]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/sd.c
block: convert to device_add_disk()
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <asm/uaccess.h>
56 #include <asm/unaligned.h>
57
58 #include <scsi/scsi.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_dbg.h>
61 #include <scsi/scsi_device.h>
62 #include <scsi/scsi_driver.h>
63 #include <scsi/scsi_eh.h>
64 #include <scsi/scsi_host.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsicam.h>
67
68 #include "sd.h"
69 #include "scsi_priv.h"
70 #include "scsi_logging.h"
71
72 MODULE_AUTHOR("Eric Youngdale");
73 MODULE_DESCRIPTION("SCSI disk (sd) driver");
74 MODULE_LICENSE("GPL");
75
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
95
96 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
97 #define SD_MINORS 16
98 #else
99 #define SD_MINORS 0
100 #endif
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int sd_probe(struct device *);
107 static int sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume(struct device *);
112 static void sd_rescan(struct device *);
113 static int sd_init_command(struct scsi_cmnd *SCpnt);
114 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
115 static int sd_done(struct scsi_cmnd *);
116 static int sd_eh_action(struct scsi_cmnd *, int);
117 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
118 static void scsi_disk_release(struct device *cdev);
119 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
120 static void sd_print_result(const struct scsi_disk *, const char *, int);
121
122 static DEFINE_SPINLOCK(sd_index_lock);
123 static DEFINE_IDA(sd_index_ida);
124
125 /* This semaphore is used to mediate the 0->1 reference get in the
126 * face of object destruction (i.e. we can't allow a get on an
127 * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
129
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132
133 static const char *sd_cache_types[] = {
134 "write through", "none", "write back",
135 "write back, no read (daft)"
136 };
137
138 static void sd_set_flush_flag(struct scsi_disk *sdkp)
139 {
140 bool wc = false, fua = false;
141
142 if (sdkp->WCE) {
143 wc = true;
144 if (sdkp->DPOFUA)
145 fua = true;
146 }
147
148 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
149 }
150
151 static ssize_t
152 cache_type_store(struct device *dev, struct device_attribute *attr,
153 const char *buf, size_t count)
154 {
155 int i, ct = -1, rcd, wce, sp;
156 struct scsi_disk *sdkp = to_scsi_disk(dev);
157 struct scsi_device *sdp = sdkp->device;
158 char buffer[64];
159 char *buffer_data;
160 struct scsi_mode_data data;
161 struct scsi_sense_hdr sshdr;
162 static const char temp[] = "temporary ";
163 int len;
164
165 if (sdp->type != TYPE_DISK)
166 /* no cache control on RBC devices; theoretically they
167 * can do it, but there's probably so many exceptions
168 * it's not worth the risk */
169 return -EINVAL;
170
171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
172 buf += sizeof(temp) - 1;
173 sdkp->cache_override = 1;
174 } else {
175 sdkp->cache_override = 0;
176 }
177
178 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
179 len = strlen(sd_cache_types[i]);
180 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
181 buf[len] == '\n') {
182 ct = i;
183 break;
184 }
185 }
186 if (ct < 0)
187 return -EINVAL;
188 rcd = ct & 0x01 ? 1 : 0;
189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190
191 if (sdkp->cache_override) {
192 sdkp->WCE = wce;
193 sdkp->RCD = rcd;
194 sd_set_flush_flag(sdkp);
195 return count;
196 }
197
198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199 SD_MAX_RETRIES, &data, NULL))
200 return -EINVAL;
201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202 data.block_descriptor_length);
203 buffer_data = buffer + data.header_length +
204 data.block_descriptor_length;
205 buffer_data[2] &= ~0x05;
206 buffer_data[2] |= wce << 2 | rcd;
207 sp = buffer_data[0] & 0x80 ? 1 : 0;
208 buffer_data[0] &= ~0x80;
209
210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
211 SD_MAX_RETRIES, &data, &sshdr)) {
212 if (scsi_sense_valid(&sshdr))
213 sd_print_sense_hdr(sdkp, &sshdr);
214 return -EINVAL;
215 }
216 revalidate_disk(sdkp->disk);
217 return count;
218 }
219
220 static ssize_t
221 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
222 char *buf)
223 {
224 struct scsi_disk *sdkp = to_scsi_disk(dev);
225 struct scsi_device *sdp = sdkp->device;
226
227 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
228 }
229
230 static ssize_t
231 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
232 const char *buf, size_t count)
233 {
234 struct scsi_disk *sdkp = to_scsi_disk(dev);
235 struct scsi_device *sdp = sdkp->device;
236
237 if (!capable(CAP_SYS_ADMIN))
238 return -EACCES;
239
240 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
241
242 return count;
243 }
244 static DEVICE_ATTR_RW(manage_start_stop);
245
246 static ssize_t
247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
248 {
249 struct scsi_disk *sdkp = to_scsi_disk(dev);
250
251 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
252 }
253
254 static ssize_t
255 allow_restart_store(struct device *dev, struct device_attribute *attr,
256 const char *buf, size_t count)
257 {
258 struct scsi_disk *sdkp = to_scsi_disk(dev);
259 struct scsi_device *sdp = sdkp->device;
260
261 if (!capable(CAP_SYS_ADMIN))
262 return -EACCES;
263
264 if (sdp->type != TYPE_DISK)
265 return -EINVAL;
266
267 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
268
269 return count;
270 }
271 static DEVICE_ATTR_RW(allow_restart);
272
273 static ssize_t
274 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
275 {
276 struct scsi_disk *sdkp = to_scsi_disk(dev);
277 int ct = sdkp->RCD + 2*sdkp->WCE;
278
279 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
280 }
281 static DEVICE_ATTR_RW(cache_type);
282
283 static ssize_t
284 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
285 {
286 struct scsi_disk *sdkp = to_scsi_disk(dev);
287
288 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
289 }
290 static DEVICE_ATTR_RO(FUA);
291
292 static ssize_t
293 protection_type_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295 {
296 struct scsi_disk *sdkp = to_scsi_disk(dev);
297
298 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
299 }
300
301 static ssize_t
302 protection_type_store(struct device *dev, struct device_attribute *attr,
303 const char *buf, size_t count)
304 {
305 struct scsi_disk *sdkp = to_scsi_disk(dev);
306 unsigned int val;
307 int err;
308
309 if (!capable(CAP_SYS_ADMIN))
310 return -EACCES;
311
312 err = kstrtouint(buf, 10, &val);
313
314 if (err)
315 return err;
316
317 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
318 sdkp->protection_type = val;
319
320 return count;
321 }
322 static DEVICE_ATTR_RW(protection_type);
323
324 static ssize_t
325 protection_mode_show(struct device *dev, struct device_attribute *attr,
326 char *buf)
327 {
328 struct scsi_disk *sdkp = to_scsi_disk(dev);
329 struct scsi_device *sdp = sdkp->device;
330 unsigned int dif, dix;
331
332 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
333 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
334
335 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
336 dif = 0;
337 dix = 1;
338 }
339
340 if (!dif && !dix)
341 return snprintf(buf, 20, "none\n");
342
343 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
344 }
345 static DEVICE_ATTR_RO(protection_mode);
346
347 static ssize_t
348 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
349 {
350 struct scsi_disk *sdkp = to_scsi_disk(dev);
351
352 return snprintf(buf, 20, "%u\n", sdkp->ATO);
353 }
354 static DEVICE_ATTR_RO(app_tag_own);
355
356 static ssize_t
357 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
358 char *buf)
359 {
360 struct scsi_disk *sdkp = to_scsi_disk(dev);
361
362 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
363 }
364 static DEVICE_ATTR_RO(thin_provisioning);
365
366 static const char *lbp_mode[] = {
367 [SD_LBP_FULL] = "full",
368 [SD_LBP_UNMAP] = "unmap",
369 [SD_LBP_WS16] = "writesame_16",
370 [SD_LBP_WS10] = "writesame_10",
371 [SD_LBP_ZERO] = "writesame_zero",
372 [SD_LBP_DISABLE] = "disabled",
373 };
374
375 static ssize_t
376 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
377 char *buf)
378 {
379 struct scsi_disk *sdkp = to_scsi_disk(dev);
380
381 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
382 }
383
384 static ssize_t
385 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
386 const char *buf, size_t count)
387 {
388 struct scsi_disk *sdkp = to_scsi_disk(dev);
389 struct scsi_device *sdp = sdkp->device;
390
391 if (!capable(CAP_SYS_ADMIN))
392 return -EACCES;
393
394 if (sdp->type != TYPE_DISK)
395 return -EINVAL;
396
397 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
398 sd_config_discard(sdkp, SD_LBP_UNMAP);
399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
400 sd_config_discard(sdkp, SD_LBP_WS16);
401 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
402 sd_config_discard(sdkp, SD_LBP_WS10);
403 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
404 sd_config_discard(sdkp, SD_LBP_ZERO);
405 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
406 sd_config_discard(sdkp, SD_LBP_DISABLE);
407 else
408 return -EINVAL;
409
410 return count;
411 }
412 static DEVICE_ATTR_RW(provisioning_mode);
413
414 static ssize_t
415 max_medium_access_timeouts_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
417 {
418 struct scsi_disk *sdkp = to_scsi_disk(dev);
419
420 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
421 }
422
423 static ssize_t
424 max_medium_access_timeouts_store(struct device *dev,
425 struct device_attribute *attr, const char *buf,
426 size_t count)
427 {
428 struct scsi_disk *sdkp = to_scsi_disk(dev);
429 int err;
430
431 if (!capable(CAP_SYS_ADMIN))
432 return -EACCES;
433
434 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
435
436 return err ? err : count;
437 }
438 static DEVICE_ATTR_RW(max_medium_access_timeouts);
439
440 static ssize_t
441 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
442 char *buf)
443 {
444 struct scsi_disk *sdkp = to_scsi_disk(dev);
445
446 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
447 }
448
449 static ssize_t
450 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
451 const char *buf, size_t count)
452 {
453 struct scsi_disk *sdkp = to_scsi_disk(dev);
454 struct scsi_device *sdp = sdkp->device;
455 unsigned long max;
456 int err;
457
458 if (!capable(CAP_SYS_ADMIN))
459 return -EACCES;
460
461 if (sdp->type != TYPE_DISK)
462 return -EINVAL;
463
464 err = kstrtoul(buf, 10, &max);
465
466 if (err)
467 return err;
468
469 if (max == 0)
470 sdp->no_write_same = 1;
471 else if (max <= SD_MAX_WS16_BLOCKS) {
472 sdp->no_write_same = 0;
473 sdkp->max_ws_blocks = max;
474 }
475
476 sd_config_write_same(sdkp);
477
478 return count;
479 }
480 static DEVICE_ATTR_RW(max_write_same_blocks);
481
482 static struct attribute *sd_disk_attrs[] = {
483 &dev_attr_cache_type.attr,
484 &dev_attr_FUA.attr,
485 &dev_attr_allow_restart.attr,
486 &dev_attr_manage_start_stop.attr,
487 &dev_attr_protection_type.attr,
488 &dev_attr_protection_mode.attr,
489 &dev_attr_app_tag_own.attr,
490 &dev_attr_thin_provisioning.attr,
491 &dev_attr_provisioning_mode.attr,
492 &dev_attr_max_write_same_blocks.attr,
493 &dev_attr_max_medium_access_timeouts.attr,
494 NULL,
495 };
496 ATTRIBUTE_GROUPS(sd_disk);
497
498 static struct class sd_disk_class = {
499 .name = "scsi_disk",
500 .owner = THIS_MODULE,
501 .dev_release = scsi_disk_release,
502 .dev_groups = sd_disk_groups,
503 };
504
505 static const struct dev_pm_ops sd_pm_ops = {
506 .suspend = sd_suspend_system,
507 .resume = sd_resume,
508 .poweroff = sd_suspend_system,
509 .restore = sd_resume,
510 .runtime_suspend = sd_suspend_runtime,
511 .runtime_resume = sd_resume,
512 };
513
514 static struct scsi_driver sd_template = {
515 .gendrv = {
516 .name = "sd",
517 .owner = THIS_MODULE,
518 .probe = sd_probe,
519 .remove = sd_remove,
520 .shutdown = sd_shutdown,
521 .pm = &sd_pm_ops,
522 },
523 .rescan = sd_rescan,
524 .init_command = sd_init_command,
525 .uninit_command = sd_uninit_command,
526 .done = sd_done,
527 .eh_action = sd_eh_action,
528 };
529
530 /*
531 * Dummy kobj_map->probe function.
