thus we don't need to distinguish
1385 * the attribute containers for the device */
1386 i = to_spi_internal(shost->transportt);
1387 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1388 return 0;
1389 return 1;
1390 }
1391
1392 static int spi_target_match(struct attribute_container *cont,
1393 struct device *dev)
1394 {
1395 struct Scsi_Host *shost;
1396 struct scsi_target *starget;
1397 struct spi_internal *i;
1398
1399 if (!scsi_is_target_device(dev))
1400 return 0;
1401
1402 shost = dev_to_shost(dev->parent);
1403 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1404 != &spi_host_class.class)
1405 return 0;
1406
1407 i = to_spi_internal(shost->transportt);
1408 starget = to_scsi_target(dev);
1409
1410 if (i->f->deny_binding && i->f->deny_binding(starget))
1411 return 0;
1412
1413 return &i->t.target_attrs.ac == cont;
1414 }
1415
1416 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1417 "spi_transport",
1418 spi_setup_transport_attrs,
1419 NULL,
1420 spi_target_configure);
1421
1422 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1423 spi_device_match,
1424 spi_device_configure);
1425
1426 static struct attribute *host_attributes[] = {
1427 &dev_attr_signalling.attr,
1428 &dev_attr_host_width.attr,
1429 &dev_attr_hba_id.attr,
1430 NULL
1431 };
1432
1433 static struct attribute_group host_attribute_group = {
1434 .attrs = host_attributes,
1435 };
1436
1437 static int spi_host_configure(struct transport_container *tc,
1438 struct device *dev,
1439 struct device *cdev)
1440 {
1441 struct kobject *kobj = &cdev->kobj;
1442 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1443 struct spi_internal *si = to_spi_internal(shost->transportt);
1444 struct attribute *attr = &dev_attr_signalling.attr;
1445 int rc = 0;
1446
1447 if (si->f->set_signalling)
1448 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1449
1450 return rc;
1451 }
1452
1453 /* returns true if we should be showing the variable. Also
1454 * overloads the return by setting 1<<1 if the attribute should
1455 * be writeable */
1456 #define TARGET_ATTRIBUTE_HELPER(name) \
1457 (si->f->show_##name ? S_IRUGO : 0) | \
1458 (si->f->set_##name ? S_IWUSR : 0)
1459
1460 static umode_t target_attribute_is_visible(struct kobject *kobj,
1461 struct attribute *attr, int i)
1462 {
1463 struct device *cdev = container_of(kobj, struct device, kobj);
1464 struct scsi_target *starget = transport_class_to_starget(cdev);
1465 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1466 struct spi_internal *si = to_spi_internal(shost->transportt);
1467
1468 if (attr == &dev_attr_period.attr &&
1469 spi_support_sync(starget))
1470 return TARGET_ATTRIBUTE_HELPER(period);
1471 else if (attr == &dev_attr_min_period.attr &&
1472 spi_support_sync(starget))
1473 return TARGET_ATTRIBUTE_HELPER(period);
1474 else if (attr == &dev_attr_offset.attr &&
1475 spi_support_sync(starget))
1476 return TARGET_ATTRIBUTE_HELPER(offset);
1477 else if (attr == &dev_attr_max_offset.attr &&
1478 spi_support_sync(starget))
1479 return TARGET_ATTRIBUTE_HELPER(offset);
1480 else if (attr == &dev_attr_width.attr &&
1481 spi_support_wide(starget))
1482 return TARGET_ATTRIBUTE_HELPER(width);
1483 else if (attr == &dev_attr_max_width.attr &&
1484 spi_support_wide(starget))
1485 return TARGET_ATTRIBUTE_HELPER(width);
1486 else if (attr == &dev_attr_iu.attr &&
1487 spi_support_ius(starget))
1488 return TARGET_ATTRIBUTE_HELPER(iu);
1489 else if (attr == &dev_attr_max_iu.attr &&
1490 spi_support_ius(starget))
1491 return TARGET_ATTRIBUTE_HELPER(iu);
1492 else if (attr == &dev_attr_dt.attr &&
1493 spi_support_dt(starget))
1494 return TARGET_ATTRIBUTE_HELPER(dt);
1495 else if (attr == &dev_attr_qas.attr &&
1496 spi_support_qas(starget))
1497 return TARGET_ATTRIBUTE_HELPER(qas);
1498 else if (attr == &dev_attr_max_qas.attr &&
1499 spi_support_qas(starget))
1500 return TARGET_ATTRIBUTE_HELPER(qas);
1501 else if (attr == &dev_attr_wr_flow.attr &&
1502 spi_support_ius(starget))
1503 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1504 else if (attr == &dev_attr_rd_strm.attr &&
