]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/scsi/sd.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-eoan-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS 16
101 #else
102 #define SD_MINORS 0
103 #endif
104
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int sd_probe(struct device *);
110 static int sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 SD_MAX_RETRIES, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234 bool v;
235
236 if (!capable(CAP_SYS_ADMIN))
237 return -EACCES;
238
239 if (kstrtobool(buf, &v))
240 return -EINVAL;
241
242 sdp->manage_start_stop = v;
243
244 return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 struct scsi_disk *sdkp = to_scsi_disk(dev);
252
253 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
254 }
255
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 const char *buf, size_t count)
259 {
260 bool v;
261 struct scsi_disk *sdkp = to_scsi_disk(dev);
262 struct scsi_device *sdp = sdkp->device;
263
264 if (!capable(CAP_SYS_ADMIN))
265 return -EACCES;
266
267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 return -EINVAL;
269
270 if (kstrtobool(buf, &v))
271 return -EINVAL;
272
273 sdp->allow_restart = v;
274
275 return count;
276 }
277 static DEVICE_ATTR_RW(allow_restart);
278
279 static ssize_t
280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
281 {
282 struct scsi_disk *sdkp = to_scsi_disk(dev);
283 int ct = sdkp->RCD + 2*sdkp->WCE;
284
285 return sprintf(buf, "%s\n", sd_cache_types[ct]);
286 }
287 static DEVICE_ATTR_RW(cache_type);
288
289 static ssize_t
290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
291 {
292 struct scsi_disk *sdkp = to_scsi_disk(dev);
293
294 return sprintf(buf, "%u\n", sdkp->DPOFUA);
295 }
296 static DEVICE_ATTR_RO(FUA);
297
298 static ssize_t
299 protection_type_show(struct device *dev, struct device_attribute *attr,
300 char *buf)
301 {
302 struct scsi_disk *sdkp = to_scsi_disk(dev);
303
304 return sprintf(buf, "%u\n", sdkp->protection_type);
305 }
306
307 static ssize_t
308 protection_type_store(struct device *dev, struct device_attribute *attr,
309 const char *buf, size_t count)
310 {
311 struct scsi_disk *sdkp = to_scsi_disk(dev);
312 unsigned int val;
313 int err;
314
315 if (!capable(CAP_SYS_ADMIN))
316 return -EACCES;
317
318 err = kstrtouint(buf, 10, &val);
319
320 if (err)
321 return err;
322
323 if (val <= T10_PI_TYPE3_PROTECTION)
324 sdkp->protection_type = val;
325
326 return count;
327 }
328 static DEVICE_ATTR_RW(protection_type);
329
330 static ssize_t
331 protection_mode_show(struct device *dev, struct device_attribute *attr,
332 char *buf)
333 {
334 struct scsi_disk *sdkp = to_scsi_disk(dev);
335 struct scsi_device *sdp = sdkp->device;
336 unsigned int dif, dix;
337
338 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
339 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
340
341 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
342 dif = 0;
343 dix = 1;
344 }
345
346 if (!dif && !dix)
347 return sprintf(buf, "none\n");
348
349 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
350 }
351 static DEVICE_ATTR_RO(protection_mode);
352
353 static ssize_t
354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
355 {
356 struct scsi_disk *sdkp = to_scsi_disk(dev);
357
358 return sprintf(buf, "%u\n", sdkp->ATO);
359 }
360 static DEVICE_ATTR_RO(app_tag_own);
361
362 static ssize_t
363 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
364 char *buf)
365 {
366 struct scsi_disk *sdkp = to_scsi_disk(dev);
367
368 return sprintf(buf, "%u\n", sdkp->lbpme);
369 }
370 static DEVICE_ATTR_RO(thin_provisioning);
371
372 /* sysfs_match_string() requires dense arrays */
373 static const char *lbp_mode[] = {
374 [SD_LBP_FULL] = "full",
375 [SD_LBP_UNMAP] = "unmap",
376 [SD_LBP_WS16] = "writesame_16",
377 [SD_LBP_WS10] = "writesame_10",
378 [SD_LBP_ZERO] = "writesame_zero",
379 [SD_LBP_DISABLE] = "disabled",
380 };
381
382 static ssize_t
383 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
384 char *buf)
385 {
386 struct scsi_disk *sdkp = to_scsi_disk(dev);
387
388 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
389 }
390
391 static ssize_t
392 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
393 const char *buf, size_t count)
394 {
395 struct scsi_disk *sdkp = to_scsi_disk(dev);
396 struct scsi_device *sdp = sdkp->device;
397 int mode;
398