532 * The default ->probe function will call modprobe, which is
533 * pointless as this module is already loaded.
534 */
535 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
536 {
537 return NULL;
538 }
539
540 /*
541 * Device no to disk mapping:
542 *
543 * major disc2 disc p1
544 * |............|.............|....|....| <- dev_t
545 * 31 20 19 8 7 4 3 0
546 *
547 * Inside a major, we have 16k disks, however mapped non-
548 * contiguously. The first 16 disks are for major0, the next
549 * ones with major1, ... Disk 256 is for major0 again, disk 272
550 * for major1, ...
551 * As we stay compatible with our numbering scheme, we can reuse
552 * the well-know SCSI majors 8, 65--71, 136--143.
553 */
554 static int sd_major(int major_idx)
555 {
556 switch (major_idx) {
557 case 0:
558 return SCSI_DISK0_MAJOR;
559 case 1 ... 7:
560 return SCSI_DISK1_MAJOR + major_idx - 1;
561 case 8 ... 15:
562 return SCSI_DISK8_MAJOR + major_idx - 8;
563 default:
564 BUG();
565 return 0; /* shut up gcc */
566 }
567 }
568
569 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
570 {
571 struct scsi_disk *sdkp = NULL;
572
573 mutex_lock(&sd_ref_mutex);
574
575 if (disk->private_data) {
576 sdkp = scsi_disk(disk);
577 if (scsi_device_get(sdkp->device) == 0)
578 get_device(&sdkp->dev);
579 else
580 sdkp = NULL;
581 }
582 mutex_unlock(&sd_ref_mutex);
583 return sdkp;
584 }
585
586 static void scsi_disk_put(struct scsi_disk *sdkp)
587 {
588 struct scsi_device *sdev = sdkp->device;
589
590 mutex_lock(&sd_ref_mutex);
591 put_device(&sdkp->dev);
592 scsi_device_put(sdev);
593 mutex_unlock(&sd_ref_mutex);
594 }
595
596 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
597 unsigned int dix, unsigned int dif)
598 {
599 struct bio *bio = scmd->request->bio;
600 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
601 unsigned int protect = 0;
602
603 if (dix) { /* DIX Type 0, 1, 2, 3 */
604 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
605 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
606
607 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
608 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
609 }
610
611 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
612 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
613
614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
615 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
616 }
617
618 if (dif) { /* DIX/DIF Type 1, 2, 3 */
619 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
620
621 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
622 protect = 3 << 5; /* Disable target PI checking */
623 else
624 protect = 1 << 5; /* Enable target PI checking */
625 }
626
627 scsi_set_prot_op(scmd, prot_op);
628 scsi_set_prot_type(scmd, dif);
629 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
630
631 return protect;
632 }
633
634 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
635 {
636 struct request_queue *q = sdkp->disk->queue;
637 unsigned int logical_block_size = sdkp->device->sector_size;
638 unsigned int max_blocks = 0;
639
640 q->limits.discard_zeroes_data = 0;
641
642 /*
643 * When LBPRZ is reported, discard alignment and granularity
644 * must be fixed to the logical block size. Otherwise the block
645 * layer will drop misaligned portions of the request which can
646 * lead to data corruption. If LBPRZ is not set, we honor the
647 * device preference.
648 */
649 if (sdkp->lbprz) {
650 q->limits.discard_alignment = 0;
651 q->limits.discard_granularity = logical_block_size;
652 } else {
653 q->limits.discard_alignment = sdkp->unmap_alignment *
654 logical_block_size;
655 q->limits.discard_granularity =
656 max(sdkp->physical_block_size,
657 sdkp->unmap_granularity * logical_block_size);
658 }
659
660 sdkp->provisioning_mode = mode;
661
662 switch (mode) {
663
664 case SD_LBP_DISABLE:
665 blk_queue_max_discard_sectors(q, 0);
666 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
667 return;
668
669 case SD_LBP_UNMAP:
670 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
671 (u32)SD_MAX_WS16_BLOCKS);
672 break;
673
674 case SD_LBP_WS16:
675 max_blocks = min_not_zero(sdkp->max_ws_blocks,
676 (u32)SD_MAX_WS16_BLOCKS);
677 q->limits.discard_zeroes_data = sdkp->lbprz;
678 break;
679
680 case SD_LBP_WS10:
681 max_blocks = min_not_zero(sdkp->max_ws_blocks,
682 (u32)SD_MAX_WS10_BLOCKS);
683 q->limits.discard_zeroes_data = sdkp->lbprz;
684 break;
685
686 case SD_LBP_ZERO:
687 max_blocks = min_not_zero(sdkp->max_ws_blocks,
688 (u32)SD_MAX_WS10_BLOCKS);
689 q->limits.discard_zeroes_data = 1;
690 break;
691 }
692
693 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
694 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
695 }
696
697 /**
698 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
699 * @sdp: scsi device to operate one
700 * @rq: Request to prepare
701 *
702 * Will issue either UNMAP or WRITE SAME(16) depending on preference
703 * indicated by target device.
704 **/
705 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
706 {
707 struct request *rq = cmd->request;
708 struct scsi_device *sdp = cmd->device;
709 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
710 sector_t sector = blk_rq_pos(rq);
711 unsigned int nr_sectors = blk_rq_sectors(rq);
712 unsigned int nr_bytes = blk_rq_bytes(rq);
713 unsigned int len;
714 int ret;
715 char *buf;
716 struct page *page;
717
718 sector >>= ilog2(sdp->sector_size) - 9;
719 nr_sectors >>= ilog2(sdp->sector_size) - 9;
720
721 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
722 if (!page)
723 return BLKPREP_DEFER;
724
725 switch (sdkp->provisioning_mode) {
726 case SD_LBP_UNMAP:
727 buf = page_address(page);
728
729 cmd->cmd_len = 10;
730 cmd->cmnd[0] = UNMAP;
731 cmd->cmnd[8] = 24;
732
733 put_unaligned_be16(6 + 16, &buf[0]);
734 put_unaligned_be16(16, &buf[2]);
735 put_unaligned_be64(sector, &buf[8]);
736 put_unaligned_be32(nr_sectors, &buf[16]);
737
738 len = 24;
739 break;
740
741 case SD_LBP_WS16:
742 cmd->cmd_len = 16;
743 cmd->cmnd[0] = WRITE_SAME_16;
744 cmd->cmnd[1] = 0x8; /* UNMAP */
745 put_unaligned_be64(sector, &cmd->cmnd[2]);
746 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
747
748 len = sdkp->device->sector_size;
749 break;
750
751 case SD_LBP_WS10:
752 case SD_LBP_ZERO:
753 cmd->cmd_len = 10;
754 cmd->cmnd[0] = WRITE_SAME;
755 if (sdkp->provisioning_mode == SD_LBP_WS10)
756 cmd->cmnd[1] = 0x8; /* UNMAP */
757 put_unaligned_be32(sector, &cmd->cmnd[2]);
758 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
759
760 len = sdkp->device->sector_size;
761 break;
762
763 default:
764 ret = BLKPREP_INVALID;
765 goto out;
766 }
767
768 rq->completion_data = page;
769 rq->timeout = SD_TIMEOUT;
770
771 cmd->transfersize = len;
772 cmd->allowed = SD_MAX_RETRIES;
773
774 /*
775 * Initially __data_len is set to the amount of data that needs to be
776 * transferred to the target. This amount depends on whether WRITE SAME
777 * or UNMAP is being used. After the scatterlist has been mapped by
778 * scsi_init_io() we set __data_len to the size of the area to be
779 * discarded on disk. This allows us to report completion on the full
780 * amount of blocks described by the request.
781 */
782 blk_add_request_payload(rq, page, 0, len);
783 ret = scsi_init_io(cmd);
784 rq->__data_len = nr_bytes;
785
786 out:
787 if (ret != BLKPREP_OK)
788 __free_page(page);
789 return ret;
790 }
791
792 static void sd_config_write_same(struct scsi_disk *sdkp)
793 {
794 struct request_queue *q = sdkp->disk->queue;
795 unsigned int logical_block_size = sdkp->device->sector_size;
796
797 if (sdkp->device->no_write_same) {
798 sdkp->max_ws_blocks = 0;
799 goto out;
800 }
801
802 /* Some devices can not handle block counts above 0xffff despite
803 * supporting WRITE SAME(16). Consequently we default to 64k
804 * blocks per I/O unless the device explicitly advertises a
805 * bigger limit.
806 */
807 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
808 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
809 (u32)SD_MAX_WS16_BLOCKS);
810 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
811 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
812 (u32)SD_MAX_WS10_BLOCKS);
813 else {
814 sdkp->device->no_write_same = 1;
815 sdkp->max_ws_blocks = 0;
816 }
817
818 out:
819 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
820 (logical_block_size >> 9));
821 }
822
823 /**
824 * sd_setup_write_same_cmnd - write the same data to multiple blocks
825 * @cmd: command to prepare
826 *
827 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
828 * preference indicated by target device.
829 **/
830 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
831 {
832 struct request *rq = cmd->request;
833 struct scsi_device *sdp = cmd->device;
834 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
835 struct bio *bio = rq->bio;
836 sector_t sector = blk_rq_pos(rq);
837 unsigned int nr_sectors = blk_rq_sectors(rq);
838 unsigned int nr_bytes = blk_rq_bytes(rq);
839 int ret;
840
841 if (sdkp->device->no_write_same)
842 return BLKPREP_INVALID;
843
844 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
845
846 sector >>= ilog2(sdp->sector_size) - 9;
847 nr_sectors >>= ilog2(sdp->sector_size) - 9;
848
849 rq->timeout = SD_WRITE_SAME_TIMEOUT;
850
851 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
852 cmd->cmd_len = 16;
853 cmd->cmnd[0] = WRITE_SAME_16;
854 put_unaligned_be64(sector, &cmd->cmnd[2]);
855 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
856 } else {
857 cmd->cmd_len = 10;
858 cmd->cmnd[0] = WRITE_SAME;
859 put_unaligned_be32(sector, &cmd->cmnd[2]);
860 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
861 }
862
863 cmd->transfersize = sdp->sector_size;
864 cmd->allowed = SD_MAX_RETRIES;
865
866 /*
867 * For WRITE_SAME the data transferred in the DATA IN buffer is
868 * different from the amount of data actually written to the target.
869 *
870 * We set up __data_len to the amount of data transferred from the
871 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
872 * to transfer a single sector of data first, but then reset it to
873 * the amount of data to be written right after so that the I/O path
874 * knows how much to actually write.
875 */
876 rq->__data_len = sdp->sector_size;
877 ret = scsi_init_io(cmd);
878 rq->__data_len = nr_bytes;
879 return ret;
880 }
881
882 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
883 {
884 struct request *rq = cmd->request;
885
886 /* flush requests don't perform I/O, zero the S/G table */
887 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
888
889 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
890 cmd->cmd_len = 10;
891 cmd->transfersize = 0;
892 cmd->allowed = SD_MAX_RETRIES;
893
894 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
895 return BLKPREP_OK;
896 }
897
898 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
899 {
900 struct request *rq = SCpnt->request;
901 struct scsi_device *sdp = SCpnt->device;
902 struct gendisk *disk = rq->rq_disk;
903 struct scsi_disk *sdkp;
904 sector_t block = blk_rq_pos(rq);
905 sector_t threshold;
906 unsigned int this_count = blk_rq_sectors(rq);
907 unsigned int dif, dix;
908 int ret;
909 unsigned char protect;
910
911 ret = scsi_init_io(SCpnt);
912 if (ret != BLKPREP_OK)
913 goto out;
914 SCpnt = rq->special;
915 sdkp = scsi_disk(disk);
916
917 /* from here on until we're complete, any goto out
918 * is used for a killable error condition */
919 ret = BLKPREP_KILL;
920
921 SCSI_LOG_HLQUEUE(1,
922 scmd_printk(KERN_INFO, SCpnt,
923 "%s: block=%llu, count=%d\n",
924 __func__, (unsigned long long)block, this_count));
925
926 if (!sdp || !scsi_device_online(sdp) ||
927 block + blk_rq_sectors(rq) > get_capacity(disk)) {
928 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
929 "Finishing %u sectors\n",
930 blk_rq_sectors(rq)));
931 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
932 "Retry with 0x%p\n", SCpnt));
933 goto out;
934 }
935
936 if (sdp->changed) {
937 /*
938 * quietly refuse to do anything to a changed disc until
939 * the changed bit has been reset
940 */
941 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
942 goto out;
943 }
944
945 /*
946 * Some SD card readers can't handle multi-sector accesses which touch
947 * the last one or two hardware sectors. Split accesses as needed.
