]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/scsi/sd.c
Merge tag 'arm-soc/for-5.5/maintainers-part2' of https://github.com/Broadcom/stblinux...
[mirror_ubuntu-hirsute-kernel.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS 16
103 #else
104 #define SD_MINORS 0
105 #endif
106
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int sd_probe(struct device *);
112 static int sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
126 static void sd_print_result(const struct scsi_disk *, const char *, int);
127
128 static DEFINE_IDA(sd_index_ida);
129
130 /* This semaphore is used to mediate the 0->1 reference get in the
131 * face of object destruction (i.e. we can't allow a get on an
132 * object after last put) */
133 static DEFINE_MUTEX(sd_ref_mutex);
134
135 static struct kmem_cache *sd_cdb_cache;
136 static mempool_t *sd_cdb_pool;
137 static mempool_t *sd_page_pool;
138
139 static const char *sd_cache_types[] = {
140 "write through", "none", "write back",
141 "write back, no read (daft)"
142 };
143
144 static void sd_set_flush_flag(struct scsi_disk *sdkp)
145 {
146 bool wc = false, fua = false;
147
148 if (sdkp->WCE) {
149 wc = true;
150 if (sdkp->DPOFUA)
151 fua = true;
152 }
153
154 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
155 }
156
157 static ssize_t
158 cache_type_store(struct device *dev, struct device_attribute *attr,
159 const char *buf, size_t count)
160 {
161 int ct, rcd, wce, sp;
162 struct scsi_disk *sdkp = to_scsi_disk(dev);
163 struct scsi_device *sdp = sdkp->device;
164 char buffer[64];
165 char *buffer_data;
166 struct scsi_mode_data data;
167 struct scsi_sense_hdr sshdr;
168 static const char temp[] = "temporary ";
169 int len;
170
171 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
172 /* no cache control on RBC devices; theoretically they
173 * can do it, but there's probably so many exceptions
174 * it's not worth the risk */
175 return -EINVAL;
176
177 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
178 buf += sizeof(temp) - 1;
179 sdkp->cache_override = 1;
180 } else {
181 sdkp->cache_override = 0;
182 }
183
184 ct = sysfs_match_string(sd_cache_types, buf);
185 if (ct < 0)
186 return -EINVAL;
187
188 rcd = ct & 0x01 ? 1 : 0;
189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190
191 if (sdkp->cache_override) {
192 sdkp->WCE = wce;
193 sdkp->RCD = rcd;
194 sd_set_flush_flag(sdkp);
195 return count;
196 }
197
198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199 SD_MAX_RETRIES, &data, NULL))
200 return -EINVAL;
201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202 data.block_descriptor_length);
203 buffer_data = buffer + data.header_length +
204 data.block_descriptor_length;
205 buffer_data[2] &= ~0x05;
206 buffer_data[2] |= wce << 2 | rcd;
207 sp = buffer_data[0] & 0x80 ? 1 : 0;
208 buffer_data[0] &= ~0x80;
209
210 /*
211 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
212 * received mode parameter buffer before doing MODE SELECT.
213 */
214 data.device_specific = 0;
215
216 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
217 SD_MAX_RETRIES, &data, &sshdr)) {
218 if (scsi_sense_valid(&sshdr))
219 sd_print_sense_hdr(sdkp, &sshdr);
220 return -EINVAL;
221 }
222 revalidate_disk(sdkp->disk);
223 return count;
224 }
225
226 static ssize_t
227 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
228 char *buf)
229 {
230 struct scsi_disk *sdkp = to_scsi_disk(dev);
231 struct scsi_device *sdp = sdkp->device;
232
233 return sprintf(buf, "%u\n", sdp->manage_start_stop);
234 }
235
236 static ssize_t
237 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
238 const char *buf, size_t count)
239 {
240 struct scsi_disk *sdkp = to_scsi_disk(dev);
241 struct scsi_device *sdp = sdkp->device;
242 bool v;
243
244 if (!capable(CAP_SYS_ADMIN))
245 return -EACCES;
246
247 if (kstrtobool(buf, &v))
248 return -EINVAL;
249
250 sdp->manage_start_stop = v;
251
252 return count;
253 }
254 static DEVICE_ATTR_RW(manage_start_stop);
255
256 static ssize_t
257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
258 {
259 struct scsi_disk *sdkp = to_scsi_disk(dev);
260
261 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
262 }
263
264 static ssize_t
265 allow_restart_store(struct device *dev, struct device_attribute *attr,
266 const char *buf, size_t count)
267 {
268 bool v;
269 struct scsi_disk *sdkp = to_scsi_disk(dev);
270 struct scsi_device *sdp = sdkp->device;
271
272 if (!capable(CAP_SYS_ADMIN))
273 return -EACCES;
274
275 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
276 return -EINVAL;
277
278 if (kstrtobool(buf, &v))
279 return -EINVAL;
280
281 sdp->allow_restart = v;
282
283 return count;
284 }
285 static DEVICE_ATTR_RW(allow_restart);
286
287 static ssize_t
288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
289 {
290 struct scsi_disk *sdkp = to_scsi_disk(dev);
291 int ct = sdkp->RCD + 2*sdkp->WCE;
292
293 return sprintf(buf, "%s\n", sd_cache_types[ct]);
294 }
295 static DEVICE_ATTR_RW(cache_type);
296
297 static ssize_t
298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
299 {
300 struct scsi_disk *sdkp = to_scsi_disk(dev);
301
302 return sprintf(buf, "%u\n", sdkp->DPOFUA);
303 }
304 static DEVICE_ATTR_RO(FUA);
305
306 static ssize_t
307 protection_type_show(struct device *dev, struct device_attribute *attr,
308 char *buf)
309 {
310 struct scsi_disk *sdkp = to_scsi_disk(dev);
311
312 return sprintf(buf, "%u\n", sdkp->protection_type);
313 }
314
315 static ssize_t
316 protection_type_store(struct device *dev, struct device_attribute *attr,
317 const char *buf, size_t count)
318 {
319 struct scsi_disk *sdkp = to_scsi_disk(dev);
320 unsigned int val;
321 int err;
322
323 if (!capable(CAP_SYS_ADMIN))
324 return -EACCES;
325
326 err = kstrtouint(buf, 10, &val);
327
328 if (err)
329 return err;
330
331 if (val <= T10_PI_TYPE3_PROTECTION)
332 sdkp->protection_type = val;
333
334 return count;
335 }
336 static DEVICE_ATTR_RW(protection_type);
337
338 static ssize_t
339 protection_mode_show(struct device *dev, struct device_attribute *attr,
340 char *buf)
341 {
342 struct scsi_disk *sdkp = to_scsi_disk(dev);
343 struct scsi_device *sdp = sdkp->device;
344 unsigned int dif, dix;
345
346 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
347 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
348
349 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
350 dif = 0;
351 dix = 1;
352 }
353
354 if (!dif && !dix)
355 return sprintf(buf, "none\n");
356
357 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
358 }
359 static DEVICE_ATTR_RO(protection_mode);
360
361 static ssize_t
362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
363 {
364 struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366 return sprintf(buf, "%u\n", sdkp->ATO);
367 }
368 static DEVICE_ATTR_RO(app_tag_own);
369
370 static ssize_t
371 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
372 char *buf)
373 {
374 struct scsi_disk *sdkp = to_scsi_disk(dev);
375
376 return sprintf(buf, "%u\n", sdkp->lbpme);
377 }
378 static DEVICE_ATTR_RO(thin_provisioning);
379
380 /* sysfs_match_string() requires dense arrays */
381 static const char *lbp_mode[] = {
382 [SD_LBP_FULL] = "full",
383 [SD_LBP_UNMAP] = "unmap",
384 [SD_LBP_WS16] = "writesame_16",
385 [SD_LBP_WS10] = "writesame_10",
386 [SD_LBP_ZERO] = "writesame_zero",
387 [SD_LBP_DISABLE] = "disabled",
388 };
389
390 static ssize_t
391 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
392 char *buf)
393 {
394 struct scsi_disk *sdkp = to_scsi_disk(dev);
395
396 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
397 }
398
399 static ssize_t
400 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
401 const char *buf, size_t count)
402 {
403 struct scsi_disk *sdkp = to_scsi_disk(dev);
404 struct scsi_device *sdp = sdkp->device;
405 int mode;
406
407 if (!capable(CAP_SYS_ADMIN))
408 return -EACCES;
409
410 if (sd_is_zoned(sdkp)) {
411 sd_config_discard(sdkp, SD_LBP_DISABLE);
412 return count;
413 }
414
415 if (sdp->type != TYPE_DISK)
416 return -EINVAL;
417
418 mode = sysfs_match_string(lbp_mode, buf);
419 if (mode < 0)
420 return -EINVAL;
421
422 sd_config_discard(sdkp, mode);
423
424 return count;
425 }
426 static DEVICE_ATTR_RW(provisioning_mode);
427
428 /* sysfs_match_string() requires dense arrays */
429 static const char *zeroing_mode[] = {
430 [SD_ZERO_WRITE] = "write",
431 [SD_ZERO_WS] = "writesame",
432 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
433 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
434 };
435
436 static ssize_t
437 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
438 char *buf)
439 {
440 struct scsi_disk *sdkp = to_scsi_disk(dev);
441
442 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
443 }
444
445 static ssize_t
446 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
447 const char *buf, size_t count)
448 {
449 struct scsi_disk *sdkp = to_scsi_disk(dev);
450 int mode;
451
452 if (!capable(CAP_SYS_ADMIN))
453 return -EACCES;
454
455 mode = sysfs_match_string(zeroing_mode, buf);
456 if (mode < 0)
457 return -EINVAL;
458
459 sdkp->zeroing_mode = mode;
460
461 return count;
462 }
463 static DEVICE_ATTR_RW(zeroing_mode);
464
465 static ssize_t
466 max_medium_access_timeouts_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468 {
469 struct scsi_disk *sdkp = to_scsi_disk(dev);
470
471 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
472 }
473
474 static ssize_t
475 max_medium_access_timeouts_store(struct device *dev,
476 struct device_attribute *attr, const char *buf,
477 size_t count)
478 {
479 struct scsi_disk *sdkp = to_scsi_disk(dev);
480 int err;
481
482 if (!capable(CAP_SYS_ADMIN))
483 return -EACCES;
484
485 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
486
487 return err ? err : count;
488 }
489 static DEVICE_ATTR_RW(max_medium_access_timeouts);
490
491 static ssize_t
492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
493 char *buf)
494 {
495 struct scsi_disk *sdkp = to_scsi_disk(dev);
496
497 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
498 }
499
500 static ssize_t
501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
502 const char *buf, size_t count)
503 {
504 struct scsi_disk *sdkp = to_scsi_disk(dev);
505 struct scsi_device *sdp = sdkp->device;
506 unsigned long max;
507 int err;
508
509 if (!capable(CAP_SYS_ADMIN))
510 return -EACCES;
511
512 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
513 return -EINVAL;
514
515 err = kstrtoul(buf, 10, &max);
516
517 if (err)
518 return err;
519
520 if (max == 0)
521 sdp->no_write_same = 1;
522 else if (max <= SD_MAX_WS16_BLOCKS) {
523 sdp->no_write_same = 0;
524 sdkp->max_ws_blocks = max;
525 }
526
527 sd_config_write_same(sdkp);
528
529 return count;
530 }
531 static DEVICE_ATTR_RW(max_write_same_blocks);
532
533 static struct attribute *sd_disk_attrs[] = {
534 &dev_attr_cache_type.attr,
535 &dev_attr_FUA.attr,
536 &dev_attr_allow_restart.attr,
537 &dev_attr_manage_start_stop.attr,
538 &dev_attr_protection_type.attr,
539 &dev_attr_protection_mode.attr,
540 &dev_attr_app_tag_own.attr,
541 &dev_attr_thin_provisioning.attr,
542 &dev_attr_provisioning_mode.attr,
543 &dev_attr_zeroing_mode.attr,
544 &dev_attr_max_write_same_blocks.attr,
545 &dev_attr_max_medium_access_timeouts.attr,
546 NULL,
547 };
548 ATTRIBUTE_GROUPS(sd_disk);
549
550 static struct class sd_disk_class = {
551 .name = "scsi_disk",
552 .owner = THIS_MODULE,
553 .dev_release = scsi_disk_release,
554 .dev_groups = sd_disk_groups,
555 };
556
557 static const struct dev_pm_ops sd_pm_ops = {
558 .suspend = sd_suspend_system,
559 .resume = sd_resume,
560 .poweroff = sd_suspend_system,
561 .restore = sd_resume,
562 .runtime_suspend = sd_suspend_runtime,
563 .runtime_resume = sd_resume,
564 };
565
566 static struct scsi_driver sd_template = {
567 .gendrv = {
568 .name = "sd",
569 .owner = THIS_MODULE,
570 .probe = sd_probe,
571 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
572 .remove = sd_remove,
573 .shutdown = sd_shutdown,
574 .pm = &sd_pm_ops,
575 },
576 .rescan = sd_rescan,
577 .init_command = sd_init_command,
578 .uninit_command = sd_uninit_command,
579 .done = sd_done,
580 .eh_action = sd_eh_action,
581 .eh_reset = sd_eh_reset,
582 };
583
584 /*
585 * Dummy kobj_map->probe function.
586 * The default ->probe function will call modprobe, which is
587 * pointless as this module is already loaded.