399 if (!capable(CAP_SYS_ADMIN))
400 return -EACCES;
401
402 if (sd_is_zoned(sdkp)) {
403 sd_config_discard(sdkp, SD_LBP_DISABLE);
404 return count;
405 }
406
407 if (sdp->type != TYPE_DISK)
408 return -EINVAL;
409
410 mode = sysfs_match_string(lbp_mode, buf);
411 if (mode < 0)
412 return -EINVAL;
413
414 sd_config_discard(sdkp, mode);
415
416 return count;
417 }
418 static DEVICE_ATTR_RW(provisioning_mode);
419
420 /* sysfs_match_string() requires dense arrays */
421 static const char *zeroing_mode[] = {
422 [SD_ZERO_WRITE] = "write",
423 [SD_ZERO_WS] = "writesame",
424 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
425 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
426 };
427
428 static ssize_t
429 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
430 char *buf)
431 {
432 struct scsi_disk *sdkp = to_scsi_disk(dev);
433
434 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
435 }
436
437 static ssize_t
438 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
439 const char *buf, size_t count)
440 {
441 struct scsi_disk *sdkp = to_scsi_disk(dev);
442 int mode;
443
444 if (!capable(CAP_SYS_ADMIN))
445 return -EACCES;
446
447 mode = sysfs_match_string(zeroing_mode, buf);
448 if (mode < 0)
449 return -EINVAL;
450
451 sdkp->zeroing_mode = mode;
452
453 return count;
454 }
455 static DEVICE_ATTR_RW(zeroing_mode);
456
457 static ssize_t
458 max_medium_access_timeouts_show(struct device *dev,
459 struct device_attribute *attr, char *buf)
460 {
461 struct scsi_disk *sdkp = to_scsi_disk(dev);
462
463 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
464 }
465
466 static ssize_t
467 max_medium_access_timeouts_store(struct device *dev,
468 struct device_attribute *attr, const char *buf,
469 size_t count)
470 {
471 struct scsi_disk *sdkp = to_scsi_disk(dev);
472 int err;
473
474 if (!capable(CAP_SYS_ADMIN))
475 return -EACCES;
476
477 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
478
479 return err ? err : count;
480 }
481 static DEVICE_ATTR_RW(max_medium_access_timeouts);
482
483 static ssize_t
484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
485 char *buf)
486 {
487 struct scsi_disk *sdkp = to_scsi_disk(dev);
488
489 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
490 }
491
492 static ssize_t
493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
494 const char *buf, size_t count)
495 {
496 struct scsi_disk *sdkp = to_scsi_disk(dev);
497 struct scsi_device *sdp = sdkp->device;
498 unsigned long max;
499 int err;
500
501 if (!capable(CAP_SYS_ADMIN))
502 return -EACCES;
503
504 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
505 return -EINVAL;
506
507 err = kstrtoul(buf, 10, &max);
508
509 if (err)
510 return err;
511
512 if (max == 0)
513 sdp->no_write_same = 1;
514 else if (max <= SD_MAX_WS16_BLOCKS) {
515 sdp->no_write_same = 0;
516 sdkp->max_ws_blocks = max;
517 }
518
519 sd_config_write_same(sdkp);
520
521 return count;
522 }
523 static DEVICE_ATTR_RW(max_write_same_blocks);
524
525 static struct attribute *sd_disk_attrs[] = {
526 &dev_attr_cache_type.attr,
527 &dev_attr_FUA.attr,
528 &dev_attr_allow_restart.attr,
529 &dev_attr_manage_start_stop.attr,
530 &dev_attr_protection_type.attr,
531 &dev_attr_protection_mode.attr,
532 &dev_attr_app_tag_own.attr,
533 &dev_attr_thin_provisioning.attr,
534 &dev_attr_provisioning_mode.attr,
535 &dev_attr_zeroing_mode.attr,
536 &dev_attr_max_write_same_blocks.attr,
537 &dev_attr_max_medium_access_timeouts.attr,
538 NULL,
539 };
540 ATTRIBUTE_GROUPS(sd_disk);
541
542 static struct class sd_disk_class = {
543 .name = "scsi_disk",
544 .owner = THIS_MODULE,
545 .dev_release = scsi_disk_release,
546 .dev_groups = sd_disk_groups,
547 };
548
549 static const struct dev_pm_ops sd_pm_ops = {
550 .suspend = sd_suspend_system,
551 .resume = sd_resume,
552 .poweroff = sd_suspend_system,
553 .restore = sd_resume,
554 .runtime_suspend = sd_suspend_runtime,
555 .runtime_resume = sd_resume,
556 };
557
558 static struct scsi_driver sd_template = {
559 .gendrv = {
560 .name = "sd",
561 .owner = THIS_MODULE,
562 .probe = sd_probe,
563 .remove = sd_remove,
564 .shutdown = sd_shutdown,
565 .pm = &sd_pm_ops,
566 },
567 .rescan = sd_rescan,
568 .init_command = sd_init_command,
569 .uninit_command = sd_uninit_command,
570 .done = sd_done,
571 .eh_action = sd_eh_action,
572 .eh_reset = sd_eh_reset,
573 };
574
575 /*
576 * Dummy kobj_map->probe function.