948 */
949 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
950 (sdp->sector_size / 512);
951
952 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
953 if (block < threshold) {
954 /* Access up to the threshold but not beyond */
955 this_count = threshold - block;
956 } else {
957 /* Access only a single hardware sector */
958 this_count = sdp->sector_size / 512;
959 }
960 }
961
962 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
963 (unsigned long long)block));
964
965 /*
966 * If we have a 1K hardware sectorsize, prevent access to single
967 * 512 byte sectors. In theory we could handle this - in fact
968 * the scsi cdrom driver must be able to handle this because
969 * we typically use 1K blocksizes, and cdroms typically have
970 * 2K hardware sectorsizes. Of course, things are simpler
971 * with the cdrom, since it is read-only. For performance
972 * reasons, the filesystems should be able to handle this
973 * and not force the scsi disk driver to use bounce buffers
974 * for this.
975 */
976 if (sdp->sector_size == 1024) {
977 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
978 scmd_printk(KERN_ERR, SCpnt,
979 "Bad block number requested\n");
980 goto out;
981 } else {
982 block = block >> 1;
983 this_count = this_count >> 1;
984 }
985 }
986 if (sdp->sector_size == 2048) {
987 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
988 scmd_printk(KERN_ERR, SCpnt,
989 "Bad block number requested\n");
990 goto out;
991 } else {
992 block = block >> 2;
993 this_count = this_count >> 2;
994 }
995 }
996 if (sdp->sector_size == 4096) {
997 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
998 scmd_printk(KERN_ERR, SCpnt,
999 "Bad block number requested\n");
1000 goto out;
1001 } else {
1002 block = block >> 3;
1003 this_count = this_count >> 3;
1004 }
1005 }
1006 if (rq_data_dir(rq) == WRITE) {
1007 SCpnt->cmnd[0] = WRITE_6;
1008
1009 if (blk_integrity_rq(rq))
1010 sd_dif_prepare(SCpnt);
1011
1012 } else if (rq_data_dir(rq) == READ) {
1013 SCpnt->cmnd[0] = READ_6;
1014 } else {
1015 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llu,%llx\n",
1016 req_op(rq), (unsigned long long) rq->cmd_flags);
1017 goto out;
1018 }
1019
1020 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1021 "%s %d/%u 512 byte blocks.\n",
1022 (rq_data_dir(rq) == WRITE) ?
1023 "writing" : "reading", this_count,
1024 blk_rq_sectors(rq)));
1025
1026 dix = scsi_prot_sg_count(SCpnt);
1027 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1028
1029 if (dif || dix)
1030 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1031 else
1032 protect = 0;
1033
1034 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1035 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1036
1037 if (unlikely(SCpnt->cmnd == NULL)) {
1038 ret = BLKPREP_DEFER;
1039 goto out;
1040 }
1041
1042 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1043 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1044 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1045 SCpnt->cmnd[7] = 0x18;
1046 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1047 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1048
1049 /* LBA */
1050 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1051 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1052 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1053 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1054 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1055 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1056 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1057 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1058
1059 /* Expected Indirect LBA */
1060 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1061 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1062 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1063 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1064
1065 /* Transfer length */
1066 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1067 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1068 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1069 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1070 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1071 SCpnt->cmnd[0] += READ_16 - READ_6;
1072 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1073 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1074 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1075 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1076 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1077 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1078 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1079 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1080 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1081 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1082 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1083 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1084 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1085 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1086 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1087 scsi_device_protection(SCpnt->device) ||
1088 SCpnt->device->use_10_for_rw) {
1089 SCpnt->cmnd[0] += READ_10 - READ_6;
1090 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1091 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1092 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1093 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1094 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1095 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1096 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1097 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1098 } else {
1099 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1100 /*
1101 * This happens only if this drive failed
1102 * 10byte rw command with ILLEGAL_REQUEST
1103 * during operation and thus turned off
1104 * use_10_for_rw.
1105 */
1106 scmd_printk(KERN_ERR, SCpnt,
1107 "FUA write on READ/WRITE(6) drive\n");
1108 goto out;
1109 }
1110
1111 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1112 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1113 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1114 SCpnt->cmnd[4] = (unsigned char) this_count;
1115 SCpnt->cmnd[5] = 0;
1116 }
1117 SCpnt->sdb.length = this_count * sdp->sector_size;
1118
1119 /*
1120 * We shouldn't disconnect in the middle of a sector, so with a dumb
1121 * host adapter, it's safe to assume that we can at least transfer
1122 * this many bytes between each connect / disconnect.
1123 */
1124 SCpnt->transfersize = sdp->sector_size;
1125 SCpnt->underflow = this_count << 9;
1126 SCpnt->allowed = SD_MAX_RETRIES;
1127
1128 /*
1129 * This indicates that the command is ready from our end to be
1130 * queued.
1131 */
1132 ret = BLKPREP_OK;
1133 out:
1134 return ret;
1135 }
1136
1137 static int sd_init_command(struct scsi_cmnd *cmd)
1138 {
1139 struct request *rq = cmd->request;
1140
1141 switch (req_op(rq)) {
1142 case REQ_OP_DISCARD:
1143 return sd_setup_discard_cmnd(cmd);
1144 case REQ_OP_WRITE_SAME:
1145 return sd_setup_write_same_cmnd(cmd);
1146 case REQ_OP_FLUSH:
1147 return sd_setup_flush_cmnd(cmd);
1148 case REQ_OP_READ:
1149 case REQ_OP_WRITE:
1150 return sd_setup_read_write_cmnd(cmd);
1151 default:
1152 BUG();
1153 }
1154 }
1155
1156 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1157 {
1158 struct request *rq = SCpnt->request;
1159
1160 if (req_op(rq) == REQ_OP_DISCARD)
1161 __free_page(rq->completion_data);
1162
1163 if (SCpnt->cmnd != rq->cmd) {
1164 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1165 SCpnt->cmnd = NULL;
1166 SCpnt->cmd_len = 0;
1167 }
1168 }
1169
1170 /**
1171 * sd_open - open a scsi disk device
1172 * @inode: only i_rdev member may be used
1173 * @filp: only f_mode and f_flags may be used
1174 *
1175 * Returns 0 if successful. Returns a negated errno value in case
1176 * of error.
1177 *
1178 * Note: This can be called from a user context (e.g. fsck(1) )
1179 * or from within the kernel (e.g. as a result of a mount(1) ).
1180 * In the latter case @inode and @filp carry an abridged amount
1181 * of information as noted above.
1182 *
1183 * Locking: called with bdev->bd_mutex held.
1184 **/
1185 static int sd_open(struct block_device *bdev, fmode_t mode)
1186 {
1187 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1188 struct scsi_device *sdev;
1189 int retval;
1190
1191 if (!sdkp)
1192 return -ENXIO;
1193
1194 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1195
1196 sdev = sdkp->device;
1197
1198 /*
1199 * If the device is in error recovery, wait until it is done.
1200 * If the device is offline, then disallow any access to it.
1201 */
1202 retval = -ENXIO;
1203 if (!scsi_block_when_processing_errors(sdev))
1204 goto error_out;
1205
1206 if (sdev->removable || sdkp->write_prot)
1207 check_disk_change(bdev);
1208
1209 /*
1210 * If the drive is empty, just let the open fail.
1211 */
1212 retval = -ENOMEDIUM;
1213 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1214 goto error_out;
1215
1216 /*
1217 * If the device has the write protect tab set, have the open fail
1218 * if the user expects to be able to write to the thing.
1219 */
1220 retval = -EROFS;
1221 if (sdkp->write_prot && (mode & FMODE_WRITE))
1222 goto error_out;
1223
1224 /*
1225 * It is possible that the disk changing stuff resulted in
1226 * the device being taken offline. If this is the case,
1227 * report this to the user, and don't pretend that the
1228 * open actually succeeded.
1229 */
1230 retval = -ENXIO;
1231 if (!scsi_device_online(sdev))
1232 goto error_out;
1233
1234 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1235 if (scsi_block_when_processing_errors(sdev))
1236 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1237 }
1238
1239 return 0;
1240
1241 error_out:
1242 scsi_disk_put(sdkp);
1243 return retval;
1244 }
1245
1246 /**
1247 * sd_release - invoked when the (last) close(2) is called on this
1248 * scsi disk.
1249 * @inode: only i_rdev member may be used
1250 * @filp: only f_mode and f_flags may be used
1251 *
1252 * Returns 0.
1253 *
1254 * Note: may block (uninterruptible) if error recovery is underway
1255 * on this disk.
1256 *
1257 * Locking: called with bdev->bd_mutex held.
1258 **/
1259 static void sd_release(struct gendisk *disk, fmode_t mode)
1260 {
1261 struct scsi_disk *sdkp = scsi_disk(disk);
1262 struct scsi_device *sdev = sdkp->device;
1263
1264 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1265
1266 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1267 if (scsi_block_when_processing_errors(sdev))
1268 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1269 }
1270
1271 /*
1272 * XXX and what if there are packets in flight and this close()
1273 * XXX is followed by a "rmmod sd_mod"?
1274 */
1275
1276 scsi_disk_put(sdkp);
1277 }
1278
1279 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1280 {
1281 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1282 struct scsi_device *sdp = sdkp->device;
1283 struct Scsi_Host *host = sdp->host;
1284 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1285 int diskinfo[4];
1286
1287 /* default to most commonly used values */
1288 diskinfo[0] = 0x40; /* 1 << 6 */
1289 diskinfo[1] = 0x20; /* 1 << 5 */
1290 diskinfo[2] = capacity >> 11;
1291
1292 /* override with calculated, extended default, or driver values */
1293 if (host->hostt->bios_param)
1294 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1295 else
1296 scsicam_bios_param(bdev, capacity, diskinfo);
1297
1298 geo->heads = diskinfo[0];
1299 geo->sectors = diskinfo[1];
1300 geo->cylinders = diskinfo[2];
1301 return 0;
1302 }
1303
1304 /**
1305 * sd_ioctl - process an ioctl
1306 * @inode: only i_rdev/i_bdev members may be used
1307 * @filp: only f_mode and f_flags may be used
1308 * @cmd: ioctl command number
1309 * @arg: this is third argument given to ioctl(2) system call.
1310 * Often contains a pointer.
1311 *
1312 * Returns 0 if successful (some ioctls return positive numbers on
1313 * success as well). Returns a negated errno value in case of error.
1314 *
1315 * Note: most ioctls are forward onto the block subsystem or further
1316 * down in the scsi subsystem.
1317 **/
1318 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1319 unsigned int cmd, unsigned long arg)
1320 {
1321 struct gendisk *disk = bdev->bd_disk;
1322 struct scsi_disk *sdkp = scsi_disk(disk);
1323 struct scsi_device *sdp = sdkp->device;
1324 void __user *p = (void __user *)arg;
1325 int error;
1326
1327 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1328 "cmd=0x%x\n", disk->disk_name, cmd));
1329
1330 error = scsi_verify_blk_ioctl(bdev, cmd);
1331 if (error < 0)
1332 return error;
1333
1334 /*
1335 * If we are in the middle of error recovery, don't let anyone
1336 * else try and use this device. Also, if error recovery fails, it
1337 * may try and take the device offline, in which case all further
1338 * access to the device is prohibited.
1339 */
1340 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1341 (mode & FMODE_NDELAY) != 0);
1342 if (error)
1343 goto out;
1344
1345 /*
1346 * Send SCSI addressing ioctls directly to mid level, send other
1347 * ioctls to block level and then onto mid level if they can't be
1348 * resolved.
