]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/scsi/sd.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS 16
102 #else
103 #define SD_MINORS 0
104 #endif
105
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int sd_probe(struct device *);
111 static int sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
126
127 static DEFINE_IDA(sd_index_ida);
128
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137
138 static const char *sd_cache_types[] = {
139 "write through", "none", "write back",
140 "write back, no read (daft)"
141 };
142
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 bool wc = false, fua = false;
146
147 if (sdkp->WCE) {
148 wc = true;
149 if (sdkp->DPOFUA)
150 fua = true;
151 }
152
153 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 const char *buf, size_t count)
159 {
160 int ct, rcd, wce, sp;
161 struct scsi_disk *sdkp = to_scsi_disk(dev);
162 struct scsi_device *sdp = sdkp->device;
163 char buffer[64];
164 char *buffer_data;
165 struct scsi_mode_data data;
166 struct scsi_sense_hdr sshdr;
167 static const char temp[] = "temporary ";
168 int len;
169
170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 /* no cache control on RBC devices; theoretically they
172 * can do it, but there's probably so many exceptions
173 * it's not worth the risk */
174 return -EINVAL;
175
176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 buf += sizeof(temp) - 1;
178 sdkp->cache_override = 1;
179 } else {
180 sdkp->cache_override = 0;
181 }
182
183 ct = sysfs_match_string(sd_cache_types, buf);
184 if (ct < 0)
185 return -EINVAL;
186
187 rcd = ct & 0x01 ? 1 : 0;
188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189
190 if (sdkp->cache_override) {
191 sdkp->WCE = wce;
192 sdkp->RCD = rcd;
193 sd_set_flush_flag(sdkp);
194 return count;
195 }
196
197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 SD_MAX_RETRIES, &data, NULL))
199 return -EINVAL;
200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 data.block_descriptor_length);
202 buffer_data = buffer + data.header_length +
203 data.block_descriptor_length;
204 buffer_data[2] &= ~0x05;
205 buffer_data[2] |= wce << 2 | rcd;
206 sp = buffer_data[0] & 0x80 ? 1 : 0;
207 buffer_data[0] &= ~0x80;
208
209 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
210 SD_MAX_RETRIES, &data, &sshdr)) {
211 if (scsi_sense_valid(&sshdr))
212 sd_print_sense_hdr(sdkp, &sshdr);
213 return -EINVAL;
214 }
215 revalidate_disk(sdkp->disk);
216 return count;
217 }
218
219 static ssize_t
220 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
221 char *buf)
222 {
223 struct scsi_disk *sdkp = to_scsi_disk(dev);
224 struct scsi_device *sdp = sdkp->device;
225
226 return sprintf(buf, "%u\n", sdp->manage_start_stop);
227 }
228
229 static ssize_t
230 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
231 const char *buf, size_t count)
232 {
233 struct scsi_disk *sdkp = to_scsi_disk(dev);
234 struct scsi_device *sdp = sdkp->device;
235 bool v;
236
237 if (!capable(CAP_SYS_ADMIN))
238 return -EACCES;
239
240 if (kstrtobool(buf, &v))
241 return -EINVAL;
242
243 sdp->manage_start_stop = v;
244
245 return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 struct scsi_disk *sdkp = to_scsi_disk(dev);
253
254 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
255 }
256
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 const char *buf, size_t count)
260 {
261 bool v;
262 struct scsi_disk *sdkp = to_scsi_disk(dev);
263 struct scsi_device *sdp = sdkp->device;
264
265 if (!capable(CAP_SYS_ADMIN))
266 return -EACCES;
267
268 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
269 return -EINVAL;
270
271 if (kstrtobool(buf, &v))
272 return -EINVAL;
273
274 sdp->allow_restart = v;
275
276 return count;
277 }
278 static DEVICE_ATTR_RW(allow_restart);
279
280 static ssize_t
281 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
282 {
283 struct scsi_disk *sdkp = to_scsi_disk(dev);
284 int ct = sdkp->RCD + 2*sdkp->WCE;
285
286 return sprintf(buf, "%s\n", sd_cache_types[ct]);
287 }
288 static DEVICE_ATTR_RW(cache_type);
289
290 static ssize_t
291 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
292 {
293 struct scsi_disk *sdkp = to_scsi_disk(dev);
294
295 return sprintf(buf, "%u\n", sdkp->DPOFUA);
296 }
297 static DEVICE_ATTR_RO(FUA);
298
299 static ssize_t
300 protection_type_show(struct device *dev, struct device_attribute *attr,
301 char *buf)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304
305 return sprintf(buf, "%u\n", sdkp->protection_type);
306 }
307
308 static ssize_t
309 protection_type_store(struct device *dev, struct device_attribute *attr,
310 const char *buf, size_t count)
311 {
312 struct scsi_disk *sdkp = to_scsi_disk(dev);
313 unsigned int val;
314 int err;
315
316 if (!capable(CAP_SYS_ADMIN))
317 return -EACCES;
318
319 err = kstrtouint(buf, 10, &val);
320
321 if (err)
322 return err;
323
324 if (val <= T10_PI_TYPE3_PROTECTION)
325 sdkp->protection_type = val;
326
327 return count;
328 }
329 static DEVICE_ATTR_RW(protection_type);
330
331 static ssize_t
332 protection_mode_show(struct device *dev, struct device_attribute *attr,
333 char *buf)
334 {
335 struct scsi_disk *sdkp = to_scsi_disk(dev);
336 struct scsi_device *sdp = sdkp->device;
337 unsigned int dif, dix;
338
339 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
340 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
341
342 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
343 dif = 0;
344 dix = 1;
345 }
346
347 if (!dif && !dix)
348 return sprintf(buf, "none\n");
349
350 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
351 }
352 static DEVICE_ATTR_RO(protection_mode);
353
354 static ssize_t
355 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
356 {
357 struct scsi_disk *sdkp = to_scsi_disk(dev);
358
359 return sprintf(buf, "%u\n", sdkp->ATO);
360 }
361 static DEVICE_ATTR_RO(app_tag_own);
362
363 static ssize_t
364 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
365 char *buf)
366 {
367 struct scsi_disk *sdkp = to_scsi_disk(dev);
368
369 return sprintf(buf, "%u\n", sdkp->lbpme);
370 }
371 static DEVICE_ATTR_RO(thin_provisioning);
372
373 /* sysfs_match_string() requires dense arrays */
374 static const char *lbp_mode[] = {
375 [SD_LBP_FULL] = "full",
376 [SD_LBP_UNMAP] = "unmap",
377 [SD_LBP_WS16] = "writesame_16",
378 [SD_LBP_WS10] = "writesame_10",
379 [SD_LBP_ZERO] = "writesame_zero",
380 [SD_LBP_DISABLE] = "disabled",
381 };
382
383 static ssize_t
384 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
385 char *buf)
386 {
387 struct scsi_disk *sdkp = to_scsi_disk(dev);
388
389 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
390 }
391
392 static ssize_t
393 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
394 const char *buf, size_t count)
395 {
396 struct scsi_disk *sdkp = to_scsi_disk(dev);
397 struct scsi_device *sdp = sdkp->device;
398 int mode;
399
400 if (!capable(CAP_SYS_ADMIN))
401 return -EACCES;
402
403 if (sd_is_zoned(sdkp)) {
404 sd_config_discard(sdkp, SD_LBP_DISABLE);
405 return count;
406 }
407
408 if (sdp->type != TYPE_DISK)
409 return -EINVAL;
410
411 mode = sysfs_match_string(lbp_mode, buf);
412 if (mode < 0)
413 return -EINVAL;
414
415 sd_config_discard(sdkp, mode);
416
417 return count;
418 }
419 static DEVICE_ATTR_RW(provisioning_mode);
420
421 /* sysfs_match_string() requires dense arrays */
422 static const char *zeroing_mode[] = {
423 [SD_ZERO_WRITE] = "write",
424 [SD_ZERO_WS] = "writesame",
425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
427 };
428
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 char *buf)
432 {
433 struct scsi_disk *sdkp = to_scsi_disk(dev);
434
435 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 const char *buf, size_t count)
441 {
442 struct scsi_disk *sdkp = to_scsi_disk(dev);
443 int mode;
444
445 if (!capable(CAP_SYS_ADMIN))
446 return -EACCES;
447
448 mode = sysfs_match_string(zeroing_mode, buf);
449 if (mode < 0)
450 return -EINVAL;
451
452 sdkp->zeroing_mode = mode;
453
454 return count;
455 }
456 static DEVICE_ATTR_RW(zeroing_mode);
457
458 static ssize_t
459 max_medium_access_timeouts_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461 {
462 struct scsi_disk *sdkp = to_scsi_disk(dev);
463
464 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
465 }
466
467 static ssize_t
468 max_medium_access_timeouts_store(struct device *dev,
469 struct device_attribute *attr, const char *buf,
470 size_t count)
471 {
472 struct scsi_disk *sdkp = to_scsi_disk(dev);
473 int err;
474
475 if (!capable(CAP_SYS_ADMIN))
476 return -EACCES;
477
478 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
479
480 return err ? err : count;
481 }
482 static DEVICE_ATTR_RW(max_medium_access_timeouts);
483
484 static ssize_t
485 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
486 char *buf)
487 {
488 struct scsi_disk *sdkp = to_scsi_disk(dev);
489
490 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
491 }
492
493 static ssize_t
494 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
495 const char *buf, size_t count)
496 {
497 struct scsi_disk *sdkp = to_scsi_disk(dev);
498 struct scsi_device *sdp = sdkp->device;
499 unsigned long max;
500 int err;
501
502 if (!capable(CAP_SYS_ADMIN))
503 return -EACCES;
504
505 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
506 return -EINVAL;
507
508 err = kstrtoul(buf, 10, &max);
509
510 if (err)
511 return err;
512
513 if (max == 0)
514 sdp->no_write_same = 1;
515 else if (max <= SD_MAX_WS16_BLOCKS) {
516 sdp->no_write_same = 0;
517 sdkp->max_ws_blocks = max;
518 }
519
520 sd_config_write_same(sdkp);
521
522 return count;
523 }
524 static DEVICE_ATTR_RW(max_write_same_blocks);
525
526 static struct attribute *sd_disk_attrs[] = {
527 &dev_attr_cache_type.attr,
528 &dev_attr_FUA.attr,
529 &dev_attr_allow_restart.attr,
530 &dev_attr_manage_start_stop.attr,
531 &dev_attr_protection_type.attr,
532 &dev_attr_protection_mode.attr,
533 &dev_attr_app_tag_own.attr,
534 &dev_attr_thin_provisioning.attr,
535 &dev_attr_provisioning_mode.attr,
536 &dev_attr_zeroing_mode.attr,
537 &dev_attr_max_write_same_blocks.attr,
538 &dev_attr_max_medium_access_timeouts.attr,
539 NULL,
540 };
541 ATTRIBUTE_GROUPS(sd_disk);
542
543 static struct class sd_disk_class = {
544 .name = "scsi_disk",
545 .owner = THIS_MODULE,
546 .dev_release = scsi_disk_release,
547 .dev_groups = sd_disk_groups,
548 };
549
550 static const struct dev_pm_ops sd_pm_ops = {
551 .suspend = sd_suspend_system,
552 .resume = sd_resume,
553 .poweroff = sd_suspend_system,
554 .restore = sd_resume,
555 .runtime_suspend = sd_suspend_runtime,
556 .runtime_resume = sd_resume,
557 };
558
559 static struct scsi_driver sd_template = {
560 .gendrv = {
561 .name = "sd",
562 .owner = THIS_MODULE,
563 .probe = sd_probe,
564 .remove = sd_remove,
565 .shutdown = sd_shutdown,
566 .pm = &sd_pm_ops,
567 },
568 .rescan = sd_rescan,
569 .init_command = sd_init_command,
570 .uninit_command = sd_uninit_command,
571 .done = sd_done,
572 .eh_action = sd_eh_action,
573 .eh_reset = sd_eh_reset,
574 };
575
576 /*
577 * Dummy kobj_map->probe function.
578 * The default ->probe function will call modprobe, which is
579 * pointless as this module is already loaded.
580 */
581 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
582 {
583 return NULL;
584 }
585
586 /*
587 * Device no to disk mapping:
588 *
589 * major disc2 disc p1
590 * |............|.............|....|....| <- dev_t
591 * 31 20 19 8 7 4 3 0
592 *
593 * Inside a major, we have 16k disks, however mapped non-
594 * contiguously. The first 16 disks are for major0, the next
595 * ones with major1, ... Disk 256 is for major0 again, disk 272
596 * for major1, ...
597 * As we stay compatible with our numbering scheme, we can reuse
598 * the well-know SCSI majors 8, 65--71, 136--143.