577 * The default ->probe function will call modprobe, which is
578 * pointless as this module is already loaded.
579 */
580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
581 {
582 return NULL;
583 }
584
585 /*
586 * Device no to disk mapping:
587 *
588 * major disc2 disc p1
589 * |............|.............|....|....| <- dev_t
590 * 31 20 19 8 7 4 3 0
591 *
592 * Inside a major, we have 16k disks, however mapped non-
593 * contiguously. The first 16 disks are for major0, the next
594 * ones with major1, ... Disk 256 is for major0 again, disk 272
595 * for major1, ...
596 * As we stay compatible with our numbering scheme, we can reuse
597 * the well-know SCSI majors 8, 65--71, 136--143.
598 */
599 static int sd_major(int major_idx)
600 {
601 switch (major_idx) {
602 case 0:
603 return SCSI_DISK0_MAJOR;
604 case 1 ... 7:
605 return SCSI_DISK1_MAJOR + major_idx - 1;
606 case 8 ... 15:
607 return SCSI_DISK8_MAJOR + major_idx - 8;
608 default:
609 BUG();
610 return 0; /* shut up gcc */
611 }
612 }
613
614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
615 {
616 struct scsi_disk *sdkp = NULL;
617
618 mutex_lock(&sd_ref_mutex);
619
620 if (disk->private_data) {
621 sdkp = scsi_disk(disk);
622 if (scsi_device_get(sdkp->device) == 0)
623 get_device(&sdkp->dev);
624 else
625 sdkp = NULL;
626 }
627 mutex_unlock(&sd_ref_mutex);
628 return sdkp;
629 }
630
631 static void scsi_disk_put(struct scsi_disk *sdkp)
632 {
633 struct scsi_device *sdev = sdkp->device;
634
635 mutex_lock(&sd_ref_mutex);
636 put_device(&sdkp->dev);
637 scsi_device_put(sdev);
638 mutex_unlock(&sd_ref_mutex);
639 }
640
641 #ifdef CONFIG_BLK_SED_OPAL
642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
643 size_t len, bool send)
644 {
645 struct scsi_device *sdev = data;
646 u8 cdb[12] = { 0, };
647 int ret;
648
649 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
650 cdb[1] = secp;
651 put_unaligned_be16(spsp, &cdb[2]);
652 put_unaligned_be32(len, &cdb[6]);
653
654 ret = scsi_execute_req(sdev, cdb,
655 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
656 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
657 return ret <= 0 ? ret : -EIO;
658 }
659 #endif /* CONFIG_BLK_SED_OPAL */
660
661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
662 unsigned int dix, unsigned int dif)
663 {
664 struct bio *bio = scmd->request->bio;
665 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
666 unsigned int protect = 0;
667
668 if (dix) { /* DIX Type 0, 1, 2, 3 */
669 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
670 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
671
672 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
673 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
674 }
675
676 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
677 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
678
679 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
681 }
682
683 if (dif) { /* DIX/DIF Type 1, 2, 3 */
684 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
685
686 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
687 protect = 3 << 5; /* Disable target PI checking */
688 else
689 protect = 1 << 5; /* Enable target PI checking */
690 }
691
692 scsi_set_prot_op(scmd, prot_op);
693 scsi_set_prot_type(scmd, dif);
694 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
695
696 return protect;
697 }
698
699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
700 {
701 struct request_queue *q = sdkp->disk->queue;
702 unsigned int logical_block_size = sdkp->device->sector_size;
703 unsigned int max_blocks = 0;
704
705 q->limits.discard_alignment =
706 sdkp->unmap_alignment * logical_block_size;
707 q->limits.discard_granularity =
708 max(sdkp->physical_block_size,
709 sdkp->unmap_granularity * logical_block_size);
710 sdkp->provisioning_mode = mode;
711
712 switch (mode) {
713
714 case SD_LBP_FULL:
715 case SD_LBP_DISABLE:
716 blk_queue_max_discard_sectors(q, 0);