1349 */
1350 switch (cmd) {
1351 case SCSI_IOCTL_GET_IDLUN:
1352 case SCSI_IOCTL_GET_BUS_NUMBER:
1353 error = scsi_ioctl(sdp, cmd, p);
1354 break;
1355 default:
1356 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1357 if (error != -ENOTTY)
1358 break;
1359 error = scsi_ioctl(sdp, cmd, p);
1360 break;
1361 }
1362 out:
1363 return error;
1364 }
1365
1366 static void set_media_not_present(struct scsi_disk *sdkp)
1367 {
1368 if (sdkp->media_present)
1369 sdkp->device->changed = 1;
1370
1371 if (sdkp->device->removable) {
1372 sdkp->media_present = 0;
1373 sdkp->capacity = 0;
1374 }
1375 }
1376
1377 static int media_not_present(struct scsi_disk *sdkp,
1378 struct scsi_sense_hdr *sshdr)
1379 {
1380 if (!scsi_sense_valid(sshdr))
1381 return 0;
1382
1383 /* not invoked for commands that could return deferred errors */
1384 switch (sshdr->sense_key) {
1385 case UNIT_ATTENTION:
1386 case NOT_READY:
1387 /* medium not present */
1388 if (sshdr->asc == 0x3A) {
1389 set_media_not_present(sdkp);
1390 return 1;
1391 }
1392 }
1393 return 0;
1394 }
1395
1396 /**
1397 * sd_check_events - check media events
1398 * @disk: kernel device descriptor
1399 * @clearing: disk events currently being cleared
1400 *
1401 * Returns mask of DISK_EVENT_*.
1402 *
1403 * Note: this function is invoked from the block subsystem.
1404 **/
1405 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1406 {
1407 struct scsi_disk *sdkp = scsi_disk_get(disk);
1408 struct scsi_device *sdp;
1409 struct scsi_sense_hdr *sshdr = NULL;
1410 int retval;
1411
1412 if (!sdkp)
1413 return 0;
1414
1415 sdp = sdkp->device;
1416 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1417
1418 /*
1419 * If the device is offline, don't send any commands - just pretend as
1420 * if the command failed. If the device ever comes back online, we
1421 * can deal with it then. It is only because of unrecoverable errors
1422 * that we would ever take a device offline in the first place.
1423 */
1424 if (!scsi_device_online(sdp)) {
1425 set_media_not_present(sdkp);
1426 goto out;
1427 }
1428
1429 /*
1430 * Using TEST_UNIT_READY enables differentiation between drive with
1431 * no cartridge loaded - NOT READY, drive with changed cartridge -
1432 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1433 *
1434 * Drives that auto spin down. eg iomega jaz 1G, will be started
1435 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1436 * sd_revalidate() is called.
1437 */
1438 retval = -ENODEV;
1439
1440 if (scsi_block_when_processing_errors(sdp)) {
1441 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1442 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1443 sshdr);
1444 }
1445
1446 /* failed to execute TUR, assume media not present */
1447 if (host_byte(retval)) {
1448 set_media_not_present(sdkp);
1449 goto out;
1450 }
1451
1452 if (media_not_present(sdkp, sshdr))
1453 goto out;
1454
1455 /*
1456 * For removable scsi disk we have to recognise the presence
1457 * of a disk in the drive.
1458 */
1459 if (!sdkp->media_present)
1460 sdp->changed = 1;
1461 sdkp->media_present = 1;
1462 out:
1463 /*
1464 * sdp->changed is set under the following conditions:
1465 *
1466 * Medium present state has changed in either direction.
1467 * Device has indicated UNIT_ATTENTION.
1468 */
1469 kfree(sshdr);
1470 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1471 sdp->changed = 0;
1472 scsi_disk_put(sdkp);
1473 return retval;
1474 }
1475
1476 static int sd_sync_cache(struct scsi_disk *sdkp)
1477 {
1478 int retries, res;
1479 struct scsi_device *sdp = sdkp->device;
1480 const int timeout = sdp->request_queue->rq_timeout
1481 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1482 struct scsi_sense_hdr sshdr;
1483
1484 if (!scsi_device_online(sdp))
1485 return -ENODEV;
1486
1487 for (retries = 3; retries > 0; --retries) {
1488 unsigned char cmd[10] = { 0 };
1489
1490 cmd[0] = SYNCHRONIZE_CACHE;
1491 /*
1492 * Leave the rest of the command zero to indicate
1493 * flush everything.
1494 */
1495 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1496 &sshdr, timeout, SD_MAX_RETRIES,
1497 NULL, REQ_PM);
1498 if (res == 0)
1499 break;
1500 }
1501
1502 if (res) {
1503 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1504
1505 if (driver_byte(res) & DRIVER_SENSE)
1506 sd_print_sense_hdr(sdkp, &sshdr);
1507 /* we need to evaluate the error return */
1508 if (scsi_sense_valid(&sshdr) &&
1509 (sshdr.asc == 0x3a || /* medium not present */
1510 sshdr.asc == 0x20)) /* invalid command */
1511 /* this is no error here */
1512 return 0;
1513
1514 switch (host_byte(res)) {
1515 /* ignore errors due to racing a disconnection */
1516 case DID_BAD_TARGET:
1517 case DID_NO_CONNECT:
1518 return 0;
1519 /* signal the upper layer it might try again */
1520 case DID_BUS_BUSY:
1521 case DID_IMM_RETRY:
1522 case DID_REQUEUE:
1523 case DID_SOFT_ERROR:
1524 return -EBUSY;
1525 default:
1526 return -EIO;
1527 }
1528 }
1529 return 0;
1530 }
1531
1532 static void sd_rescan(struct device *dev)
1533 {
1534 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1535
1536 revalidate_disk(sdkp->disk);
1537 }
1538
1539
1540 #ifdef CONFIG_COMPAT
1541 /*
1542 * This gets directly called from VFS. When the ioctl
1543 * is not recognized we go back to the other translation paths.
1544 */
1545 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1546 unsigned int cmd, unsigned long arg)
1547 {
1548 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1549 int error;
1550
1551 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1552 (mode & FMODE_NDELAY) != 0);
1553 if (error)
1554 return error;
1555
1556 /*
1557 * Let the static ioctl translation table take care of it.
1558 */
1559 if (!sdev->host->hostt->compat_ioctl)
1560 return -ENOIOCTLCMD;
1561 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1562 }
1563 #endif
1564
1565 static char sd_pr_type(enum pr_type type)
1566 {
1567 switch (type) {
1568 case PR_WRITE_EXCLUSIVE:
1569 return 0x01;
1570 case PR_EXCLUSIVE_ACCESS:
1571 return 0x03;
1572 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1573 return 0x05;
1574 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1575 return 0x06;
1576 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1577 return 0x07;
1578 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1579 return 0x08;
1580 default:
1581 return 0;
1582 }
1583 };
1584
1585 static int sd_pr_command(struct block_device *bdev, u8 sa,
1586 u64 key, u64 sa_key, u8 type, u8 flags)
1587 {
1588 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1589 struct scsi_sense_hdr sshdr;
1590 int result;
1591 u8 cmd[16] = { 0, };
1592 u8 data[24] = { 0, };
1593
1594 cmd[0] = PERSISTENT_RESERVE_OUT;
1595 cmd[1] = sa;
1596 cmd[2] = type;
1597 put_unaligned_be32(sizeof(data), &cmd[5]);
1598
1599 put_unaligned_be64(key, &data[0]);
1600 put_unaligned_be64(sa_key, &data[8]);
1601 data[20] = flags;
1602
1603 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1604 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1605
1606 if ((driver_byte(result) & DRIVER_SENSE) &&
1607 (scsi_sense_valid(&sshdr))) {
1608 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1609 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1610 }
1611
1612 return result;
1613 }
1614
1615 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1616 u32 flags)
1617 {
1618 if (flags & ~PR_FL_IGNORE_KEY)
1619 return -EOPNOTSUPP;
1620 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1621 old_key, new_key, 0,
1622 (1 << 0) /* APTPL */ |
1623 (1 << 2) /* ALL_TG_PT */);
1624 }
1625
1626 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1627 u32 flags)
1628 {
1629 if (flags)
1630 return -EOPNOTSUPP;
1631 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1632 }
1633
1634 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1635 {
1636 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1637 }
1638
1639 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1640 enum pr_type type, bool abort)
1641 {
1642 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1643 sd_pr_type(type), 0);
1644 }
1645
1646 static int sd_pr_clear(struct block_device *bdev, u64 key)
1647 {
1648 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1649 }
1650
1651 static const struct pr_ops sd_pr_ops = {
1652 .pr_register = sd_pr_register,
1653 .pr_reserve = sd_pr_reserve,
1654 .pr_release = sd_pr_release,
1655 .pr_preempt = sd_pr_preempt,
1656 .pr_clear = sd_pr_clear,
1657 };
1658
1659 static const struct block_device_operations sd_fops = {
1660 .owner = THIS_MODULE,
1661 .open = sd_open,
1662 .release = sd_release,
1663 .ioctl = sd_ioctl,
1664 .getgeo = sd_getgeo,
1665 #ifdef CONFIG_COMPAT
1666 .compat_ioctl = sd_compat_ioctl,
1667 #endif
1668 .check_events = sd_check_events,
1669 .revalidate_disk = sd_revalidate_disk,
1670 .unlock_native_capacity = sd_unlock_native_capacity,
1671 .pr_ops = &sd_pr_ops,
1672 };
1673
1674 /**
1675 * sd_eh_action - error handling callback
1676 * @scmd: sd-issued command that has failed
1677 * @eh_disp: The recovery disposition suggested by the midlayer
1678 *
1679 * This function is called by the SCSI midlayer upon completion of an
1680 * error test command (currently TEST UNIT READY). The result of sending
1681 * the eh command is passed in eh_disp. We're looking for devices that
1682 * fail medium access commands but are OK with non access commands like
1683 * test unit ready (so wrongly see the device as having a successful
1684 * recovery)
1685 **/
1686 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1687 {
1688 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1689
1690 if (!scsi_device_online(scmd->device) ||
1691 !scsi_medium_access_command(scmd) ||
1692 host_byte(scmd->result) != DID_TIME_OUT ||
1693 eh_disp != SUCCESS)
1694 return eh_disp;
1695
1696 /*
1697 * The device has timed out executing a medium access command.
1698 * However, the TEST UNIT READY command sent during error
1699 * handling completed successfully. Either the device is in the
1700 * process of recovering or has it suffered an internal failure
1701 * that prevents access to the storage medium.
1702 */
1703 sdkp->medium_access_timed_out++;
1704
1705 /*
1706 * If the device keeps failing read/write commands but TEST UNIT
1707 * READY always completes successfully we assume that medium
1708 * access is no longer possible and take the device offline.
1709 */
1710 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1711 scmd_printk(KERN_ERR, scmd,
1712 "Medium access timeout failure. Offlining disk!\n");
1713 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1714
1715 return FAILED;
1716 }
1717
1718 return eh_disp;
1719 }
1720
1721 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1722 {
1723 u64 start_lba = blk_rq_pos(scmd->request);
1724 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1725 u64 factor = scmd->device->sector_size / 512;
1726 u64 bad_lba;
1727 int info_valid;
1728 /*
1729 * resid is optional but mostly filled in. When it's unused,
1730 * its value is zero, so we assume the whole buffer transferred
1731 */
1732 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1733 unsigned int good_bytes;
1734
1735 if (scmd->request->cmd_type != REQ_TYPE_FS)
1736 return 0;
1737
1738 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1739 SCSI_SENSE_BUFFERSIZE,
1740 &bad_lba);
1741 if (!info_valid)
1742 return 0;
1743
1744 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1745 return 0;
1746
1747 /* be careful ... don't want any overflows */
1748 do_div(start_lba, factor);
1749 do_div(end_lba, factor);
1750
1751 /* The bad lba was reported incorrectly, we have no idea where
1752 * the error is.
1753 */
1754 if (bad_lba < start_lba || bad_lba >= end_lba)
1755 return 0;
1756
1757 /* This computation should always be done in terms of
1758 * the resolution of the device's medium.
1759 */
1760 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1761 return min(good_bytes, transferred);
1762 }
1763
1764 /**
1765 * sd_done - bottom half handler: called when the lower level
1766 * driver has completed (successfully or otherwise) a scsi command.
1767 * @SCpnt: mid-level's per command structure.
1768 *
1769 * Note: potentially run from within an ISR. Must not block.