599 */
600 static int sd_major(int major_idx)
601 {
602 switch (major_idx) {
603 case 0:
604 return SCSI_DISK0_MAJOR;
605 case 1 ... 7:
606 return SCSI_DISK1_MAJOR + major_idx - 1;
607 case 8 ... 15:
608 return SCSI_DISK8_MAJOR + major_idx - 8;
609 default:
610 BUG();
611 return 0; /* shut up gcc */
612 }
613 }
614
615 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
616 {
617 struct scsi_disk *sdkp = NULL;
618
619 mutex_lock(&sd_ref_mutex);
620
621 if (disk->private_data) {
622 sdkp = scsi_disk(disk);
623 if (scsi_device_get(sdkp->device) == 0)
624 get_device(&sdkp->dev);
625 else
626 sdkp = NULL;
627 }
628 mutex_unlock(&sd_ref_mutex);
629 return sdkp;
630 }
631
632 static void scsi_disk_put(struct scsi_disk *sdkp)
633 {
634 struct scsi_device *sdev = sdkp->device;
635
636 mutex_lock(&sd_ref_mutex);
637 put_device(&sdkp->dev);
638 scsi_device_put(sdev);
639 mutex_unlock(&sd_ref_mutex);
640 }
641
642 #ifdef CONFIG_BLK_SED_OPAL
643 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
644 size_t len, bool send)
645 {
646 struct scsi_device *sdev = data;
647 u8 cdb[12] = { 0, };
648 int ret;
649
650 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
651 cdb[1] = secp;
652 put_unaligned_be16(spsp, &cdb[2]);
653 put_unaligned_be32(len, &cdb[6]);
654
655 ret = scsi_execute_req(sdev, cdb,
656 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
657 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
658 return ret <= 0 ? ret : -EIO;
659 }
660 #endif /* CONFIG_BLK_SED_OPAL */
661
662 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
663 unsigned int dix, unsigned int dif)
664 {
665 struct bio *bio = scmd->request->bio;
666 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
667 unsigned int protect = 0;
668
669 if (dix) { /* DIX Type 0, 1, 2, 3 */
670 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
671 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
672
673 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
674 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
675 }
676
677 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
678 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
679
680 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
681 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
682 }
683
684 if (dif) { /* DIX/DIF Type 1, 2, 3 */
685 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
686
687 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
688 protect = 3 << 5; /* Disable target PI checking */
689 else
690 protect = 1 << 5; /* Enable target PI checking */
691 }
692
693 scsi_set_prot_op(scmd, prot_op);
694 scsi_set_prot_type(scmd, dif);
695 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
696
697 return protect;
698 }
699
700 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
701 {
702 struct request_queue *q = sdkp->disk->queue;
703 unsigned int logical_block_size = sdkp->device->sector_size;
704 unsigned int max_blocks = 0;
705
706 q->limits.discard_alignment =
707 sdkp->unmap_alignment * logical_block_size;
708 q->limits.discard_granularity =
709 max(sdkp->physical_block_size,
710 sdkp->unmap_granularity * logical_block_size);
711 sdkp->provisioning_mode = mode;
712
713 switch (mode) {
714
715 case SD_LBP_FULL:
716 case SD_LBP_DISABLE:
717 blk_queue_max_discard_sectors(q, 0);
718 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
719 return;
720
721 case SD_LBP_UNMAP:
722 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
723 (u32)SD_MAX_WS16_BLOCKS);
724 break;
725
726 case SD_LBP_WS16:
727 if (sdkp->device->unmap_limit_for_ws)
728 max_blocks = sdkp->max_unmap_blocks;
729 else
730 max_blocks = sdkp->max_ws_blocks;
731
732 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
733 break;
734
735 case SD_LBP_WS10:
736 if (sdkp->device->unmap_limit_for_ws)
737 max_blocks = sdkp->max_unmap_blocks;
738 else
739 max_blocks = sdkp->max_ws_blocks;
740
741 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
742 break;
743
744 case SD_LBP_ZERO:
745 max_blocks = min_not_zero(sdkp->max_ws_blocks,
746 (u32)SD_MAX_WS10_BLOCKS);
747 break;
748 }
749
750 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
751 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
752 }
753
754 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
755 {
756 struct scsi_device *sdp = cmd->device;
757 struct request *rq = cmd->request;
758 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
759 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
760 unsigned int data_len = 24;
761 char *buf;
762
763 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
764 if (!rq->special_vec.bv_page)
765 return BLK_STS_RESOURCE;
766 clear_highpage(rq->special_vec.bv_page);
767 rq->special_vec.bv_offset = 0;
768 rq->special_vec.bv_len = data_len;
769 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
770
771 cmd->cmd_len = 10;
772 cmd->cmnd[0] = UNMAP;
773 cmd->cmnd[8] = 24;
774
775 buf = page_address(rq->special_vec.bv_page);
776 put_unaligned_be16(6 + 16, &buf[0]);
777 put_unaligned_be16(16, &buf[2]);
778 put_unaligned_be64(sector, &buf[8]);
779 put_unaligned_be32(nr_sectors, &buf[16]);
780
781 cmd->allowed = SD_MAX_RETRIES;
782 cmd->transfersize = data_len;
783 rq->timeout = SD_TIMEOUT;
784 scsi_req(rq)->resid_len = data_len;
785
786 return scsi_init_io(cmd);
787 }
788
789 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
790 bool unmap)
791 {
792 struct scsi_device *sdp = cmd->device;
793 struct request *rq = cmd->request;
794 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
795 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
796 u32 data_len = sdp->sector_size;
797
798 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
799 if (!rq->special_vec.bv_page)
800 return BLK_STS_RESOURCE;
801 clear_highpage(rq->special_vec.bv_page);
802 rq->special_vec.bv_offset = 0;
803 rq->special_vec.bv_len = data_len;
804 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
805
806 cmd->cmd_len = 16;
807 cmd->cmnd[0] = WRITE_SAME_16;
808 if (unmap)
809 cmd->cmnd[1] = 0x8; /* UNMAP */
810 put_unaligned_be64(sector, &cmd->cmnd[2]);
811 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
812
813 cmd->allowed = SD_MAX_RETRIES;
814 cmd->transfersize = data_len;
815 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
816 scsi_req(rq)->resid_len = data_len;
817
818 return scsi_init_io(cmd);
819 }
820
821 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
822 bool unmap)
823 {
824 struct scsi_device *sdp = cmd->device;
825 struct request *rq = cmd->request;
826 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
827 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
828 u32 data_len = sdp->sector_size;
829
830 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
831 if (!rq->special_vec.bv_page)
832 return BLK_STS_RESOURCE;
833 clear_highpage(rq->special_vec.bv_page);
834 rq->special_vec.bv_offset = 0;
835 rq->special_vec.bv_len = data_len;
836 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
837
838 cmd->cmd_len = 10;
839 cmd->cmnd[0] = WRITE_SAME;
840 if (unmap)
841 cmd->cmnd[1] = 0x8; /* UNMAP */
842 put_unaligned_be32(sector, &cmd->cmnd[2]);
843 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
844
845 cmd->allowed = SD_MAX_RETRIES;
846 cmd->transfersize = data_len;
847 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
848 scsi_req(rq)->resid_len = data_len;
849
850 return scsi_init_io(cmd);
851 }
852
853 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
854 {
855 struct request *rq = cmd->request;
856 struct scsi_device *sdp = cmd->device;
857 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
858 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
859 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
860
861 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
862 switch (sdkp->zeroing_mode) {
863 case SD_ZERO_WS16_UNMAP:
864 return sd_setup_write_same16_cmnd(cmd, true);
865 case SD_ZERO_WS10_UNMAP:
866 return sd_setup_write_same10_cmnd(cmd, true);
867 }
868 }
869
870 if (sdp->no_write_same)
871 return BLK_STS_TARGET;
872
873 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
874 return sd_setup_write_same16_cmnd(cmd, false);
875
876 return sd_setup_write_same10_cmnd(cmd, false);
877 }
878
879 static void sd_config_write_same(struct scsi_disk *sdkp)
880 {
881 struct request_queue *q = sdkp->disk->queue;
882 unsigned int logical_block_size = sdkp->device->sector_size;
883
884 if (sdkp->device->no_write_same) {
885 sdkp->max_ws_blocks = 0;
886 goto out;
887 }
888
889 /* Some devices can not handle block counts above 0xffff despite
890 * supporting WRITE SAME(16). Consequently we default to 64k
891 * blocks per I/O unless the device explicitly advertises a
892 * bigger limit.
893 */
894 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
895 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
896 (u32)SD_MAX_WS16_BLOCKS);
897 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
898 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
899 (u32)SD_MAX_WS10_BLOCKS);
900 else {
901 sdkp->device->no_write_same = 1;
902 sdkp->max_ws_blocks = 0;
903 }
904
905 if (sdkp->lbprz && sdkp->lbpws)
906 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
907 else if (sdkp->lbprz && sdkp->lbpws10)
908 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
909 else if (sdkp->max_ws_blocks)
910 sdkp->zeroing_mode = SD_ZERO_WS;
911 else
912 sdkp->zeroing_mode = SD_ZERO_WRITE;
913
914 if (sdkp->max_ws_blocks &&
915 sdkp->physical_block_size > logical_block_size) {
916 /*
917 * Reporting a maximum number of blocks that is not aligned
918 * on the device physical size would cause a large write same
919 * request to be split into physically unaligned chunks by
920 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
921 * even if the caller of these functions took care to align the
922 * large request. So make sure the maximum reported is aligned
923 * to the device physical block size. This is only an optional
924 * optimization for regular disks, but this is mandatory to
925 * avoid failure of large write same requests directed at
926 * sequential write required zones of host-managed ZBC disks.
927 */
928 sdkp->max_ws_blocks =
929 round_down(sdkp->max_ws_blocks,
930 bytes_to_logical(sdkp->device,
931 sdkp->physical_block_size));
932 }
933
934 out:
935 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
936 (logical_block_size >> 9));
937 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
938 (logical_block_size >> 9));
939 }
940
941 /**
942 * sd_setup_write_same_cmnd - write the same data to multiple blocks
943 * @cmd: command to prepare
944 *
945 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
946 * the preference indicated by the target device.
947 **/
948 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
949 {
950 struct request *rq = cmd->request;
951 struct scsi_device *sdp = cmd->device;
952 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
953 struct bio *bio = rq->bio;
954 sector_t sector = blk_rq_pos(rq);
955 unsigned int nr_sectors = blk_rq_sectors(rq);
956 unsigned int nr_bytes = blk_rq_bytes(rq);
957 blk_status_t ret;
958
959 if (sdkp->device->no_write_same)
960 return BLK_STS_TARGET;
961
962 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
963
964 sector >>= ilog2(sdp->sector_size) - 9;
965 nr_sectors >>= ilog2(sdp->sector_size) - 9;
966
967 rq->timeout = SD_WRITE_SAME_TIMEOUT;
968
969 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
970 cmd->cmd_len = 16;
971 cmd->cmnd[0] = WRITE_SAME_16;
972 put_unaligned_be64(sector, &cmd->cmnd[2]);
973 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
974 } else {
975 cmd->cmd_len = 10;
976 cmd->cmnd[0] = WRITE_SAME;
977 put_unaligned_be32(sector, &cmd->cmnd[2]);
978 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
979 }
980
981 cmd->transfersize = sdp->sector_size;
982 cmd->allowed = SD_MAX_RETRIES;
983
984 /*
985 * For WRITE SAME the data transferred via the DATA OUT buffer is
986 * different from the amount of data actually written to the target.
987 *
988 * We set up __data_len to the amount of data transferred via the
989 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
990 * to transfer a single sector of data first, but then reset it to
991 * the amount of data to be written right after so that the I/O path
992 * knows how much to actually write.
993 */
994 rq->__data_len = sdp->sector_size;
995 ret = scsi_init_io(cmd);
996 rq->__data_len = nr_bytes;
997
998 return ret;
999 }
1000
1001 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1002 {
1003 struct request *rq = cmd->request;
1004
1005 /* flush requests don't perform I/O, zero the S/G table */
1006 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1007
1008 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1009 cmd->cmd_len = 10;
1010 cmd->transfersize = 0;
1011 cmd->allowed = SD_MAX_RETRIES;
1012
1013 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1014 return BLK_STS_OK;
1015 }
1016
1017 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1018 {
1019 struct request *rq = SCpnt->request;
1020 struct scsi_device *sdp = SCpnt->device;
1021 struct gendisk *disk = rq->rq_disk;
1022 struct scsi_disk *sdkp = scsi_disk(disk);
1023 sector_t block = blk_rq_pos(rq);
1024 sector_t threshold;
1025 unsigned int this_count = blk_rq_sectors(rq);
1026 unsigned int dif, dix;
1027 unsigned char protect;
1028 blk_status_t ret;
1029
1030 ret = scsi_init_io(SCpnt);
1031 if (ret != BLK_STS_OK)
1032 return ret;
1033 WARN_ON_ONCE(SCpnt != rq->special);
1034
1035 SCSI_LOG_HLQUEUE(1,
1036 scmd_printk(KERN_INFO, SCpnt,
1037 "%s: block=%llu, count=%d\n",
1038 __func__, (unsigned long long)block, this_count));
1039
1040 if (!sdp || !scsi_device_online(sdp) ||
1041 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1042 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1043 "Finishing %u sectors\n",
1044 blk_rq_sectors(rq)));
1045 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1046 "Retry with 0x%p\n", SCpnt));
1047 return BLK_STS_IOERR;
1048 }
1049
1050 if (sdp->changed) {
1051 /*
1052 * quietly refuse to do anything to a changed disc until
1053 * the changed bit has been reset
1054 */
1055 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1056 return BLK_STS_IOERR;
1057 }
1058
1059 /*
1060 * Some SD card readers can't handle multi-sector accesses which touch
1061 * the last one or two hardware sectors. Split accesses as needed.
