]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/scsi_transport_spi.c
Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / scsi_transport_spi.c
1 /*
2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3 *
4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <scsi/scsi.h>
29 #include "scsi_priv.h"
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_spi.h>
36
37 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
38 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
39 * on" attributes */
40 #define SPI_HOST_ATTRS 1
41
42 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
43
44 #define DV_LOOPS 3
45 #define DV_TIMEOUT (10*HZ)
46 #define DV_RETRIES 3 /* should only need at most
47 * two cc/ua clears */
48
49 /* Private data accessors (keep these out of the header file) */
50 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
51 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
52
53 struct spi_internal {
54 struct scsi_transport_template t;
55 struct spi_function_template *f;
56 };
57
58 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
59
60 static const int ppr_to_ps[] = {
61 /* The PPR values 0-6 are reserved, fill them in when
62 * the committee defines them */
63 -1, /* 0x00 */
64 -1, /* 0x01 */
65 -1, /* 0x02 */
66 -1, /* 0x03 */
67 -1, /* 0x04 */
68 -1, /* 0x05 */
69 -1, /* 0x06 */
70 3125, /* 0x07 */
71 6250, /* 0x08 */
72 12500, /* 0x09 */
73 25000, /* 0x0a */
74 30300, /* 0x0b */
75 50000, /* 0x0c */
76 };
77 /* The PPR values at which you calculate the period in ns by multiplying
78 * by 4 */
79 #define SPI_STATIC_PPR 0x0c
80
81 static int sprint_frac(char *dest, int value, int denom)
82 {
83 int frac = value % denom;
84 int result = sprintf(dest, "%d", value / denom);
85
86 if (frac == 0)
87 return result;
88 dest[result++] = '.';
89
90 do {
91 denom /= 10;
92 sprintf(dest + result, "%d", frac / denom);
93 result++;
94 frac %= denom;
95 } while (frac);
96
97 dest[result++] = '\0';
98 return result;
99 }
100
101 static int spi_execute(struct scsi_device *sdev, const void *cmd,
102 enum dma_data_direction dir,
103 void *buffer, unsigned bufflen,
104 struct scsi_sense_hdr *sshdr)
105 {
106 int i, result;
107 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
108
109 for(i = 0; i < DV_RETRIES; i++) {
110 result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
111 sense, DV_TIMEOUT, /* retries */ 1,
112 REQ_FAILFAST_DEV |
113 REQ_FAILFAST_TRANSPORT |
114 REQ_FAILFAST_DRIVER);
115 if (result & DRIVER_SENSE) {
116 struct scsi_sense_hdr sshdr_tmp;
117 if (!sshdr)
118 sshdr = &sshdr_tmp;
119
120 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
121 sshdr)
122 && sshdr->sense_key == UNIT_ATTENTION)
123 continue;
124 }
125 break;
126 }
127 return result;
128 }
129
130 static struct {
131 enum spi_signal_type value;
132 char *name;
133 } signal_types[] = {
134 { SPI_SIGNAL_UNKNOWN, "unknown" },
135 { SPI_SIGNAL_SE, "SE" },
136 { SPI_SIGNAL_LVD, "LVD" },
137 { SPI_SIGNAL_HVD, "HVD" },
138 };
139
140 static inline const char *spi_signal_to_string(enum spi_signal_type type)
141 {
142 int i;
143
144 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
145 if (type == signal_types[i].value)
146 return signal_types[i].name;
147 }
148 return NULL;
149 }
150 static inline enum spi_signal_type spi_signal_to_value(const char *name)
151 {
152 int i, len;
153
154 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
155 len = strlen(signal_types[i].name);
156 if (strncmp(name, signal_types[i].name, len) == 0 &&
157 (name[len] == '\n' || name[len] == '\0'))
158 return signal_types[i].value;
159 }
160 return SPI_SIGNAL_UNKNOWN;
161 }
162
163 static int spi_host_setup(struct transport_container *tc, struct device *dev,
164 struct device *cdev)
165 {
166 struct Scsi_Host *shost = dev_to_shost(dev);
167
168 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
169
170 return 0;
171 }
172
173 static int spi_host_configure(struct transport_container *tc,
174 struct device *dev,
175 struct device *cdev);
176
177 static DECLARE_TRANSPORT_CLASS(spi_host_class,
178 "spi_host",
179 spi_host_setup,
180 NULL,
181 spi_host_configure);
182
183 static int spi_host_match(struct attribute_container *cont,
184 struct device *dev)
185 {
186 struct Scsi_Host *shost;
187
188 if (!scsi_is_host_device(dev))
189 return 0;
190
191 shost = dev_to_shost(dev);
192 if (!shost->transportt || shost->transportt->host_attrs.ac.class
193 != &spi_host_class.class)
194 return 0;
195
196 return &shost->transportt->host_attrs.ac == cont;
197 }
198
199 static int spi_target_configure(struct transport_container *tc,
200 struct device *dev,
201 struct device *cdev);
202
203 static int spi_device_configure(struct transport_container *tc,
204 struct device *dev,
205 struct device *cdev)
206 {
207 struct scsi_device *sdev = to_scsi_device(dev);
208 struct scsi_target *starget = sdev->sdev_target;
209
210 /* Populate the target capability fields with the values
211 * gleaned from the device inquiry */
212
213 spi_support_sync(starget) = scsi_device_sync(sdev);
214 spi_support_wide(starget) = scsi_device_wide(sdev);
215 spi_support_dt(starget) = scsi_device_dt(sdev);
216 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
217 spi_support_ius(starget) = scsi_device_ius(sdev);
218 spi_support_qas(starget) = scsi_device_qas(sdev);
219
220 return 0;
221 }
222
223 static int spi_setup_transport_attrs(struct transport_container *tc,
224 struct device *dev,
225 struct device *cdev)
226 {
227 struct scsi_target *starget = to_scsi_target(dev);
228
229 spi_period(starget) = -1; /* illegal value */
230 spi_min_period(starget) = 0;
231 spi_offset(starget) = 0; /* async */
232 spi_max_offset(starget) = 255;
233 spi_width(starget) = 0; /* narrow */
234 spi_max_width(starget) = 1;
235 spi_iu(starget) = 0; /* no IU */