1770 **/
1771 static int sd_done(struct scsi_cmnd *SCpnt)
1772 {
1773 int result = SCpnt->result;
1774 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1775 struct scsi_sense_hdr sshdr;
1776 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1777 struct request *req = SCpnt->request;
1778 int sense_valid = 0;
1779 int sense_deferred = 0;
1780 unsigned char op = SCpnt->cmnd[0];
1781 unsigned char unmap = SCpnt->cmnd[1] & 8;
1782
1783 if (req_op(req) == REQ_OP_DISCARD || req_op(req) == REQ_OP_WRITE_SAME) {
1784 if (!result) {
1785 good_bytes = blk_rq_bytes(req);
1786 scsi_set_resid(SCpnt, 0);
1787 } else {
1788 good_bytes = 0;
1789 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1790 }
1791 }
1792
1793 if (result) {
1794 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1795 if (sense_valid)
1796 sense_deferred = scsi_sense_is_deferred(&sshdr);
1797 }
1798 sdkp->medium_access_timed_out = 0;
1799
1800 if (driver_byte(result) != DRIVER_SENSE &&
1801 (!sense_valid || sense_deferred))
1802 goto out;
1803
1804 switch (sshdr.sense_key) {
1805 case HARDWARE_ERROR:
1806 case MEDIUM_ERROR:
1807 good_bytes = sd_completed_bytes(SCpnt);
1808 break;
1809 case RECOVERED_ERROR:
1810 good_bytes = scsi_bufflen(SCpnt);
1811 break;
1812 case NO_SENSE:
1813 /* This indicates a false check condition, so ignore it. An
1814 * unknown amount of data was transferred so treat it as an
1815 * error.
1816 */
1817 SCpnt->result = 0;
1818 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1819 break;
1820 case ABORTED_COMMAND:
1821 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1822 good_bytes = sd_completed_bytes(SCpnt);
1823 break;
1824 case ILLEGAL_REQUEST:
1825 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1826 good_bytes = sd_completed_bytes(SCpnt);
1827 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1828 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1829 switch (op) {
1830 case UNMAP:
1831 sd_config_discard(sdkp, SD_LBP_DISABLE);
1832 break;
1833 case WRITE_SAME_16:
1834 case WRITE_SAME:
1835 if (unmap)
1836 sd_config_discard(sdkp, SD_LBP_DISABLE);
1837 else {
1838 sdkp->device->no_write_same = 1;
1839 sd_config_write_same(sdkp);
1840
1841 good_bytes = 0;
1842 req->__data_len = blk_rq_bytes(req);
1843 req->cmd_flags |= REQ_QUIET;
1844 }
1845 }
1846 }
1847 break;
1848 default:
1849 break;
1850 }
1851 out:
1852 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1853 "sd_done: completed %d of %d bytes\n",
1854 good_bytes, scsi_bufflen(SCpnt)));
1855
1856 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1857 sd_dif_complete(SCpnt, good_bytes);
1858
1859 return good_bytes;
1860 }
1861
1862 /*
1863 * spinup disk - called only in sd_revalidate_disk()
1864 */
1865 static void
1866 sd_spinup_disk(struct scsi_disk *sdkp)
1867 {
1868 unsigned char cmd[10];
1869 unsigned long spintime_expire = 0;
1870 int retries, spintime;
1871 unsigned int the_result;
1872 struct scsi_sense_hdr sshdr;
1873 int sense_valid = 0;
1874
1875 spintime = 0;
1876
1877 /* Spin up drives, as required. Only do this at boot time */
1878 /* Spinup needs to be done for module loads too. */
1879 do {
1880 retries = 0;
1881
1882 do {
1883 cmd[0] = TEST_UNIT_READY;
1884 memset((void *) &cmd[1], 0, 9);
1885
1886 the_result = scsi_execute_req(sdkp->device, cmd,
1887 DMA_NONE, NULL, 0,
1888 &sshdr, SD_TIMEOUT,
1889 SD_MAX_RETRIES, NULL);
1890
1891 /*
1892 * If the drive has indicated to us that it
1893 * doesn't have any media in it, don't bother
1894 * with any more polling.
1895 */
1896 if (media_not_present(sdkp, &sshdr))
1897 return;
1898
1899 if (the_result)
1900 sense_valid = scsi_sense_valid(&sshdr);
1901 retries++;
1902 } while (retries < 3 &&
1903 (!scsi_status_is_good(the_result) ||
1904 ((driver_byte(the_result) & DRIVER_SENSE) &&
1905 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1906
1907 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1908 /* no sense, TUR either succeeded or failed
1909 * with a status error */
1910 if(!spintime && !scsi_status_is_good(the_result)) {
1911 sd_print_result(sdkp, "Test Unit Ready failed",
1912 the_result);
1913 }
1914 break;
1915 }
1916
1917 /*
1918 * The device does not want the automatic start to be issued.
1919 */
1920 if (sdkp->device->no_start_on_add)
1921 break;
1922
1923 if (sense_valid && sshdr.sense_key == NOT_READY) {
1924 if (sshdr.asc == 4 && sshdr.ascq == 3)
1925 break; /* manual intervention required */
1926 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1927 break; /* standby */
1928 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1929 break; /* unavailable */
1930 /*
1931 * Issue command to spin up drive when not ready
1932 */
1933 if (!spintime) {
1934 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1935 cmd[0] = START_STOP;
1936 cmd[1] = 1; /* Return immediately */
1937 memset((void *) &cmd[2], 0, 8);
1938 cmd[4] = 1; /* Start spin cycle */
1939 if (sdkp->device->start_stop_pwr_cond)
1940 cmd[4] |= 1 << 4;
1941 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1942 NULL, 0, &sshdr,
1943 SD_TIMEOUT, SD_MAX_RETRIES,
1944 NULL);
1945 spintime_expire = jiffies + 100 * HZ;
1946 spintime = 1;
1947 }
1948 /* Wait 1 second for next try */
1949 msleep(1000);
1950 printk(".");
1951
1952 /*
1953 * Wait for USB flash devices with slow firmware.
1954 * Yes, this sense key/ASC combination shouldn't
1955 * occur here. It's characteristic of these devices.
1956 */
1957 } else if (sense_valid &&
1958 sshdr.sense_key == UNIT_ATTENTION &&
1959 sshdr.asc == 0x28) {
1960 if (!spintime) {
1961 spintime_expire = jiffies + 5 * HZ;
1962 spintime = 1;
1963 }
1964 /* Wait 1 second for next try */
1965 msleep(1000);
1966 } else {
1967 /* we don't understand the sense code, so it's
1968 * probably pointless to loop */
1969 if(!spintime) {
1970 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1971 sd_print_sense_hdr(sdkp, &sshdr);
1972 }
1973 break;
1974 }
1975
1976 } while (spintime && time_before_eq(jiffies, spintime_expire));
1977
1978 if (spintime) {
1979 if (scsi_status_is_good(the_result))
1980 printk("ready\n");
1981 else
1982 printk("not responding...\n");
1983 }
1984 }
1985
1986
1987 /*
1988 * Determine whether disk supports Data Integrity Field.
1989 */
1990 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1991 {
1992 struct scsi_device *sdp = sdkp->device;
1993 u8 type;
1994 int ret = 0;
1995
1996 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1997 return ret;
1998
1999 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2000
2001 if (type > SD_DIF_TYPE3_PROTECTION)
2002 ret = -ENODEV;
2003 else if (scsi_host_dif_capable(sdp->host, type))
2004 ret = 1;
2005
2006 if (sdkp->first_scan || type != sdkp->protection_type)
2007 switch (ret) {
2008 case -ENODEV:
2009 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2010 " protection type %u. Disabling disk!\n",
2011 type);
2012 break;
2013 case 1:
2014 sd_printk(KERN_NOTICE, sdkp,
2015 "Enabling DIF Type %u protection\n", type);
2016 break;
2017 case 0:
2018 sd_printk(KERN_NOTICE, sdkp,
2019 "Disabling DIF Type %u protection\n", type);
2020 break;
2021 }
2022
2023 sdkp->protection_type = type;
2024
2025 return ret;
2026 }
2027
2028 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2029 struct scsi_sense_hdr *sshdr, int sense_valid,
2030 int the_result)
2031 {
2032 if (driver_byte(the_result) & DRIVER_SENSE)
2033 sd_print_sense_hdr(sdkp, sshdr);
2034 else
2035 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2036
2037 /*
2038 * Set dirty bit for removable devices if not ready -
2039 * sometimes drives will not report this properly.
2040 */
2041 if (sdp->removable &&
2042 sense_valid && sshdr->sense_key == NOT_READY)
2043 set_media_not_present(sdkp);
2044
2045 /*
2046 * We used to set media_present to 0 here to indicate no media
2047 * in the drive, but some drives fail read capacity even with
2048 * media present, so we can't do that.
2049 */
2050 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2051 }
2052
2053 #define RC16_LEN 32
2054 #if RC16_LEN > SD_BUF_SIZE
2055 #error RC16_LEN must not be more than SD_BUF_SIZE
2056 #endif
2057
2058 #define READ_CAPACITY_RETRIES_ON_RESET 10
2059
2060 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2061 unsigned char *buffer)
2062 {
2063 unsigned char cmd[16];
2064 struct scsi_sense_hdr sshdr;
2065 int sense_valid = 0;
2066 int the_result;
2067 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2068 unsigned int alignment;
2069 unsigned long long lba;
2070 unsigned sector_size;
2071
2072 if (sdp->no_read_capacity_16)
2073 return -EINVAL;
2074
2075 do {
2076 memset(cmd, 0, 16);
2077 cmd[0] = SERVICE_ACTION_IN_16;
2078 cmd[1] = SAI_READ_CAPACITY_16;
2079 cmd[13] = RC16_LEN;
2080 memset(buffer, 0, RC16_LEN);
2081
2082 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2083 buffer, RC16_LEN, &sshdr,
2084 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2085
2086 if (media_not_present(sdkp, &sshdr))
2087 return -ENODEV;
2088
2089 if (the_result) {
2090 sense_valid = scsi_sense_valid(&sshdr);
2091 if (sense_valid &&
2092 sshdr.sense_key == ILLEGAL_REQUEST &&
2093 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2094 sshdr.ascq == 0x00)
2095 /* Invalid Command Operation Code or
2096 * Invalid Field in CDB, just retry
2097 * silently with RC10 */
2098 return -EINVAL;
2099 if (sense_valid &&
2100 sshdr.sense_key == UNIT_ATTENTION &&
2101 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2102 /* Device reset might occur several times,
2103 * give it one more chance */
2104 if (--reset_retries > 0)
2105 continue;
2106 }
2107 retries--;
2108
2109 } while (the_result && retries);
2110
2111 if (the_result) {
2112 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2113 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2114 return -EINVAL;
2115 }
2116
2117 sector_size = get_unaligned_be32(&buffer[8]);
2118 lba = get_unaligned_be64(&buffer[0]);
2119
2120 if (sd_read_protection_type(sdkp, buffer) < 0) {
2121 sdkp->capacity = 0;
2122 return -ENODEV;
2123 }
2124
2125 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2126 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2127 "kernel compiled with support for large block "
2128 "devices.\n");
2129 sdkp->capacity = 0;
2130 return -EOVERFLOW;
2131 }
2132
2133 /* Logical blocks per physical block exponent */
2134 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2135
2136 /* Lowest aligned logical block */
2137 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2138 blk_queue_alignment_offset(sdp->request_queue, alignment);
2139 if (alignment && sdkp->first_scan)
2140 sd_printk(KERN_NOTICE, sdkp,
2141 "physical block alignment offset: %u\n", alignment);
2142
2143 if (buffer[14] & 0x80) { /* LBPME */
2144 sdkp->lbpme = 1;
2145
2146 if (buffer[14] & 0x40) /* LBPRZ */
2147 sdkp->lbprz = 1;
2148
2149 sd_config_discard(sdkp, SD_LBP_WS16);
2150 }
2151
2152 sdkp->capacity = lba + 1;
2153 return sector_size;
2154 }
2155
2156 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2157 unsigned char *buffer)
2158 {
2159 unsigned char cmd[16];
2160 struct scsi_sense_hdr sshdr;
2161 int sense_valid = 0;
2162 int the_result;
2163 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2164 sector_t lba;
2165 unsigned sector_size;
2166
2167 do {
2168 cmd[0] = READ_CAPACITY;
2169 memset(&cmd[1], 0, 9);
2170 memset(buffer, 0, 8);
2171
2172 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2173 buffer, 8, &sshdr,
2174 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2175
2176 if (media_not_present(sdkp, &sshdr))
2177 return -ENODEV;
2178
2179 if (the_result) {
2180 sense_valid = scsi_sense_valid(&sshdr);
2181 if (sense_valid &&
2182 sshdr.sense_key == UNIT_ATTENTION &&
2183 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2184 /* Device reset might occur several times,
2185 * give it one more chance */
2186 if (--reset_retries > 0)
2187 continue;
2188 }
2189 retries--;
2190
2191 } while (the_result && retries);
2192
2193 if (the_result) {
2194 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2195 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2196 return -EINVAL;
2197 }
2198
2199 sector_size = get_unaligned_be32(&buffer[4]);
2200 lba = get_unaligned_be32(&buffer[0]);
2201
2202 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2203 /* Some buggy (usb cardreader) devices return an lba of
2204 0xffffffff when the want to report a size of 0 (with
2205 which they really mean no media is present) */
2206 sdkp->capacity = 0;
2207 sdkp->physical_block_size = sector_size;
2208 return sector_size;
2209 }
2210
2211 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2212 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2213 "kernel compiled with support for large block "
2214 "devices.\n");
2215 sdkp->capacity = 0;
2216 return -EOVERFLOW;
2217 }
2218
2219 sdkp->capacity = lba + 1;
2220 sdkp->physical_block_size = sector_size;
2221 return sector_size;
2222 }
2223
2224 static int sd_try_rc16_first(struct scsi_device *sdp)
2225 {
2226 if (sdp->host->max_cmd_len < 16)
2227 return 0;
2228 if (sdp->try_rc_10_first)
2229 return 0;
2230 if (sdp->scsi_level > SCSI_SPC_2)
2231 return 1;
2232 if (scsi_device_protection(sdp))
2233 return 1;
2234 return 0;
2235 }
2236
2237 /*
2238 * read disk capacity
2239 */
2240 static void
2241 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2242 {
2243 int sector_size;
2244 struct scsi_device *sdp = sdkp->device;
2245 sector_t old_capacity = sdkp->capacity;
2246
2247 if (sd_try_rc16_first(sdp)) {
2248 sector_size = read_capacity_16(sdkp, sdp, buffer);
2249 if (sector_size == -EOVERFLOW)
2250 goto got_data;
2251 if (sector_size == -ENODEV)
2252 return;
2253 if (sector_size < 0)
2254 sector_size = read_capacity_10(sdkp, sdp, buffer);
2255 if (sector_size < 0)
2256 return;
2257 } else {
2258 sector_size = read_capacity_10(sdkp, sdp, buffer);
2259 if (sector_size == -EOVERFLOW)
2260 goto got_data;
2261 if (sector_size < 0)
2262 return;
2263 if ((sizeof(sdkp->capacity) > 4) &&
2264 (sdkp->capacity > 0xffffffffULL)) {
2265 int old_sector_size = sector_size;
2266 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2267 "Trying to use READ CAPACITY(16).\n");
2268 sector_size = read_capacity_16(sdkp, sdp, buffer);
2269 if (sector_size < 0) {
2270 sd_printk(KERN_NOTICE, sdkp,
2271 "Using 0xffffffff as device size\n");
2272 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2273 sector_size = old_sector_size;
2274 goto got_data;
2275 }
2276 }
2277 }
2278
2279 /* Some devices are known to return the total number of blocks,
2280 * not the highest block number. Some devices have versions
2281 * which do this and others which do not. Some devices we might
2282 * suspect of doing this but we don't know for certain.