1062 */
1063 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1064 (sdp->sector_size / 512);
1065
1066 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1067 if (block < threshold) {
1068 /* Access up to the threshold but not beyond */
1069 this_count = threshold - block;
1070 } else {
1071 /* Access only a single hardware sector */
1072 this_count = sdp->sector_size / 512;
1073 }
1074 }
1075
1076 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1077 (unsigned long long)block));
1078
1079 /*
1080 * If we have a 1K hardware sectorsize, prevent access to single
1081 * 512 byte sectors. In theory we could handle this - in fact
1082 * the scsi cdrom driver must be able to handle this because
1083 * we typically use 1K blocksizes, and cdroms typically have
1084 * 2K hardware sectorsizes. Of course, things are simpler
1085 * with the cdrom, since it is read-only. For performance
1086 * reasons, the filesystems should be able to handle this
1087 * and not force the scsi disk driver to use bounce buffers
1088 * for this.
1089 */
1090 if (sdp->sector_size == 1024) {
1091 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1092 scmd_printk(KERN_ERR, SCpnt,
1093 "Bad block number requested\n");
1094 return BLK_STS_IOERR;
1095 }
1096 block = block >> 1;
1097 this_count = this_count >> 1;
1098 }
1099 if (sdp->sector_size == 2048) {
1100 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1101 scmd_printk(KERN_ERR, SCpnt,
1102 "Bad block number requested\n");
1103 return BLK_STS_IOERR;
1104 }
1105 block = block >> 2;
1106 this_count = this_count >> 2;
1107 }
1108 if (sdp->sector_size == 4096) {
1109 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1110 scmd_printk(KERN_ERR, SCpnt,
1111 "Bad block number requested\n");
1112 return BLK_STS_IOERR;
1113 }
1114 block = block >> 3;
1115 this_count = this_count >> 3;
1116 }
1117 if (rq_data_dir(rq) == WRITE) {
1118 SCpnt->cmnd[0] = WRITE_6;
1119
1120 if (blk_integrity_rq(rq))
1121 t10_pi_prepare(SCpnt->request, sdkp->protection_type);
1122
1123 } else if (rq_data_dir(rq) == READ) {
1124 SCpnt->cmnd[0] = READ_6;
1125 } else {
1126 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1127 return BLK_STS_IOERR;
1128 }
1129
1130 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1131 "%s %d/%u 512 byte blocks.\n",
1132 (rq_data_dir(rq) == WRITE) ?
1133 "writing" : "reading", this_count,
1134 blk_rq_sectors(rq)));
1135
1136 dix = scsi_prot_sg_count(SCpnt);
1137 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1138
1139 if (dif || dix)
1140 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1141 else
1142 protect = 0;
1143
1144 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1145 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1146
1147 if (unlikely(!SCpnt->cmnd))
1148 return BLK_STS_RESOURCE;
1149
1150 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1151 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1152 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1153 SCpnt->cmnd[7] = 0x18;
1154 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1155 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1156
1157 /* LBA */
1158 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1159 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1160 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1161 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1162 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1163 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1164 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1165 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1166
1167 /* Expected Indirect LBA */
1168 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1169 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1170 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1171 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1172
1173 /* Transfer length */
1174 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1175 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1176 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1177 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1178 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1179 SCpnt->cmnd[0] += READ_16 - READ_6;
1180 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1181 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1182 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1183 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1184 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1185 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1186 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1187 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1188 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1189 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1190 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1191 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1192 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1193 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1194 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1195 scsi_device_protection(SCpnt->device) ||
1196 SCpnt->device->use_10_for_rw) {
1197 SCpnt->cmnd[0] += READ_10 - READ_6;
1198 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1199 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1200 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1201 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1202 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1203 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1204 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1205 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1206 } else {
1207 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1208 /*
1209 * This happens only if this drive failed
1210 * 10byte rw command with ILLEGAL_REQUEST
1211 * during operation and thus turned off
1212 * use_10_for_rw.
1213 */
1214 scmd_printk(KERN_ERR, SCpnt,
1215 "FUA write on READ/WRITE(6) drive\n");
1216 return BLK_STS_IOERR;
1217 }
1218
1219 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1220 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1221 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1222 SCpnt->cmnd[4] = (unsigned char) this_count;
1223 SCpnt->cmnd[5] = 0;
1224 }
1225 SCpnt->sdb.length = this_count * sdp->sector_size;
1226
1227 /*
1228 * We shouldn't disconnect in the middle of a sector, so with a dumb
1229 * host adapter, it's safe to assume that we can at least transfer
1230 * this many bytes between each connect / disconnect.
1231 */
1232 SCpnt->transfersize = sdp->sector_size;
1233 SCpnt->underflow = this_count << 9;
1234 SCpnt->allowed = SD_MAX_RETRIES;
1235
1236 /*
1237 * This indicates that the command is ready from our end to be
1238 * queued.
1239 */
1240 return BLK_STS_OK;
1241 }
1242
1243 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1244 {
1245 struct request *rq = cmd->request;
1246
1247 switch (req_op(rq)) {
1248 case REQ_OP_DISCARD:
1249 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1250 case SD_LBP_UNMAP:
1251 return sd_setup_unmap_cmnd(cmd);
1252 case SD_LBP_WS16:
1253 return sd_setup_write_same16_cmnd(cmd, true);
1254 case SD_LBP_WS10:
1255 return sd_setup_write_same10_cmnd(cmd, true);
1256 case SD_LBP_ZERO:
1257 return sd_setup_write_same10_cmnd(cmd, false);
1258 default:
1259 return BLK_STS_TARGET;
1260 }
1261 case REQ_OP_WRITE_ZEROES:
1262 return sd_setup_write_zeroes_cmnd(cmd);
1263 case REQ_OP_WRITE_SAME:
1264 return sd_setup_write_same_cmnd(cmd);
1265 case REQ_OP_FLUSH:
1266 return sd_setup_flush_cmnd(cmd);
1267 case REQ_OP_READ:
1268 case REQ_OP_WRITE:
1269 return sd_setup_read_write_cmnd(cmd);
1270 case REQ_OP_ZONE_RESET:
1271 return sd_zbc_setup_reset_cmnd(cmd);
1272 default:
1273 WARN_ON_ONCE(1);
1274 return BLK_STS_NOTSUPP;
1275 }
1276 }
1277
1278 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1279 {
1280 struct request *rq = SCpnt->request;
1281 u8 *cmnd;
1282
1283 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1284 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1285
1286 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1287 cmnd = SCpnt->cmnd;
1288 SCpnt->cmnd = NULL;
1289 SCpnt->cmd_len = 0;
1290 mempool_free(cmnd, sd_cdb_pool);
1291 }
1292 }
1293
1294 /**
1295 * sd_open - open a scsi disk device
1296 * @bdev: Block device of the scsi disk to open
1297 * @mode: FMODE_* mask
1298 *
1299 * Returns 0 if successful. Returns a negated errno value in case
1300 * of error.
1301 *
1302 * Note: This can be called from a user context (e.g. fsck(1) )
1303 * or from within the kernel (e.g. as a result of a mount(1) ).
1304 * In the latter case @inode and @filp carry an abridged amount
1305 * of information as noted above.
1306 *
1307 * Locking: called with bdev->bd_mutex held.
1308 **/
1309 static int sd_open(struct block_device *bdev, fmode_t mode)
1310 {
1311 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1312 struct scsi_device *sdev;
1313 int retval;
1314
1315 if (!sdkp)
1316 return -ENXIO;
1317
1318 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1319
1320 sdev = sdkp->device;
1321
1322 /*
1323 * If the device is in error recovery, wait until it is done.
1324 * If the device is offline, then disallow any access to it.
1325 */
1326 retval = -ENXIO;
1327 if (!scsi_block_when_processing_errors(sdev))
1328 goto error_out;
1329
1330 if (sdev->removable || sdkp->write_prot)
1331 check_disk_change(bdev);
1332
1333 /*
1334 * If the drive is empty, just let the open fail.
1335 */
1336 retval = -ENOMEDIUM;
1337 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1338 goto error_out;
1339
1340 /*
1341 * If the device has the write protect tab set, have the open fail
1342 * if the user expects to be able to write to the thing.
1343 */
1344 retval = -EROFS;
1345 if (sdkp->write_prot && (mode & FMODE_WRITE))
1346 goto error_out;
1347
1348 /*
1349 * It is possible that the disk changing stuff resulted in
1350 * the device being taken offline. If this is the case,
1351 * report this to the user, and don't pretend that the
1352 * open actually succeeded.
1353 */
1354 retval = -ENXIO;
1355 if (!scsi_device_online(sdev))
1356 goto error_out;
1357
1358 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1359 if (scsi_block_when_processing_errors(sdev))
1360 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1361 }
1362
1363 return 0;
1364
1365 error_out:
1366 scsi_disk_put(sdkp);
1367 return retval;
1368 }
1369
1370 /**
1371 * sd_release - invoked when the (last) close(2) is called on this
1372 * scsi disk.
1373 * @disk: disk to release
1374 * @mode: FMODE_* mask
1375 *
1376 * Returns 0.
1377 *
1378 * Note: may block (uninterruptible) if error recovery is underway
1379 * on this disk.
1380 *
1381 * Locking: called with bdev->bd_mutex held.
1382 **/
1383 static void sd_release(struct gendisk *disk, fmode_t mode)
1384 {
1385 struct scsi_disk *sdkp = scsi_disk(disk);
1386 struct scsi_device *sdev = sdkp->device;
1387
1388 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1389
1390 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1391 if (scsi_block_when_processing_errors(sdev))
1392 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1393 }
1394
1395 /*
1396 * XXX and what if there are packets in flight and this close()
1397 * XXX is followed by a "rmmod sd_mod"?
1398 */
1399
1400 scsi_disk_put(sdkp);
1401 }
1402
1403 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1404 {
1405 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1406 struct scsi_device *sdp = sdkp->device;
1407 struct Scsi_Host *host = sdp->host;
1408 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1409 int diskinfo[4];
1410
1411 /* default to most commonly used values */
1412 diskinfo[0] = 0x40; /* 1 << 6 */
1413 diskinfo[1] = 0x20; /* 1 << 5 */
1414 diskinfo[2] = capacity >> 11;
1415
1416 /* override with calculated, extended default, or driver values */
1417 if (host->hostt->bios_param)
1418 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1419 else
1420 scsicam_bios_param(bdev, capacity, diskinfo);
1421
1422 geo->heads = diskinfo[0];
1423 geo->sectors = diskinfo[1];
1424 geo->cylinders = diskinfo[2];
1425 return 0;
1426 }
1427
1428 /**
1429 * sd_ioctl - process an ioctl
1430 * @bdev: target block device
1431 * @mode: FMODE_* mask
1432 * @cmd: ioctl command number
1433 * @arg: this is third argument given to ioctl(2) system call.
1434 * Often contains a pointer.
1435 *
1436 * Returns 0 if successful (some ioctls return positive numbers on
1437 * success as well). Returns a negated errno value in case of error.
1438 *
1439 * Note: most ioctls are forward onto the block subsystem or further
1440 * down in the scsi subsystem.
1441 **/
1442 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1443 unsigned int cmd, unsigned long arg)
1444 {
1445 struct gendisk *disk = bdev->bd_disk;
1446 struct scsi_disk *sdkp = scsi_disk(disk);
1447 struct scsi_device *sdp = sdkp->device;
1448 void __user *p = (void __user *)arg;
1449 int error;
1450
1451 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1452 "cmd=0x%x\n", disk->disk_name, cmd));
1453
1454 error = scsi_verify_blk_ioctl(bdev, cmd);
1455 if (error < 0)
1456 return error;
1457
1458 /*
1459 * If we are in the middle of error recovery, don't let anyone
1460 * else try and use this device. Also, if error recovery fails, it
1461 * may try and take the device offline, in which case all further
1462 * access to the device is prohibited.
1463 */
1464 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1465 (mode & FMODE_NDELAY) != 0);
1466 if (error)
1467 goto out;
1468
1469 if (is_sed_ioctl(cmd))
1470 return sed_ioctl(sdkp->opal_dev, cmd, p);
1471
1472 /*
1473 * Send SCSI addressing ioctls directly to mid level, send other
1474 * ioctls to block level and then onto mid level if they can't be
1475 * resolved.
1476 */
1477 switch (cmd) {
1478 case SCSI_IOCTL_GET_IDLUN:
1479 case SCSI_IOCTL_GET_BUS_NUMBER:
1480 error = scsi_ioctl(sdp, cmd, p);
1481 break;
1482 default:
1483 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1484 if (error != -ENOTTY)
1485 break;
1486 error = scsi_ioctl(sdp, cmd, p);
1487 break;
1488 }
1489 out:
1490 return error;
1491 }
1492
1493 static void set_media_not_present(struct scsi_disk *sdkp)
1494 {
1495 if (sdkp->media_present)
1496 sdkp->device->changed = 1;
1497
1498 if (sdkp->device->removable) {
1499 sdkp->media_present = 0;
1500 sdkp->capacity = 0;
1501 }
1502 }
1503
1504 static int media_not_present(struct scsi_disk *sdkp,
1505 struct scsi_sense_hdr *sshdr)
1506 {
1507 if (!scsi_sense_valid(sshdr))
1508 return 0;
1509
1510 /* not invoked for commands that could return deferred errors */
1511 switch (sshdr->sense_key) {
1512 case UNIT_ATTENTION:
1513 case NOT_READY:
1514 /* medium not present */
1515 if (sshdr->asc == 0x3A) {
1516 set_media_not_present(sdkp);
1517 return 1;
1518 }
1519 }
1520 return 0;
1521 }
1522
1523 /**
1524 * sd_check_events - check media events
1525 * @disk: kernel device descriptor
1526 * @clearing: disk events currently being cleared
1527 *
1528 * Returns mask of DISK_EVENT_*.