588 */
589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
590 {
591 return NULL;
592 }
593
594 /*
595 * Device no to disk mapping:
596 *
597 * major disc2 disc p1
598 * |............|.............|....|....| <- dev_t
599 * 31 20 19 8 7 4 3 0
600 *
601 * Inside a major, we have 16k disks, however mapped non-
602 * contiguously. The first 16 disks are for major0, the next
603 * ones with major1, ... Disk 256 is for major0 again, disk 272
604 * for major1, ...
605 * As we stay compatible with our numbering scheme, we can reuse
606 * the well-know SCSI majors 8, 65--71, 136--143.
607 */
608 static int sd_major(int major_idx)
609 {
610 switch (major_idx) {
611 case 0:
612 return SCSI_DISK0_MAJOR;
613 case 1 ... 7:
614 return SCSI_DISK1_MAJOR + major_idx - 1;
615 case 8 ... 15:
616 return SCSI_DISK8_MAJOR + major_idx - 8;
617 default:
618 BUG();
619 return 0; /* shut up gcc */
620 }
621 }
622
623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
624 {
625 struct scsi_disk *sdkp = NULL;
626
627 mutex_lock(&sd_ref_mutex);
628
629 if (disk->private_data) {
630 sdkp = scsi_disk(disk);
631 if (scsi_device_get(sdkp->device) == 0)
632 get_device(&sdkp->dev);
633 else
634 sdkp = NULL;
635 }
636 mutex_unlock(&sd_ref_mutex);
637 return sdkp;
638 }
639
640 static void scsi_disk_put(struct scsi_disk *sdkp)
641 {
642 struct scsi_device *sdev = sdkp->device;
643
644 mutex_lock(&sd_ref_mutex);
645 put_device(&sdkp->dev);
646 scsi_device_put(sdev);
647 mutex_unlock(&sd_ref_mutex);
648 }
649
650 #ifdef CONFIG_BLK_SED_OPAL
651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
652 size_t len, bool send)
653 {
654 struct scsi_device *sdev = data;
655 u8 cdb[12] = { 0, };
656 int ret;
657
658 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
659 cdb[1] = secp;
660 put_unaligned_be16(spsp, &cdb[2]);
661 put_unaligned_be32(len, &cdb[6]);
662
663 ret = scsi_execute_req(sdev, cdb,
664 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
665 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
666 return ret <= 0 ? ret : -EIO;
667 }
668 #endif /* CONFIG_BLK_SED_OPAL */
669
670 /*
671 * Look up the DIX operation based on whether the command is read or
672 * write and whether dix and dif are enabled.
673 */
674 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
675 {
676 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
677 static const unsigned int ops[] = { /* wrt dix dif */
678 SCSI_PROT_NORMAL, /* 0 0 0 */
679 SCSI_PROT_READ_STRIP, /* 0 0 1 */
680 SCSI_PROT_READ_INSERT, /* 0 1 0 */
681 SCSI_PROT_READ_PASS, /* 0 1 1 */
682 SCSI_PROT_NORMAL, /* 1 0 0 */
683 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
684 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
685 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
686 };
687
688 return ops[write << 2 | dix << 1 | dif];
689 }
690
691 /*
692 * Returns a mask of the protection flags that are valid for a given DIX
693 * operation.
694 */
695 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
696 {
697 static const unsigned int flag_mask[] = {
698 [SCSI_PROT_NORMAL] = 0,
699
700 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
701 SCSI_PROT_GUARD_CHECK |
702 SCSI_PROT_REF_CHECK |
703 SCSI_PROT_REF_INCREMENT,
704
705 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
706 SCSI_PROT_IP_CHECKSUM,
707
708 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
709 SCSI_PROT_GUARD_CHECK |
710 SCSI_PROT_REF_CHECK |
711 SCSI_PROT_REF_INCREMENT |
712 SCSI_PROT_IP_CHECKSUM,
713
714 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
715 SCSI_PROT_REF_INCREMENT,
716
717 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
718 SCSI_PROT_REF_CHECK |
719 SCSI_PROT_REF_INCREMENT |
720 SCSI_PROT_IP_CHECKSUM,
721
722 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
723 SCSI_PROT_GUARD_CHECK |
724 SCSI_PROT_REF_CHECK |
725 SCSI_PROT_REF_INCREMENT |
726 SCSI_PROT_IP_CHECKSUM,
727 };
728
729 return flag_mask[prot_op];
730 }
731
732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
733 unsigned int dix, unsigned int dif)
734 {
735 struct bio *bio = scmd->request->bio;
736 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
737 unsigned int protect = 0;
738
739 if (dix) { /* DIX Type 0, 1, 2, 3 */
740 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
741 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
742
743 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
744 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
745 }
746
747 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
748 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
749
750 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
751 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
752 }
753
754 if (dif) { /* DIX/DIF Type 1, 2, 3 */
755 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
756
757 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
758 protect = 3 << 5; /* Disable target PI checking */
759 else
760 protect = 1 << 5; /* Enable target PI checking */
761 }
762
763 scsi_set_prot_op(scmd, prot_op);
764 scsi_set_prot_type(scmd, dif);
765 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
766
767 return protect;
768 }
769
770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
771 {
772 struct request_queue *q = sdkp->disk->queue;
773 unsigned int logical_block_size = sdkp->device->sector_size;
774 unsigned int max_blocks = 0;
775
776 q->limits.discard_alignment =
777 sdkp->unmap_alignment * logical_block_size;
778 q->limits.discard_granularity =
779 max(sdkp->physical_block_size,
780 sdkp->unmap_granularity * logical_block_size);
781 sdkp->provisioning_mode = mode;
782
783 switch (mode) {
784
785 case SD_LBP_FULL:
786 case SD_LBP_DISABLE:
787 blk_queue_max_discard_sectors(q, 0);
788 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
789 return;
790
791 case SD_LBP_UNMAP:
792 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
793 (u32)SD_MAX_WS16_BLOCKS);
794 break;
795
796 case SD_LBP_WS16:
797 if (sdkp->device->unmap_limit_for_ws)
798 max_blocks = sdkp->max_unmap_blocks;
799 else
800 max_blocks = sdkp->max_ws_blocks;
801
802 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
803 break;
804
805 case SD_LBP_WS10:
806 if (sdkp->device->unmap_limit_for_ws)
807 max_blocks = sdkp->max_unmap_blocks;
808 else
809 max_blocks = sdkp->max_ws_blocks;
810
811 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
812 break;
813
814 case SD_LBP_ZERO:
815 max_blocks = min_not_zero(sdkp->max_ws_blocks,
816 (u32)SD_MAX_WS10_BLOCKS);
817 break;
818 }
819
820 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
821 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
822 }
823
824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
825 {
826 struct scsi_device *sdp = cmd->device;
827 struct request *rq = cmd->request;
828 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
829 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
830 unsigned int data_len = 24;
831 char *buf;
832
833 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
834 if (!rq->special_vec.bv_page)
835 return BLK_STS_RESOURCE;
836 clear_highpage(rq->special_vec.bv_page);
837 rq->special_vec.bv_offset = 0;
838 rq->special_vec.bv_len = data_len;
839 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
840
841 cmd->cmd_len = 10;
842 cmd->cmnd[0] = UNMAP;
843 cmd->cmnd[8] = 24;
844
845 buf = page_address(rq->special_vec.bv_page);
846 put_unaligned_be16(6 + 16, &buf[0]);
847 put_unaligned_be16(16, &buf[2]);
848 put_unaligned_be64(lba, &buf[8]);
849 put_unaligned_be32(nr_blocks, &buf[16]);
850
851 cmd->allowed = SD_MAX_RETRIES;
852 cmd->transfersize = data_len;
853 rq->timeout = SD_TIMEOUT;
854
855 return scsi_init_io(cmd);
856 }
857
858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
859 bool unmap)
860 {
861 struct scsi_device *sdp = cmd->device;
862 struct request *rq = cmd->request;
863 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
864 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
865 u32 data_len = sdp->sector_size;
866
867 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
868 if (!rq->special_vec.bv_page)
869 return BLK_STS_RESOURCE;
870 clear_highpage(rq->special_vec.bv_page);
871 rq->special_vec.bv_offset = 0;
872 rq->special_vec.bv_len = data_len;
873 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
874
875 cmd->cmd_len = 16;
876 cmd->cmnd[0] = WRITE_SAME_16;
877 if (unmap)
878 cmd->cmnd[1] = 0x8; /* UNMAP */
879 put_unaligned_be64(lba, &cmd->cmnd[2]);
880 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
881
882 cmd->allowed = SD_MAX_RETRIES;
883 cmd->transfersize = data_len;
884 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
885
886 return scsi_init_io(cmd);
887 }
888
889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
890 bool unmap)
891 {
892 struct scsi_device *sdp = cmd->device;
893 struct request *rq = cmd->request;
894 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896 u32 data_len = sdp->sector_size;
897
898 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
899 if (!rq->special_vec.bv_page)
900 return BLK_STS_RESOURCE;
901 clear_highpage(rq->special_vec.bv_page);
902 rq->special_vec.bv_offset = 0;
903 rq->special_vec.bv_len = data_len;
904 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905
906 cmd->cmd_len = 10;
907 cmd->cmnd[0] = WRITE_SAME;
908 if (unmap)
909 cmd->cmnd[1] = 0x8; /* UNMAP */
910 put_unaligned_be32(lba, &cmd->cmnd[2]);
911 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
912
913 cmd->allowed = SD_MAX_RETRIES;
914 cmd->transfersize = data_len;
915 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
916
917 return scsi_init_io(cmd);
918 }
919
920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
921 {
922 struct request *rq = cmd->request;
923 struct scsi_device *sdp = cmd->device;
924 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
925 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927
928 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
929 switch (sdkp->zeroing_mode) {
930 case SD_ZERO_WS16_UNMAP:
931 return sd_setup_write_same16_cmnd(cmd, true);
932 case SD_ZERO_WS10_UNMAP:
933 return sd_setup_write_same10_cmnd(cmd, true);
934 }
935 }
936
937 if (sdp->no_write_same)
938 return BLK_STS_TARGET;
939
940 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
941 return sd_setup_write_same16_cmnd(cmd, false);
942
943 return sd_setup_write_same10_cmnd(cmd, false);
944 }
945
946 static void sd_config_write_same(struct scsi_disk *sdkp)
947 {
948 struct request_queue *q = sdkp->disk->queue;
949 unsigned int logical_block_size = sdkp->device->sector_size;
950
951 if (sdkp->device->no_write_same) {
952 sdkp->max_ws_blocks = 0;
953 goto out;
954 }
955
956 /* Some devices can not handle block counts above 0xffff despite
957 * supporting WRITE SAME(16). Consequently we default to 64k
958 * blocks per I/O unless the device explicitly advertises a
959 * bigger limit.
960 */
961 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
962 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
963 (u32)SD_MAX_WS16_BLOCKS);
964 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
965 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
966 (u32)SD_MAX_WS10_BLOCKS);
967 else {
968 sdkp->device->no_write_same = 1;
969 sdkp->max_ws_blocks = 0;
970 }
971
972 if (sdkp->lbprz && sdkp->lbpws)
973 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
974 else if (sdkp->lbprz && sdkp->lbpws10)
975 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
976 else if (sdkp->max_ws_blocks)
977 sdkp->zeroing_mode = SD_ZERO_WS;
978 else
979 sdkp->zeroing_mode = SD_ZERO_WRITE;
980
981 if (sdkp->max_ws_blocks &&
982 sdkp->physical_block_size > logical_block_size) {
983 /*
984 * Reporting a maximum number of blocks that is not aligned
985 * on the device physical size would cause a large write same
986 * request to be split into physically unaligned chunks by
987 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
988 * even if the caller of these functions took care to align the
989 * large request. So make sure the maximum reported is aligned
990 * to the device physical block size. This is only an optional
991 * optimization for regular disks, but this is mandatory to
992 * avoid failure of large write same requests directed at
993 * sequential write required zones of host-managed ZBC disks.
994 */
995 sdkp->max_ws_blocks =
996 round_down(sdkp->max_ws_blocks,
997 bytes_to_logical(sdkp->device,
998 sdkp->physical_block_size));
999 }
1000
1001 out:
1002 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003 (logical_block_size >> 9));
1004 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005 (logical_block_size >> 9));
1006 }
1007
1008 /**
1009 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010 * @cmd: command to prepare
1011 *
1012 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013 * the preference indicated by the target device.
1014 **/
1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016 {
1017 struct request *rq = cmd->request;
1018 struct scsi_device *sdp = cmd->device;
1019 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020 struct bio *bio = rq->bio;
1021 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023 blk_status_t ret;
1024
1025 if (sdkp->device->no_write_same)
1026 return BLK_STS_TARGET;
1027
1028 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029
1030 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031
1032 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033 cmd->cmd_len = 16;
1034 cmd->cmnd[0] = WRITE_SAME_16;
1035 put_unaligned_be64(lba, &cmd->cmnd[2]);
1036 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037 } else {
1038 cmd->cmd_len = 10;
1039 cmd->cmnd[0] = WRITE_SAME;
1040 put_unaligned_be32(lba, &cmd->cmnd[2]);
1041 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042 }
1043
1044 cmd->transfersize = sdp->sector_size;
1045 cmd->allowed = SD_MAX_RETRIES;
1046
1047 /*
1048 * For WRITE SAME the data transferred via the DATA OUT buffer is
1049 * different from the amount of data actually written to the target.
1050 *
1051 * We set up __data_len to the amount of data transferred via the
1052 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053 * to transfer a single sector of data first, but then reset it to
1054 * the amount of data to be written right after so that the I/O path
1055 * knows how much to actually write.