2283 *
2284 * If we know the reported capacity is wrong, decrement it. If
2285 * we can only guess, then assume the number of blocks is even
2286 * (usually true but not always) and err on the side of lowering
2287 * the capacity.
2288 */
2289 if (sdp->fix_capacity ||
2290 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2291 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2292 "from its reported value: %llu\n",
2293 (unsigned long long) sdkp->capacity);
2294 --sdkp->capacity;
2295 }
2296
2297 got_data:
2298 if (sector_size == 0) {
2299 sector_size = 512;
2300 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2301 "assuming 512.\n");
2302 }
2303
2304 if (sector_size != 512 &&
2305 sector_size != 1024 &&
2306 sector_size != 2048 &&
2307 sector_size != 4096) {
2308 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2309 sector_size);
2310 /*
2311 * The user might want to re-format the drive with
2312 * a supported sectorsize. Once this happens, it
2313 * would be relatively trivial to set the thing up.
2314 * For this reason, we leave the thing in the table.
2315 */
2316 sdkp->capacity = 0;
2317 /*
2318 * set a bogus sector size so the normal read/write
2319 * logic in the block layer will eventually refuse any
2320 * request on this device without tripping over power
2321 * of two sector size assumptions
2322 */
2323 sector_size = 512;
2324 }
2325 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2326
2327 {
2328 char cap_str_2[10], cap_str_10[10];
2329
2330 string_get_size(sdkp->capacity, sector_size,
2331 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2332 string_get_size(sdkp->capacity, sector_size,
2333 STRING_UNITS_10, cap_str_10,
2334 sizeof(cap_str_10));
2335
2336 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2337 sd_printk(KERN_NOTICE, sdkp,
2338 "%llu %d-byte logical blocks: (%s/%s)\n",
2339 (unsigned long long)sdkp->capacity,
2340 sector_size, cap_str_10, cap_str_2);
2341
2342 if (sdkp->physical_block_size != sector_size)
2343 sd_printk(KERN_NOTICE, sdkp,
2344 "%u-byte physical blocks\n",
2345 sdkp->physical_block_size);
2346 }
2347 }
2348
2349 if (sdkp->capacity > 0xffffffff)
2350 sdp->use_16_for_rw = 1;
2351
2352 blk_queue_physical_block_size(sdp->request_queue,
2353 sdkp->physical_block_size);
2354 sdkp->device->sector_size = sector_size;
2355 }
2356
2357 /* called with buffer of length 512 */
2358 static inline int
2359 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2360 unsigned char *buffer, int len, struct scsi_mode_data *data,
2361 struct scsi_sense_hdr *sshdr)
2362 {
2363 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2364 SD_TIMEOUT, SD_MAX_RETRIES, data,
2365 sshdr);
2366 }
2367
2368 /*
2369 * read write protect setting, if possible - called only in sd_revalidate_disk()
2370 * called with buffer of length SD_BUF_SIZE
2371 */
2372 static void
2373 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2374 {
2375 int res;
2376 struct scsi_device *sdp = sdkp->device;
2377 struct scsi_mode_data data;
2378 int old_wp = sdkp->write_prot;
2379
2380 set_disk_ro(sdkp->disk, 0);
2381 if (sdp->skip_ms_page_3f) {
2382 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2383 return;
2384 }
2385
2386 if (sdp->use_192_bytes_for_3f) {
2387 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2388 } else {
2389 /*
2390 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2391 * We have to start carefully: some devices hang if we ask
2392 * for more than is available.
2393 */
2394 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2395
2396 /*
2397 * Second attempt: ask for page 0 When only page 0 is
2398 * implemented, a request for page 3F may return Sense Key
2399 * 5: Illegal Request, Sense Code 24: Invalid field in
2400 * CDB.
2401 */
2402 if (!scsi_status_is_good(res))
2403 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2404
2405 /*
2406 * Third attempt: ask 255 bytes, as we did earlier.
2407 */
2408 if (!scsi_status_is_good(res))
2409 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2410 &data, NULL);
2411 }
2412
2413 if (!scsi_status_is_good(res)) {
2414 sd_first_printk(KERN_WARNING, sdkp,
2415 "Test WP failed, assume Write Enabled\n");
2416 } else {
2417 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2418 set_disk_ro(sdkp->disk, sdkp->write_prot);
2419 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2420 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2421 sdkp->write_prot ? "on" : "off");
2422 sd_printk(KERN_DEBUG, sdkp,
2423 "Mode Sense: %02x %02x %02x %02x\n",
2424 buffer[0], buffer[1], buffer[2], buffer[3]);
2425 }
2426 }
2427 }
2428
2429 /*
2430 * sd_read_cache_type - called only from sd_revalidate_disk()
2431 * called with buffer of length SD_BUF_SIZE
2432 */
2433 static void
2434 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2435 {
2436 int len = 0, res;
2437 struct scsi_device *sdp = sdkp->device;
2438
2439 int dbd;
2440 int modepage;
2441 int first_len;
2442 struct scsi_mode_data data;
2443 struct scsi_sense_hdr sshdr;
2444 int old_wce = sdkp->WCE;
2445 int old_rcd = sdkp->RCD;
2446 int old_dpofua = sdkp->DPOFUA;
2447
2448
2449 if (sdkp->cache_override)
2450 return;
2451
2452 first_len = 4;
2453 if (sdp->skip_ms_page_8) {
2454 if (sdp->type == TYPE_RBC)
2455 goto defaults;
2456 else {
2457 if (sdp->skip_ms_page_3f)
2458 goto defaults;
2459 modepage = 0x3F;
2460 if (sdp->use_192_bytes_for_3f)
2461 first_len = 192;
2462 dbd = 0;
2463 }
2464 } else if (sdp->type == TYPE_RBC) {
2465 modepage = 6;
2466 dbd = 8;
2467 } else {
2468 modepage = 8;
2469 dbd = 0;
2470 }
2471
2472 /* cautiously ask */
2473 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2474 &data, &sshdr);
2475
2476 if (!scsi_status_is_good(res))
2477 goto bad_sense;
2478
2479 if (!data.header_length) {
2480 modepage = 6;
2481 first_len = 0;
2482 sd_first_printk(KERN_ERR, sdkp,
2483 "Missing header in MODE_SENSE response\n");
2484 }
2485
2486 /* that went OK, now ask for the proper length */
2487 len = data.length;
2488
2489 /*
2490 * We're only interested in the first three bytes, actually.
2491 * But the data cache page is defined for the first 20.
2492 */
2493 if (len < 3)
2494 goto bad_sense;
2495 else if (len > SD_BUF_SIZE) {
2496 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2497 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2498 len = SD_BUF_SIZE;
2499 }
2500 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2501 len = 192;
2502
2503 /* Get the data */
2504 if (len > first_len)
2505 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2506 &data, &sshdr);
2507
2508 if (scsi_status_is_good(res)) {
2509 int offset = data.header_length + data.block_descriptor_length;
2510
2511 while (offset < len) {
2512 u8 page_code = buffer[offset] & 0x3F;
2513 u8 spf = buffer[offset] & 0x40;
2514
2515 if (page_code == 8 || page_code == 6) {
2516 /* We're interested only in the first 3 bytes.
2517 */
2518 if (len - offset <= 2) {
2519 sd_first_printk(KERN_ERR, sdkp,
2520 "Incomplete mode parameter "
2521 "data\n");
2522 goto defaults;
2523 } else {
2524 modepage = page_code;
2525 goto Page_found;
2526 }
2527 } else {
2528 /* Go to the next page */
2529 if (spf && len - offset > 3)
2530 offset += 4 + (buffer[offset+2] << 8) +
2531 buffer[offset+3];
2532 else if (!spf && len - offset > 1)
2533 offset += 2 + buffer[offset+1];
2534 else {
2535 sd_first_printk(KERN_ERR, sdkp,
2536 "Incomplete mode "
2537 "parameter data\n");
2538 goto defaults;
2539 }
2540 }
2541 }
2542
2543 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2544 goto defaults;
2545
2546 Page_found:
2547 if (modepage == 8) {
2548 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2549 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2550 } else {
2551 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2552 sdkp->RCD = 0;
2553 }
2554
2555 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2556 if (sdp->broken_fua) {
2557 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2558 sdkp->DPOFUA = 0;
2559 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2560 sd_first_printk(KERN_NOTICE, sdkp,
2561 "Uses READ/WRITE(6), disabling FUA\n");
2562 sdkp->DPOFUA = 0;
2563 }
2564
2565 /* No cache flush allowed for write protected devices */
2566 if (sdkp->WCE && sdkp->write_prot)
2567 sdkp->WCE = 0;
2568
2569 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2570 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2571 sd_printk(KERN_NOTICE, sdkp,
2572 "Write cache: %s, read cache: %s, %s\n",
2573 sdkp->WCE ? "enabled" : "disabled",
2574 sdkp->RCD ? "disabled" : "enabled",
2575 sdkp->DPOFUA ? "supports DPO and FUA"
2576 : "doesn't support DPO or FUA");
2577
2578 return;
2579 }
2580
2581 bad_sense:
2582 if (scsi_sense_valid(&sshdr) &&
2583 sshdr.sense_key == ILLEGAL_REQUEST &&
2584 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2585 /* Invalid field in CDB */
2586 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2587 else
2588 sd_first_printk(KERN_ERR, sdkp,
2589 "Asking for cache data failed\n");
2590
2591 defaults:
2592 if (sdp->wce_default_on) {
2593 sd_first_printk(KERN_NOTICE, sdkp,
2594 "Assuming drive cache: write back\n");
2595 sdkp->WCE = 1;
2596 } else {
2597 sd_first_printk(KERN_ERR, sdkp,
2598 "Assuming drive cache: write through\n");
2599 sdkp->WCE = 0;
2600 }
2601 sdkp->RCD = 0;
2602 sdkp->DPOFUA = 0;
2603 }
2604
2605 /*
2606 * The ATO bit indicates whether the DIF application tag is available
2607 * for use by the operating system.