236 spi_dt(starget) = 0; /* ST */
237 spi_qas(starget) = 0;
238 spi_wr_flow(starget) = 0;
239 spi_rd_strm(starget) = 0;
240 spi_rti(starget) = 0;
241 spi_pcomp_en(starget) = 0;
242 spi_hold_mcs(starget) = 0;
243 spi_dv_pending(starget) = 0;
244 spi_dv_in_progress(starget) = 0;
245 spi_initial_dv(starget) = 0;
246 mutex_init(&spi_dv_mutex(starget));
247
248 return 0;
249 }
250
251 #define spi_transport_show_simple(field, format_string) \
252 \
253 static ssize_t \
254 show_spi_transport_##field(struct device *dev, \
255 struct device_attribute *attr, char *buf) \
256 { \
257 struct scsi_target *starget = transport_class_to_starget(dev); \
258 struct spi_transport_attrs *tp; \
259 \
260 tp = (struct spi_transport_attrs *)&starget->starget_data; \
261 return snprintf(buf, 20, format_string, tp->field); \
262 }
263
264 #define spi_transport_store_simple(field, format_string) \
265 \
266 static ssize_t \
267 store_spi_transport_##field(struct device *dev, \
268 struct device_attribute *attr, \
269 const char *buf, size_t count) \
270 { \
271 int val; \
272 struct scsi_target *starget = transport_class_to_starget(dev); \
273 struct spi_transport_attrs *tp; \
274 \
275 tp = (struct spi_transport_attrs *)&starget->starget_data; \
276 val = simple_strtoul(buf, NULL, 0); \
277 tp->field = val; \
278 return count; \
279 }
280
281 #define spi_transport_show_function(field, format_string) \
282 \
283 static ssize_t \
284 show_spi_transport_##field(struct device *dev, \
285 struct device_attribute *attr, char *buf) \
286 { \
287 struct scsi_target *starget = transport_class_to_starget(dev); \
288 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
289 struct spi_transport_attrs *tp; \
290 struct spi_internal *i = to_spi_internal(shost->transportt); \
291 tp = (struct spi_transport_attrs *)&starget->starget_data; \
292 if (i->f->get_##field) \
293 i->f->get_##field(starget); \
294 return snprintf(buf, 20, format_string, tp->field); \
295 }
296
297 #define spi_transport_store_function(field, format_string) \
298 static ssize_t \
299 store_spi_transport_##field(struct device *dev, \
300 struct device_attribute *attr, \
301 const char *buf, size_t count) \
302 { \
303 int val; \
304 struct scsi_target *starget = transport_class_to_starget(dev); \
305 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
306 struct spi_internal *i = to_spi_internal(shost->transportt); \
307 \
308 if (!i->f->set_##field) \
309 return -EINVAL; \
310 val = simple_strtoul(buf, NULL, 0); \
311 i->f->set_##field(starget, val); \
312 return count; \
313 }
314
315 #define spi_transport_store_max(field, format_string) \
316 static ssize_t \
317 store_spi_transport_##field(struct device *dev, \
318 struct device_attribute *attr, \
319 const char *buf, size_t count) \
320 { \
321 int val; \
322 struct scsi_target *starget = transport_class_to_starget(dev); \
323 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
324 struct spi_internal *i = to_spi_internal(shost->transportt); \
325 struct spi_transport_attrs *tp \
326 = (struct spi_transport_attrs *)&starget->starget_data; \
327 \
328 if (i->f->set_##field) \
329 return -EINVAL; \
330 val = simple_strtoul(buf, NULL, 0); \
331 if (val > tp->max_##field) \
332 val = tp->max_##field; \
333 i->f->set_##field(starget, val); \
334 return count; \
335 }
336
337 #define spi_transport_rd_attr(field, format_string) \
338 spi_transport_show_function(field, format_string) \
339 spi_transport_store_function(field, format_string) \
340 static DEVICE_ATTR(field, S_IRUGO, \
341 show_spi_transport_##field, \
342 store_spi_transport_##field);
343
344 #define spi_transport_simple_attr(field, format_string) \
345 spi_transport_show_simple(field, format_string) \
346 spi_transport_store_simple(field, format_string) \
347 static DEVICE_ATTR(field, S_IRUGO, \
348 show_spi_transport_##field, \
349 store_spi_transport_##field);
350
351 #define spi_transport_max_attr(field, format_string) \
352 spi_transport_show_function(field, format_string) \
353 spi_transport_store_max(field, format_string) \
354 spi_transport_simple_attr(max_##field, format_string) \
355 static DEVICE_ATTR(field, S_IRUGO, \
356 show_spi_transport_##field, \
357 store_spi_transport_##field);
358
359 /* The Parallel SCSI Tranport Attributes: */
360 spi_transport_max_attr(offset, "%d\n");
361 spi_transport_max_attr(width, "%d\n");
362 spi_transport_rd_attr(iu, "%d\n");
363 spi_transport_rd_attr(dt, "%d\n");
364 spi_transport_rd_attr(qas, "%d\n");
365 spi_transport_rd_attr(wr_flow, "%d\n");
366 spi_transport_rd_attr(rd_strm, "%d\n");
367 spi_transport_rd_attr(rti, "%d\n");
368 spi_transport_rd_attr(pcomp_en, "%d\n");
369 spi_transport_rd_attr(hold_mcs, "%d\n");
370
371 /* we only care about the first child device that's a real SCSI device
372 * so we return 1 to terminate the iteration when we find it */
373 static int child_iter(struct device *dev, void *data)
374 {
375 if (!scsi_is_sdev_device(dev))
376 return 0;
377
378 spi_dv_device(to_scsi_device(dev));
379 return 1;
380 }
381
382 static ssize_t
383 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
384 const char *buf, size_t count)
385 {
386 struct scsi_target *starget = transport_class_to_starget(dev);
387
388 device_for_each_child(&starget->dev, NULL, child_iter);
389 return count;
390 }
391 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
392
393 /* Translate the period into ns according to the current spec
394 * for SDTR/PPR messages */
395 static int period_to_str(char *buf, int period)
396 {
397 int len, picosec;
398
399 if (period < 0 || period > 0xff) {
400 picosec = -1;
401 } else if (period <= SPI_STATIC_PPR) {
402 picosec = ppr_to_ps[period];
403 } else {
404 picosec = period * 4000;
405 }
406
407 if (picosec == -1) {
408 len = sprintf(buf, "reserved");
409 } else {
410 len = sprint_frac(buf, picosec, 1000);