1056 */
1057 rq->__data_len = sdp->sector_size;
1058 ret = scsi_init_io(cmd);
1059 rq->__data_len = blk_rq_bytes(rq);
1060
1061 return ret;
1062 }
1063
1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1065 {
1066 struct request *rq = cmd->request;
1067
1068 /* flush requests don't perform I/O, zero the S/G table */
1069 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070
1071 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072 cmd->cmd_len = 10;
1073 cmd->transfersize = 0;
1074 cmd->allowed = SD_MAX_RETRIES;
1075
1076 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077 return BLK_STS_OK;
1078 }
1079
1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081 sector_t lba, unsigned int nr_blocks,
1082 unsigned char flags)
1083 {
1084 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085 if (unlikely(cmd->cmnd == NULL))
1086 return BLK_STS_RESOURCE;
1087
1088 cmd->cmd_len = SD_EXT_CDB_SIZE;
1089 memset(cmd->cmnd, 0, cmd->cmd_len);
1090
1091 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1092 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1093 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1094 cmd->cmnd[10] = flags;
1095 put_unaligned_be64(lba, &cmd->cmnd[12]);
1096 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098
1099 return BLK_STS_OK;
1100 }
1101
1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103 sector_t lba, unsigned int nr_blocks,
1104 unsigned char flags)
1105 {
1106 cmd->cmd_len = 16;
1107 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1108 cmd->cmnd[1] = flags;
1109 cmd->cmnd[14] = 0;
1110 cmd->cmnd[15] = 0;
1111 put_unaligned_be64(lba, &cmd->cmnd[2]);
1112 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113
1114 return BLK_STS_OK;
1115 }
1116
1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118 sector_t lba, unsigned int nr_blocks,
1119 unsigned char flags)
1120 {
1121 cmd->cmd_len = 10;
1122 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123 cmd->cmnd[1] = flags;
1124 cmd->cmnd[6] = 0;
1125 cmd->cmnd[9] = 0;
1126 put_unaligned_be32(lba, &cmd->cmnd[2]);
1127 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128
1129 return BLK_STS_OK;
1130 }
1131
1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133 sector_t lba, unsigned int nr_blocks,
1134 unsigned char flags)
1135 {
1136 /* Avoid that 0 blocks gets translated into 256 blocks. */
1137 if (WARN_ON_ONCE(nr_blocks == 0))
1138 return BLK_STS_IOERR;
1139
1140 if (unlikely(flags & 0x8)) {
1141 /*
1142 * This happens only if this drive failed 10byte rw
1143 * command with ILLEGAL_REQUEST during operation and
1144 * thus turned off use_10_for_rw.
1145 */
1146 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147 return BLK_STS_IOERR;
1148 }
1149
1150 cmd->cmd_len = 6;
1151 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153 cmd->cmnd[2] = (lba >> 8) & 0xff;
1154 cmd->cmnd[3] = lba & 0xff;
1155 cmd->cmnd[4] = nr_blocks;
1156 cmd->cmnd[5] = 0;
1157
1158 return BLK_STS_OK;
1159 }
1160
1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162 {
1163 struct request *rq = cmd->request;
1164 struct scsi_device *sdp = cmd->device;
1165 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167 sector_t threshold;
1168 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169 bool dif, dix;
1170 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1171 bool write = rq_data_dir(rq) == WRITE;
1172 unsigned char protect, fua;
1173 blk_status_t ret;
1174
1175 ret = scsi_init_io(cmd);
1176 if (ret != BLK_STS_OK)
1177 return ret;
1178
1179 if (!scsi_device_online(sdp) || sdp->changed) {
1180 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1181 return BLK_STS_IOERR;
1182 }
1183
1184 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1185 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1186 return BLK_STS_IOERR;
1187 }
1188
1189 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1190 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1191 return BLK_STS_IOERR;
1192 }
1193
1194 /*
1195 * Some SD card readers can't handle accesses which touch the
1196 * last one or two logical blocks. Split accesses as needed.
1197 */
1198 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1199
1200 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1201 if (lba < threshold) {
1202 /* Access up to the threshold but not beyond */
1203 nr_blocks = threshold - lba;
1204 } else {
1205 /* Access only a single logical block */
1206 nr_blocks = 1;
1207 }
1208 }
1209
1210 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1211 dix = scsi_prot_sg_count(cmd);
1212 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1213
1214 if (dif || dix)
1215 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1216 else
1217 protect = 0;
1218
1219 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1220 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1221 protect | fua);
1222 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1223 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1224 protect | fua);
1225 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1226 sdp->use_10_for_rw || protect) {
1227 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1228 protect | fua);
1229 } else {
1230 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1231 protect | fua);
1232 }
1233
1234 if (unlikely(ret != BLK_STS_OK))
1235 return ret;
1236
1237 /*
1238 * We shouldn't disconnect in the middle of a sector, so with a dumb
1239 * host adapter, it's safe to assume that we can at least transfer
1240 * this many bytes between each connect / disconnect.
1241 */
1242 cmd->transfersize = sdp->sector_size;
1243 cmd->underflow = nr_blocks << 9;
1244 cmd->allowed = SD_MAX_RETRIES;
1245 cmd->sdb.length = nr_blocks * sdp->sector_size;
1246
1247 SCSI_LOG_HLQUEUE(1,
1248 scmd_printk(KERN_INFO, cmd,
1249 "%s: block=%llu, count=%d\n", __func__,
1250 (unsigned long long)blk_rq_pos(rq),
1251 blk_rq_sectors(rq)));
1252 SCSI_LOG_HLQUEUE(2,
1253 scmd_printk(KERN_INFO, cmd,
1254 "%s %d/%u 512 byte blocks.\n",
1255 write ? "writing" : "reading", nr_blocks,
1256 blk_rq_sectors(rq)));
1257
1258 /*
1259 * This indicates that the command is ready from our end to be
1260 * queued.
1261 */
1262 return BLK_STS_OK;
1263 }
1264
1265 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1266 {
1267 struct request *rq = cmd->request;
1268
1269 switch (req_op(rq)) {
1270 case REQ_OP_DISCARD:
1271 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1272 case SD_LBP_UNMAP:
1273 return sd_setup_unmap_cmnd(cmd);
1274 case SD_LBP_WS16:
1275 return sd_setup_write_same16_cmnd(cmd, true);
1276 case SD_LBP_WS10:
1277 return sd_setup_write_same10_cmnd(cmd, true);
1278 case SD_LBP_ZERO:
1279 return sd_setup_write_same10_cmnd(cmd, false);
1280 default:
1281 return BLK_STS_TARGET;
1282 }
1283 case REQ_OP_WRITE_ZEROES:
1284 return sd_setup_write_zeroes_cmnd(cmd);
1285 case REQ_OP_WRITE_SAME:
1286 return sd_setup_write_same_cmnd(cmd);
1287 case REQ_OP_FLUSH:
1288 return sd_setup_flush_cmnd(cmd);
1289 case REQ_OP_READ:
1290 case REQ_OP_WRITE:
1291 return sd_setup_read_write_cmnd(cmd);
1292 case REQ_OP_ZONE_RESET:
1293 return sd_zbc_setup_reset_cmnd(cmd, false);
1294 case REQ_OP_ZONE_RESET_ALL:
1295 return sd_zbc_setup_reset_cmnd(cmd, true);
1296 default:
1297 WARN_ON_ONCE(1);
1298 return BLK_STS_NOTSUPP;
1299 }
1300 }
1301
1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1303 {
1304 struct request *rq = SCpnt->request;
1305 u8 *cmnd;
1306
1307 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1308 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1309
1310 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1311 cmnd = SCpnt->cmnd;
1312 SCpnt->cmnd = NULL;
1313 SCpnt->cmd_len = 0;
1314 mempool_free(cmnd, sd_cdb_pool);
1315 }
1316 }
1317
1318 /**
1319 * sd_open - open a scsi disk device
1320 * @bdev: Block device of the scsi disk to open
1321 * @mode: FMODE_* mask
1322 *
1323 * Returns 0 if successful. Returns a negated errno value in case
1324 * of error.
1325 *
1326 * Note: This can be called from a user context (e.g. fsck(1) )
1327 * or from within the kernel (e.g. as a result of a mount(1) ).
1328 * In the latter case @inode and @filp carry an abridged amount
1329 * of information as noted above.
1330 *
1331 * Locking: called with bdev->bd_mutex held.
1332 **/
1333 static int sd_open(struct block_device *bdev, fmode_t mode)
1334 {
1335 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1336 struct scsi_device *sdev;
1337 int retval;
1338
1339 if (!sdkp)
1340 return -ENXIO;
1341
1342 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1343
1344 sdev = sdkp->device;
1345
1346 /*
1347 * If the device is in error recovery, wait until it is done.
1348 * If the device is offline, then disallow any access to it.
1349 */
1350 retval = -ENXIO;
1351 if (!scsi_block_when_processing_errors(sdev))
1352 goto error_out;
1353
1354 if (sdev->removable || sdkp->write_prot)
1355 check_disk_change(bdev);
1356
1357 /*
1358 * If the drive is empty, just let the open fail.
1359 */
1360 retval = -ENOMEDIUM;
1361 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1362 goto error_out;
1363
1364 /*
1365 * If the device has the write protect tab set, have the open fail
1366 * if the user expects to be able to write to the thing.
1367 */
1368 retval = -EROFS;
1369 if (sdkp->write_prot && (mode & FMODE_WRITE))
1370 goto error_out;
1371
1372 /*
1373 * It is possible that the disk changing stuff resulted in
1374 * the device being taken offline. If this is the case,
1375 * report this to the user, and don't pretend that the
1376 * open actually succeeded.
1377 */
1378 retval = -ENXIO;
1379 if (!scsi_device_online(sdev))
1380 goto error_out;
1381
1382 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1383 if (scsi_block_when_processing_errors(sdev))
1384 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1385 }
1386
1387 return 0;
1388
1389 error_out:
1390 scsi_disk_put(sdkp);
1391 return retval;
1392 }
1393
1394 /**
1395 * sd_release - invoked when the (last) close(2) is called on this
1396 * scsi disk.
1397 * @disk: disk to release
1398 * @mode: FMODE_* mask
1399 *
1400 * Returns 0.
1401 *
1402 * Note: may block (uninterruptible) if error recovery is underway
1403 * on this disk.
1404 *
1405 * Locking: called with bdev->bd_mutex held.
1406 **/
1407 static void sd_release(struct gendisk *disk, fmode_t mode)
1408 {
1409 struct scsi_disk *sdkp = scsi_disk(disk);
1410 struct scsi_device *sdev = sdkp->device;
1411
1412 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1413
1414 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1415 if (scsi_block_when_processing_errors(sdev))
1416 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1417 }
1418
1419 scsi_disk_put(sdkp);
1420 }
1421
1422 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1423 {
1424 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1425 struct scsi_device *sdp = sdkp->device;
1426 struct Scsi_Host *host = sdp->host;
1427 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1428 int diskinfo[4];
1429
1430 /* default to most commonly used values */
1431 diskinfo[0] = 0x40; /* 1 << 6 */
1432 diskinfo[1] = 0x20; /* 1 << 5 */
1433 diskinfo[2] = capacity >> 11;
1434
1435 /* override with calculated, extended default, or driver values */
1436 if (host->hostt->bios_param)
1437 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1438 else
1439 scsicam_bios_param(bdev, capacity, diskinfo);
1440
1441 geo->heads = diskinfo[0];
1442 geo->sectors = diskinfo[1];
1443 geo->cylinders = diskinfo[2];
1444 return 0;
1445 }
1446
1447 /**
1448 * sd_ioctl - process an ioctl
1449 * @bdev: target block device
1450 * @mode: FMODE_* mask
1451 * @cmd: ioctl command number
1452 * @arg: this is third argument given to ioctl(2) system call.
1453 * Often contains a pointer.
1454 *
1455 * Returns 0 if successful (some ioctls return positive numbers on
1456 * success as well). Returns a negated errno value in case of error.
1457 *
1458 * Note: most ioctls are forward onto the block subsystem or further
1459 * down in the scsi subsystem.
1460 **/
1461 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1462 unsigned int cmd, unsigned long arg)
1463 {
1464 struct gendisk *disk = bdev->bd_disk;
1465 struct scsi_disk *sdkp = scsi_disk(disk);
1466 struct scsi_device *sdp = sdkp->device;
1467 void __user *p = (void __user *)arg;
1468 int error;
1469
1470 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1471 "cmd=0x%x\n", disk->disk_name, cmd));
1472
1473 error = scsi_verify_blk_ioctl(bdev, cmd);
1474 if (error < 0)
1475 return error;
1476
1477 /*
1478 * If we are in the middle of error recovery, don't let anyone
1479 * else try and use this device. Also, if error recovery fails, it
1480 * may try and take the device offline, in which case all further
1481 * access to the device is prohibited.
1482 */
1483 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1484 (mode & FMODE_NDELAY) != 0);
1485 if (error)
1486 goto out;
1487
1488 if (is_sed_ioctl(cmd))
1489 return sed_ioctl(sdkp->opal_dev, cmd, p);
1490
1491 /*
1492 * Send SCSI addressing ioctls directly to mid level, send other
1493 * ioctls to block level and then onto mid level if they can't be
1494 * resolved.