2608 */
2609 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2610 {
2611 int res, offset;
2612 struct scsi_device *sdp = sdkp->device;
2613 struct scsi_mode_data data;
2614 struct scsi_sense_hdr sshdr;
2615
2616 if (sdp->type != TYPE_DISK)
2617 return;
2618
2619 if (sdkp->protection_type == 0)
2620 return;
2621
2622 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2623 SD_MAX_RETRIES, &data, &sshdr);
2624
2625 if (!scsi_status_is_good(res) || !data.header_length ||
2626 data.length < 6) {
2627 sd_first_printk(KERN_WARNING, sdkp,
2628 "getting Control mode page failed, assume no ATO\n");
2629
2630 if (scsi_sense_valid(&sshdr))
2631 sd_print_sense_hdr(sdkp, &sshdr);
2632
2633 return;
2634 }
2635
2636 offset = data.header_length + data.block_descriptor_length;
2637
2638 if ((buffer[offset] & 0x3f) != 0x0a) {
2639 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2640 return;
2641 }
2642
2643 if ((buffer[offset + 5] & 0x80) == 0)
2644 return;
2645
2646 sdkp->ATO = 1;
2647
2648 return;
2649 }
2650
2651 /**
2652 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2653 * @disk: disk to query
2654 */
2655 static void sd_read_block_limits(struct scsi_disk *sdkp)
2656 {
2657 unsigned int sector_sz = sdkp->device->sector_size;
2658 const int vpd_len = 64;
2659 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2660
2661 if (!buffer ||
2662 /* Block Limits VPD */
2663 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2664 goto out;
2665
2666 blk_queue_io_min(sdkp->disk->queue,
2667 get_unaligned_be16(&buffer[6]) * sector_sz);
2668
2669 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2670 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2671
2672 if (buffer[3] == 0x3c) {
2673 unsigned int lba_count, desc_count;
2674
2675 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2676
2677 if (!sdkp->lbpme)
2678 goto out;
2679
2680 lba_count = get_unaligned_be32(&buffer[20]);
2681 desc_count = get_unaligned_be32(&buffer[24]);
2682
2683 if (lba_count && desc_count)
2684 sdkp->max_unmap_blocks = lba_count;
2685
2686 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2687
2688 if (buffer[32] & 0x80)
2689 sdkp->unmap_alignment =
2690 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2691
2692 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2693
2694 if (sdkp->max_unmap_blocks)
2695 sd_config_discard(sdkp, SD_LBP_UNMAP);
2696 else
2697 sd_config_discard(sdkp, SD_LBP_WS16);
2698
2699 } else { /* LBP VPD page tells us what to use */
2700 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2701 sd_config_discard(sdkp, SD_LBP_UNMAP);
2702 else if (sdkp->lbpws)
2703 sd_config_discard(sdkp, SD_LBP_WS16);
2704 else if (sdkp->lbpws10)
2705 sd_config_discard(sdkp, SD_LBP_WS10);
2706 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2707 sd_config_discard(sdkp, SD_LBP_UNMAP);
2708 else
2709 sd_config_discard(sdkp, SD_LBP_DISABLE);
2710 }
2711 }
2712
2713 out:
2714 kfree(buffer);
2715 }
2716
2717 /**
2718 * sd_read_block_characteristics - Query block dev. characteristics
2719 * @disk: disk to query
2720 */
2721 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2722 {
2723 unsigned char *buffer;
2724 u16 rot;
2725 const int vpd_len = 64;
2726
2727 buffer = kmalloc(vpd_len, GFP_KERNEL);
2728
2729 if (!buffer ||
2730 /* Block Device Characteristics VPD */
2731 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2732 goto out;
2733
2734 rot = get_unaligned_be16(&buffer[4]);
2735
2736 if (rot == 1) {
2737 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2738 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2739 }
2740
2741 out:
2742 kfree(buffer);
2743 }
2744
2745 /**
2746 * sd_read_block_provisioning - Query provisioning VPD page
2747 * @disk: disk to query
2748 */
2749 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2750 {
2751 unsigned char *buffer;
2752 const int vpd_len = 8;
2753
2754 if (sdkp->lbpme == 0)
2755 return;
2756
2757 buffer = kmalloc(vpd_len, GFP_KERNEL);
2758
2759 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2760 goto out;
2761
2762 sdkp->lbpvpd = 1;
2763 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2764 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2765 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2766
2767 out:
2768 kfree(buffer);
2769 }
2770
2771 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2772 {
2773 struct scsi_device *sdev = sdkp->device;
2774
2775 if (sdev->host->no_write_same) {
2776 sdev->no_write_same = 1;
2777
2778 return;
2779 }
2780
2781 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2782 /* too large values might cause issues with arcmsr */
2783 int vpd_buf_len = 64;
2784
2785 sdev->no_report_opcodes = 1;
2786
2787 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2788 * CODES is unsupported and the device has an ATA
2789 * Information VPD page (SAT).
2790 */
2791 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2792 sdev->no_write_same = 1;
2793 }
2794
2795 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2796 sdkp->ws16 = 1;
2797
2798 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2799 sdkp->ws10 = 1;
2800 }
2801
2802 /**
2803 * sd_revalidate_disk - called the first time a new disk is seen,
2804 * performs disk spin up, read_capacity, etc.
2805 * @disk: struct gendisk we care about
2806 **/
2807 static int sd_revalidate_disk(struct gendisk *disk)
2808 {
2809 struct scsi_disk *sdkp = scsi_disk(disk);
2810 struct scsi_device *sdp = sdkp->device;
2811 struct request_queue *q = sdkp->disk->queue;
2812 unsigned char *buffer;
2813 unsigned int dev_max, rw_max;
2814
2815 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2816 "sd_revalidate_disk\n"));
2817
2818 /*
2819 * If the device is offline, don't try and read capacity or any
2820 * of the other niceties.
2821 */
2822 if (!scsi_device_online(sdp))
2823 goto out;
2824
2825 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2826 if (!buffer) {
2827 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2828 "allocation failure.\n");
2829 goto out;
2830 }
2831
2832 sd_spinup_disk(sdkp);
2833
2834 /*
2835 * Without media there is no reason to ask; moreover, some devices
2836 * react badly if we do.
2837 */
2838 if (sdkp->media_present) {
2839 sd_read_capacity(sdkp, buffer);
2840
2841 if (scsi_device_supports_vpd(sdp)) {
2842 sd_read_block_provisioning(sdkp);
2843 sd_read_block_limits(sdkp);
2844 sd_read_block_characteristics(sdkp);
2845 }
2846
2847 sd_read_write_protect_flag(sdkp, buffer);
2848 sd_read_cache_type(sdkp, buffer);
2849 sd_read_app_tag_own(sdkp, buffer);
2850 sd_read_write_same(sdkp, buffer);
2851 }
2852
2853 sdkp->first_scan = 0;
2854
2855 /*
2856 * We now have all cache related info, determine how we deal
2857 * with flush requests.
2858 */
2859 sd_set_flush_flag(sdkp);
2860
2861 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
2862 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
2863
2864 /* Some devices report a maximum block count for READ/WRITE requests. */
2865 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
2866 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
2867
2868 /*
2869 * Use the device's preferred I/O size for reads and writes
2870 * unless the reported value is unreasonably small, large, or
2871 * garbage.
2872 */
2873 if (sdkp->opt_xfer_blocks &&
2874 sdkp->opt_xfer_blocks <= dev_max &&
2875 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
2876 sdkp->opt_xfer_blocks * sdp->sector_size >= PAGE_SIZE)
2877 rw_max = q->limits.io_opt =
2878 sdkp->opt_xfer_blocks * sdp->sector_size;
2879 else
2880 rw_max = BLK_DEF_MAX_SECTORS;
2881
2882 /* Combine with controller limits */
2883 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
2884
2885 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
2886 sd_config_write_same(sdkp);
2887 kfree(buffer);
2888
2889 out:
2890 return 0;
2891 }
2892
2893 /**
2894 * sd_unlock_native_capacity - unlock native capacity
2895 * @disk: struct gendisk to set capacity for
2896 *
2897 * Block layer calls this function if it detects that partitions
2898 * on @disk reach beyond the end of the device. If the SCSI host
2899 * implements ->unlock_native_capacity() method, it's invoked to
2900 * give it a chance to adjust the device capacity.
2901 *
2902 * CONTEXT:
2903 * Defined by block layer. Might sleep.
2904 */
2905 static void sd_unlock_native_capacity(struct gendisk *disk)
2906 {
2907 struct scsi_device *sdev = scsi_disk(disk)->device;
2908
2909 if (sdev->host->hostt->unlock_native_capacity)
2910 sdev->host->hostt->unlock_native_capacity(sdev);
2911 }
2912
2913 /**
2914 * sd_format_disk_name - format disk name
2915 * @prefix: name prefix - ie. "sd" for SCSI disks
2916 * @index: index of the disk to format name for
2917 * @buf: output buffer
2918 * @buflen: length of the output buffer
2919 *
2920 * SCSI disk names starts at sda. The 26th device is sdz and the
2921 * 27th is sdaa. The last one for two lettered suffix is sdzz
2922 * which is followed by sdaaa.
2923 *
2924 * This is basically 26 base counting with one extra 'nil' entry
2925 * at the beginning from the second digit on and can be
2926 * determined using similar method as 26 base conversion with the
2927 * index shifted -1 after each digit is computed.
2928 *
2929 * CONTEXT:
2930 * Don't care.
2931 *
2932 * RETURNS:
2933 * 0 on success, -errno on failure.
2934 */
2935 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2936 {
2937 const int base = 'z' - 'a' + 1;
2938 char *begin = buf + strlen(prefix);
2939 char *end = buf + buflen;
2940 char *p;
2941 int unit;
2942
2943 p = end - 1;
2944 *p = '\0';
2945 unit = base;
2946 do {
2947 if (p == begin)
2948 return -EINVAL;
2949 *--p = 'a' + (index % unit);
2950 index = (index / unit) - 1;
2951 } while (index >= 0);
2952
2953 memmove(begin, p, end - p);
2954 memcpy(buf, prefix, strlen(prefix));
2955
2956 return 0;
2957 }
2958
2959 /*
2960 * The asynchronous part of sd_probe
2961 */
2962 static void sd_probe_async(void *data, async_cookie_t cookie)
2963 {
2964 struct scsi_disk *sdkp = data;
2965 struct scsi_device *sdp;
2966 struct gendisk *gd;
2967 u32 index;
2968 struct device *dev;
2969
2970 sdp = sdkp->device;
2971 gd = sdkp->disk;
2972 index = sdkp->index;
2973 dev = &sdp->sdev_gendev;
2974
2975 gd->major = sd_major((index & 0xf0) >> 4);
2976 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2977 gd->minors = SD_MINORS;
2978
2979 gd->fops = &sd_fops;
2980 gd->private_data = &sdkp->driver;
2981 gd->queue = sdkp->device->request_queue;
2982
2983 /* defaults, until the device tells us otherwise */
2984 sdp->sector_size = 512;
2985 sdkp->capacity = 0;
2986 sdkp->media_present = 1;
2987 sdkp->write_prot = 0;
2988 sdkp->cache_override = 0;
2989 sdkp->WCE = 0;
2990 sdkp->RCD = 0;
2991 sdkp->ATO = 0;
2992 sdkp->first_scan = 1;
2993 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2994
2995 sd_revalidate_disk(gd);
2996
2997 gd->flags = GENHD_FL_EXT_DEVT;
2998 if (sdp->removable) {
2999 gd->flags |= GENHD_FL_REMOVABLE;
3000 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3001 }
3002
3003 blk_pm_runtime_init(sdp->request_queue, dev);
3004 device_add_disk(dev, gd);
3005 if (sdkp->capacity)
3006 sd_dif_config_host(sdkp);
3007
3008 sd_revalidate_disk(gd);
3009
3010 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3011 sdp->removable ? "removable " : "");
3012 scsi_autopm_put_device(sdp);
3013 put_device(&sdkp->dev);
3014 }
3015
3016 /**
3017 * sd_probe - called during driver initialization and whenever a
3018 * new scsi device is attached to the system. It is called once
3019 * for each scsi device (not just disks) present.