411 }
412
413 return len;
414 }
415
416 static ssize_t
417 show_spi_transport_period_helper(char *buf, int period)
418 {
419 int len = period_to_str(buf, period);
420 buf[len++] = '\n';
421 buf[len] = '\0';
422 return len;
423 }
424
425 static ssize_t
426 store_spi_transport_period_helper(struct device *dev, const char *buf,
427 size_t count, int *periodp)
428 {
429 int j, picosec, period = -1;
430 char *endp;
431
432 picosec = simple_strtoul(buf, &endp, 10) * 1000;
433 if (*endp == '.') {
434 int mult = 100;
435 do {
436 endp++;
437 if (!isdigit(*endp))
438 break;
439 picosec += (*endp - '0') * mult;
440 mult /= 10;
441 } while (mult > 0);
442 }
443
444 for (j = 0; j <= SPI_STATIC_PPR; j++) {
445 if (ppr_to_ps[j] < picosec)
446 continue;
447 period = j;
448 break;
449 }
450
451 if (period == -1)
452 period = picosec / 4000;
453
454 if (period > 0xff)
455 period = 0xff;
456
457 *periodp = period;
458
459 return count;
460 }
461
462 static ssize_t
463 show_spi_transport_period(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct scsi_target *starget = transport_class_to_starget(dev);
467 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
468 struct spi_internal *i = to_spi_internal(shost->transportt);
469 struct spi_transport_attrs *tp =
470 (struct spi_transport_attrs *)&starget->starget_data;
471
472 if (i->f->get_period)
473 i->f->get_period(starget);
474
475 return show_spi_transport_period_helper(buf, tp->period);
476 }
477
478 static ssize_t
479 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
480 const char *buf, size_t count)
481 {
482 struct scsi_target *starget = transport_class_to_starget(cdev);
483 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
484 struct spi_internal *i = to_spi_internal(shost->transportt);
485 struct spi_transport_attrs *tp =
486 (struct spi_transport_attrs *)&starget->starget_data;
487 int period, retval;
488
489 if (!i->f->set_period)
490 return -EINVAL;
491
492 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
493
494 if (period < tp->min_period)
495 period = tp->min_period;
496
497 i->f->set_period(starget, period);
498
499 return retval;
500 }
501
502 static DEVICE_ATTR(period, S_IRUGO,
503 show_spi_transport_period,
504 store_spi_transport_period);
505
506 static ssize_t
507 show_spi_transport_min_period(struct device *cdev,
508 struct device_attribute *attr, char *buf)
509 {
510 struct scsi_target *starget = transport_class_to_starget(cdev);
511 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
512 struct spi_internal *i = to_spi_internal(shost->transportt);
513 struct spi_transport_attrs *tp =
514 (struct spi_transport_attrs *)&starget->starget_data;
515
516 if (!i->f->set_period)
517 return -EINVAL;
518
519 return show_spi_transport_period_helper(buf, tp->min_period);
520 }
521
522 static ssize_t
523 store_spi_transport_min_period(struct device *cdev,
524 struct device_attribute *attr,
525 const char *buf, size_t count)
526 {
527 struct scsi_target *starget = transport_class_to_starget(cdev);
528 struct spi_transport_attrs *tp =
529 (struct spi_transport_attrs *)&starget->starget_data;
530
531 return store_spi_transport_period_helper(cdev, buf, count,
532 &tp->min_period);
533 }
534
535
536 static DEVICE_ATTR(min_period, S_IRUGO,
537 show_spi_transport_min_period,
538 store_spi_transport_min_period);
539
540
541 static ssize_t show_spi_host_signalling(struct device *cdev,
542 struct device_attribute *attr,
543 char *buf)
544 {
545 struct Scsi_Host *shost = transport_class_to_shost(cdev);
546 struct spi_internal *i = to_spi_internal(shost->transportt);
547
548 if (i->f->get_signalling)
549 i->f->get_signalling(shost);
550
551 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
552 }
553 static ssize_t store_spi_host_signalling(struct device *dev,
554 struct device_attribute *attr,
555 const char *buf, size_t count)
556 {
557 struct Scsi_Host *shost = transport_class_to_shost(dev);
558 struct spi_internal *i = to_spi_internal(shost->transportt);
559 enum spi_signal_type type = spi_signal_to_value(buf);
560
561 if (!i->f->set_signalling)
562 return -EINVAL;
563
564 if (type != SPI_SIGNAL_UNKNOWN)
565 i->f->set_signalling(shost, type);
566
567 return count;
568 }
569 static DEVICE_ATTR(signalling, S_IRUGO,
570 show_spi_host_signalling,
571 store_spi_host_signalling);
572
573 #define DV_SET(x, y) \
574 if(i->f->set_##x) \
575 i->f->set_##x(sdev->sdev_target, y)
576
577 enum spi_compare_returns {
578 SPI_COMPARE_SUCCESS,
579 SPI_COMPARE_FAILURE,
580 SPI_COMPARE_SKIP_TEST,
581 };
582
583
584 /* This is for read/write Domain Validation: If the device supports
585 * an echo buffer, we do read/write tests to it */
586 static enum spi_compare_returns
587 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
588 u8 *ptr, const int retries)
589 {
590 int len = ptr - buffer;
591 int j, k, r, result;
592 unsigned int pattern = 0x0000ffff;
593 struct scsi_sense_hdr sshdr;
594
595 const char spi_write_buffer[] = {
596 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
597 };
598 const char spi_read_buffer[] = {
599 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
600 };
601
602 /* set up the pattern buffer. Doesn't matter if we spill
603 * slightly beyond since that's where the read buffer is */
604 for (j = 0; j < len; ) {
605
606 /* fill the buffer with counting (test a) */
607 for ( ; j < min(len, 32); j++)
608 buffer[j] = j;
609 k = j;
610 /* fill the buffer with alternating words of 0x0 and
611 * 0xffff (test b) */
612 for ( ; j < min(len, k + 32); j += 2) {
613 u16 *word = (u16 *)&buffer[j];
614
615 *word = (j & 0x02) ? 0x0000 : 0xffff;
616 }
617 k = j;
618 /* fill with crosstalk (alternating 0x5555 0xaaa)
619 * (test c) */
620 for ( ; j < min(len, k + 32); j += 2) {
621 u16 *word = (u16 *)&buffer[j];
622