1495 */
1496 switch (cmd) {
1497 case SCSI_IOCTL_GET_IDLUN:
1498 case SCSI_IOCTL_GET_BUS_NUMBER:
1499 error = scsi_ioctl(sdp, cmd, p);
1500 break;
1501 default:
1502 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1503 if (error != -ENOTTY)
1504 break;
1505 error = scsi_ioctl(sdp, cmd, p);
1506 break;
1507 }
1508 out:
1509 return error;
1510 }
1511
1512 static void set_media_not_present(struct scsi_disk *sdkp)
1513 {
1514 if (sdkp->media_present)
1515 sdkp->device->changed = 1;
1516
1517 if (sdkp->device->removable) {
1518 sdkp->media_present = 0;
1519 sdkp->capacity = 0;
1520 }
1521 }
1522
1523 static int media_not_present(struct scsi_disk *sdkp,
1524 struct scsi_sense_hdr *sshdr)
1525 {
1526 if (!scsi_sense_valid(sshdr))
1527 return 0;
1528
1529 /* not invoked for commands that could return deferred errors */
1530 switch (sshdr->sense_key) {
1531 case UNIT_ATTENTION:
1532 case NOT_READY:
1533 /* medium not present */
1534 if (sshdr->asc == 0x3A) {
1535 set_media_not_present(sdkp);
1536 return 1;
1537 }
1538 }
1539 return 0;
1540 }
1541
1542 /**
1543 * sd_check_events - check media events
1544 * @disk: kernel device descriptor
1545 * @clearing: disk events currently being cleared
1546 *
1547 * Returns mask of DISK_EVENT_*.
1548 *
1549 * Note: this function is invoked from the block subsystem.
1550 **/
1551 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1552 {
1553 struct scsi_disk *sdkp = scsi_disk_get(disk);
1554 struct scsi_device *sdp;
1555 int retval;
1556
1557 if (!sdkp)
1558 return 0;
1559
1560 sdp = sdkp->device;
1561 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1562
1563 /*
1564 * If the device is offline, don't send any commands - just pretend as
1565 * if the command failed. If the device ever comes back online, we
1566 * can deal with it then. It is only because of unrecoverable errors
1567 * that we would ever take a device offline in the first place.
1568 */
1569 if (!scsi_device_online(sdp)) {
1570 set_media_not_present(sdkp);
1571 goto out;
1572 }
1573
1574 /*
1575 * Using TEST_UNIT_READY enables differentiation between drive with
1576 * no cartridge loaded - NOT READY, drive with changed cartridge -
1577 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1578 *
1579 * Drives that auto spin down. eg iomega jaz 1G, will be started
1580 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1581 * sd_revalidate() is called.
1582 */
1583 if (scsi_block_when_processing_errors(sdp)) {
1584 struct scsi_sense_hdr sshdr = { 0, };
1585
1586 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1587 &sshdr);
1588
1589 /* failed to execute TUR, assume media not present */
1590 if (host_byte(retval)) {
1591 set_media_not_present(sdkp);
1592 goto out;
1593 }
1594
1595 if (media_not_present(sdkp, &sshdr))
1596 goto out;
1597 }
1598
1599 /*
1600 * For removable scsi disk we have to recognise the presence
1601 * of a disk in the drive.
1602 */
1603 if (!sdkp->media_present)
1604 sdp->changed = 1;
1605 sdkp->media_present = 1;
1606 out:
1607 /*
1608 * sdp->changed is set under the following conditions:
1609 *
1610 * Medium present state has changed in either direction.
1611 * Device has indicated UNIT_ATTENTION.
1612 */
1613 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1614 sdp->changed = 0;
1615 scsi_disk_put(sdkp);
1616 return retval;
1617 }
1618
1619 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1620 {
1621 int retries, res;
1622 struct scsi_device *sdp = sdkp->device;
1623 const int timeout = sdp->request_queue->rq_timeout
1624 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1625 struct scsi_sense_hdr my_sshdr;
1626
1627 if (!scsi_device_online(sdp))
1628 return -ENODEV;
1629
1630 /* caller might not be interested in sense, but we need it */
1631 if (!sshdr)
1632 sshdr = &my_sshdr;
1633
1634 for (retries = 3; retries > 0; --retries) {
1635 unsigned char cmd[10] = { 0 };
1636
1637 cmd[0] = SYNCHRONIZE_CACHE;
1638 /*
1639 * Leave the rest of the command zero to indicate
1640 * flush everything.
1641 */
1642 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1643 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1644 if (res == 0)
1645 break;
1646 }
1647
1648 if (res) {
1649 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1650
1651 if (driver_byte(res) == DRIVER_SENSE)
1652 sd_print_sense_hdr(sdkp, sshdr);
1653
1654 /* we need to evaluate the error return */
1655 if (scsi_sense_valid(sshdr) &&
1656 (sshdr->asc == 0x3a || /* medium not present */
1657 sshdr->asc == 0x20)) /* invalid command */
1658 /* this is no error here */
1659 return 0;
1660
1661 switch (host_byte(res)) {
1662 /* ignore errors due to racing a disconnection */
1663 case DID_BAD_TARGET:
1664 case DID_NO_CONNECT:
1665 return 0;
1666 /* signal the upper layer it might try again */
1667 case DID_BUS_BUSY:
1668 case DID_IMM_RETRY:
1669 case DID_REQUEUE:
1670 case DID_SOFT_ERROR:
1671 return -EBUSY;
1672 default:
1673 return -EIO;
1674 }
1675 }
1676 return 0;
1677 }
1678
1679 static void sd_rescan(struct device *dev)
1680 {
1681 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1682
1683 revalidate_disk(sdkp->disk);
1684 }
1685
1686
1687 #ifdef CONFIG_COMPAT
1688 /*
1689 * This gets directly called from VFS. When the ioctl
1690 * is not recognized we go back to the other translation paths.
1691 */
1692 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1693 unsigned int cmd, unsigned long arg)
1694 {
1695 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1696 int error;
1697
1698 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1699 (mode & FMODE_NDELAY) != 0);
1700 if (error)
1701 return error;
1702
1703 /*
1704 * Let the static ioctl translation table take care of it.
1705 */
1706 if (!sdev->host->hostt->compat_ioctl)
1707 return -ENOIOCTLCMD;
1708 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1709 }
1710 #endif
1711
1712 static char sd_pr_type(enum pr_type type)
1713 {
1714 switch (type) {
1715 case PR_WRITE_EXCLUSIVE:
1716 return 0x01;
1717 case PR_EXCLUSIVE_ACCESS:
1718 return 0x03;
1719 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1720 return 0x05;
1721 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1722 return 0x06;
1723 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1724 return 0x07;
1725 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1726 return 0x08;
1727 default:
1728 return 0;
1729 }
1730 };
1731
1732 static int sd_pr_command(struct block_device *bdev, u8 sa,
1733 u64 key, u64 sa_key, u8 type, u8 flags)
1734 {
1735 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1736 struct scsi_sense_hdr sshdr;
1737 int result;
1738 u8 cmd[16] = { 0, };
1739 u8 data[24] = { 0, };
1740
1741 cmd[0] = PERSISTENT_RESERVE_OUT;
1742 cmd[1] = sa;
1743 cmd[2] = type;
1744 put_unaligned_be32(sizeof(data), &cmd[5]);
1745
1746 put_unaligned_be64(key, &data[0]);
1747 put_unaligned_be64(sa_key, &data[8]);
1748 data[20] = flags;
1749
1750 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1751 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1752
1753 if (driver_byte(result) == DRIVER_SENSE &&
1754 scsi_sense_valid(&sshdr)) {
1755 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1756 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1757 }
1758
1759 return result;
1760 }
1761
1762 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1763 u32 flags)
1764 {
1765 if (flags & ~PR_FL_IGNORE_KEY)
1766 return -EOPNOTSUPP;
1767 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1768 old_key, new_key, 0,
1769 (1 << 0) /* APTPL */);
1770 }
1771
1772 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1773 u32 flags)
1774 {
1775 if (flags)
1776 return -EOPNOTSUPP;
1777 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1778 }
1779
1780 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1781 {
1782 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1783 }
1784
1785 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1786 enum pr_type type, bool abort)
1787 {
1788 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1789 sd_pr_type(type), 0);
1790 }
1791
1792 static int sd_pr_clear(struct block_device *bdev, u64 key)
1793 {
1794 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1795 }
1796
1797 static const struct pr_ops sd_pr_ops = {
1798 .pr_register = sd_pr_register,
1799 .pr_reserve = sd_pr_reserve,
1800 .pr_release = sd_pr_release,
1801 .pr_preempt = sd_pr_preempt,
1802 .pr_clear = sd_pr_clear,
1803 };
1804
1805 static const struct block_device_operations sd_fops = {
1806 .owner = THIS_MODULE,
1807 .open = sd_open,
1808 .release = sd_release,
1809 .ioctl = sd_ioctl,
1810 .getgeo = sd_getgeo,
1811 #ifdef CONFIG_COMPAT
1812 .compat_ioctl = sd_compat_ioctl,
1813 #endif
1814 .check_events = sd_check_events,
1815 .revalidate_disk = sd_revalidate_disk,
1816 .unlock_native_capacity = sd_unlock_native_capacity,
1817 .report_zones = sd_zbc_report_zones,
1818 .pr_ops = &sd_pr_ops,
1819 };
1820
1821 /**
1822 * sd_eh_reset - reset error handling callback
1823 * @scmd: sd-issued command that has failed
1824 *
1825 * This function is called by the SCSI midlayer before starting
1826 * SCSI EH. When counting medium access failures we have to be
1827 * careful to register it only only once per device and SCSI EH run;
1828 * there might be several timed out commands which will cause the
1829 * 'max_medium_access_timeouts' counter to trigger after the first
1830 * SCSI EH run already and set the device to offline.
1831 * So this function resets the internal counter before starting SCSI EH.
1832 **/
1833 static void sd_eh_reset(struct scsi_cmnd *scmd)
1834 {
1835 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1836
1837 /* New SCSI EH run, reset gate variable */
1838 sdkp->ignore_medium_access_errors = false;
1839 }
1840
1841 /**
1842 * sd_eh_action - error handling callback
1843 * @scmd: sd-issued command that has failed
1844 * @eh_disp: The recovery disposition suggested by the midlayer
1845 *
1846 * This function is called by the SCSI midlayer upon completion of an
1847 * error test command (currently TEST UNIT READY). The result of sending
1848 * the eh command is passed in eh_disp. We're looking for devices that
1849 * fail medium access commands but are OK with non access commands like
1850 * test unit ready (so wrongly see the device as having a successful
1851 * recovery)
1852 **/
1853 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1854 {
1855 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1856 struct scsi_device *sdev = scmd->device;
1857
1858 if (!scsi_device_online(sdev) ||
1859 !scsi_medium_access_command(scmd) ||
1860 host_byte(scmd->result) != DID_TIME_OUT ||
1861 eh_disp != SUCCESS)
1862 return eh_disp;
1863
1864 /*
1865 * The device has timed out executing a medium access command.
1866 * However, the TEST UNIT READY command sent during error
1867 * handling completed successfully. Either the device is in the
1868 * process of recovering or has it suffered an internal failure
1869 * that prevents access to the storage medium.
1870 */
1871 if (!sdkp->ignore_medium_access_errors) {
1872 sdkp->medium_access_timed_out++;
1873 sdkp->ignore_medium_access_errors = true;
1874 }
1875
1876 /*
1877 * If the device keeps failing read/write commands but TEST UNIT
1878 * READY always completes successfully we assume that medium
1879 * access is no longer possible and take the device offline.
1880 */
1881 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1882 scmd_printk(KERN_ERR, scmd,
1883 "Medium access timeout failure. Offlining disk!\n");
1884 mutex_lock(&sdev->state_mutex);
1885 scsi_device_set_state(sdev, SDEV_OFFLINE);
1886 mutex_unlock(&sdev->state_mutex);
1887
1888 return SUCCESS;
1889 }
1890
1891 return eh_disp;
1892 }
1893
1894 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1895 {
1896 struct request *req = scmd->request;
1897 struct scsi_device *sdev = scmd->device;
1898 unsigned int transferred, good_bytes;
1899 u64 start_lba, end_lba, bad_lba;
1900
1901 /*
1902 * Some commands have a payload smaller than the device logical
1903 * block size (e.g. INQUIRY on a 4K disk).
1904 */
1905 if (scsi_bufflen(scmd) <= sdev->sector_size)
1906 return 0;
1907
1908 /* Check if we have a 'bad_lba' information */
1909 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1910 SCSI_SENSE_BUFFERSIZE,
1911 &bad_lba))
1912 return 0;
1913
1914 /*
1915 * If the bad lba was reported incorrectly, we have no idea where
1916 * the error is.
1917 */
1918 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1919 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1920 if (bad_lba < start_lba || bad_lba >= end_lba)
1921 return 0;
1922
1923 /*
1924 * resid is optional but mostly filled in. When it's unused,
1925 * its value is zero, so we assume the whole buffer transferred
1926 */
1927 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1928
1929 /* This computation should always be done in terms of the
1930 * resolution of the device's medium.
1931 */
1932 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1933
1934 return min(good_bytes, transferred);
1935 }
1936
1937 /**
1938 * sd_done - bottom half handler: called when the lower level
1939 * driver has completed (successfully or otherwise) a scsi command.
1940 * @SCpnt: mid-level's per command structure.
1941 *
1942 * Note: potentially run from within an ISR. Must not block.