3020 * @dev: pointer to device object
3021 *
3022 * Returns 0 if successful (or not interested in this scsi device
3023 * (e.g. scanner)); 1 when there is an error.
3024 *
3025 * Note: this function is invoked from the scsi mid-level.
3026 * This function sets up the mapping between a given
3027 * <host,channel,id,lun> (found in sdp) and new device name
3028 * (e.g. /dev/sda). More precisely it is the block device major
3029 * and minor number that is chosen here.
3030 *
3031 * Assume sd_probe is not re-entrant (for time being)
3032 * Also think about sd_probe() and sd_remove() running coincidentally.
3033 **/
3034 static int sd_probe(struct device *dev)
3035 {
3036 struct scsi_device *sdp = to_scsi_device(dev);
3037 struct scsi_disk *sdkp;
3038 struct gendisk *gd;
3039 int index;
3040 int error;
3041
3042 scsi_autopm_get_device(sdp);
3043 error = -ENODEV;
3044 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
3045 goto out;
3046
3047 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3048 "sd_probe\n"));
3049
3050 error = -ENOMEM;
3051 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3052 if (!sdkp)
3053 goto out;
3054
3055 gd = alloc_disk(SD_MINORS);
3056 if (!gd)
3057 goto out_free;
3058
3059 do {
3060 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3061 goto out_put;
3062
3063 spin_lock(&sd_index_lock);
3064 error = ida_get_new(&sd_index_ida, &index);
3065 spin_unlock(&sd_index_lock);
3066 } while (error == -EAGAIN);
3067
3068 if (error) {
3069 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3070 goto out_put;
3071 }
3072
3073 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3074 if (error) {
3075 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3076 goto out_free_index;
3077 }
3078
3079 sdkp->device = sdp;
3080 sdkp->driver = &sd_template;
3081 sdkp->disk = gd;
3082 sdkp->index = index;
3083 atomic_set(&sdkp->openers, 0);
3084 atomic_set(&sdkp->device->ioerr_cnt, 0);
3085
3086 if (!sdp->request_queue->rq_timeout) {
3087 if (sdp->type != TYPE_MOD)
3088 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3089 else
3090 blk_queue_rq_timeout(sdp->request_queue,
3091 SD_MOD_TIMEOUT);
3092 }
3093
3094 device_initialize(&sdkp->dev);
3095 sdkp->dev.parent = dev;
3096 sdkp->dev.class = &sd_disk_class;
3097 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3098
3099 error = device_add(&sdkp->dev);
3100 if (error)
3101 goto out_free_index;
3102
3103 get_device(dev);
3104 dev_set_drvdata(dev, sdkp);
3105
3106 get_device(&sdkp->dev); /* prevent release before async_schedule */
3107 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3108
3109 return 0;
3110
3111 out_free_index:
3112 spin_lock(&sd_index_lock);
3113 ida_remove(&sd_index_ida, index);
3114 spin_unlock(&sd_index_lock);
3115 out_put:
3116 put_disk(gd);
3117 out_free:
3118 kfree(sdkp);
3119 out:
3120 scsi_autopm_put_device(sdp);
3121 return error;
3122 }
3123
3124 /**
3125 * sd_remove - called whenever a scsi disk (previously recognized by
3126 * sd_probe) is detached from the system. It is called (potentially
3127 * multiple times) during sd module unload.
3128 * @sdp: pointer to mid level scsi device object
3129 *
3130 * Note: this function is invoked from the scsi mid-level.
3131 * This function potentially frees up a device name (e.g. /dev/sdc)
3132 * that could be re-used by a subsequent sd_probe().
3133 * This function is not called when the built-in sd driver is "exit-ed".
3134 **/
3135 static int sd_remove(struct device *dev)
3136 {
3137 struct scsi_disk *sdkp;
3138 dev_t devt;
3139
3140 sdkp = dev_get_drvdata(dev);
3141 devt = disk_devt(sdkp->disk);
3142 scsi_autopm_get_device(sdkp->device);
3143
3144 async_synchronize_full_domain(&scsi_sd_pm_domain);
3145 async_synchronize_full_domain(&scsi_sd_probe_domain);
3146 device_del(&sdkp->dev);
3147 del_gendisk(sdkp->disk);
3148 sd_shutdown(dev);
3149
3150 blk_register_region(devt, SD_MINORS, NULL,
3151 sd_default_probe, NULL, NULL);
3152
3153 mutex_lock(&sd_ref_mutex);
3154 dev_set_drvdata(dev, NULL);
3155 put_device(&sdkp->dev);
3156 mutex_unlock(&sd_ref_mutex);
3157
3158 return 0;
3159 }
3160
3161 /**
3162 * scsi_disk_release - Called to free the scsi_disk structure
3163 * @dev: pointer to embedded class device
3164 *
3165 * sd_ref_mutex must be held entering this routine. Because it is
3166 * called on last put, you should always use the scsi_disk_get()
3167 * scsi_disk_put() helpers which manipulate the semaphore directly
3168 * and never do a direct put_device.
3169 **/
3170 static void scsi_disk_release(struct device *dev)
3171 {
3172 struct scsi_disk *sdkp = to_scsi_disk(dev);
3173 struct gendisk *disk = sdkp->disk;
3174
3175 spin_lock(&sd_index_lock);
3176 ida_remove(&sd_index_ida, sdkp->index);
3177 spin_unlock(&sd_index_lock);
3178
3179 disk->private_data = NULL;
3180 put_disk(disk);
3181 put_device(&sdkp->device->sdev_gendev);
3182
3183 kfree(sdkp);
3184 }
3185
3186 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3187 {
3188 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3189 struct scsi_sense_hdr sshdr;
3190 struct scsi_device *sdp = sdkp->device;
3191 int res;
3192
3193 if (start)
3194 cmd[4] |= 1; /* START */
3195
3196 if (sdp->start_stop_pwr_cond)
3197 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3198
3199 if (!scsi_device_online(sdp))
3200 return -ENODEV;
3201
3202 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3203 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3204 if (res) {
3205 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3206 if (driver_byte(res) & DRIVER_SENSE)
3207 sd_print_sense_hdr(sdkp, &sshdr);
3208 if (scsi_sense_valid(&sshdr) &&
3209 /* 0x3a is medium not present */
3210 sshdr.asc == 0x3a)
3211 res = 0;
3212 }
3213
3214 /* SCSI error codes must not go to the generic layer */
3215 if (res)
3216 return -EIO;
3217
3218 return 0;
3219 }
3220
3221 /*
3222 * Send a SYNCHRONIZE CACHE instruction down to the device through
3223 * the normal SCSI command structure. Wait for the command to
3224 * complete.
3225 */
3226 static void sd_shutdown(struct device *dev)
3227 {
3228 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3229
3230 if (!sdkp)
3231 return; /* this can happen */
3232
3233 if (pm_runtime_suspended(dev))
3234 return;
3235
3236 if (sdkp->WCE && sdkp->media_present) {
3237 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3238 sd_sync_cache(sdkp);
3239 }
3240
3241 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3242 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3243 sd_start_stop_device(sdkp, 0);
3244 }
3245 }
3246
3247 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3248 {
3249 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3250 int ret = 0;
3251
3252 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3253 return 0;
3254
3255 if (sdkp->WCE && sdkp->media_present) {
3256 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3257 ret = sd_sync_cache(sdkp);
3258 if (ret) {
3259 /* ignore OFFLINE device */
3260 if (ret == -ENODEV)
3261 ret = 0;
3262 goto done;
3263 }
3264 }
3265
3266 if (sdkp->device->manage_start_stop) {
3267 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3268 /* an error is not worth aborting a system sleep */
3269 ret = sd_start_stop_device(sdkp, 0);
3270 if (ignore_stop_errors)
3271 ret = 0;
3272 }
3273
3274 done:
3275 return ret;
3276 }
3277
3278 static int sd_suspend_system(struct device *dev)
3279 {
3280 return sd_suspend_common(dev, true);
3281 }
3282
3283 static int sd_suspend_runtime(struct device *dev)
3284 {
3285 return sd_suspend_common(dev, false);
3286 }
3287
3288 static int sd_resume(struct device *dev)
3289 {
3290 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3291
3292 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3293 return 0;
3294
3295 if (!sdkp->device->manage_start_stop)
3296 return 0;
3297
3298 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3299 return sd_start_stop_device(sdkp, 1);
3300 }
3301
3302 /**
3303 * init_sd - entry point for this driver (both when built in or when
3304 * a module).
3305 *
3306 * Note: this function registers this driver with the scsi mid-level.
3307 **/
3308 static int __init init_sd(void)
3309 {
3310 int majors = 0, i, err;
3311
3312 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3313
3314 for (i = 0; i < SD_MAJORS; i++) {
3315 if (register_blkdev(sd_major(i), "sd") != 0)
3316 continue;
3317 majors++;
3318 blk_register_region(sd_major(i), SD_MINORS, NULL,
3319 sd_default_probe, NULL, NULL);
3320 }
3321
3322 if (!majors)
3323 return -ENODEV;
3324
3325 err = class_register(&sd_disk_class);
3326 if (err)
3327 goto err_out;
3328
3329 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3330 0, 0, NULL);
3331 if (!sd_cdb_cache) {
3332 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3333 err = -ENOMEM;
3334 goto err_out_class;
3335 }
3336
3337 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3338 if (!sd_cdb_pool) {
3339 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3340 err = -ENOMEM;
3341 goto err_out_cache;
3342 }
3343
3344 err = scsi_register_driver(&sd_template.gendrv);
3345 if (err)
3346 goto err_out_driver;
3347
3348 return 0;
3349
3350 err_out_driver:
3351 mempool_destroy(sd_cdb_pool);
3352
3353 err_out_cache:
3354 kmem_cache_destroy(sd_cdb_cache);
3355
3356 err_out_class:
3357 class_unregister(&sd_disk_class);
3358 err_out:
3359 for (i = 0; i < SD_MAJORS; i++)
3360 unregister_blkdev(sd_major(i), "sd");
3361 return err;
3362 }
3363
3364 /**
3365 * exit_sd - exit point for this driver (when it is a module).
3366 *
3367 * Note: this function unregisters this driver from the scsi mid-level.
3368 **/
3369 static void __exit exit_sd(void)
3370 {
3371 int i;
3372
3373 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3374
3375 scsi_unregister_driver(&sd_template.gendrv);
3376 mempool_destroy(sd_cdb_pool);
3377 kmem_cache_destroy(sd_cdb_cache);
3378
3379 class_unregister(&sd_disk_class);
3380
3381 for (i = 0; i < SD_MAJORS; i++) {
3382 blk_unregister_region(sd_major(i), SD_MINORS);
3383 unregister_blkdev(sd_major(i), "sd");
3384 }
3385 }
3386
3387 module_init(init_sd);
3388 module_exit(exit_sd);
3389
3390 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3391 struct scsi_sense_hdr *sshdr)
3392 {
3393 scsi_print_sense_hdr(sdkp->device,
3394 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3395 }
3396
3397 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3398 int result)
3399 {
3400 const char *hb_string = scsi_hostbyte_string(result);
3401 const char *db_string = scsi_driverbyte_string(result);
3402
3403 if (hb_string || db_string)
3404 sd_printk(KERN_INFO, sdkp,
3405 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3406 hb_string ? hb_string : "invalid",
3407 db_string ? db_string : "invalid");
3408 else
3409 sd_printk(KERN_INFO, sdkp,
3410 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3411 msg, host_byte(result), driver_byte(result));
3412 }
3413