1505 spi_support_ius(starget))
1506 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1507 else if (attr == &dev_attr_rti.attr &&
1508 spi_support_ius(starget))
1509 return TARGET_ATTRIBUTE_HELPER(rti);
1510 else if (attr == &dev_attr_pcomp_en.attr &&
1511 spi_support_ius(starget))
1512 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1513 else if (attr == &dev_attr_hold_mcs.attr &&
1514 spi_support_ius(starget))
1515 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1516 else if (attr == &dev_attr_revalidate.attr)
1517 return S_IWUSR;
1518
1519 return 0;
1520 }
1521
1522 static struct attribute *target_attributes[] = {
1523 &dev_attr_period.attr,
1524 &dev_attr_min_period.attr,
1525 &dev_attr_offset.attr,
1526 &dev_attr_max_offset.attr,
1527 &dev_attr_width.attr,
1528 &dev_attr_max_width.attr,
1529 &dev_attr_iu.attr,
1530 &dev_attr_max_iu.attr,
1531 &dev_attr_dt.attr,
1532 &dev_attr_qas.attr,
1533 &dev_attr_max_qas.attr,
1534 &dev_attr_wr_flow.attr,
1535 &dev_attr_rd_strm.attr,
1536 &dev_attr_rti.attr,
1537 &dev_attr_pcomp_en.attr,
1538 &dev_attr_hold_mcs.attr,
1539 &dev_attr_revalidate.attr,
1540 NULL
1541 };
1542
1543 static struct attribute_group target_attribute_group = {
1544 .attrs = target_attributes,
1545 .is_visible = target_attribute_is_visible,
1546 };
1547
1548 static int spi_target_configure(struct transport_container *tc,
1549 struct device *dev,
1550 struct device *cdev)
1551 {
1552 struct kobject *kobj = &cdev->kobj;
1553
1554 /* force an update based on parameters read from the device */
1555 sysfs_update_group(kobj, &target_attribute_group);
1556
1557 return 0;
1558 }
1559
1560 struct scsi_transport_template *
1561 spi_attach_transport(struct spi_function_template *ft)
1562 {
1563 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1564 GFP_KERNEL);
1565
1566 if (unlikely(!i))
1567 return NULL;
1568
1569 i->t.target_attrs.ac.class = &spi_transport_class.class;
1570 i->t.target_attrs.ac.grp = &target_attribute_group;
1571 i->t.target_attrs.ac.match = spi_target_match;
1572 transport_container_register(&i->t.target_attrs);
1573 i->t.target_size = sizeof(struct spi_transport_attrs);
1574 i->t.host_attrs.ac.class = &spi_host_class.class;
1575 i->t.host_attrs.ac.grp = &host_attribute_group;
1576 i->t.host_attrs.ac.match = spi_host_match;
1577 transport_container_register(&i->t.host_attrs);
1578 i->t.host_size = sizeof(struct spi_host_attrs);
1579 i->f = ft;
1580
1581 return &i->t;
1582 }
1583 EXPORT_SYMBOL(spi_attach_transport);
1584
1585 void spi_release_transport(struct scsi_transport_template *t)
1586 {
1587 struct spi_internal *i = to_spi_internal(t);
1588
1589 transport_container_unregister(&i->t.target_attrs);
1590 transport_container_unregister(&i->t.host_attrs);
1591
1592 kfree(i);
1593 }
1594 EXPORT_SYMBOL(spi_release_transport);
1595
1596 static __init int spi_transport_init(void)
1597 {
1598 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1599 "SCSI Parallel Transport Class");
1600 if (!error) {
1601 int i;
1602
1603 for (i = 0; spi_static_device_list[i].vendor; i++)
1604 scsi_dev_info_list_add_keyed(1, /* compatible */
1605 spi_static_device_list[i].vendor,
1606 spi_static_device_list[i].model,
1607 NULL,
1608 spi_static_device_list[i].flags,
1609 SCSI_DEVINFO_SPI);
1610 }
1611
1612 error = transport_class_register(&spi_transport_class);
1613 if (error)
1614 return error;
1615 error = anon_transport_class_register(&spi_device_class);
1616 return transport_class_register(&spi_host_class);
1617 }
1618
1619 static void __exit spi_transport_exit(void)
1620 {
1621 transport_class_unregister(&spi_transport_class);
1622 anon_transport_class_unregister(&spi_device_class);
1623 transport_class_unregister(&spi_host_class);
1624 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1625 }
1626
1627 MODULE_AUTHOR("Martin Hicks");
1628 MODULE_DESCRIPTION("SPI Transport Attributes");
1629 MODULE_LICENSE("GPL");
1630
1631 module_init(spi_transport_init);
1632 module_exit(spi_transport_exit);