1943 **/
1944 static int sd_done(struct scsi_cmnd *SCpnt)
1945 {
1946 int result = SCpnt->result;
1947 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1948 unsigned int sector_size = SCpnt->device->sector_size;
1949 unsigned int resid;
1950 struct scsi_sense_hdr sshdr;
1951 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1952 struct request *req = SCpnt->request;
1953 int sense_valid = 0;
1954 int sense_deferred = 0;
1955
1956 switch (req_op(req)) {
1957 case REQ_OP_DISCARD:
1958 case REQ_OP_WRITE_ZEROES:
1959 case REQ_OP_WRITE_SAME:
1960 case REQ_OP_ZONE_RESET:
1961 case REQ_OP_ZONE_RESET_ALL:
1962 if (!result) {
1963 good_bytes = blk_rq_bytes(req);
1964 scsi_set_resid(SCpnt, 0);
1965 } else {
1966 good_bytes = 0;
1967 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1968 }
1969 break;
1970 default:
1971 /*
1972 * In case of bogus fw or device, we could end up having
1973 * an unaligned partial completion. Check this here and force
1974 * alignment.
1975 */
1976 resid = scsi_get_resid(SCpnt);
1977 if (resid & (sector_size - 1)) {
1978 sd_printk(KERN_INFO, sdkp,
1979 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1980 resid, sector_size);
1981 scsi_print_command(SCpnt);
1982 resid = min(scsi_bufflen(SCpnt),
1983 round_up(resid, sector_size));
1984 scsi_set_resid(SCpnt, resid);
1985 }
1986 }
1987
1988 if (result) {
1989 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1990 if (sense_valid)
1991 sense_deferred = scsi_sense_is_deferred(&sshdr);
1992 }
1993 sdkp->medium_access_timed_out = 0;
1994
1995 if (driver_byte(result) != DRIVER_SENSE &&
1996 (!sense_valid || sense_deferred))
1997 goto out;
1998
1999 switch (sshdr.sense_key) {
2000 case HARDWARE_ERROR:
2001 case MEDIUM_ERROR:
2002 good_bytes = sd_completed_bytes(SCpnt);
2003 break;
2004 case RECOVERED_ERROR:
2005 good_bytes = scsi_bufflen(SCpnt);
2006 break;
2007 case NO_SENSE:
2008 /* This indicates a false check condition, so ignore it. An
2009 * unknown amount of data was transferred so treat it as an
2010 * error.
2011 */
2012 SCpnt->result = 0;
2013 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2014 break;
2015 case ABORTED_COMMAND:
2016 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2017 good_bytes = sd_completed_bytes(SCpnt);
2018 break;
2019 case ILLEGAL_REQUEST:
2020 switch (sshdr.asc) {
2021 case 0x10: /* DIX: Host detected corruption */
2022 good_bytes = sd_completed_bytes(SCpnt);
2023 break;
2024 case 0x20: /* INVALID COMMAND OPCODE */
2025 case 0x24: /* INVALID FIELD IN CDB */
2026 switch (SCpnt->cmnd[0]) {
2027 case UNMAP:
2028 sd_config_discard(sdkp, SD_LBP_DISABLE);
2029 break;
2030 case WRITE_SAME_16:
2031 case WRITE_SAME:
2032 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2033 sd_config_discard(sdkp, SD_LBP_DISABLE);
2034 } else {
2035 sdkp->device->no_write_same = 1;
2036 sd_config_write_same(sdkp);
2037 req->rq_flags |= RQF_QUIET;
2038 }
2039 break;
2040 }
2041 }
2042 break;
2043 default:
2044 break;
2045 }
2046
2047 out:
2048 if (sd_is_zoned(sdkp))
2049 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2050
2051 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2052 "sd_done: completed %d of %d bytes\n",
2053 good_bytes, scsi_bufflen(SCpnt)));
2054
2055 return good_bytes;
2056 }
2057
2058 /*
2059 * spinup disk - called only in sd_revalidate_disk()
2060 */
2061 static void
2062 sd_spinup_disk(struct scsi_disk *sdkp)
2063 {
2064 unsigned char cmd[10];
2065 unsigned long spintime_expire = 0;
2066 int retries, spintime;
2067 unsigned int the_result;
2068 struct scsi_sense_hdr sshdr;
2069 int sense_valid = 0;
2070
2071 spintime = 0;
2072
2073 /* Spin up drives, as required. Only do this at boot time */
2074 /* Spinup needs to be done for module loads too. */
2075 do {
2076 retries = 0;
2077
2078 do {
2079 cmd[0] = TEST_UNIT_READY;
2080 memset((void *) &cmd[1], 0, 9);
2081
2082 the_result = scsi_execute_req(sdkp->device, cmd,
2083 DMA_NONE, NULL, 0,
2084 &sshdr, SD_TIMEOUT,
2085 SD_MAX_RETRIES, NULL);
2086
2087 /*
2088 * If the drive has indicated to us that it
2089 * doesn't have any media in it, don't bother
2090 * with any more polling.
2091 */
2092 if (media_not_present(sdkp, &sshdr))
2093 return;
2094
2095 if (the_result)
2096 sense_valid = scsi_sense_valid(&sshdr);
2097 retries++;
2098 } while (retries < 3 &&
2099 (!scsi_status_is_good(the_result) ||
2100 ((driver_byte(the_result) == DRIVER_SENSE) &&
2101 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2102
2103 if (driver_byte(the_result) != DRIVER_SENSE) {
2104 /* no sense, TUR either succeeded or failed
2105 * with a status error */
2106 if(!spintime && !scsi_status_is_good(the_result)) {
2107 sd_print_result(sdkp, "Test Unit Ready failed",
2108 the_result);
2109 }
2110 break;
2111 }
2112
2113 /*
2114 * The device does not want the automatic start to be issued.
2115 */
2116 if (sdkp->device->no_start_on_add)
2117 break;
2118
2119 if (sense_valid && sshdr.sense_key == NOT_READY) {
2120 if (sshdr.asc == 4 && sshdr.ascq == 3)
2121 break; /* manual intervention required */
2122 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2123 break; /* standby */
2124 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2125 break; /* unavailable */
2126 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2127 break; /* sanitize in progress */
2128 /*
2129 * Issue command to spin up drive when not ready
2130 */
2131 if (!spintime) {
2132 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2133 cmd[0] = START_STOP;
2134 cmd[1] = 1; /* Return immediately */
2135 memset((void *) &cmd[2], 0, 8);
2136 cmd[4] = 1; /* Start spin cycle */
2137 if (sdkp->device->start_stop_pwr_cond)
2138 cmd[4] |= 1 << 4;
2139 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2140 NULL, 0, &sshdr,
2141 SD_TIMEOUT, SD_MAX_RETRIES,
2142 NULL);
2143 spintime_expire = jiffies + 100 * HZ;
2144 spintime = 1;
2145 }
2146 /* Wait 1 second for next try */
2147 msleep(1000);
2148 printk(KERN_CONT ".");
2149
2150 /*
2151 * Wait for USB flash devices with slow firmware.
2152 * Yes, this sense key/ASC combination shouldn't
2153 * occur here. It's characteristic of these devices.
2154 */
2155 } else if (sense_valid &&
2156 sshdr.sense_key == UNIT_ATTENTION &&
2157 sshdr.asc == 0x28) {
2158 if (!spintime) {
2159 spintime_expire = jiffies + 5 * HZ;
2160 spintime = 1;
2161 }
2162 /* Wait 1 second for next try */
2163 msleep(1000);
2164 } else {
2165 /* we don't understand the sense code, so it's
2166 * probably pointless to loop */
2167 if(!spintime) {
2168 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2169 sd_print_sense_hdr(sdkp, &sshdr);
2170 }
2171 break;
2172 }
2173
2174 } while (spintime && time_before_eq(jiffies, spintime_expire));
2175
2176 if (spintime) {
2177 if (scsi_status_is_good(the_result))
2178 printk(KERN_CONT "ready\n");
2179 else
2180 printk(KERN_CONT "not responding...\n");
2181 }
2182 }
2183
2184 /*
2185 * Determine whether disk supports Data Integrity Field.
2186 */
2187 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2188 {
2189 struct scsi_device *sdp = sdkp->device;
2190 u8 type;
2191 int ret = 0;
2192
2193 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2194 return ret;
2195
2196 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2197
2198 if (type > T10_PI_TYPE3_PROTECTION)
2199 ret = -ENODEV;
2200 else if (scsi_host_dif_capable(sdp->host, type))
2201 ret = 1;
2202
2203 if (sdkp->first_scan || type != sdkp->protection_type)
2204 switch (ret) {
2205 case -ENODEV:
2206 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2207 " protection type %u. Disabling disk!\n",
2208 type);
2209 break;
2210 case 1:
2211 sd_printk(KERN_NOTICE, sdkp,
2212 "Enabling DIF Type %u protection\n", type);
2213 break;
2214 case 0:
2215 sd_printk(KERN_NOTICE, sdkp,
2216 "Disabling DIF Type %u protection\n", type);
2217 break;
2218 }
2219
2220 sdkp->protection_type = type;
2221
2222 return ret;
2223 }
2224
2225 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2226 struct scsi_sense_hdr *sshdr, int sense_valid,
2227 int the_result)
2228 {
2229 if (driver_byte(the_result) == DRIVER_SENSE)
2230 sd_print_sense_hdr(sdkp, sshdr);
2231 else
2232 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2233
2234 /*
2235 * Set dirty bit for removable devices if not ready -
2236 * sometimes drives will not report this properly.
2237 */
2238 if (sdp->removable &&
2239 sense_valid && sshdr->sense_key == NOT_READY)
2240 set_media_not_present(sdkp);
2241
2242 /*
2243 * We used to set media_present to 0 here to indicate no media
2244 * in the drive, but some drives fail read capacity even with
2245 * media present, so we can't do that.
2246 */
2247 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2248 }
2249
2250 #define RC16_LEN 32
2251 #if RC16_LEN > SD_BUF_SIZE
2252 #error RC16_LEN must not be more than SD_BUF_SIZE
2253 #endif
2254
2255 #define READ_CAPACITY_RETRIES_ON_RESET 10
2256
2257 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2258 unsigned char *buffer)
2259 {
2260 unsigned char cmd[16];
2261 struct scsi_sense_hdr sshdr;
2262 int sense_valid = 0;
2263 int the_result;
2264 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2265 unsigned int alignment;
2266 unsigned long long lba;
2267 unsigned sector_size;
2268
2269 if (sdp->no_read_capacity_16)
2270 return -EINVAL;
2271
2272 do {
2273 memset(cmd, 0, 16);
2274 cmd[0] = SERVICE_ACTION_IN_16;
2275 cmd[1] = SAI_READ_CAPACITY_16;
2276 cmd[13] = RC16_LEN;
2277 memset(buffer, 0, RC16_LEN);
2278
2279 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2280 buffer, RC16_LEN, &sshdr,
2281 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2282
2283 if (media_not_present(sdkp, &sshdr))
2284 return -ENODEV;
2285
2286 if (the_result) {
2287 sense_valid = scsi_sense_valid(&sshdr);
2288 if (sense_valid &&
2289 sshdr.sense_key == ILLEGAL_REQUEST &&
2290 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2291 sshdr.ascq == 0x00)
2292 /* Invalid Command Operation Code or
2293 * Invalid Field in CDB, just retry
2294 * silently with RC10 */
2295 return -EINVAL;
2296 if (sense_valid &&
2297 sshdr.sense_key == UNIT_ATTENTION &&
2298 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2299 /* Device reset might occur several times,
2300 * give it one more chance */
2301 if (--reset_retries > 0)
2302 continue;
2303 }
2304 retries--;
2305
2306 } while (the_result && retries);
2307
2308 if (the_result) {
2309 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2310 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2311 return -EINVAL;
2312 }
2313
2314 sector_size = get_unaligned_be32(&buffer[8]);
2315 lba = get_unaligned_be64(&buffer[0]);
2316
2317 if (sd_read_protection_type(sdkp, buffer) < 0) {
2318 sdkp->capacity = 0;
2319 return -ENODEV;
2320 }
2321
2322 /* Logical blocks per physical block exponent */
2323 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2324
2325 /* RC basis */
2326 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2327
2328 /* Lowest aligned logical block */
2329 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2330 blk_queue_alignment_offset(sdp->request_queue, alignment);
2331 if (alignment && sdkp->first_scan)
2332 sd_printk(KERN_NOTICE, sdkp,
2333 "physical block alignment offset: %u\n", alignment);
2334
2335 if (buffer[14] & 0x80) { /* LBPME */
2336 sdkp->lbpme = 1;
2337
2338 if (buffer[14] & 0x40) /* LBPRZ */
2339 sdkp->lbprz = 1;
2340
2341 sd_config_discard(sdkp, SD_LBP_WS16);
2342 }
2343
2344 sdkp->capacity = lba + 1;
2345 return sector_size;
2346 }
2347
2348 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2349 unsigned char *buffer)
2350 {
2351 unsigned char cmd[16];
2352 struct scsi_sense_hdr sshdr;
2353 int sense_valid = 0;
2354 int the_result;
2355 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2356 sector_t lba;
2357 unsigned sector_size;
2358
2359 do {
2360 cmd[0] = READ_CAPACITY;
2361 memset(&cmd[1], 0, 9);
2362 memset(buffer, 0, 8);
2363
2364 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2365 buffer, 8, &sshdr,
2366 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2367
2368 if (media_not_present(sdkp, &sshdr))
2369 return -ENODEV;
2370
2371 if (the_result) {
2372 sense_valid = scsi_sense_valid(&sshdr);
2373 if (sense_valid &&
2374 sshdr.sense_key == UNIT_ATTENTION &&
2375 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2376 /* Device reset might occur several times,
2377 * give it one more chance */
2378 if (--reset_retries > 0)
2379 continue;
2380 }
2381 retries--;
2382
2383 } while (the_result && retries);
2384
2385 if (the_result) {
2386 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2387 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2388 return -EINVAL;
2389 }
2390
2391 sector_size = get_unaligned_be32(&buffer[4]);
2392 lba = get_unaligned_be32(&buffer[0]);
2393
2394 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2395 /* Some buggy (usb cardreader) devices return an lba of
2396 0xffffffff when the want to report a size of 0 (with
2397 which they really mean no media is present) */
2398 sdkp->capacity = 0;
2399 sdkp->physical_block_size = sector_size;
2400 return sector_size;
2401 }
2402
2403 sdkp->capacity = lba + 1;
2404 sdkp->physical_block_size = sector_size;
2405 return sector_size;
2406 }
2407
2408 static int sd_try_rc16_first(struct scsi_device *sdp)
2409 {
2410 if (sdp->host->max_cmd_len < 16)
2411 return 0;
2412 if (sdp->try_rc_10_first)
2413 return 0;
2414 if (sdp->scsi_level > SCSI_SPC_2)
2415 return 1;
2416 if (scsi_device_protection(sdp))
2417 return 1;
2418 return 0;
2419 }
2420
2421 /*
2422 * read disk capacity
2423 */
2424 static void
2425 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2426 {
2427 int sector_size;
2428 struct scsi_device *sdp = sdkp->device;
2429
2430 if (sd_try_rc16_first(sdp)) {
2431 sector_size = read_capacity_16(sdkp, sdp, buffer);
2432 if (sector_size == -EOVERFLOW)
2433 goto got_data;
2434 if (sector_size == -ENODEV)
2435 return;
2436 if (sector_size < 0)
2437 sector_size = read_capacity_10(sdkp, sdp, buffer);
2438 if (sector_size < 0)
2439 return;
2440 } else {
2441 sector_size = read_capacity_10(sdkp, sdp, buffer);
2442 if (sector_size == -EOVERFLOW)
2443 goto got_data;
2444 if (sector_size < 0)
2445 return;
2446 if ((sizeof(sdkp->capacity) > 4) &&
2447 (sdkp->capacity > 0xffffffffULL)) {
2448 int old_sector_size = sector_size;
2449 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2450 "Trying to use READ CAPACITY(16).\n");
2451 sector_size = read_capacity_16(sdkp, sdp, buffer);
2452 if (sector_size < 0) {
2453 sd_printk(KERN_NOTICE, sdkp,
2454 "Using 0xffffffff as device size\n");
2455 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2456 sector_size = old_sector_size;
2457 goto got_data;
2458 }
2459 /* Remember that READ CAPACITY(16) succeeded */
2460 sdp->try_rc_10_first = 0;
2461 }
2462 }
2463
2464 /* Some devices are known to return the total number of blocks,
2465 * not the highest block number. Some devices have versions
2466 * which do this and others which do not. Some devices we might
2467 * suspect of doing this but we don't know for certain.