623 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
624 }
625 k = j;
626 /* fill with shifting bits (test d) */
627 for ( ; j < min(len, k + 32); j += 4) {
628 u32 *word = (unsigned int *)&buffer[j];
629 u32 roll = (pattern & 0x80000000) ? 1 : 0;
630
631 *word = pattern;
632 pattern = (pattern << 1) | roll;
633 }
634 /* don't bother with random data (test e) */
635 }
636
637 for (r = 0; r < retries; r++) {
638 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
639 buffer, len, &sshdr);
640 if(result || !scsi_device_online(sdev)) {
641
642 scsi_device_set_state(sdev, SDEV_QUIESCE);
643 if (scsi_sense_valid(&sshdr)
644 && sshdr.sense_key == ILLEGAL_REQUEST
645 /* INVALID FIELD IN CDB */
646 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
647 /* This would mean that the drive lied
648 * to us about supporting an echo
649 * buffer (unfortunately some Western
650 * Digital drives do precisely this)
651 */
652 return SPI_COMPARE_SKIP_TEST;
653
654
655 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
656 return SPI_COMPARE_FAILURE;
657 }
658
659 memset(ptr, 0, len);
660 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
661 ptr, len, NULL);
662 scsi_device_set_state(sdev, SDEV_QUIESCE);
663
664 if (memcmp(buffer, ptr, len) != 0)
665 return SPI_COMPARE_FAILURE;
666 }
667 return SPI_COMPARE_SUCCESS;
668 }
669
670 /* This is for the simplest form of Domain Validation: a read test
671 * on the inquiry data from the device */
672 static enum spi_compare_returns
673 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
674 u8 *ptr, const int retries)
675 {
676 int r, result;
677 const int len = sdev->inquiry_len;
678 const char spi_inquiry[] = {
679 INQUIRY, 0, 0, 0, len, 0
680 };
681
682 for (r = 0; r < retries; r++) {
683 memset(ptr, 0, len);
684
685 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
686 ptr, len, NULL);
687
688 if(result || !scsi_device_online(sdev)) {
689 scsi_device_set_state(sdev, SDEV_QUIESCE);
690 return SPI_COMPARE_FAILURE;
691 }
692
693 /* If we don't have the inquiry data already, the
694 * first read gets it */
695 if (ptr == buffer) {
696 ptr += len;
697 --r;
698 continue;
699 }
700
701 if (memcmp(buffer, ptr, len) != 0)
702 /* failure */
703 return SPI_COMPARE_FAILURE;
704 }
705 return SPI_COMPARE_SUCCESS;
706 }
707
708 static enum spi_compare_returns
709 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
710 enum spi_compare_returns
711 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
712 {
713 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
714 struct scsi_target *starget = sdev->sdev_target;
715 int period = 0, prevperiod = 0;
716 enum spi_compare_returns retval;
717
718
719 for (;;) {
720 int newperiod;
721 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
722
723 if (retval == SPI_COMPARE_SUCCESS
724 || retval == SPI_COMPARE_SKIP_TEST)
725 break;
726
727 /* OK, retrain, fallback */
728 if (i->f->get_iu)
729 i->f->get_iu(starget);
730 if (i->f->get_qas)
731 i->f->get_qas(starget);
732 if (i->f->get_period)
733 i->f->get_period(sdev->sdev_target);
734
735 /* Here's the fallback sequence; first try turning off
736 * IU, then QAS (if we can control them), then finally
737 * fall down the periods */
738 if (i->f->set_iu && spi_iu(starget)) {
739 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
740 DV_SET(iu, 0);
741 } else if (i->f->set_qas && spi_qas(starget)) {
742 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
743 DV_SET(qas, 0);
744 } else {
745 newperiod = spi_period(starget);
746 period = newperiod > period ? newperiod : period;
747 if (period < 0x0d)
748 period++;
749 else
750 period += period >> 1;
751
752 if (unlikely(period > 0xff || period == prevperiod)) {
753 /* Total failure; set to async and return */
754 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
755 DV_SET(offset, 0);
756 return SPI_COMPARE_FAILURE;
757 }
758 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
759 DV_SET(period, period);
760 prevperiod = period;
761 }
762 }
763 return retval;
764 }
765
766 static int
767 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
768 {
769 int l, result;
770
771 /* first off do a test unit ready. This can error out
772 * because of reservations or some other reason. If it
773 * fails, the device won't let us write to the echo buffer
774 * so just return failure */
775
776 const char spi_test_unit_ready[] = {
777 TEST_UNIT_READY, 0, 0, 0, 0, 0
778 };
779
780 const char spi_read_buffer_descriptor[] = {
781 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
782 };
783
784
785 /* We send a set of three TURs to clear any outstanding
786 * unit attention conditions if they exist (Otherwise the
787 * buffer tests won't be happy). If the TUR still fails
788 * (reservation conflict, device not ready, etc) just
789 * skip the write tests */
790 for (l = 0; ; l++) {
791 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
792 NULL, 0, NULL);
793
794 if(result) {
795 if(l >= 3)
796 return 0;
797 } else {
798 /* TUR succeeded */
799 break;
800 }
801 }
802
803 result = spi_execute(sdev, spi_read_buffer_descriptor,
804 DMA_FROM_DEVICE, buffer, 4, NULL);
805
806 if (result)
807 /* Device has no echo buffer */
808 return 0;
809
810 return buffer[3] + ((buffer[2] & 0x1f) << 8);
811 }
812
813 static void
814 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
815 {
816 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
817 struct scsi_target *starget = sdev->sdev_target;
818 struct Scsi_Host *shost = sdev->host;
819 int len = sdev->inquiry_len;
820 int min_period = spi_min_period(starget);
821 int max_width = spi_max_width(starget);
822 /* first set us up for narrow async */
823 DV_SET(offset, 0);
824 DV_SET(width, 0);
825
826 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
827 != SPI_COMPARE_SUCCESS) {