1529 *
1530 * Note: this function is invoked from the block subsystem.
1531 **/
1532 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1533 {
1534 struct scsi_disk *sdkp = scsi_disk_get(disk);
1535 struct scsi_device *sdp;
1536 int retval;
1537
1538 if (!sdkp)
1539 return 0;
1540
1541 sdp = sdkp->device;
1542 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1543
1544 /*
1545 * If the device is offline, don't send any commands - just pretend as
1546 * if the command failed. If the device ever comes back online, we
1547 * can deal with it then. It is only because of unrecoverable errors
1548 * that we would ever take a device offline in the first place.
1549 */
1550 if (!scsi_device_online(sdp)) {
1551 set_media_not_present(sdkp);
1552 goto out;
1553 }
1554
1555 /*
1556 * Using TEST_UNIT_READY enables differentiation between drive with
1557 * no cartridge loaded - NOT READY, drive with changed cartridge -
1558 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1559 *
1560 * Drives that auto spin down. eg iomega jaz 1G, will be started
1561 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1562 * sd_revalidate() is called.
1563 */
1564 if (scsi_block_when_processing_errors(sdp)) {
1565 struct scsi_sense_hdr sshdr = { 0, };
1566
1567 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1568 &sshdr);
1569
1570 /* failed to execute TUR, assume media not present */
1571 if (host_byte(retval)) {
1572 set_media_not_present(sdkp);
1573 goto out;
1574 }
1575
1576 if (media_not_present(sdkp, &sshdr))
1577 goto out;
1578 }
1579
1580 /*
1581 * For removable scsi disk we have to recognise the presence
1582 * of a disk in the drive.
1583 */
1584 if (!sdkp->media_present)
1585 sdp->changed = 1;
1586 sdkp->media_present = 1;
1587 out:
1588 /*
1589 * sdp->changed is set under the following conditions:
1590 *
1591 * Medium present state has changed in either direction.
1592 * Device has indicated UNIT_ATTENTION.
1593 */
1594 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1595 sdp->changed = 0;
1596 scsi_disk_put(sdkp);
1597 return retval;
1598 }
1599
1600 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1601 {
1602 int retries, res;
1603 struct scsi_device *sdp = sdkp->device;
1604 const int timeout = sdp->request_queue->rq_timeout
1605 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1606 struct scsi_sense_hdr my_sshdr;
1607
1608 if (!scsi_device_online(sdp))
1609 return -ENODEV;
1610
1611 /* caller might not be interested in sense, but we need it */
1612 if (!sshdr)
1613 sshdr = &my_sshdr;
1614
1615 for (retries = 3; retries > 0; --retries) {
1616 unsigned char cmd[10] = { 0 };
1617
1618 cmd[0] = SYNCHRONIZE_CACHE;
1619 /*
1620 * Leave the rest of the command zero to indicate
1621 * flush everything.
1622 */
1623 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1624 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1625 if (res == 0)
1626 break;
1627 }
1628
1629 if (res) {
1630 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1631
1632 if (driver_byte(res) == DRIVER_SENSE)
1633 sd_print_sense_hdr(sdkp, sshdr);
1634
1635 /* we need to evaluate the error return */
1636 if (scsi_sense_valid(sshdr) &&
1637 (sshdr->asc == 0x3a || /* medium not present */
1638 sshdr->asc == 0x20)) /* invalid command */
1639 /* this is no error here */
1640 return 0;
1641
1642 switch (host_byte(res)) {
1643 /* ignore errors due to racing a disconnection */
1644 case DID_BAD_TARGET:
1645 case DID_NO_CONNECT:
1646 return 0;
1647 /* signal the upper layer it might try again */
1648 case DID_BUS_BUSY:
1649 case DID_IMM_RETRY:
1650 case DID_REQUEUE:
1651 case DID_SOFT_ERROR:
1652 return -EBUSY;
1653 default:
1654 return -EIO;
1655 }
1656 }
1657 return 0;
1658 }
1659
1660 static void sd_rescan(struct device *dev)
1661 {
1662 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1663
1664 revalidate_disk(sdkp->disk);
1665 }
1666
1667
1668 #ifdef CONFIG_COMPAT
1669 /*
1670 * This gets directly called from VFS. When the ioctl
1671 * is not recognized we go back to the other translation paths.
1672 */
1673 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1674 unsigned int cmd, unsigned long arg)
1675 {
1676 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1677 int error;
1678
1679 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1680 (mode & FMODE_NDELAY) != 0);
1681 if (error)
1682 return error;
1683
1684 /*
1685 * Let the static ioctl translation table take care of it.
1686 */
1687 if (!sdev->host->hostt->compat_ioctl)
1688 return -ENOIOCTLCMD;
1689 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1690 }
1691 #endif
1692
1693 static char sd_pr_type(enum pr_type type)
1694 {
1695 switch (type) {
1696 case PR_WRITE_EXCLUSIVE:
1697 return 0x01;
1698 case PR_EXCLUSIVE_ACCESS:
1699 return 0x03;
1700 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1701 return 0x05;
1702 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1703 return 0x06;
1704 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1705 return 0x07;
1706 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1707 return 0x08;
1708 default:
1709 return 0;
1710 }
1711 };
1712
1713 static int sd_pr_command(struct block_device *bdev, u8 sa,
1714 u64 key, u64 sa_key, u8 type, u8 flags)
1715 {
1716 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1717 struct scsi_sense_hdr sshdr;
1718 int result;
1719 u8 cmd[16] = { 0, };
1720 u8 data[24] = { 0, };
1721
1722 cmd[0] = PERSISTENT_RESERVE_OUT;
1723 cmd[1] = sa;
1724 cmd[2] = type;
1725 put_unaligned_be32(sizeof(data), &cmd[5]);
1726
1727 put_unaligned_be64(key, &data[0]);
1728 put_unaligned_be64(sa_key, &data[8]);
1729 data[20] = flags;
1730
1731 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1732 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1733
1734 if (driver_byte(result) == DRIVER_SENSE &&
1735 scsi_sense_valid(&sshdr)) {
1736 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1737 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1738 }
1739
1740 return result;
1741 }
1742
1743 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1744 u32 flags)
1745 {
1746 if (flags & ~PR_FL_IGNORE_KEY)
1747 return -EOPNOTSUPP;
1748 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1749 old_key, new_key, 0,
1750 (1 << 0) /* APTPL */);
1751 }
1752
1753 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1754 u32 flags)
1755 {
1756 if (flags)
1757 return -EOPNOTSUPP;
1758 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1759 }
1760
1761 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1762 {
1763 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1764 }
1765
1766 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1767 enum pr_type type, bool abort)
1768 {
1769 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1770 sd_pr_type(type), 0);
1771 }
1772
1773 static int sd_pr_clear(struct block_device *bdev, u64 key)
1774 {
1775 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1776 }
1777
1778 static const struct pr_ops sd_pr_ops = {
1779 .pr_register = sd_pr_register,
1780 .pr_reserve = sd_pr_reserve,
1781 .pr_release = sd_pr_release,
1782 .pr_preempt = sd_pr_preempt,
1783 .pr_clear = sd_pr_clear,
1784 };
1785
1786 static const struct block_device_operations sd_fops = {
1787 .owner = THIS_MODULE,
1788 .open = sd_open,
1789 .release = sd_release,
1790 .ioctl = sd_ioctl,
1791 .getgeo = sd_getgeo,
1792 #ifdef CONFIG_COMPAT
1793 .compat_ioctl = sd_compat_ioctl,
1794 #endif
1795 .check_events = sd_check_events,
1796 .revalidate_disk = sd_revalidate_disk,
1797 .unlock_native_capacity = sd_unlock_native_capacity,
1798 .report_zones = sd_zbc_report_zones,
1799 .pr_ops = &sd_pr_ops,
1800 };
1801
1802 /**
1803 * sd_eh_reset - reset error handling callback
1804 * @scmd: sd-issued command that has failed
1805 *
1806 * This function is called by the SCSI midlayer before starting
1807 * SCSI EH. When counting medium access failures we have to be
1808 * careful to register it only only once per device and SCSI EH run;
1809 * there might be several timed out commands which will cause the
1810 * 'max_medium_access_timeouts' counter to trigger after the first
1811 * SCSI EH run already and set the device to offline.
1812 * So this function resets the internal counter before starting SCSI EH.
1813 **/
1814 static void sd_eh_reset(struct scsi_cmnd *scmd)
1815 {
1816 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1817
1818 /* New SCSI EH run, reset gate variable */
1819 sdkp->ignore_medium_access_errors = false;
1820 }
1821
1822 /**
1823 * sd_eh_action - error handling callback
1824 * @scmd: sd-issued command that has failed
1825 * @eh_disp: The recovery disposition suggested by the midlayer
1826 *
1827 * This function is called by the SCSI midlayer upon completion of an
1828 * error test command (currently TEST UNIT READY). The result of sending
1829 * the eh command is passed in eh_disp. We're looking for devices that
1830 * fail medium access commands but are OK with non access commands like
1831 * test unit ready (so wrongly see the device as having a successful
1832 * recovery)
1833 **/
1834 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1835 {
1836 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1837 struct scsi_device *sdev = scmd->device;
1838
1839 if (!scsi_device_online(sdev) ||
1840 !scsi_medium_access_command(scmd) ||
1841 host_byte(scmd->result) != DID_TIME_OUT ||
1842 eh_disp != SUCCESS)
1843 return eh_disp;
1844
1845 /*
1846 * The device has timed out executing a medium access command.
1847 * However, the TEST UNIT READY command sent during error
1848 * handling completed successfully. Either the device is in the
1849 * process of recovering or has it suffered an internal failure
1850 * that prevents access to the storage medium.
1851 */
1852 if (!sdkp->ignore_medium_access_errors) {
1853 sdkp->medium_access_timed_out++;
1854 sdkp->ignore_medium_access_errors = true;
1855 }
1856
1857 /*
1858 * If the device keeps failing read/write commands but TEST UNIT
1859 * READY always completes successfully we assume that medium
1860 * access is no longer possible and take the device offline.
1861 */
1862 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1863 scmd_printk(KERN_ERR, scmd,
1864 "Medium access timeout failure. Offlining disk!\n");
1865 mutex_lock(&sdev->state_mutex);
1866 scsi_device_set_state(sdev, SDEV_OFFLINE);
1867 mutex_unlock(&sdev->state_mutex);
1868
1869 return SUCCESS;
1870 }
1871
1872 return eh_disp;
1873 }
1874
1875 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1876 {
1877 struct request *req = scmd->request;
1878 struct scsi_device *sdev = scmd->device;
1879 unsigned int transferred, good_bytes;
1880 u64 start_lba, end_lba, bad_lba;
1881
1882 /*
1883 * Some commands have a payload smaller than the device logical
1884 * block size (e.g. INQUIRY on a 4K disk).
1885 */
1886 if (scsi_bufflen(scmd) <= sdev->sector_size)
1887 return 0;
1888
1889 /* Check if we have a 'bad_lba' information */
1890 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1891 SCSI_SENSE_BUFFERSIZE,
1892 &bad_lba))
1893 return 0;
1894
1895 /*
1896 * If the bad lba was reported incorrectly, we have no idea where
1897 * the error is.
1898 */
1899 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1900 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1901 if (bad_lba < start_lba || bad_lba >= end_lba)
1902 return 0;
1903
1904 /*
1905 * resid is optional but mostly filled in. When it's unused,
1906 * its value is zero, so we assume the whole buffer transferred
1907 */
1908 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1909
1910 /* This computation should always be done in terms of the
1911 * resolution of the device's medium.
1912 */
1913 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1914
1915 return min(good_bytes, transferred);
1916 }
1917
1918 /**
1919 * sd_done - bottom half handler: called when the lower level
1920 * driver has completed (successfully or otherwise) a scsi command.
1921 * @SCpnt: mid-level's per command structure.
1922 *
1923 * Note: potentially run from within an ISR. Must not block.
1924 **/
1925 static int sd_done(struct scsi_cmnd *SCpnt)
1926 {
1927 int result = SCpnt->result;
1928 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1929 unsigned int sector_size = SCpnt->device->sector_size;
1930 unsigned int resid;
1931 struct scsi_sense_hdr sshdr;
1932 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1933 struct request *req = SCpnt->request;
1934 int sense_valid = 0;
1935 int sense_deferred = 0;
1936
1937 switch (req_op(req)) {
1938 case REQ_OP_DISCARD:
1939 case REQ_OP_WRITE_ZEROES:
1940 case REQ_OP_WRITE_SAME:
1941 case REQ_OP_ZONE_RESET:
1942 if (!result) {
1943 good_bytes = blk_rq_bytes(req);
1944 scsi_set_resid(SCpnt, 0);
1945 } else {
1946 good_bytes = 0;
1947 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1948 }
1949 break;
1950 default:
1951 /*
1952 * In case of bogus fw or device, we could end up having
1953 * an unaligned partial completion. Check this here and force
1954 * alignment.