2468 *
2469 * If we know the reported capacity is wrong, decrement it. If
2470 * we can only guess, then assume the number of blocks is even
2471 * (usually true but not always) and err on the side of lowering
2472 * the capacity.
2473 */
2474 if (sdp->fix_capacity ||
2475 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2476 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2477 "from its reported value: %llu\n",
2478 (unsigned long long) sdkp->capacity);
2479 --sdkp->capacity;
2480 }
2481
2482 got_data:
2483 if (sector_size == 0) {
2484 sector_size = 512;
2485 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2486 "assuming 512.\n");
2487 }
2488
2489 if (sector_size != 512 &&
2490 sector_size != 1024 &&
2491 sector_size != 2048 &&
2492 sector_size != 4096) {
2493 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2494 sector_size);
2495 /*
2496 * The user might want to re-format the drive with
2497 * a supported sectorsize. Once this happens, it
2498 * would be relatively trivial to set the thing up.
2499 * For this reason, we leave the thing in the table.
2500 */
2501 sdkp->capacity = 0;
2502 /*
2503 * set a bogus sector size so the normal read/write
2504 * logic in the block layer will eventually refuse any
2505 * request on this device without tripping over power
2506 * of two sector size assumptions
2507 */
2508 sector_size = 512;
2509 }
2510 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2511 blk_queue_physical_block_size(sdp->request_queue,
2512 sdkp->physical_block_size);
2513 sdkp->device->sector_size = sector_size;
2514
2515 if (sdkp->capacity > 0xffffffff)
2516 sdp->use_16_for_rw = 1;
2517
2518 }
2519
2520 /*
2521 * Print disk capacity
2522 */
2523 static void
2524 sd_print_capacity(struct scsi_disk *sdkp,
2525 sector_t old_capacity)
2526 {
2527 int sector_size = sdkp->device->sector_size;
2528 char cap_str_2[10], cap_str_10[10];
2529
2530 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2531 return;
2532
2533 string_get_size(sdkp->capacity, sector_size,
2534 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2535 string_get_size(sdkp->capacity, sector_size,
2536 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2537
2538 sd_printk(KERN_NOTICE, sdkp,
2539 "%llu %d-byte logical blocks: (%s/%s)\n",
2540 (unsigned long long)sdkp->capacity,
2541 sector_size, cap_str_10, cap_str_2);
2542
2543 if (sdkp->physical_block_size != sector_size)
2544 sd_printk(KERN_NOTICE, sdkp,
2545 "%u-byte physical blocks\n",
2546 sdkp->physical_block_size);
2547
2548 sd_zbc_print_zones(sdkp);
2549 }
2550
2551 /* called with buffer of length 512 */
2552 static inline int
2553 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2554 unsigned char *buffer, int len, struct scsi_mode_data *data,
2555 struct scsi_sense_hdr *sshdr)
2556 {
2557 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2558 SD_TIMEOUT, SD_MAX_RETRIES, data,
2559 sshdr);
2560 }
2561
2562 /*
2563 * read write protect setting, if possible - called only in sd_revalidate_disk()
2564 * called with buffer of length SD_BUF_SIZE
2565 */
2566 static void
2567 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2568 {
2569 int res;
2570 struct scsi_device *sdp = sdkp->device;
2571 struct scsi_mode_data data;
2572 int old_wp = sdkp->write_prot;
2573
2574 set_disk_ro(sdkp->disk, 0);
2575 if (sdp->skip_ms_page_3f) {
2576 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2577 return;
2578 }
2579
2580 if (sdp->use_192_bytes_for_3f) {
2581 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2582 } else {
2583 /*
2584 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2585 * We have to start carefully: some devices hang if we ask
2586 * for more than is available.
2587 */
2588 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2589
2590 /*
2591 * Second attempt: ask for page 0 When only page 0 is
2592 * implemented, a request for page 3F may return Sense Key
2593 * 5: Illegal Request, Sense Code 24: Invalid field in
2594 * CDB.
2595 */
2596 if (!scsi_status_is_good(res))
2597 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2598
2599 /*
2600 * Third attempt: ask 255 bytes, as we did earlier.
2601 */
2602 if (!scsi_status_is_good(res))
2603 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2604 &data, NULL);
2605 }
2606
2607 if (!scsi_status_is_good(res)) {
2608 sd_first_printk(KERN_WARNING, sdkp,
2609 "Test WP failed, assume Write Enabled\n");
2610 } else {
2611 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2612 set_disk_ro(sdkp->disk, sdkp->write_prot);
2613 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2614 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2615 sdkp->write_prot ? "on" : "off");
2616 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2617 }
2618 }
2619 }
2620
2621 /*
2622 * sd_read_cache_type - called only from sd_revalidate_disk()
2623 * called with buffer of length SD_BUF_SIZE
2624 */
2625 static void
2626 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2627 {
2628 int len = 0, res;
2629 struct scsi_device *sdp = sdkp->device;
2630
2631 int dbd;
2632 int modepage;
2633 int first_len;
2634 struct scsi_mode_data data;
2635 struct scsi_sense_hdr sshdr;
2636 int old_wce = sdkp->WCE;
2637 int old_rcd = sdkp->RCD;
2638 int old_dpofua = sdkp->DPOFUA;
2639
2640
2641 if (sdkp->cache_override)
2642 return;
2643
2644 first_len = 4;
2645 if (sdp->skip_ms_page_8) {
2646 if (sdp->type == TYPE_RBC)
2647 goto defaults;
2648 else {
2649 if (sdp->skip_ms_page_3f)
2650 goto defaults;
2651 modepage = 0x3F;
2652 if (sdp->use_192_bytes_for_3f)
2653 first_len = 192;
2654 dbd = 0;
2655 }
2656 } else if (sdp->type == TYPE_RBC) {
2657 modepage = 6;
2658 dbd = 8;
2659 } else {
2660 modepage = 8;
2661 dbd = 0;
2662 }
2663
2664 /* cautiously ask */
2665 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2666 &data, &sshdr);
2667
2668 if (!scsi_status_is_good(res))
2669 goto bad_sense;
2670
2671 if (!data.header_length) {
2672 modepage = 6;
2673 first_len = 0;
2674 sd_first_printk(KERN_ERR, sdkp,
2675 "Missing header in MODE_SENSE response\n");
2676 }
2677
2678 /* that went OK, now ask for the proper length */
2679 len = data.length;
2680
2681 /*
2682 * We're only interested in the first three bytes, actually.
2683 * But the data cache page is defined for the first 20.
2684 */
2685 if (len < 3)
2686 goto bad_sense;
2687 else if (len > SD_BUF_SIZE) {
2688 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2689 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2690 len = SD_BUF_SIZE;
2691 }
2692 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2693 len = 192;
2694
2695 /* Get the data */
2696 if (len > first_len)
2697 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2698 &data, &sshdr);
2699
2700 if (scsi_status_is_good(res)) {
2701 int offset = data.header_length + data.block_descriptor_length;
2702
2703 while (offset < len) {
2704 u8 page_code = buffer[offset] & 0x3F;
2705 u8 spf = buffer[offset] & 0x40;
2706
2707 if (page_code == 8 || page_code == 6) {
2708 /* We're interested only in the first 3 bytes.
2709 */
2710 if (len - offset <= 2) {
2711 sd_first_printk(KERN_ERR, sdkp,
2712 "Incomplete mode parameter "
2713 "data\n");
2714 goto defaults;
2715 } else {
2716 modepage = page_code;
2717 goto Page_found;
2718 }
2719 } else {
2720 /* Go to the next page */
2721 if (spf && len - offset > 3)
2722 offset += 4 + (buffer[offset+2] << 8) +
2723 buffer[offset+3];
2724 else if (!spf && len - offset > 1)
2725 offset += 2 + buffer[offset+1];
2726 else {
2727 sd_first_printk(KERN_ERR, sdkp,
2728 "Incomplete mode "
2729 "parameter data\n");
2730 goto defaults;
2731 }
2732 }
2733 }
2734
2735 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2736 goto defaults;
2737
2738 Page_found:
2739 if (modepage == 8) {
2740 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2741 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2742 } else {
2743 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2744 sdkp->RCD = 0;
2745 }
2746
2747 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2748 if (sdp->broken_fua) {
2749 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2750 sdkp->DPOFUA = 0;
2751 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2752 !sdkp->device->use_16_for_rw) {
2753 sd_first_printk(KERN_NOTICE, sdkp,
2754 "Uses READ/WRITE(6), disabling FUA\n");
2755 sdkp->DPOFUA = 0;
2756 }
2757
2758 /* No cache flush allowed for write protected devices */
2759 if (sdkp->WCE && sdkp->write_prot)
2760 sdkp->WCE = 0;
2761
2762 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2763 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2764 sd_printk(KERN_NOTICE, sdkp,
2765 "Write cache: %s, read cache: %s, %s\n",
2766 sdkp->WCE ? "enabled" : "disabled",
2767 sdkp->RCD ? "disabled" : "enabled",
2768 sdkp->DPOFUA ? "supports DPO and FUA"
2769 : "doesn't support DPO or FUA");
2770
2771 return;
2772 }
2773
2774 bad_sense:
2775 if (scsi_sense_valid(&sshdr) &&
2776 sshdr.sense_key == ILLEGAL_REQUEST &&
2777 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2778 /* Invalid field in CDB */
2779 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2780 else
2781 sd_first_printk(KERN_ERR, sdkp,
2782 "Asking for cache data failed\n");
2783
2784 defaults:
2785 if (sdp->wce_default_on) {
2786 sd_first_printk(KERN_NOTICE, sdkp,
2787 "Assuming drive cache: write back\n");
2788 sdkp->WCE = 1;
2789 } else {
2790 sd_first_printk(KERN_ERR, sdkp,
2791 "Assuming drive cache: write through\n");
2792 sdkp->WCE = 0;
2793 }
2794 sdkp->RCD = 0;
2795 sdkp->DPOFUA = 0;
2796 }
2797
2798 /*
2799 * The ATO bit indicates whether the DIF application tag is available
2800 * for use by the operating system.