828 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
829 /* FIXME: should probably offline the device here? */
830 return;
831 }
832
833 if (!scsi_device_wide(sdev)) {
834 spi_max_width(starget) = 0;
835 max_width = 0;
836 }
837
838 /* test width */
839 if (i->f->set_width && max_width) {
840 i->f->set_width(starget, 1);
841
842 if (spi_dv_device_compare_inquiry(sdev, buffer,
843 buffer + len,
844 DV_LOOPS)
845 != SPI_COMPARE_SUCCESS) {
846 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
847 i->f->set_width(starget, 0);
848 /* Make sure we don't force wide back on by asking
849 * for a transfer period that requires it */
850 max_width = 0;
851 if (min_period < 10)
852 min_period = 10;
853 }
854 }
855
856 if (!i->f->set_period)
857 return;
858
859 /* device can't handle synchronous */
860 if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev))
861 return;
862
863 /* len == -1 is the signal that we need to ascertain the
864 * presence of an echo buffer before trying to use it. len ==
865 * 0 means we don't have an echo buffer */
866 len = -1;
867
868 retry:
869
870 /* now set up to the maximum */
871 DV_SET(offset, spi_max_offset(starget));
872 DV_SET(period, min_period);
873
874 /* try QAS requests; this should be harmless to set if the
875 * target supports it */
876 if (scsi_device_qas(sdev)) {
877 DV_SET(qas, 1);
878 } else {
879 DV_SET(qas, 0);
880 }
881
882 if (scsi_device_ius(sdev) && min_period < 9) {
883 /* This u320 (or u640). Set IU transfers */
884 DV_SET(iu, 1);
885 /* Then set the optional parameters */
886 DV_SET(rd_strm, 1);
887 DV_SET(wr_flow, 1);
888 DV_SET(rti, 1);
889 if (min_period == 8)
890 DV_SET(pcomp_en, 1);
891 } else {
892 DV_SET(iu, 0);
893 }
894
895 /* now that we've done all this, actually check the bus
896 * signal type (if known). Some devices are stupid on
897 * a SE bus and still claim they can try LVD only settings */
898 if (i->f->get_signalling)
899 i->f->get_signalling(shost);
900 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
901 spi_signalling(shost) == SPI_SIGNAL_HVD ||
902 !scsi_device_dt(sdev)) {
903 DV_SET(dt, 0);
904 } else {
905 DV_SET(dt, 1);
906 }
907 /* set width last because it will pull all the other
908 * parameters down to required values */
909 DV_SET(width, max_width);
910
911 /* Do the read only INQUIRY tests */
912 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
913 spi_dv_device_compare_inquiry);
914 /* See if we actually managed to negotiate and sustain DT */
915 if (i->f->get_dt)
916 i->f->get_dt(starget);
917
918 /* see if the device has an echo buffer. If it does we can do
919 * the SPI pattern write tests. Because of some broken
920 * devices, we *only* try this on a device that has actually
921 * negotiated DT */
922
923 if (len == -1 && spi_dt(starget))
924 len = spi_dv_device_get_echo_buffer(sdev, buffer);
925
926 if (len <= 0) {
927 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
928 return;
929 }
930
931 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
932 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
933 len = SPI_MAX_ECHO_BUFFER_SIZE;
934 }
935
936 if (spi_dv_retrain(sdev, buffer, buffer + len,
937 spi_dv_device_echo_buffer)
938 == SPI_COMPARE_SKIP_TEST) {
939 /* OK, the stupid drive can't do a write echo buffer
940 * test after all, fall back to the read tests */
941 len = 0;
942 goto retry;
943 }
944 }
945
946
947 /** spi_dv_device - Do Domain Validation on the device
948 * @sdev: scsi device to validate
949 *
950 * Performs the domain validation on the given device in the
951 * current execution thread. Since DV operations may sleep,
952 * the current thread must have user context. Also no SCSI
953 * related locks that would deadlock I/O issued by the DV may
954 * be held.
955 */
956 void
957 spi_dv_device(struct scsi_device *sdev)
958 {
959 struct scsi_target *starget = sdev->sdev_target;
960 u8 *buffer;
961 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
962
963 if (unlikely(scsi_device_get(sdev)))
964 return;
965
966 if (unlikely(spi_dv_in_progress(starget)))
967 return;
968 spi_dv_in_progress(starget) = 1;
969
970 buffer = kzalloc(len, GFP_KERNEL);
971
972 if (unlikely(!buffer))
973 goto out_put;
974
975 /* We need to verify that the actual device will quiesce; the
976 * later target quiesce is just a nice to have */
977 if (unlikely(scsi_device_quiesce(sdev)))
978 goto out_free;
979
980 scsi_target_quiesce(starget);
981
982 spi_dv_pending(starget) = 1;
983 mutex_lock(&spi_dv_mutex(starget));
984
985 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
986
987 spi_dv_device_internal(sdev, buffer);
988
989 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
990
991 mutex_unlock(&spi_dv_mutex(starget));
992 spi_dv_pending(starget) = 0;
993
994 scsi_target_resume(starget);
995
996 spi_initial_dv(starget) = 1;
997
998 out_free:
999 kfree(buffer);
1000 out_put:
1001 spi_dv_in_progress(starget) = 0;
1002 scsi_device_put(sdev);
1003 }
1004 EXPORT_SYMBOL(spi_dv_device);
1005
1006 struct work_queue_wrapper {
1007 struct work_struct work;
1008 struct scsi_device *sdev;
1009 };
1010
1011 static void
1012 spi_dv_device_work_wrapper(struct work_struct *work)
1013 {
1014 struct work_queue_wrapper *wqw =
1015 container_of(work, struct work_queue_wrapper, work);
1016 struct scsi_device *sdev = wqw->sdev;
1017
1018 kfree(wqw);
1019 spi_dv_device(sdev);
1020 spi_dv_pending(sdev->sdev_target) = 0;
1021 scsi_device_put(sdev);
1022 }
1023
1024
1025 /**
1026 * spi_schedule_dv_device - schedule domain validation to occur on the device
1027 * @sdev: The device to validate
1028 *
1029 * Identical to spi_dv_device() above, except that the DV will be
1030 * scheduled to occur in a workqueue later. All memory allocations
1031 * are atomic, so may be called from any context including those holding
1032 * SCSI locks.