1955 */
1956 resid = scsi_get_resid(SCpnt);
1957 if (resid & (sector_size - 1)) {
1958 sd_printk(KERN_INFO, sdkp,
1959 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1960 resid, sector_size);
1961 resid = min(scsi_bufflen(SCpnt),
1962 round_up(resid, sector_size));
1963 scsi_set_resid(SCpnt, resid);
1964 }
1965 }
1966
1967 if (result) {
1968 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1969 if (sense_valid)
1970 sense_deferred = scsi_sense_is_deferred(&sshdr);
1971 }
1972 sdkp->medium_access_timed_out = 0;
1973
1974 if (driver_byte(result) != DRIVER_SENSE &&
1975 (!sense_valid || sense_deferred))
1976 goto out;
1977
1978 switch (sshdr.sense_key) {
1979 case HARDWARE_ERROR:
1980 case MEDIUM_ERROR:
1981 good_bytes = sd_completed_bytes(SCpnt);
1982 break;
1983 case RECOVERED_ERROR:
1984 good_bytes = scsi_bufflen(SCpnt);
1985 break;
1986 case NO_SENSE:
1987 /* This indicates a false check condition, so ignore it. An
1988 * unknown amount of data was transferred so treat it as an
1989 * error.
1990 */
1991 SCpnt->result = 0;
1992 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1993 break;
1994 case ABORTED_COMMAND:
1995 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1996 good_bytes = sd_completed_bytes(SCpnt);
1997 break;
1998 case ILLEGAL_REQUEST:
1999 switch (sshdr.asc) {
2000 case 0x10: /* DIX: Host detected corruption */
2001 good_bytes = sd_completed_bytes(SCpnt);
2002 break;
2003 case 0x20: /* INVALID COMMAND OPCODE */
2004 case 0x24: /* INVALID FIELD IN CDB */
2005 switch (SCpnt->cmnd[0]) {
2006 case UNMAP:
2007 sd_config_discard(sdkp, SD_LBP_DISABLE);
2008 break;
2009 case WRITE_SAME_16:
2010 case WRITE_SAME:
2011 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2012 sd_config_discard(sdkp, SD_LBP_DISABLE);
2013 } else {
2014 sdkp->device->no_write_same = 1;
2015 sd_config_write_same(sdkp);
2016 req->rq_flags |= RQF_QUIET;
2017 }
2018 break;
2019 }
2020 }
2021 break;
2022 default:
2023 break;
2024 }
2025
2026 out:
2027 if (sd_is_zoned(sdkp))
2028 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2029
2030 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2031 "sd_done: completed %d of %d bytes\n",
2032 good_bytes, scsi_bufflen(SCpnt)));
2033
2034 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2035 good_bytes)
2036 t10_pi_complete(SCpnt->request, sdkp->protection_type,
2037 good_bytes / scsi_prot_interval(SCpnt));
2038
2039 return good_bytes;
2040 }
2041
2042 /*
2043 * spinup disk - called only in sd_revalidate_disk()
2044 */
2045 static void
2046 sd_spinup_disk(struct scsi_disk *sdkp)
2047 {
2048 unsigned char cmd[10];
2049 unsigned long spintime_expire = 0;
2050 int retries, spintime;
2051 unsigned int the_result;
2052 struct scsi_sense_hdr sshdr;
2053 int sense_valid = 0;
2054
2055 spintime = 0;
2056
2057 /* Spin up drives, as required. Only do this at boot time */
2058 /* Spinup needs to be done for module loads too. */
2059 do {
2060 retries = 0;
2061
2062 do {
2063 cmd[0] = TEST_UNIT_READY;
2064 memset((void *) &cmd[1], 0, 9);
2065
2066 the_result = scsi_execute_req(sdkp->device, cmd,
2067 DMA_NONE, NULL, 0,
2068 &sshdr, SD_TIMEOUT,
2069 SD_MAX_RETRIES, NULL);
2070
2071 /*
2072 * If the drive has indicated to us that it
2073 * doesn't have any media in it, don't bother
2074 * with any more polling.
2075 */
2076 if (media_not_present(sdkp, &sshdr))
2077 return;
2078
2079 if (the_result)
2080 sense_valid = scsi_sense_valid(&sshdr);
2081 retries++;
2082 } while (retries < 3 &&
2083 (!scsi_status_is_good(the_result) ||
2084 ((driver_byte(the_result) == DRIVER_SENSE) &&
2085 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2086
2087 if (driver_byte(the_result) != DRIVER_SENSE) {
2088 /* no sense, TUR either succeeded or failed
2089 * with a status error */
2090 if(!spintime && !scsi_status_is_good(the_result)) {
2091 sd_print_result(sdkp, "Test Unit Ready failed",
2092 the_result);
2093 }
2094 break;
2095 }
2096
2097 /*
2098 * The device does not want the automatic start to be issued.
2099 */
2100 if (sdkp->device->no_start_on_add)
2101 break;
2102
2103 if (sense_valid && sshdr.sense_key == NOT_READY) {
2104 if (sshdr.asc == 4 && sshdr.ascq == 3)
2105 break; /* manual intervention required */
2106 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2107 break; /* standby */
2108 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2109 break; /* unavailable */
2110 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2111 break; /* sanitize in progress */
2112 /*
2113 * Issue command to spin up drive when not ready
2114 */
2115 if (!spintime) {
2116 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2117 cmd[0] = START_STOP;
2118 cmd[1] = 1; /* Return immediately */
2119 memset((void *) &cmd[2], 0, 8);
2120 cmd[4] = 1; /* Start spin cycle */
2121 if (sdkp->device->start_stop_pwr_cond)
2122 cmd[4] |= 1 << 4;
2123 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2124 NULL, 0, &sshdr,
2125 SD_TIMEOUT, SD_MAX_RETRIES,
2126 NULL);
2127 spintime_expire = jiffies + 100 * HZ;
2128 spintime = 1;
2129 }
2130 /* Wait 1 second for next try */
2131 msleep(1000);
2132 printk(KERN_CONT ".");
2133
2134 /*
2135 * Wait for USB flash devices with slow firmware.
2136 * Yes, this sense key/ASC combination shouldn't
2137 * occur here. It's characteristic of these devices.
2138 */
2139 } else if (sense_valid &&
2140 sshdr.sense_key == UNIT_ATTENTION &&
2141 sshdr.asc == 0x28) {
2142 if (!spintime) {
2143 spintime_expire = jiffies + 5 * HZ;
2144 spintime = 1;
2145 }
2146 /* Wait 1 second for next try */
2147 msleep(1000);
2148 } else {
2149 /* we don't understand the sense code, so it's
2150 * probably pointless to loop */
2151 if(!spintime) {
2152 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2153 sd_print_sense_hdr(sdkp, &sshdr);
2154 }
2155 break;
2156 }
2157
2158 } while (spintime && time_before_eq(jiffies, spintime_expire));
2159
2160 if (spintime) {
2161 if (scsi_status_is_good(the_result))
2162 printk(KERN_CONT "ready\n");
2163 else
2164 printk(KERN_CONT "not responding...\n");
2165 }
2166 }
2167
2168 /*
2169 * Determine whether disk supports Data Integrity Field.
2170 */
2171 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2172 {
2173 struct scsi_device *sdp = sdkp->device;
2174 u8 type;
2175 int ret = 0;
2176
2177 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2178 return ret;
2179
2180 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2181
2182 if (type > T10_PI_TYPE3_PROTECTION)
2183 ret = -ENODEV;
2184 else if (scsi_host_dif_capable(sdp->host, type))
2185 ret = 1;
2186
2187 if (sdkp->first_scan || type != sdkp->protection_type)
2188 switch (ret) {
2189 case -ENODEV:
2190 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2191 " protection type %u. Disabling disk!\n",
2192 type);
2193 break;
2194 case 1:
2195 sd_printk(KERN_NOTICE, sdkp,
2196 "Enabling DIF Type %u protection\n", type);
2197 break;
2198 case 0:
2199 sd_printk(KERN_NOTICE, sdkp,
2200 "Disabling DIF Type %u protection\n", type);
2201 break;
2202 }
2203
2204 sdkp->protection_type = type;
2205
2206 return ret;
2207 }
2208
2209 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2210 struct scsi_sense_hdr *sshdr, int sense_valid,
2211 int the_result)
2212 {
2213 if (driver_byte(the_result) == DRIVER_SENSE)
2214 sd_print_sense_hdr(sdkp, sshdr);
2215 else
2216 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2217
2218 /*
2219 * Set dirty bit for removable devices if not ready -
2220 * sometimes drives will not report this properly.
2221 */
2222 if (sdp->removable &&
2223 sense_valid && sshdr->sense_key == NOT_READY)
2224 set_media_not_present(sdkp);
2225
2226 /*
2227 * We used to set media_present to 0 here to indicate no media
2228 * in the drive, but some drives fail read capacity even with
2229 * media present, so we can't do that.
2230 */
2231 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2232 }
2233
2234 #define RC16_LEN 32
2235 #if RC16_LEN > SD_BUF_SIZE
2236 #error RC16_LEN must not be more than SD_BUF_SIZE
2237 #endif
2238
2239 #define READ_CAPACITY_RETRIES_ON_RESET 10
2240
2241 /*
2242 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2243 * and the reported logical block size is bigger than 512 bytes. Note
2244 * that last_sector is a u64 and therefore logical_to_sectors() is not
2245 * applicable.