2801 */
2802 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2803 {
2804 int res, offset;
2805 struct scsi_device *sdp = sdkp->device;
2806 struct scsi_mode_data data;
2807 struct scsi_sense_hdr sshdr;
2808
2809 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2810 return;
2811
2812 if (sdkp->protection_type == 0)
2813 return;
2814
2815 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2816 SD_MAX_RETRIES, &data, &sshdr);
2817
2818 if (!scsi_status_is_good(res) || !data.header_length ||
2819 data.length < 6) {
2820 sd_first_printk(KERN_WARNING, sdkp,
2821 "getting Control mode page failed, assume no ATO\n");
2822
2823 if (scsi_sense_valid(&sshdr))
2824 sd_print_sense_hdr(sdkp, &sshdr);
2825
2826 return;
2827 }
2828
2829 offset = data.header_length + data.block_descriptor_length;
2830
2831 if ((buffer[offset] & 0x3f) != 0x0a) {
2832 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2833 return;
2834 }
2835
2836 if ((buffer[offset + 5] & 0x80) == 0)
2837 return;
2838
2839 sdkp->ATO = 1;
2840
2841 return;
2842 }
2843
2844 /**
2845 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2846 * @sdkp: disk to query
2847 */
2848 static void sd_read_block_limits(struct scsi_disk *sdkp)
2849 {
2850 unsigned int sector_sz = sdkp->device->sector_size;
2851 const int vpd_len = 64;
2852 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2853
2854 if (!buffer ||
2855 /* Block Limits VPD */
2856 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2857 goto out;
2858
2859 blk_queue_io_min(sdkp->disk->queue,
2860 get_unaligned_be16(&buffer[6]) * sector_sz);
2861
2862 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2863 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2864
2865 if (buffer[3] == 0x3c) {
2866 unsigned int lba_count, desc_count;
2867
2868 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2869
2870 if (!sdkp->lbpme)
2871 goto out;
2872
2873 lba_count = get_unaligned_be32(&buffer[20]);
2874 desc_count = get_unaligned_be32(&buffer[24]);
2875
2876 if (lba_count && desc_count)
2877 sdkp->max_unmap_blocks = lba_count;
2878
2879 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2880
2881 if (buffer[32] & 0x80)
2882 sdkp->unmap_alignment =
2883 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2884
2885 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2886
2887 if (sdkp->max_unmap_blocks)
2888 sd_config_discard(sdkp, SD_LBP_UNMAP);
2889 else
2890 sd_config_discard(sdkp, SD_LBP_WS16);
2891
2892 } else { /* LBP VPD page tells us what to use */
2893 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2894 sd_config_discard(sdkp, SD_LBP_UNMAP);
2895 else if (sdkp->lbpws)
2896 sd_config_discard(sdkp, SD_LBP_WS16);
2897 else if (sdkp->lbpws10)
2898 sd_config_discard(sdkp, SD_LBP_WS10);
2899 else
2900 sd_config_discard(sdkp, SD_LBP_DISABLE);
2901 }
2902 }
2903
2904 out:
2905 kfree(buffer);
2906 }
2907
2908 /**
2909 * sd_read_block_characteristics - Query block dev. characteristics
2910 * @sdkp: disk to query
2911 */
2912 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2913 {
2914 struct request_queue *q = sdkp->disk->queue;
2915 unsigned char *buffer;
2916 u16 rot;
2917 const int vpd_len = 64;
2918
2919 buffer = kmalloc(vpd_len, GFP_KERNEL);
2920
2921 if (!buffer ||
2922 /* Block Device Characteristics VPD */
2923 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2924 goto out;
2925
2926 rot = get_unaligned_be16(&buffer[4]);
2927
2928 if (rot == 1) {
2929 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2930 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2931 }
2932
2933 if (sdkp->device->type == TYPE_ZBC) {
2934 /* Host-managed */
2935 q->limits.zoned = BLK_ZONED_HM;
2936 } else {
2937 sdkp->zoned = (buffer[8] >> 4) & 3;
2938 if (sdkp->zoned == 1)
2939 /* Host-aware */
2940 q->limits.zoned = BLK_ZONED_HA;
2941 else
2942 /*
2943 * Treat drive-managed devices as
2944 * regular block devices.
2945 */
2946 q->limits.zoned = BLK_ZONED_NONE;
2947 }
2948 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2949 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2950 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2951
2952 out:
2953 kfree(buffer);
2954 }
2955
2956 /**
2957 * sd_read_block_provisioning - Query provisioning VPD page
2958 * @sdkp: disk to query
2959 */
2960 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2961 {
2962 unsigned char *buffer;
2963 const int vpd_len = 8;
2964
2965 if (sdkp->lbpme == 0)
2966 return;
2967
2968 buffer = kmalloc(vpd_len, GFP_KERNEL);
2969
2970 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2971 goto out;
2972
2973 sdkp->lbpvpd = 1;
2974 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2975 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2976 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2977
2978 out:
2979 kfree(buffer);
2980 }
2981
2982 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2983 {
2984 struct scsi_device *sdev = sdkp->device;
2985
2986 if (sdev->host->no_write_same) {
2987 sdev->no_write_same = 1;
2988
2989 return;
2990 }
2991
2992 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2993 /* too large values might cause issues with arcmsr */
2994 int vpd_buf_len = 64;
2995
2996 sdev->no_report_opcodes = 1;
2997
2998 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2999 * CODES is unsupported and the device has an ATA
3000 * Information VPD page (SAT).
3001 */
3002 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3003 sdev->no_write_same = 1;
3004 }
3005
3006 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3007 sdkp->ws16 = 1;
3008
3009 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3010 sdkp->ws10 = 1;
3011 }
3012
3013 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3014 {
3015 struct scsi_device *sdev = sdkp->device;
3016
3017 if (!sdev->security_supported)
3018 return;
3019
3020 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3021 SECURITY_PROTOCOL_IN) == 1 &&
3022 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3023 SECURITY_PROTOCOL_OUT) == 1)
3024 sdkp->security = 1;
3025 }
3026
3027 /*
3028 * Determine the device's preferred I/O size for reads and writes
3029 * unless the reported value is unreasonably small, large, not a
3030 * multiple of the physical block size, or simply garbage.
3031 */
3032 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3033 unsigned int dev_max)
3034 {
3035 struct scsi_device *sdp = sdkp->device;
3036 unsigned int opt_xfer_bytes =
3037 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3038
3039 if (sdkp->opt_xfer_blocks == 0)
3040 return false;
3041
3042 if (sdkp->opt_xfer_blocks > dev_max) {
3043 sd_first_printk(KERN_WARNING, sdkp,
3044 "Optimal transfer size %u logical blocks " \
3045 "> dev_max (%u logical blocks)\n",
3046 sdkp->opt_xfer_blocks, dev_max);
3047 return false;
3048 }
3049
3050 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3051 sd_first_printk(KERN_WARNING, sdkp,
3052 "Optimal transfer size %u logical blocks " \
3053 "> sd driver limit (%u logical blocks)\n",
3054 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3055 return false;
3056 }
3057
3058 if (opt_xfer_bytes < PAGE_SIZE) {
3059 sd_first_printk(KERN_WARNING, sdkp,
3060 "Optimal transfer size %u bytes < " \
3061 "PAGE_SIZE (%u bytes)\n",
3062 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3063 return false;
3064 }
3065
3066 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3067 sd_first_printk(KERN_WARNING, sdkp,
3068 "Optimal transfer size %u bytes not a " \
3069 "multiple of physical block size (%u bytes)\n",
3070 opt_xfer_bytes, sdkp->physical_block_size);
3071 return false;
3072 }
3073
3074 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3075 opt_xfer_bytes);
3076 return true;
3077 }
3078
3079 /**
3080 * sd_revalidate_disk - called the first time a new disk is seen,
3081 * performs disk spin up, read_capacity, etc.
3082 * @disk: struct gendisk we care about
3083 **/
3084 static int sd_revalidate_disk(struct gendisk *disk)
3085 {
3086 struct scsi_disk *sdkp = scsi_disk(disk);
3087 struct scsi_device *sdp = sdkp->device;
3088 struct request_queue *q = sdkp->disk->queue;
3089 sector_t old_capacity = sdkp->capacity;
3090 unsigned char *buffer;
3091 unsigned int dev_max, rw_max;
3092
3093 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3094 "sd_revalidate_disk\n"));
3095
3096 /*
3097 * If the device is offline, don't try and read capacity or any
3098 * of the other niceties.
3099 */
3100 if (!scsi_device_online(sdp))
3101 goto out;
3102
3103 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3104 if (!buffer) {
3105 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3106 "allocation failure.\n");
3107 goto out;
3108 }
3109
3110 sd_spinup_disk(sdkp);
3111
3112 /*
3113 * Without media there is no reason to ask; moreover, some devices
3114 * react badly if we do.
3115 */
3116 if (sdkp->media_present) {
3117 sd_read_capacity(sdkp, buffer);
3118
3119 /*
3120 * set the default to rotational. All non-rotational devices
3121 * support the block characteristics VPD page, which will
3122 * cause this to be updated correctly and any device which
3123 * doesn't support it should be treated as rotational.
3124 */
3125 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3126 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3127
3128 if (scsi_device_supports_vpd(sdp)) {
3129 sd_read_block_provisioning(sdkp);
3130 sd_read_block_limits(sdkp);
3131 sd_read_block_characteristics(sdkp);
3132 sd_zbc_read_zones(sdkp, buffer);
3133 }
3134
3135 sd_print_capacity(sdkp, old_capacity);
3136
3137 sd_read_write_protect_flag(sdkp, buffer);
3138 sd_read_cache_type(sdkp, buffer);
3139 sd_read_app_tag_own(sdkp, buffer);
3140 sd_read_write_same(sdkp, buffer);
3141 sd_read_security(sdkp, buffer);
3142 }
3143
3144 /*
3145 * We now have all cache related info, determine how we deal
3146 * with flush requests.
3147 */
3148 sd_set_flush_flag(sdkp);
3149
3150 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3151 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3152
3153 /* Some devices report a maximum block count for READ/WRITE requests. */
3154 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3155 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3156
3157 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3158 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3159 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3160 } else
3161 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3162 (sector_t)BLK_DEF_MAX_SECTORS);
3163
3164 /* Do not exceed controller limit */
3165 rw_max = min(rw_max, queue_max_hw_sectors(q));
3166
3167 /*
3168 * Only update max_sectors if previously unset or if the current value
3169 * exceeds the capabilities of the hardware.
3170 */
3171 if (sdkp->first_scan ||
3172 q->limits.max_sectors > q->limits.max_dev_sectors ||
3173 q->limits.max_sectors > q->limits.max_hw_sectors)
3174 q->limits.max_sectors = rw_max;
3175
3176 sdkp->first_scan = 0;
3177
3178 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3179 sd_config_write_same(sdkp);
3180 kfree(buffer);
3181
3182 out:
3183 return 0;
3184 }
3185
3186 /**
3187 * sd_unlock_native_capacity - unlock native capacity
3188 * @disk: struct gendisk to set capacity for
3189 *
3190 * Block layer calls this function if it detects that partitions
3191 * on @disk reach beyond the end of the device. If the SCSI host
3192 * implements ->unlock_native_capacity() method, it's invoked to
3193 * give it a chance to adjust the device capacity.
3194 *
3195 * CONTEXT:
3196 * Defined by block layer. Might sleep.
3197 */
3198 static void sd_unlock_native_capacity(struct gendisk *disk)
3199 {
3200 struct scsi_device *sdev = scsi_disk(disk)->device;
3201
3202 if (sdev->host->hostt->unlock_native_capacity)
3203 sdev->host->hostt->unlock_native_capacity(sdev);
3204 }
3205
3206 /**
3207 * sd_format_disk_name - format disk name
3208 * @prefix: name prefix - ie. "sd" for SCSI disks
3209 * @index: index of the disk to format name for
3210 * @buf: output buffer
3211 * @buflen: length of the output buffer
3212 *
3213 * SCSI disk names starts at sda. The 26th device is sdz and the
3214 * 27th is sdaa. The last one for two lettered suffix is sdzz
3215 * which is followed by sdaaa.
3216 *
3217 * This is basically 26 base counting with one extra 'nil' entry
3218 * at the beginning from the second digit on and can be
3219 * determined using similar method as 26 base conversion with the
3220 * index shifted -1 after each digit is computed.
3221 *
3222 * CONTEXT:
3223 * Don't care.
3224 *
3225 * RETURNS:
3226 * 0 on success, -errno on failure.
3227 */
3228 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3229 {
3230 const int base = 'z' - 'a' + 1;
3231 char *begin = buf + strlen(prefix);
3232 char *end = buf + buflen;
3233 char *p;
3234 int unit;
3235
3236 p = end - 1;
3237 *p = '\0';
3238 unit = base;
3239 do {
3240 if (p == begin)
3241 return -EINVAL;
3242 *--p = 'a' + (index % unit);
3243 index = (index / unit) - 1;
3244 } while (index >= 0);
3245
3246 memmove(begin, p, end - p);
3247 memcpy(buf, prefix, strlen(prefix));
3248
3249 return 0;
3250 }
3251
3252 /**
3253 * sd_probe - called during driver initialization and whenever a
3254 * new scsi device is attached to the system. It is called once
3255 * for each scsi device (not just disks) present.
3256 * @dev: pointer to device object
3257 *
3258 * Returns 0 if successful (or not interested in this scsi device
3259 * (e.g. scanner)); 1 when there is an error.
3260 *
3261 * Note: this function is invoked from the scsi mid-level.
3262 * This function sets up the mapping between a given
3263 * <host,channel,id,lun> (found in sdp) and new device name
3264 * (e.g. /dev/sda). More precisely it is the block device major
3265 * and minor number that is chosen here.
3266 *
3267 * Assume sd_probe is not re-entrant (for time being)
3268 * Also think about sd_probe() and sd_remove() running coincidentally.