1033 */
1034 void
1035 spi_schedule_dv_device(struct scsi_device *sdev)
1036 {
1037 struct work_queue_wrapper *wqw =
1038 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1039
1040 if (unlikely(!wqw))
1041 return;
1042
1043 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1044 kfree(wqw);
1045 return;
1046 }
1047 /* Set pending early (dv_device doesn't check it, only sets it) */
1048 spi_dv_pending(sdev->sdev_target) = 1;
1049 if (unlikely(scsi_device_get(sdev))) {
1050 kfree(wqw);
1051 spi_dv_pending(sdev->sdev_target) = 0;
1052 return;
1053 }
1054
1055 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1056 wqw->sdev = sdev;
1057
1058 schedule_work(&wqw->work);
1059 }
1060 EXPORT_SYMBOL(spi_schedule_dv_device);
1061
1062 /**
1063 * spi_display_xfer_agreement - Print the current target transfer agreement
1064 * @starget: The target for which to display the agreement
1065 *
1066 * Each SPI port is required to maintain a transfer agreement for each
1067 * other port on the bus. This function prints a one-line summary of
1068 * the current agreement; more detailed information is available in sysfs.
1069 */
1070 void spi_display_xfer_agreement(struct scsi_target *starget)
1071 {
1072 struct spi_transport_attrs *tp;
1073 tp = (struct spi_transport_attrs *)&starget->starget_data;
1074
1075 if (tp->offset > 0 && tp->period > 0) {
1076 unsigned int picosec, kb100;
1077 char *scsi = "FAST-?";
1078 char tmp[8];
1079
1080 if (tp->period <= SPI_STATIC_PPR) {
1081 picosec = ppr_to_ps[tp->period];
1082 switch (tp->period) {
1083 case 7: scsi = "FAST-320"; break;
1084 case 8: scsi = "FAST-160"; break;
1085 case 9: scsi = "FAST-80"; break;
1086 case 10:
1087 case 11: scsi = "FAST-40"; break;
1088 case 12: scsi = "FAST-20"; break;
1089 }
1090 } else {
1091 picosec = tp->period * 4000;
1092 if (tp->period < 25)
1093 scsi = "FAST-20";
1094 else if (tp->period < 50)
1095 scsi = "FAST-10";
1096 else
1097 scsi = "FAST-5";
1098 }
1099
1100 kb100 = (10000000 + picosec / 2) / picosec;
1101 if (tp->width)
1102 kb100 *= 2;
1103 sprint_frac(tmp, picosec, 1000);
1104
1105 dev_info(&starget->dev,
1106 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1107 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1108 tp->dt ? "DT" : "ST",
1109 tp->iu ? " IU" : "",
1110 tp->qas ? " QAS" : "",
1111 tp->rd_strm ? " RDSTRM" : "",
1112 tp->rti ? " RTI" : "",
1113 tp->wr_flow ? " WRFLOW" : "",
1114 tp->pcomp_en ? " PCOMP" : "",
1115 tp->hold_mcs ? " HMCS" : "",
1116 tmp, tp->offset);
1117 } else {
1118 dev_info(&starget->dev, "%sasynchronous\n",
1119 tp->width ? "wide " : "");
1120 }
1121 }
1122 EXPORT_SYMBOL(spi_display_xfer_agreement);
1123
1124 int spi_populate_width_msg(unsigned char *msg, int width)
1125 {
1126 msg[0] = EXTENDED_MESSAGE;
1127 msg[1] = 2;
1128 msg[2] = EXTENDED_WDTR;
1129 msg[3] = width;
1130 return 4;
1131 }
1132 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1133
1134 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1135 {
1136 msg[0] = EXTENDED_MESSAGE;
1137 msg[1] = 3;
1138 msg[2] = EXTENDED_SDTR;
1139 msg[3] = period;
1140 msg[4] = offset;
1141 return 5;
1142 }
1143 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1144
1145 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1146 int width, int options)
1147 {
1148 msg[0] = EXTENDED_MESSAGE;
1149 msg[1] = 6;
1150 msg[2] = EXTENDED_PPR;
1151 msg[3] = period;
1152 msg[4] = 0;
1153 msg[5] = offset;
1154 msg[6] = width;
1155 msg[7] = options;
1156 return 8;
1157 }
1158 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1159
1160 #ifdef CONFIG_SCSI_CONSTANTS
1161 static const char * const one_byte_msgs[] = {
1162 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1163 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1164 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1165 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1166 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1167 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1168 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1169 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1170 };
1171
1172 static const char * const two_byte_msgs[] = {
1173 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1174 /* 0x23 */ "Ignore Wide Residue", "ACA"
1175 };
1176
1177 static const char * const extended_msgs[] = {
1178 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1179 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1180 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1181 };
1182
1183 static void print_nego(const unsigned char *msg, int per, int off, int width)
1184 {
1185 if (per) {
1186 char buf[20];
1187 period_to_str(buf, msg[per]);
1188 printk("period = %s ns ", buf);
1189 }
1190
1191 if (off)
1192 printk("offset = %d ", msg[off]);
1193 if (width)
1194 printk("width = %d ", 8 << msg[width]);
1195 }
1196
1197 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1198 {
1199 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1200 msg[msb+3];
1201 printk("%s = %d ", desc, ptr);
1202 }
1203
1204 int spi_print_msg(const unsigned char *msg)
1205 {