2246 */
2247 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2248 {
2249 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2250
2251 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2252 return false;
2253
2254 return true;
2255 }
2256
2257 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2258 unsigned char *buffer)
2259 {
2260 unsigned char cmd[16];
2261 struct scsi_sense_hdr sshdr;
2262 int sense_valid = 0;
2263 int the_result;
2264 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2265 unsigned int alignment;
2266 unsigned long long lba;
2267 unsigned sector_size;
2268
2269 if (sdp->no_read_capacity_16)
2270 return -EINVAL;
2271
2272 do {
2273 memset(cmd, 0, 16);
2274 cmd[0] = SERVICE_ACTION_IN_16;
2275 cmd[1] = SAI_READ_CAPACITY_16;
2276 cmd[13] = RC16_LEN;
2277 memset(buffer, 0, RC16_LEN);
2278
2279 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2280 buffer, RC16_LEN, &sshdr,
2281 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2282
2283 if (media_not_present(sdkp, &sshdr))
2284 return -ENODEV;
2285
2286 if (the_result) {
2287 sense_valid = scsi_sense_valid(&sshdr);
2288 if (sense_valid &&
2289 sshdr.sense_key == ILLEGAL_REQUEST &&
2290 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2291 sshdr.ascq == 0x00)
2292 /* Invalid Command Operation Code or
2293 * Invalid Field in CDB, just retry
2294 * silently with RC10 */
2295 return -EINVAL;
2296 if (sense_valid &&
2297 sshdr.sense_key == UNIT_ATTENTION &&
2298 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2299 /* Device reset might occur several times,
2300 * give it one more chance */
2301 if (--reset_retries > 0)
2302 continue;
2303 }
2304 retries--;
2305
2306 } while (the_result && retries);
2307
2308 if (the_result) {
2309 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2310 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2311 return -EINVAL;
2312 }
2313
2314 sector_size = get_unaligned_be32(&buffer[8]);
2315 lba = get_unaligned_be64(&buffer[0]);
2316
2317 if (sd_read_protection_type(sdkp, buffer) < 0) {
2318 sdkp->capacity = 0;
2319 return -ENODEV;
2320 }
2321
2322 if (!sd_addressable_capacity(lba, sector_size)) {
2323 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2324 "kernel compiled with support for large block "
2325 "devices.\n");
2326 sdkp->capacity = 0;
2327 return -EOVERFLOW;
2328 }
2329
2330 /* Logical blocks per physical block exponent */
2331 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2332
2333 /* RC basis */
2334 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2335
2336 /* Lowest aligned logical block */
2337 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2338 blk_queue_alignment_offset(sdp->request_queue, alignment);
2339 if (alignment && sdkp->first_scan)
2340 sd_printk(KERN_NOTICE, sdkp,
2341 "physical block alignment offset: %u\n", alignment);
2342
2343 if (buffer[14] & 0x80) { /* LBPME */
2344 sdkp->lbpme = 1;
2345
2346 if (buffer[14] & 0x40) /* LBPRZ */
2347 sdkp->lbprz = 1;
2348
2349 sd_config_discard(sdkp, SD_LBP_WS16);
2350 }
2351
2352 sdkp->capacity = lba + 1;
2353 return sector_size;
2354 }
2355
2356 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2357 unsigned char *buffer)
2358 {
2359 unsigned char cmd[16];
2360 struct scsi_sense_hdr sshdr;
2361 int sense_valid = 0;
2362 int the_result;
2363 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2364 sector_t lba;
2365 unsigned sector_size;
2366
2367 do {
2368 cmd[0] = READ_CAPACITY;
2369 memset(&cmd[1], 0, 9);
2370 memset(buffer, 0, 8);
2371
2372 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2373 buffer, 8, &sshdr,
2374 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2375
2376 if (media_not_present(sdkp, &sshdr))
2377 return -ENODEV;
2378
2379 if (the_result) {
2380 sense_valid = scsi_sense_valid(&sshdr);
2381 if (sense_valid &&
2382 sshdr.sense_key == UNIT_ATTENTION &&
2383 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2384 /* Device reset might occur several times,
2385 * give it one more chance */
2386 if (--reset_retries > 0)
2387 continue;
2388 }
2389 retries--;
2390
2391 } while (the_result && retries);
2392
2393 if (the_result) {
2394 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2395 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2396 return -EINVAL;
2397 }
2398
2399 sector_size = get_unaligned_be32(&buffer[4]);
2400 lba = get_unaligned_be32(&buffer[0]);
2401
2402 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2403 /* Some buggy (usb cardreader) devices return an lba of
2404 0xffffffff when the want to report a size of 0 (with
2405 which they really mean no media is present) */
2406 sdkp->capacity = 0;
2407 sdkp->physical_block_size = sector_size;
2408 return sector_size;
2409 }
2410
2411 if (!sd_addressable_capacity(lba, sector_size)) {
2412 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2413 "kernel compiled with support for large block "
2414 "devices.\n");
2415 sdkp->capacity = 0;
2416 return -EOVERFLOW;
2417 }
2418
2419 sdkp->capacity = lba + 1;
2420 sdkp->physical_block_size = sector_size;
2421 return sector_size;
2422 }
2423
2424 static int sd_try_rc16_first(struct scsi_device *sdp)
2425 {
2426 if (sdp->host->max_cmd_len < 16)
2427 return 0;
2428 if (sdp->try_rc_10_first)
2429 return 0;
2430 if (sdp->scsi_level > SCSI_SPC_2)
2431 return 1;
2432 if (scsi_device_protection(sdp))
2433 return 1;
2434 return 0;
2435 }
2436
2437 /*
2438 * read disk capacity
2439 */
2440 static void
2441 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2442 {
2443 int sector_size;
2444 struct scsi_device *sdp = sdkp->device;
2445
2446 if (sd_try_rc16_first(sdp)) {
2447 sector_size = read_capacity_16(sdkp, sdp, buffer);
2448 if (sector_size == -EOVERFLOW)
2449 goto got_data;
2450 if (sector_size == -ENODEV)
2451 return;
2452 if (sector_size < 0)
2453 sector_size = read_capacity_10(sdkp, sdp, buffer);
2454 if (sector_size < 0)
2455 return;
2456 } else {
2457 sector_size = read_capacity_10(sdkp, sdp, buffer);
2458 if (sector_size == -EOVERFLOW)
2459 goto got_data;
2460 if (sector_size < 0)
2461 return;
2462 if ((sizeof(sdkp->capacity) > 4) &&
2463 (sdkp->capacity > 0xffffffffULL)) {
2464 int old_sector_size = sector_size;
2465 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2466 "Trying to use READ CAPACITY(16).\n");
2467 sector_size = read_capacity_16(sdkp, sdp, buffer);
2468 if (sector_size < 0) {
2469 sd_printk(KERN_NOTICE, sdkp,
2470 "Using 0xffffffff as device size\n");
2471 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2472 sector_size = old_sector_size;
2473 goto got_data;
2474 }
2475 /* Remember that READ CAPACITY(16) succeeded */
2476 sdp->try_rc_10_first = 0;
2477 }
2478 }
2479
2480 /* Some devices are known to return the total number of blocks,
2481 * not the highest block number. Some devices have versions
2482 * which do this and others which do not. Some devices we might
2483 * suspect of doing this but we don't know for certain.
2484 *
2485 * If we know the reported capacity is wrong, decrement it. If
2486 * we can only guess, then assume the number of blocks is even
2487 * (usually true but not always) and err on the side of lowering
2488 * the capacity.
2489 */
2490 if (sdp->fix_capacity ||
2491 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2492 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2493 "from its reported value: %llu\n",
2494 (unsigned long long) sdkp->capacity);
2495 --sdkp->capacity;
2496 }
2497
2498 got_data:
2499 if (sector_size == 0) {
2500 sector_size = 512;
2501 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2502 "assuming 512.\n");
2503 }
2504
2505 if (sector_size != 512 &&
2506 sector_size != 1024 &&
2507 sector_size != 2048 &&
2508 sector_size != 4096) {
2509 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2510 sector_size);
2511 /*
2512 * The user might want to re-format the drive with
2513 * a supported sectorsize. Once this happens, it
2514 * would be relatively trivial to set the thing up.
2515 * For this reason, we leave the thing in the table.
2516 */
2517 sdkp->capacity = 0;
2518 /*
2519 * set a bogus sector size so the normal read/write
2520 * logic in the block layer will eventually refuse any
2521 * request on this device without tripping over power
2522 * of two sector size assumptions
2523 */
2524 sector_size = 512;
2525 }
2526 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2527 blk_queue_physical_block_size(sdp->request_queue,
2528 sdkp->physical_block_size);
2529 sdkp->device->sector_size = sector_size;
2530
2531 if (sdkp->capacity > 0xffffffff)
2532 sdp->use_16_for_rw = 1;
2533
2534 }
2535
2536 /*
2537 * Print disk capacity
2538 */
2539 static void
2540 sd_print_capacity(struct scsi_disk *sdkp,
2541 sector_t old_capacity)
2542 {
2543 int sector_size = sdkp->device->sector_size;
2544 char cap_str_2[10], cap_str_10[10];
2545
2546 string_get_size(sdkp->capacity, sector_size,
2547 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2548 string_get_size(sdkp->capacity, sector_size,
2549 STRING_UNITS_10, cap_str_10,
2550 sizeof(cap_str_10));
2551
2552 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2553 sd_printk(KERN_NOTICE, sdkp,
2554 "%llu %d-byte logical blocks: (%s/%s)\n",
2555 (unsigned long long)sdkp->capacity,
2556 sector_size, cap_str_10, cap_str_2);
2557
2558 if (sdkp->physical_block_size != sector_size)
2559 sd_printk(KERN_NOTICE, sdkp,
2560 "%u-byte physical blocks\n",
2561 sdkp->physical_block_size);
2562
2563 sd_zbc_print_zones(sdkp);
2564 }
2565 }
2566
2567 /* called with buffer of length 512 */
2568 static inline int
2569 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2570 unsigned char *buffer, int len, struct scsi_mode_data *data,
2571 struct scsi_sense_hdr *sshdr)
2572 {
2573 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2574 SD_TIMEOUT, SD_MAX_RETRIES, data,
2575 sshdr);
2576 }
2577
2578 /*
2579 * read write protect setting, if possible - called only in sd_revalidate_disk()
2580 * called with buffer of length SD_BUF_SIZE
2581 */
2582 static void
2583 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2584 {
2585 int res;
2586 struct scsi_device *sdp = sdkp->device;
2587 struct scsi_mode_data data;
2588 int disk_ro = get_disk_ro(sdkp->disk);
2589 int old_wp = sdkp->write_prot;
2590
2591 set_disk_ro(sdkp->disk, 0);
2592 if (sdp->skip_ms_page_3f) {
2593 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2594 return;
2595 }
2596
2597 if (sdp->use_192_bytes_for_3f) {
2598 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2599 } else {
2600 /*
2601 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2602 * We have to start carefully: some devices hang if we ask
2603 * for more than is available.
2604 */
2605 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2606
2607 /*
2608 * Second attempt: ask for page 0 When only page 0 is
2609 * implemented, a request for page 3F may return Sense Key
2610 * 5: Illegal Request, Sense Code 24: Invalid field in
2611 * CDB.
2612 */
2613 if (!scsi_status_is_good(res))
2614 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2615
2616 /*
2617 * Third attempt: ask 255 bytes, as we did earlier.
2618 */
2619 if (!scsi_status_is_good(res))
2620 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2621 &data, NULL);
2622 }
2623
2624 if (!scsi_status_is_good(res)) {
2625 sd_first_printk(KERN_WARNING, sdkp,
2626 "Test WP failed, assume Write Enabled\n");
2627 } else {
2628 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2629 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2630 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2631 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2632 sdkp->write_prot ? "on" : "off");
2633 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2634 }
2635 }
2636 }
2637
2638 /*
2639 * sd_read_cache_type - called only from sd_revalidate_disk()
2640 * called with buffer of length SD_BUF_SIZE
2641 */
2642 static void
2643 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2644 {
2645 int len = 0, res;
2646 struct scsi_device *sdp = sdkp->device;
2647
2648 int dbd;
2649 int modepage;
2650 int first_len;
2651 struct scsi_mode_data data;
2652 struct scsi_sense_hdr sshdr;
2653 int old_wce = sdkp->WCE;
2654 int old_rcd = sdkp->RCD;
2655 int old_dpofua = sdkp->DPOFUA;
2656
2657
2658 if (sdkp->cache_override)
2659 return;
2660
2661 first_len = 4;
2662 if (sdp->skip_ms_page_8) {
2663 if (sdp->type == TYPE_RBC)
2664 goto defaults;
2665 else {
2666 if (sdp->skip_ms_page_3f)
2667 goto defaults;
2668 modepage = 0x3F;
2669 if (sdp->use_192_bytes_for_3f)
2670 first_len = 192;
2671 dbd = 0;
2672 }
2673 } else if (sdp->type == TYPE_RBC) {
2674 modepage = 6;
2675 dbd = 8;
2676 } else {
2677 modepage = 8;
2678 dbd = 0;
2679 }
2680
2681 /* cautiously ask */
2682 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2683 &data, &sshdr);
2684
2685 if (!scsi_status_is_good(res))
2686 goto bad_sense;
2687
2688 if (!data.header_length) {
2689 modepage = 6;
2690 first_len = 0;
2691 sd_first_printk(KERN_ERR, sdkp,
2692 "Missing header in MODE_SENSE response\n");
2693 }
2694
2695 /* that went OK, now ask for the proper length */
2696 len = data.length;
2697
2698 /*
2699 * We're only interested in the first three bytes, actually.
2700 * But the data cache page is defined for the first 20.
2701 */
2702 if (len < 3)
2703 goto bad_sense;
2704 else if (len > SD_BUF_SIZE) {
2705 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2706 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2707 len = SD_BUF_SIZE;
2708 }
2709 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2710 len = 192;
2711
2712 /* Get the data */
2713 if (len > first_len)
2714 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2715 &data, &sshdr);
2716
2717 if (scsi_status_is_good(res)) {
2718 int offset = data.header_length + data.block_descriptor_length;
2719
2720 while (offset < len) {
2721 u8 page_code = buffer[offset] & 0x3F;
2722 u8 spf = buffer[offset] & 0x40;
2723
2724 if (page_code == 8 || page_code == 6) {
2725 /* We're interested only in the first 3 bytes.
2726 */
2727 if (len - offset <= 2) {
2728 sd_first_printk(KERN_ERR, sdkp,
2729 "Incomplete mode parameter "
2730 "data\n");
2731 goto defaults;
2732 } else {
2733 modepage = page_code;
2734 goto Page_found;
2735 }
2736 } else {
2737 /* Go to the next page */
2738 if (spf && len - offset > 3)
2739 offset += 4 + (buffer[offset+2] << 8) +
2740 buffer[offset+3];
2741 else if (!spf && len - offset > 1)
2742 offset += 2 + buffer[offset+1];
2743 else {
2744 sd_first_printk(KERN_ERR, sdkp,
2745 "Incomplete mode "
2746 "parameter data\n");
2747 goto defaults;
2748 }
2749 }
2750 }
2751
2752 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2753 goto defaults;
2754
2755 Page_found:
2756 if (modepage == 8) {
2757 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2758 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2759 } else {
2760 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2761 sdkp->RCD = 0;
2762 }
2763
2764 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2765 if (sdp->broken_fua) {
2766 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2767 sdkp->DPOFUA = 0;
2768 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2769 !sdkp->device->use_16_for_rw) {
2770 sd_first_printk(KERN_NOTICE, sdkp,
2771 "Uses READ/WRITE(6), disabling FUA\n");
2772 sdkp->DPOFUA = 0;
2773 }
2774
2775 /* No cache flush allowed for write protected devices */
2776 if (sdkp->WCE && sdkp->write_prot)
2777 sdkp->WCE = 0;
2778
2779 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2780 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2781 sd_printk(KERN_NOTICE, sdkp,
2782 "Write cache: %s, read cache: %s, %s\n",
2783 sdkp->WCE ? "enabled" : "disabled",
2784 sdkp->RCD ? "disabled" : "enabled",
2785 sdkp->DPOFUA ? "supports DPO and FUA"
2786 : "doesn't support DPO or FUA");
2787
2788 return;
2789 }
2790
2791 bad_sense:
2792 if (scsi_sense_valid(&sshdr) &&
2793 sshdr.sense_key == ILLEGAL_REQUEST &&
2794 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2795 /* Invalid field in CDB */
2796 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2797 else
2798 sd_first_printk(KERN_ERR, sdkp,
2799 "Asking for cache data failed\n");
2800
2801 defaults:
2802 if (sdp->wce_default_on) {
2803 sd_first_printk(KERN_NOTICE, sdkp,
2804 "Assuming drive cache: write back\n");
2805 sdkp->WCE = 1;
2806 } else {
2807 sd_first_printk(KERN_ERR, sdkp,
2808 "Assuming drive cache: write through\n");
2809 sdkp->WCE = 0;
2810 }
2811 sdkp->RCD = 0;
2812 sdkp->DPOFUA = 0;
2813 }
2814
2815 /*
2816 * The ATO bit indicates whether the DIF application tag is available
2817 * for use by the operating system.