3269 **/
3270 static int sd_probe(struct device *dev)
3271 {
3272 struct scsi_device *sdp = to_scsi_device(dev);
3273 struct scsi_disk *sdkp;
3274 struct gendisk *gd;
3275 int index;
3276 int error;
3277
3278 scsi_autopm_get_device(sdp);
3279 error = -ENODEV;
3280 if (sdp->type != TYPE_DISK &&
3281 sdp->type != TYPE_ZBC &&
3282 sdp->type != TYPE_MOD &&
3283 sdp->type != TYPE_RBC)
3284 goto out;
3285
3286 #ifndef CONFIG_BLK_DEV_ZONED
3287 if (sdp->type == TYPE_ZBC)
3288 goto out;
3289 #endif
3290 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3291 "sd_probe\n"));
3292
3293 error = -ENOMEM;
3294 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3295 if (!sdkp)
3296 goto out;
3297
3298 gd = alloc_disk(SD_MINORS);
3299 if (!gd)
3300 goto out_free;
3301
3302 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3303 if (index < 0) {
3304 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3305 goto out_put;
3306 }
3307
3308 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3309 if (error) {
3310 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3311 goto out_free_index;
3312 }
3313
3314 sdkp->device = sdp;
3315 sdkp->driver = &sd_template;
3316 sdkp->disk = gd;
3317 sdkp->index = index;
3318 atomic_set(&sdkp->openers, 0);
3319 atomic_set(&sdkp->device->ioerr_cnt, 0);
3320
3321 if (!sdp->request_queue->rq_timeout) {
3322 if (sdp->type != TYPE_MOD)
3323 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3324 else
3325 blk_queue_rq_timeout(sdp->request_queue,
3326 SD_MOD_TIMEOUT);
3327 }
3328
3329 device_initialize(&sdkp->dev);
3330 sdkp->dev.parent = dev;
3331 sdkp->dev.class = &sd_disk_class;
3332 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3333
3334 error = device_add(&sdkp->dev);
3335 if (error)
3336 goto out_free_index;
3337
3338 get_device(dev);
3339 dev_set_drvdata(dev, sdkp);
3340
3341 gd->major = sd_major((index & 0xf0) >> 4);
3342 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3343
3344 gd->fops = &sd_fops;
3345 gd->private_data = &sdkp->driver;
3346 gd->queue = sdkp->device->request_queue;
3347
3348 /* defaults, until the device tells us otherwise */
3349 sdp->sector_size = 512;
3350 sdkp->capacity = 0;
3351 sdkp->media_present = 1;
3352 sdkp->write_prot = 0;
3353 sdkp->cache_override = 0;
3354 sdkp->WCE = 0;
3355 sdkp->RCD = 0;
3356 sdkp->ATO = 0;
3357 sdkp->first_scan = 1;
3358 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3359
3360 sd_revalidate_disk(gd);
3361
3362 gd->flags = GENHD_FL_EXT_DEVT;
3363 if (sdp->removable) {
3364 gd->flags |= GENHD_FL_REMOVABLE;
3365 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3366 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3367 }
3368
3369 blk_pm_runtime_init(sdp->request_queue, dev);
3370 device_add_disk(dev, gd, NULL);
3371 if (sdkp->capacity)
3372 sd_dif_config_host(sdkp);
3373
3374 sd_revalidate_disk(gd);
3375
3376 if (sdkp->security) {
3377 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3378 if (sdkp->opal_dev)
3379 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3380 }
3381
3382 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3383 sdp->removable ? "removable " : "");
3384 scsi_autopm_put_device(sdp);
3385
3386 return 0;
3387
3388 out_free_index:
3389 ida_free(&sd_index_ida, index);
3390 out_put:
3391 put_disk(gd);
3392 out_free:
3393 kfree(sdkp);
3394 out:
3395 scsi_autopm_put_device(sdp);
3396 return error;
3397 }
3398
3399 /**
3400 * sd_remove - called whenever a scsi disk (previously recognized by
3401 * sd_probe) is detached from the system. It is called (potentially
3402 * multiple times) during sd module unload.
3403 * @dev: pointer to device object
3404 *
3405 * Note: this function is invoked from the scsi mid-level.
3406 * This function potentially frees up a device name (e.g. /dev/sdc)
3407 * that could be re-used by a subsequent sd_probe().
3408 * This function is not called when the built-in sd driver is "exit-ed".
3409 **/
3410 static int sd_remove(struct device *dev)
3411 {
3412 struct scsi_disk *sdkp;
3413 dev_t devt;
3414
3415 sdkp = dev_get_drvdata(dev);
3416 devt = disk_devt(sdkp->disk);
3417 scsi_autopm_get_device(sdkp->device);
3418
3419 async_synchronize_full_domain(&scsi_sd_pm_domain);
3420 device_del(&sdkp->dev);
3421 del_gendisk(sdkp->disk);
3422 sd_shutdown(dev);
3423
3424 free_opal_dev(sdkp->opal_dev);
3425
3426 blk_register_region(devt, SD_MINORS, NULL,
3427 sd_default_probe, NULL, NULL);
3428
3429 mutex_lock(&sd_ref_mutex);
3430 dev_set_drvdata(dev, NULL);
3431 put_device(&sdkp->dev);
3432 mutex_unlock(&sd_ref_mutex);
3433
3434 return 0;
3435 }
3436
3437 /**
3438 * scsi_disk_release - Called to free the scsi_disk structure
3439 * @dev: pointer to embedded class device
3440 *
3441 * sd_ref_mutex must be held entering this routine. Because it is
3442 * called on last put, you should always use the scsi_disk_get()
3443 * scsi_disk_put() helpers which manipulate the semaphore directly
3444 * and never do a direct put_device.
3445 **/
3446 static void scsi_disk_release(struct device *dev)
3447 {
3448 struct scsi_disk *sdkp = to_scsi_disk(dev);
3449 struct gendisk *disk = sdkp->disk;
3450 struct request_queue *q = disk->queue;
3451
3452 ida_free(&sd_index_ida, sdkp->index);
3453
3454 /*
3455 * Wait until all requests that are in progress have completed.
3456 * This is necessary to avoid that e.g. scsi_end_request() crashes
3457 * due to clearing the disk->private_data pointer. Wait from inside
3458 * scsi_disk_release() instead of from sd_release() to avoid that
3459 * freezing and unfreezing the request queue affects user space I/O
3460 * in case multiple processes open a /dev/sd... node concurrently.
3461 */
3462 blk_mq_freeze_queue(q);
3463 blk_mq_unfreeze_queue(q);
3464
3465 disk->private_data = NULL;
3466 put_disk(disk);
3467 put_device(&sdkp->device->sdev_gendev);
3468
3469 kfree(sdkp);
3470 }
3471
3472 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3473 {
3474 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3475 struct scsi_sense_hdr sshdr;
3476 struct scsi_device *sdp = sdkp->device;
3477 int res;
3478
3479 if (start)
3480 cmd[4] |= 1; /* START */
3481
3482 if (sdp->start_stop_pwr_cond)
3483 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3484
3485 if (!scsi_device_online(sdp))
3486 return -ENODEV;
3487
3488 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3489 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3490 if (res) {
3491 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3492 if (driver_byte(res) == DRIVER_SENSE)
3493 sd_print_sense_hdr(sdkp, &sshdr);
3494 if (scsi_sense_valid(&sshdr) &&
3495 /* 0x3a is medium not present */
3496 sshdr.asc == 0x3a)
3497 res = 0;
3498 }
3499
3500 /* SCSI error codes must not go to the generic layer */
3501 if (res)
3502 return -EIO;
3503
3504 return 0;
3505 }
3506
3507 /*
3508 * Send a SYNCHRONIZE CACHE instruction down to the device through
3509 * the normal SCSI command structure. Wait for the command to
3510 * complete.
3511 */
3512 static void sd_shutdown(struct device *dev)
3513 {
3514 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3515
3516 if (!sdkp)
3517 return; /* this can happen */
3518
3519 if (pm_runtime_suspended(dev))
3520 return;
3521
3522 if (sdkp->WCE && sdkp->media_present) {
3523 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3524 sd_sync_cache(sdkp, NULL);
3525 }
3526
3527 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3528 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3529 sd_start_stop_device(sdkp, 0);
3530 }
3531 }
3532
3533 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3534 {
3535 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3536 struct scsi_sense_hdr sshdr;
3537 int ret = 0;
3538
3539 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3540 return 0;
3541
3542 if (sdkp->WCE && sdkp->media_present) {
3543 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3544 ret = sd_sync_cache(sdkp, &sshdr);
3545
3546 if (ret) {
3547 /* ignore OFFLINE device */
3548 if (ret == -ENODEV)
3549 return 0;
3550
3551 if (!scsi_sense_valid(&sshdr) ||
3552 sshdr.sense_key != ILLEGAL_REQUEST)
3553 return ret;
3554
3555 /*
3556 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3557 * doesn't support sync. There's not much to do and
3558 * suspend shouldn't fail.
3559 */
3560 ret = 0;
3561 }
3562 }
3563
3564 if (sdkp->device->manage_start_stop) {
3565 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3566 /* an error is not worth aborting a system sleep */
3567 ret = sd_start_stop_device(sdkp, 0);
3568 if (ignore_stop_errors)
3569 ret = 0;
3570 }
3571
3572 return ret;
3573 }
3574
3575 static int sd_suspend_system(struct device *dev)
3576 {
3577 return sd_suspend_common(dev, true);
3578 }
3579
3580 static int sd_suspend_runtime(struct device *dev)
3581 {
3582 return sd_suspend_common(dev, false);
3583 }
3584
3585 static int sd_resume(struct device *dev)
3586 {
3587 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3588 int ret;
3589
3590 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3591 return 0;
3592
3593 if (!sdkp->device->manage_start_stop)
3594 return 0;
3595
3596 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3597 ret = sd_start_stop_device(sdkp, 1);
3598 if (!ret)
3599 opal_unlock_from_suspend(sdkp->opal_dev);
3600 return ret;
3601 }
3602
3603 /**
3604 * init_sd - entry point for this driver (both when built in or when
3605 * a module).
3606 *
3607 * Note: this function registers this driver with the scsi mid-level.
3608 **/
3609 static int __init init_sd(void)
3610 {
3611 int majors = 0, i, err;
3612
3613 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3614
3615 for (i = 0; i < SD_MAJORS; i++) {
3616 if (register_blkdev(sd_major(i), "sd") != 0)
3617 continue;
3618 majors++;
3619 blk_register_region(sd_major(i), SD_MINORS, NULL,
3620 sd_default_probe, NULL, NULL);
3621 }
3622
3623 if (!majors)
3624 return -ENODEV;
3625
3626 err = class_register(&sd_disk_class);
3627 if (err)
3628 goto err_out;
3629
3630 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3631 0, 0, NULL);
3632 if (!sd_cdb_cache) {
3633 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3634 err = -ENOMEM;
3635 goto err_out_class;
3636 }
3637
3638 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3639 if (!sd_cdb_pool) {
3640 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3641 err = -ENOMEM;
3642 goto err_out_cache;
3643 }
3644
3645 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3646 if (!sd_page_pool) {
3647 printk(KERN_ERR "sd: can't init discard page pool\n");
3648 err = -ENOMEM;
3649 goto err_out_ppool;
3650 }
3651
3652 err = scsi_register_driver(&sd_template.gendrv);
3653 if (err)
3654 goto err_out_driver;
3655
3656 return 0;
3657
3658 err_out_driver:
3659 mempool_destroy(sd_page_pool);
3660
3661 err_out_ppool:
3662 mempool_destroy(sd_cdb_pool);
3663
3664 err_out_cache:
3665 kmem_cache_destroy(sd_cdb_cache);
3666
3667 err_out_class:
3668 class_unregister(&sd_disk_class);
3669 err_out:
3670 for (i = 0; i < SD_MAJORS; i++)
3671 unregister_blkdev(sd_major(i), "sd");
3672 return err;
3673 }
3674
3675 /**
3676 * exit_sd - exit point for this driver (when it is a module).
3677 *
3678 * Note: this function unregisters this driver from the scsi mid-level.
3679 **/
3680 static void __exit exit_sd(void)
3681 {
3682 int i;
3683
3684 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3685
3686 scsi_unregister_driver(&sd_template.gendrv);
3687 mempool_destroy(sd_cdb_pool);
3688 mempool_destroy(sd_page_pool);
3689 kmem_cache_destroy(sd_cdb_cache);
3690
3691 class_unregister(&sd_disk_class);
3692
3693 for (i = 0; i < SD_MAJORS; i++) {
3694 blk_unregister_region(sd_major(i), SD_MINORS);
3695 unregister_blkdev(sd_major(i), "sd");
3696 }
3697 }
3698
3699 module_init(init_sd);
3700 module_exit(exit_sd);
3701
3702 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3703 struct scsi_sense_hdr *sshdr)
3704 {
3705 scsi_print_sense_hdr(sdkp->device,
3706 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3707 }
3708
3709 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3710 int result)
3711 {
3712 const char *hb_string = scsi_hostbyte_string(result);
3713 const char *db_string = scsi_driverbyte_string(result);
3714
3715 if (hb_string || db_string)
3716 sd_printk(KERN_INFO, sdkp,
3717 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3718 hb_string ? hb_string : "invalid",
3719 db_string ? db_string : "invalid");
3720 else
3721 sd_printk(KERN_INFO, sdkp,
3722 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3723 msg, host_byte(result), driver_byte(result));
3724 }
3725