1206 int len = 1, i;
1207 if (msg[0] == EXTENDED_MESSAGE) {
1208 len = 2 + msg[1];
1209 if (len == 2)
1210 len += 256;
1211 if (msg[2] < ARRAY_SIZE(extended_msgs))
1212 printk ("%s ", extended_msgs[msg[2]]);
1213 else
1214 printk ("Extended Message, reserved code (0x%02x) ",
1215 (int) msg[2]);
1216 switch (msg[2]) {
1217 case EXTENDED_MODIFY_DATA_POINTER:
1218 print_ptr(msg, 3, "pointer");
1219 break;
1220 case EXTENDED_SDTR:
1221 print_nego(msg, 3, 4, 0);
1222 break;
1223 case EXTENDED_WDTR:
1224 print_nego(msg, 0, 0, 3);
1225 break;
1226 case EXTENDED_PPR:
1227 print_nego(msg, 3, 5, 6);
1228 break;
1229 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1230 print_ptr(msg, 3, "out");
1231 print_ptr(msg, 7, "in");
1232 break;
1233 default:
1234 for (i = 2; i < len; ++i)
1235 printk("%02x ", msg[i]);
1236 }
1237 /* Identify */
1238 } else if (msg[0] & 0x80) {
1239 printk("Identify disconnect %sallowed %s %d ",
1240 (msg[0] & 0x40) ? "" : "not ",
1241 (msg[0] & 0x20) ? "target routine" : "lun",
1242 msg[0] & 0x7);
1243 /* Normal One byte */
1244 } else if (msg[0] < 0x1f) {
1245 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1246 printk("%s ", one_byte_msgs[msg[0]]);
1247 else
1248 printk("reserved (%02x) ", msg[0]);
1249 } else if (msg[0] == 0x55) {
1250 printk("QAS Request ");
1251 /* Two byte */
1252 } else if (msg[0] <= 0x2f) {
1253 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1254 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1255 msg[1]);
1256 else
1257 printk("reserved two byte (%02x %02x) ",
1258 msg[0], msg[1]);
1259 len = 2;
1260 } else
1261 printk("reserved ");
1262 return len;
1263 }
1264 EXPORT_SYMBOL(spi_print_msg);
1265
1266 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1267
1268 int spi_print_msg(const unsigned char *msg)
1269 {
1270 int len = 1, i;
1271
1272 if (msg[0] == EXTENDED_MESSAGE) {
1273 len = 2 + msg[1];
1274 if (len == 2)
1275 len += 256;
1276 for (i = 0; i < len; ++i)
1277 printk("%02x ", msg[i]);
1278 /* Identify */
1279 } else if (msg[0] & 0x80) {
1280 printk("%02x ", msg[0]);
1281 /* Normal One byte */
1282 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1283 printk("%02x ", msg[0]);
1284 /* Two byte */
1285 } else if (msg[0] <= 0x2f) {
1286 printk("%02x %02x", msg[0], msg[1]);
1287 len = 2;
1288 } else
1289 printk("%02x ", msg[0]);
1290 return len;
1291 }
1292 EXPORT_SYMBOL(spi_print_msg);
1293 #endif /* ! CONFIG_SCSI_CONSTANTS */
1294
1295 static int spi_device_match(struct attribute_container *cont,
1296 struct device *dev)
1297 {
1298 struct scsi_device *sdev;
1299 struct Scsi_Host *shost;
1300 struct spi_internal *i;
1301
1302 if (!scsi_is_sdev_device(dev))
1303 return 0;
1304
1305 sdev = to_scsi_device(dev);
1306 shost = sdev->host;
1307 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1308 != &spi_host_class.class)
1309 return 0;
1310 /* Note: this class has no device attributes, so it has
1311 * no per-HBA allocation and thus we don't need to distinguish
1312 * the attribute containers for the device */
1313 i = to_spi_internal(shost->transportt);
1314 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1315 return 0;
1316 return 1;
1317 }
1318
1319 static int spi_target_match(struct attribute_container *cont,
1320 struct device *dev)
1321 {
1322 struct Scsi_Host *shost;
1323 struct scsi_target *starget;
1324 struct spi_internal *i;
1325
1326 if (!scsi_is_target_device(dev))
1327 return 0;
1328
1329 shost = dev_to_shost(dev->parent);
1330 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1331 != &spi_host_class.class)
1332 return 0;
1333
1334 i = to_spi_internal(shost->transportt);
1335 starget = to_scsi_target(dev);
1336
1337 if (i->f->deny_binding && i->f->deny_binding(starget))
1338 return 0;
1339
1340 return &i->t.target_attrs.ac == cont;
1341 }
1342
1343 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1344 "spi_transport",
1345 spi_setup_transport_attrs,
1346 NULL,
1347 spi_target_configure);
1348
1349 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1350 spi_device_match,
1351 spi_device_configure);
1352
1353 static struct attribute *host_attributes[] = {
1354 &dev_attr_signalling.attr,
1355 NULL
1356 };
1357
1358 static struct attribute_group host_attribute_group = {
1359 .attrs = host_attributes,
1360 };
1361
1362 static int spi_host_configure(struct transport_container *tc,
1363 struct device *dev,
1364 struct device *cdev)
1365 {
1366 struct kobject *kobj = &cdev->kobj;
1367 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1368 struct spi_internal *si = to_spi_internal(shost->transportt);
1369 struct attribute *attr = &dev_attr_signalling.attr;
1370 int rc = 0;
1371
1372 if (si->f->set_signalling)
1373 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1374
1375 return rc;
1376 }
1377
1378 /* returns true if we should be showing the variable. Also
1379 * overloads the return by setting 1<<1 if the attribute should
1380 * be writeable */
1381 #define TARGET_ATTRIBUTE_HELPER(name) \
1382 (si->f->show_##name ? S_IRUGO : 0) | \
1383 (si->f->set_##name ? S_IWUSR : 0)
1384