2818 */
2819 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2820 {
2821 int res, offset;
2822 struct scsi_device *sdp = sdkp->device;
2823 struct scsi_mode_data data;
2824 struct scsi_sense_hdr sshdr;
2825
2826 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2827 return;
2828
2829 if (sdkp->protection_type == 0)
2830 return;
2831
2832 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2833 SD_MAX_RETRIES, &data, &sshdr);
2834
2835 if (!scsi_status_is_good(res) || !data.header_length ||
2836 data.length < 6) {
2837 sd_first_printk(KERN_WARNING, sdkp,
2838 "getting Control mode page failed, assume no ATO\n");
2839
2840 if (scsi_sense_valid(&sshdr))
2841 sd_print_sense_hdr(sdkp, &sshdr);
2842
2843 return;
2844 }
2845
2846 offset = data.header_length + data.block_descriptor_length;
2847
2848 if ((buffer[offset] & 0x3f) != 0x0a) {
2849 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2850 return;
2851 }
2852
2853 if ((buffer[offset + 5] & 0x80) == 0)
2854 return;
2855
2856 sdkp->ATO = 1;
2857
2858 return;
2859 }
2860
2861 /**
2862 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2863 * @sdkp: disk to query
2864 */
2865 static void sd_read_block_limits(struct scsi_disk *sdkp)
2866 {
2867 unsigned int sector_sz = sdkp->device->sector_size;
2868 const int vpd_len = 64;
2869 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2870
2871 if (!buffer ||
2872 /* Block Limits VPD */
2873 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2874 goto out;
2875
2876 blk_queue_io_min(sdkp->disk->queue,
2877 get_unaligned_be16(&buffer[6]) * sector_sz);
2878
2879 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2880 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2881
2882 if (buffer[3] == 0x3c) {
2883 unsigned int lba_count, desc_count;
2884
2885 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2886
2887 if (!sdkp->lbpme)
2888 goto out;
2889
2890 lba_count = get_unaligned_be32(&buffer[20]);
2891 desc_count = get_unaligned_be32(&buffer[24]);
2892
2893 if (lba_count && desc_count)
2894 sdkp->max_unmap_blocks = lba_count;
2895
2896 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2897
2898 if (buffer[32] & 0x80)
2899 sdkp->unmap_alignment =
2900 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2901
2902 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2903
2904 if (sdkp->max_unmap_blocks)
2905 sd_config_discard(sdkp, SD_LBP_UNMAP);
2906 else
2907 sd_config_discard(sdkp, SD_LBP_WS16);
2908
2909 } else { /* LBP VPD page tells us what to use */
2910 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2911 sd_config_discard(sdkp, SD_LBP_UNMAP);
2912 else if (sdkp->lbpws)
2913 sd_config_discard(sdkp, SD_LBP_WS16);
2914 else if (sdkp->lbpws10)
2915 sd_config_discard(sdkp, SD_LBP_WS10);
2916 else
2917 sd_config_discard(sdkp, SD_LBP_DISABLE);
2918 }
2919 }
2920
2921 out:
2922 kfree(buffer);
2923 }
2924
2925 /**
2926 * sd_read_block_characteristics - Query block dev. characteristics
2927 * @sdkp: disk to query
2928 */
2929 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2930 {
2931 struct request_queue *q = sdkp->disk->queue;
2932 unsigned char *buffer;
2933 u16 rot;
2934 const int vpd_len = 64;
2935
2936 buffer = kmalloc(vpd_len, GFP_KERNEL);
2937
2938 if (!buffer ||
2939 /* Block Device Characteristics VPD */
2940 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2941 goto out;
2942
2943 rot = get_unaligned_be16(&buffer[4]);
2944
2945 if (rot == 1) {
2946 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2947 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2948 } else {
2949 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2950 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
2951 }
2952
2953 if (sdkp->device->type == TYPE_ZBC) {
2954 /* Host-managed */
2955 q->limits.zoned = BLK_ZONED_HM;
2956 } else {
2957 sdkp->zoned = (buffer[8] >> 4) & 3;
2958 if (sdkp->zoned == 1)
2959 /* Host-aware */
2960 q->limits.zoned = BLK_ZONED_HA;
2961 else
2962 /*
2963 * Treat drive-managed devices as
2964 * regular block devices.
2965 */
2966 q->limits.zoned = BLK_ZONED_NONE;
2967 }
2968 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2969 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2970 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2971
2972 out:
2973 kfree(buffer);
2974 }
2975
2976 /**
2977 * sd_read_block_provisioning - Query provisioning VPD page
2978 * @sdkp: disk to query
2979 */
2980 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2981 {
2982 unsigned char *buffer;
2983 const int vpd_len = 8;
2984
2985 if (sdkp->lbpme == 0)
2986 return;
2987
2988 buffer = kmalloc(vpd_len, GFP_KERNEL);
2989
2990 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2991 goto out;
2992
2993 sdkp->lbpvpd = 1;
2994 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2995 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2996 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2997
2998 out:
2999 kfree(buffer);
3000 }
3001
3002 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3003 {
3004 struct scsi_device *sdev = sdkp->device;
3005
3006 if (sdev->host->no_write_same) {
3007 sdev->no_write_same = 1;
3008
3009 return;
3010 }
3011
3012 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3013 /* too large values might cause issues with arcmsr */
3014 int vpd_buf_len = 64;
3015
3016 sdev->no_report_opcodes = 1;
3017
3018 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3019 * CODES is unsupported and the device has an ATA
3020 * Information VPD page (SAT).
3021 */
3022 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3023 sdev->no_write_same = 1;
3024 }
3025
3026 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3027 sdkp->ws16 = 1;
3028
3029 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3030 sdkp->ws10 = 1;
3031 }
3032
3033 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3034 {
3035 struct scsi_device *sdev = sdkp->device;
3036
3037 if (!sdev->security_supported)
3038 return;
3039
3040 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3041 SECURITY_PROTOCOL_IN) == 1 &&
3042 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3043 SECURITY_PROTOCOL_OUT) == 1)
3044 sdkp->security = 1;
3045 }
3046
3047 /**
3048 * sd_revalidate_disk - called the first time a new disk is seen,
3049 * performs disk spin up, read_capacity, etc.
3050 * @disk: struct gendisk we care about
3051 **/
3052 static int sd_revalidate_disk(struct gendisk *disk)
3053 {
3054 struct scsi_disk *sdkp = scsi_disk(disk);
3055 struct scsi_device *sdp = sdkp->device;
3056 struct request_queue *q = sdkp->disk->queue;
3057 sector_t old_capacity = sdkp->capacity;
3058 unsigned char *buffer;
3059 unsigned int dev_max, rw_max;
3060
3061 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3062 "sd_revalidate_disk\n"));
3063
3064 /*
3065 * If the device is offline, don't try and read capacity or any
3066 * of the other niceties.
3067 */
3068 if (!scsi_device_online(sdp))
3069 goto out;
3070
3071 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3072 if (!buffer) {
3073 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3074 "allocation failure.\n");
3075 goto out;
3076 }
3077
3078 sd_spinup_disk(sdkp);
3079
3080 /*
3081 * Without media there is no reason to ask; moreover, some devices
3082 * react badly if we do.
3083 */
3084 if (sdkp->media_present) {
3085 sd_read_capacity(sdkp, buffer);
3086
3087 if (scsi_device_supports_vpd(sdp)) {
3088 sd_read_block_provisioning(sdkp);
3089 sd_read_block_limits(sdkp);
3090 sd_read_block_characteristics(sdkp);
3091 sd_zbc_read_zones(sdkp, buffer);
3092 }
3093
3094 sd_print_capacity(sdkp, old_capacity);
3095
3096 sd_read_write_protect_flag(sdkp, buffer);
3097 sd_read_cache_type(sdkp, buffer);
3098 sd_read_app_tag_own(sdkp, buffer);
3099 sd_read_write_same(sdkp, buffer);
3100 sd_read_security(sdkp, buffer);
3101 }
3102
3103 /*
3104 * We now have all cache related info, determine how we deal
3105 * with flush requests.
3106 */
3107 sd_set_flush_flag(sdkp);
3108
3109 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3110 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3111
3112 /* Some devices report a maximum block count for READ/WRITE requests. */
3113 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3114 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3115
3116 /*
3117 * Determine the device's preferred I/O size for reads and writes
3118 * unless the reported value is unreasonably small, large, or
3119 * garbage.
3120 */
3121 if (sdkp->opt_xfer_blocks &&
3122 sdkp->opt_xfer_blocks <= dev_max &&
3123 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3124 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3125 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3126 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3127 } else
3128 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3129 (sector_t)BLK_DEF_MAX_SECTORS);
3130
3131 /* Do not exceed controller limit */
3132 rw_max = min(rw_max, queue_max_hw_sectors(q));
3133
3134 /*
3135 * Only update max_sectors if previously unset or if the current value
3136 * exceeds the capabilities of the hardware.
3137 */
3138 if (sdkp->first_scan ||
3139 q->limits.max_sectors > q->limits.max_dev_sectors ||
3140 q->limits.max_sectors > q->limits.max_hw_sectors)
3141 q->limits.max_sectors = rw_max;
3142
3143 sdkp->first_scan = 0;
3144
3145 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3146 sd_config_write_same(sdkp);
3147 kfree(buffer);
3148
3149 out:
3150 return 0;
3151 }
3152
3153 /**
3154 * sd_unlock_native_capacity - unlock native capacity
3155 * @disk: struct gendisk to set capacity for
3156 *
3157 * Block layer calls this function if it detects that partitions
3158 * on @disk reach beyond the end of the device. If the SCSI host
3159 * implements ->unlock_native_capacity() method, it's invoked to
3160 * give it a chance to adjust the device capacity.
3161 *
3162 * CONTEXT:
3163 * Defined by block layer. Might sleep.
3164 */
3165 static void sd_unlock_native_capacity(struct gendisk *disk)
3166 {
3167 struct scsi_device *sdev = scsi_disk(disk)->device;
3168
3169 if (sdev->host->hostt->unlock_native_capacity)
3170 sdev->host->hostt->unlock_native_capacity(sdev);
3171 }
3172
3173 /**
3174 * sd_format_disk_name - format disk name
3175 * @prefix: name prefix - ie. "sd" for SCSI disks
3176 * @index: index of the disk to format name for
3177 * @buf: output buffer
3178 * @buflen: length of the output buffer
3179 *
3180 * SCSI disk names starts at sda. The 26th device is sdz and the
3181 * 27th is sdaa. The last one for two lettered suffix is sdzz
3182 * which is followed by sdaaa.
3183 *
3184 * This is basically 26 base counting with one extra 'nil' entry
3185 * at the beginning from the second digit on and can be
3186 * determined using similar method as 26 base conversion with the
3187 * index shifted -1 after each digit is computed.
3188 *
3189 * CONTEXT:
3190 * Don't care.
3191 *
3192 * RETURNS:
3193 * 0 on success, -errno on failure.
3194 */
3195 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3196 {
3197 const int base = 'z' - 'a' + 1;
3198 char *begin = buf + strlen(prefix);
3199 char *end = buf + buflen;
3200 char *p;
3201 int unit;
3202
3203 p = end - 1;
3204 *p = '\0';
3205 unit = base;
3206 do {
3207 if (p == begin)
3208 return -EINVAL;
3209 *--p = 'a' + (index % unit);
3210 index = (index / unit) - 1;
3211 } while (index >= 0);
3212
3213 memmove(begin, p, end - p);
3214 memcpy(buf, prefix, strlen(prefix));
3215
3216 return 0;
3217 }
3218
3219 /*
3220 * The asynchronous part of sd_probe
3221 */
3222 static void sd_probe_async(void *data, async_cookie_t cookie)
3223 {
3224 struct scsi_disk *sdkp = data;
3225 struct scsi_device *sdp;
3226 struct gendisk *gd;
3227 u32 index;
3228 struct device *dev;
3229
3230 sdp = sdkp->device;
3231 gd = sdkp->disk;
3232 index = sdkp->index;
3233 dev = &sdp->sdev_gendev;
3234
3235 gd->major = sd_major((index & 0xf0) >> 4);
3236 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3237
3238 gd->fops = &sd_fops;
3239 gd->private_data = &sdkp->driver;
3240 gd->queue = sdkp->device->request_queue;
3241
3242 /* defaults, until the device tells us otherwise */
3243 sdp->sector_size = 512;
3244 sdkp->capacity = 0;
3245 sdkp->media_present = 1;
3246 sdkp->write_prot = 0;
3247 sdkp->cache_override = 0;
3248 sdkp->WCE = 0;
3249 sdkp->RCD = 0;
3250 sdkp->ATO = 0;
3251 sdkp->first_scan = 1;
3252 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3253
3254 sd_revalidate_disk(gd);
3255
3256 gd->flags = GENHD_FL_EXT_DEVT;
3257 if (sdp->removable) {
3258 gd->flags |= GENHD_FL_REMOVABLE;
3259 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3260 }
3261
3262 blk_pm_runtime_init(sdp->request_queue, dev);
3263 device_add_disk(dev, gd, NULL);
3264 if (sdkp->capacity)
3265 sd_dif_config_host(sdkp);
3266
3267 sd_revalidate_disk(gd);
3268
3269 if (sdkp->security) {
3270 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3271 if (sdkp->opal_dev)
3272 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3273 }
3274
3275 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3276 sdp->removable ? "removable " : "");
3277 scsi_autopm_put_device(sdp);
3278 put_device(&sdkp->dev);
3279 }
3280
3281 /**
3282 * sd_probe - called during driver initialization and whenever a
3283 * new scsi device is attached to the system. It is called once
3284 * for each scsi device (not just disks) present.