1385 static mode_t target_attribute_is_visible(struct kobject *kobj,
1386 struct attribute *attr, int i)
1387 {
1388 struct device *cdev = container_of(kobj, struct device, kobj);
1389 struct scsi_target *starget = transport_class_to_starget(cdev);
1390 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1391 struct spi_internal *si = to_spi_internal(shost->transportt);
1392
1393 if (attr == &dev_attr_period.attr &&
1394 spi_support_sync(starget))
1395 return TARGET_ATTRIBUTE_HELPER(period);
1396 else if (attr == &dev_attr_min_period.attr &&
1397 spi_support_sync(starget))
1398 return TARGET_ATTRIBUTE_HELPER(period);
1399 else if (attr == &dev_attr_offset.attr &&
1400 spi_support_sync(starget))
1401 return TARGET_ATTRIBUTE_HELPER(offset);
1402 else if (attr == &dev_attr_max_offset.attr &&
1403 spi_support_sync(starget))
1404 return TARGET_ATTRIBUTE_HELPER(offset);
1405 else if (attr == &dev_attr_width.attr &&
1406 spi_support_wide(starget))
1407 return TARGET_ATTRIBUTE_HELPER(width);
1408 else if (attr == &dev_attr_max_width.attr &&
1409 spi_support_wide(starget))
1410 return TARGET_ATTRIBUTE_HELPER(width);
1411 else if (attr == &dev_attr_iu.attr &&
1412 spi_support_ius(starget))
1413 return TARGET_ATTRIBUTE_HELPER(iu);
1414 else if (attr == &dev_attr_dt.attr &&
1415 spi_support_dt(starget))
1416 return TARGET_ATTRIBUTE_HELPER(dt);
1417 else if (attr == &dev_attr_qas.attr &&
1418 spi_support_qas(starget))
1419 return TARGET_ATTRIBUTE_HELPER(qas);
1420 else if (attr == &dev_attr_wr_flow.attr &&
1421 spi_support_ius(starget))
1422 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1423 else if (attr == &dev_attr_rd_strm.attr &&
1424 spi_support_ius(starget))
1425 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1426 else if (attr == &dev_attr_rti.attr &&
1427 spi_support_ius(starget))
1428 return TARGET_ATTRIBUTE_HELPER(rti);
1429 else if (attr == &dev_attr_pcomp_en.attr &&
1430 spi_support_ius(starget))
1431 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1432 else if (attr == &dev_attr_hold_mcs.attr &&
1433 spi_support_ius(starget))
1434 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1435 else if (attr == &dev_attr_revalidate.attr)
1436 return S_IWUSR;
1437
1438 return 0;
1439 }
1440
1441 static struct attribute *target_attributes[] = {
1442 &dev_attr_period.attr,
1443 &dev_attr_min_period.attr,
1444 &dev_attr_offset.attr,
1445 &dev_attr_max_offset.attr,
1446 &dev_attr_width.attr,
1447 &dev_attr_max_width.attr,
1448 &dev_attr_iu.attr,
1449 &dev_attr_dt.attr,
1450 &dev_attr_qas.attr,
1451 &dev_attr_wr_flow.attr,
1452 &dev_attr_rd_strm.attr,
1453 &dev_attr_rti.attr,
1454 &dev_attr_pcomp_en.attr,
1455 &dev_attr_hold_mcs.attr,
1456 &dev_attr_revalidate.attr,
1457 NULL
1458 };
1459
1460 static struct attribute_group target_attribute_group = {
1461 .attrs = target_attributes,
1462 .is_visible = target_attribute_is_visible,
1463 };
1464
1465 static int spi_target_configure(struct transport_container *tc,
1466 struct device *dev,
1467 struct device *cdev)
1468 {
1469 struct kobject *kobj = &cdev->kobj;
1470
1471 /* force an update based on parameters read from the device */
1472 sysfs_update_group(kobj, &target_attribute_group);
1473
1474 return 0;
1475 }
1476
1477 struct scsi_transport_template *
1478 spi_attach_transport(struct spi_function_template *ft)
1479 {
1480 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1481 GFP_KERNEL);
1482
1483 if (unlikely(!i))
1484 return NULL;
1485
1486 i->t.target_attrs.ac.class = &spi_transport_class.class;
1487 i->t.target_attrs.ac.grp = &target_attribute_group;
1488 i->t.target_attrs.ac.match = spi_target_match;
1489 transport_container_register(&i->t.target_attrs);
1490 i->t.target_size = sizeof(struct spi_transport_attrs);
1491 i->t.host_attrs.ac.class = &spi_host_class.class;
1492 i->t.host_attrs.ac.grp = &host_attribute_group;
1493 i->t.host_attrs.ac.match = spi_host_match;
1494 transport_container_register(&i->t.host_attrs);
1495 i->t.host_size = sizeof(struct spi_host_attrs);
1496 i->f = ft;
1497
1498 return &i->t;
1499 }
1500 EXPORT_SYMBOL(spi_attach_transport);
1501
1502 void spi_release_transport(struct scsi_transport_template *t)
1503 {
1504 struct spi_internal *i = to_spi_internal(t);
1505
1506 transport_container_unregister(&i->t.target_attrs);
1507 transport_container_unregister(&i->t.host_attrs);
1508
1509 kfree(i);
1510 }
1511 EXPORT_SYMBOL(spi_release_transport);
1512
1513 static __init int spi_transport_init(void)
1514 {
1515 int error = transport_class_register(&spi_transport_class);
1516 if (error)
1517 return error;
1518 error = anon_transport_class_register(&spi_device_class);
1519 return transport_class_register(&spi_host_class);
1520 }
1521
1522 static void __exit spi_transport_exit(void)
1523 {
1524 transport_class_unregister(&spi_transport_class);
1525 anon_transport_class_unregister(&spi_device_class);
1526 transport_class_unregister(&spi_host_class);
1527 }
1528
1529 MODULE_AUTHOR("Martin Hicks");
1530 MODULE_DESCRIPTION("SPI Transport Attributes");
1531 MODULE_LICENSE("GPL");
1532
1533 module_init(spi_transport_init);
1534 module_exit(spi_transport_exit);