3285 * @dev: pointer to device object
3286 *
3287 * Returns 0 if successful (or not interested in this scsi device
3288 * (e.g. scanner)); 1 when there is an error.
3289 *
3290 * Note: this function is invoked from the scsi mid-level.
3291 * This function sets up the mapping between a given
3292 * <host,channel,id,lun> (found in sdp) and new device name
3293 * (e.g. /dev/sda). More precisely it is the block device major
3294 * and minor number that is chosen here.
3295 *
3296 * Assume sd_probe is not re-entrant (for time being)
3297 * Also think about sd_probe() and sd_remove() running coincidentally.
3298 **/
3299 static int sd_probe(struct device *dev)
3300 {
3301 struct scsi_device *sdp = to_scsi_device(dev);
3302 struct scsi_disk *sdkp;
3303 struct gendisk *gd;
3304 int index;
3305 int error;
3306
3307 scsi_autopm_get_device(sdp);
3308 error = -ENODEV;
3309 if (sdp->type != TYPE_DISK &&
3310 sdp->type != TYPE_ZBC &&
3311 sdp->type != TYPE_MOD &&
3312 sdp->type != TYPE_RBC)
3313 goto out;
3314
3315 #ifndef CONFIG_BLK_DEV_ZONED
3316 if (sdp->type == TYPE_ZBC)
3317 goto out;
3318 #endif
3319 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3320 "sd_probe\n"));
3321
3322 error = -ENOMEM;
3323 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3324 if (!sdkp)
3325 goto out;
3326
3327 gd = alloc_disk(SD_MINORS);
3328 if (!gd)
3329 goto out_free;
3330
3331 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3332 if (index < 0) {
3333 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3334 goto out_put;
3335 }
3336
3337 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3338 if (error) {
3339 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3340 goto out_free_index;
3341 }
3342
3343 sdkp->device = sdp;
3344 sdkp->driver = &sd_template;
3345 sdkp->disk = gd;
3346 sdkp->index = index;
3347 atomic_set(&sdkp->openers, 0);
3348 atomic_set(&sdkp->device->ioerr_cnt, 0);
3349
3350 if (!sdp->request_queue->rq_timeout) {
3351 if (sdp->type != TYPE_MOD)
3352 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3353 else
3354 blk_queue_rq_timeout(sdp->request_queue,
3355 SD_MOD_TIMEOUT);
3356 }
3357
3358 device_initialize(&sdkp->dev);
3359 sdkp->dev.parent = dev;
3360 sdkp->dev.class = &sd_disk_class;
3361 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3362
3363 error = device_add(&sdkp->dev);
3364 if (error)
3365 goto out_free_index;
3366
3367 get_device(dev);
3368 dev_set_drvdata(dev, sdkp);
3369
3370 get_device(&sdkp->dev); /* prevent release before async_schedule */
3371 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3372
3373 return 0;
3374
3375 out_free_index:
3376 ida_free(&sd_index_ida, index);
3377 out_put:
3378 put_disk(gd);
3379 out_free:
3380 kfree(sdkp);
3381 out:
3382 scsi_autopm_put_device(sdp);
3383 return error;
3384 }
3385
3386 /**
3387 * sd_remove - called whenever a scsi disk (previously recognized by
3388 * sd_probe) is detached from the system. It is called (potentially
3389 * multiple times) during sd module unload.
3390 * @dev: pointer to device object
3391 *
3392 * Note: this function is invoked from the scsi mid-level.
3393 * This function potentially frees up a device name (e.g. /dev/sdc)
3394 * that could be re-used by a subsequent sd_probe().
3395 * This function is not called when the built-in sd driver is "exit-ed".
3396 **/
3397 static int sd_remove(struct device *dev)
3398 {
3399 struct scsi_disk *sdkp;
3400 dev_t devt;
3401
3402 sdkp = dev_get_drvdata(dev);
3403 devt = disk_devt(sdkp->disk);
3404 scsi_autopm_get_device(sdkp->device);
3405
3406 async_synchronize_full_domain(&scsi_sd_pm_domain);
3407 async_synchronize_full_domain(&scsi_sd_probe_domain);
3408 device_del(&sdkp->dev);
3409 del_gendisk(sdkp->disk);
3410 sd_shutdown(dev);
3411
3412 free_opal_dev(sdkp->opal_dev);
3413
3414 blk_register_region(devt, SD_MINORS, NULL,
3415 sd_default_probe, NULL, NULL);
3416
3417 mutex_lock(&sd_ref_mutex);
3418 dev_set_drvdata(dev, NULL);
3419 put_device(&sdkp->dev);
3420 mutex_unlock(&sd_ref_mutex);
3421
3422 return 0;
3423 }
3424
3425 /**
3426 * scsi_disk_release - Called to free the scsi_disk structure
3427 * @dev: pointer to embedded class device
3428 *
3429 * sd_ref_mutex must be held entering this routine. Because it is
3430 * called on last put, you should always use the scsi_disk_get()
3431 * scsi_disk_put() helpers which manipulate the semaphore directly
3432 * and never do a direct put_device.
3433 **/
3434 static void scsi_disk_release(struct device *dev)
3435 {
3436 struct scsi_disk *sdkp = to_scsi_disk(dev);
3437 struct gendisk *disk = sdkp->disk;
3438
3439 ida_free(&sd_index_ida, sdkp->index);
3440
3441 disk->private_data = NULL;
3442 put_disk(disk);
3443 put_device(&sdkp->device->sdev_gendev);
3444
3445 kfree(sdkp);
3446 }
3447
3448 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3449 {
3450 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3451 struct scsi_sense_hdr sshdr;
3452 struct scsi_device *sdp = sdkp->device;
3453 int res;
3454
3455 if (start)
3456 cmd[4] |= 1; /* START */
3457
3458 if (sdp->start_stop_pwr_cond)
3459 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3460
3461 if (!scsi_device_online(sdp))
3462 return -ENODEV;
3463
3464 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3465 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3466 if (res) {
3467 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3468 if (driver_byte(res) == DRIVER_SENSE)
3469 sd_print_sense_hdr(sdkp, &sshdr);
3470 if (scsi_sense_valid(&sshdr) &&
3471 /* 0x3a is medium not present */
3472 sshdr.asc == 0x3a)
3473 res = 0;
3474 }
3475
3476 /* SCSI error codes must not go to the generic layer */
3477 if (res)
3478 return -EIO;
3479
3480 return 0;
3481 }
3482
3483 /*
3484 * Send a SYNCHRONIZE CACHE instruction down to the device through
3485 * the normal SCSI command structure. Wait for the command to
3486 * complete.
3487 */
3488 static void sd_shutdown(struct device *dev)
3489 {
3490 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3491
3492 if (!sdkp)
3493 return; /* this can happen */
3494
3495 if (pm_runtime_suspended(dev))
3496 return;
3497
3498 if (sdkp->WCE && sdkp->media_present) {
3499 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3500 sd_sync_cache(sdkp, NULL);
3501 }
3502
3503 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3504 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3505 sd_start_stop_device(sdkp, 0);
3506 }
3507 }
3508
3509 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3510 {
3511 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3512 struct scsi_sense_hdr sshdr;
3513 int ret = 0;
3514
3515 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3516 return 0;
3517
3518 if (sdkp->WCE && sdkp->media_present) {
3519 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3520 ret = sd_sync_cache(sdkp, &sshdr);
3521
3522 if (ret) {
3523 /* ignore OFFLINE device */
3524 if (ret == -ENODEV)
3525 return 0;
3526
3527 if (!scsi_sense_valid(&sshdr) ||
3528 sshdr.sense_key != ILLEGAL_REQUEST)
3529 return ret;
3530
3531 /*
3532 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3533 * doesn't support sync. There's not much to do and
3534 * suspend shouldn't fail.
3535 */
3536 ret = 0;
3537 }
3538 }
3539
3540 if (sdkp->device->manage_start_stop) {
3541 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3542 /* an error is not worth aborting a system sleep */
3543 ret = sd_start_stop_device(sdkp, 0);
3544 if (ignore_stop_errors)
3545 ret = 0;
3546 }
3547
3548 return ret;
3549 }
3550
3551 static int sd_suspend_system(struct device *dev)
3552 {
3553 return sd_suspend_common(dev, true);
3554 }
3555
3556 static int sd_suspend_runtime(struct device *dev)
3557 {
3558 return sd_suspend_common(dev, false);
3559 }
3560
3561 static int sd_resume(struct device *dev)
3562 {
3563 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3564 int ret;
3565
3566 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3567 return 0;
3568
3569 if (!sdkp->device->manage_start_stop)
3570 return 0;
3571
3572 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3573 ret = sd_start_stop_device(sdkp, 1);
3574 if (!ret)
3575 opal_unlock_from_suspend(sdkp->opal_dev);
3576 return ret;
3577 }
3578
3579 /**
3580 * init_sd - entry point for this driver (both when built in or when
3581 * a module).
3582 *
3583 * Note: this function registers this driver with the scsi mid-level.
3584 **/
3585 static int __init init_sd(void)
3586 {
3587 int majors = 0, i, err;
3588
3589 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3590
3591 for (i = 0; i < SD_MAJORS; i++) {
3592 if (register_blkdev(sd_major(i), "sd") != 0)
3593 continue;
3594 majors++;
3595 blk_register_region(sd_major(i), SD_MINORS, NULL,
3596 sd_default_probe, NULL, NULL);
3597 }
3598
3599 if (!majors)
3600 return -ENODEV;
3601
3602 err = class_register(&sd_disk_class);
3603 if (err)
3604 goto err_out;
3605
3606 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3607 0, 0, NULL);
3608 if (!sd_cdb_cache) {
3609 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3610 err = -ENOMEM;
3611 goto err_out_class;
3612 }
3613
3614 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3615 if (!sd_cdb_pool) {
3616 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3617 err = -ENOMEM;
3618 goto err_out_cache;
3619 }
3620
3621 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3622 if (!sd_page_pool) {
3623 printk(KERN_ERR "sd: can't init discard page pool\n");
3624 err = -ENOMEM;
3625 goto err_out_ppool;
3626 }
3627
3628 err = scsi_register_driver(&sd_template.gendrv);
3629 if (err)
3630 goto err_out_driver;
3631
3632 return 0;
3633
3634 err_out_driver:
3635 mempool_destroy(sd_page_pool);
3636
3637 err_out_ppool:
3638 mempool_destroy(sd_cdb_pool);
3639
3640 err_out_cache:
3641 kmem_cache_destroy(sd_cdb_cache);
3642
3643 err_out_class:
3644 class_unregister(&sd_disk_class);
3645 err_out:
3646 for (i = 0; i < SD_MAJORS; i++)
3647 unregister_blkdev(sd_major(i), "sd");
3648 return err;
3649 }
3650
3651 /**
3652 * exit_sd - exit point for this driver (when it is a module).
3653 *
3654 * Note: this function unregisters this driver from the scsi mid-level.
3655 **/
3656 static void __exit exit_sd(void)
3657 {
3658 int i;
3659
3660 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3661
3662 scsi_unregister_driver(&sd_template.gendrv);
3663 mempool_destroy(sd_cdb_pool);
3664 mempool_destroy(sd_page_pool);
3665 kmem_cache_destroy(sd_cdb_cache);
3666
3667 class_unregister(&sd_disk_class);
3668
3669 for (i = 0; i < SD_MAJORS; i++) {
3670 blk_unregister_region(sd_major(i), SD_MINORS);
3671 unregister_blkdev(sd_major(i), "sd");
3672 }
3673 }
3674
3675 module_init(init_sd);
3676 module_exit(exit_sd);
3677
3678 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3679 struct scsi_sense_hdr *sshdr)
3680 {
3681 scsi_print_sense_hdr(sdkp->device,
3682 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3683 }
3684
3685 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3686 int result)
3687 {
3688 const char *hb_string = scsi_hostbyte_string(result);
3689 const char *db_string = scsi_driverbyte_string(result);
3690
3691 if (hb_string || db_string)
3692 sd_printk(KERN_INFO, sdkp,
3693 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3694 hb_string ? hb_string : "invalid",
3695 db_string ? db_string : "invalid");
3696 else
3697 sd_printk(KERN_INFO, sdkp,
3698 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3699 msg, host_byte(result), driver_byte(result));
3700 }
3701