717 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
718 return;
719
720 case SD_LBP_UNMAP:
721 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
722 (u32)SD_MAX_WS16_BLOCKS);
723 break;
724
725 case SD_LBP_WS16:
726 if (sdkp->device->unmap_limit_for_ws)
727 max_blocks = sdkp->max_unmap_blocks;
728 else
729 max_blocks = sdkp->max_ws_blocks;
730
731 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
732 break;
733
734 case SD_LBP_WS10:
735 if (sdkp->device->unmap_limit_for_ws)
736 max_blocks = sdkp->max_unmap_blocks;
737 else
738 max_blocks = sdkp->max_ws_blocks;
739
740 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
741 break;
742
743 case SD_LBP_ZERO:
744 max_blocks = min_not_zero(sdkp->max_ws_blocks,
745 (u32)SD_MAX_WS10_BLOCKS);
746 break;
747 }
748
749 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
750 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
751 }
752
753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
754 {
755 struct scsi_device *sdp = cmd->device;
756 struct request *rq = cmd->request;
757 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
758 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
759 unsigned int data_len = 24;
760 char *buf;
761
762 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
763 if (!rq->special_vec.bv_page)
764 return BLKPREP_DEFER;
765 rq->special_vec.bv_offset = 0;
766 rq->special_vec.bv_len = data_len;
767 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
768
769 cmd->cmd_len = 10;
770 cmd->cmnd[0] = UNMAP;
771 cmd->cmnd[8] = 24;
772
773 buf = page_address(rq->special_vec.bv_page);
774 put_unaligned_be16(6 + 16, &buf[0]);
775 put_unaligned_be16(16, &buf[2]);
776 put_unaligned_be64(sector, &buf[8]);
777 put_unaligned_be32(nr_sectors, &buf[16]);
778
779 cmd->allowed = SD_MAX_RETRIES;
780 cmd->transfersize = data_len;
781 rq->timeout = SD_TIMEOUT;
782 scsi_req(rq)->resid_len = data_len;
783
784 return scsi_init_io(cmd);
785 }
786
787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
788 {
789 struct scsi_device *sdp = cmd->device;
790 struct request *rq = cmd->request;
791 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
792 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
793 u32 data_len = sdp->sector_size;
794
795 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
796 if (!rq->special_vec.bv_page)
797 return BLKPREP_DEFER;
798 rq->special_vec.bv_offset = 0;
799 rq->special_vec.bv_len = data_len;
800 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
801
802 cmd->cmd_len = 16;
803 cmd->cmnd[0] = WRITE_SAME_16;
804 if (unmap)
805 cmd->cmnd[1] = 0x8; /* UNMAP */
806 put_unaligned_be64(sector, &cmd->cmnd[2]);
807 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
808
809 cmd->allowed = SD_MAX_RETRIES;
810 cmd->transfersize = data_len;
811 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
812 scsi_req(rq)->resid_len = data_len;
813
814 return scsi_init_io(cmd);
815 }
816
817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
818 {
819 struct scsi_device *sdp = cmd->device;
820 struct request *rq = cmd->request;
821 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
822 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
823 u32 data_len = sdp->sector_size;
824
825 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
826 if (!rq->special_vec.bv_page)
827 return BLKPREP_DEFER;
828 rq->special_vec.bv_offset = 0;
829 rq->special_vec.bv_len = data_len;
830 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
831
832 cmd->cmd_len = 10;
833 cmd->cmnd[0] = WRITE_SAME;
834 if (unmap)
835 cmd->cmnd[1] = 0x8; /* UNMAP */
836 put_unaligned_be32(sector, &cmd->cmnd[2]);
837 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
838
839 cmd->allowed = SD_MAX_RETRIES;
840 cmd->transfersize = data_len;
841 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
842 scsi_req(rq)->resid_len = data_len;
843
844 return scsi_init_io(cmd);
845 }
846
847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
848 {
849 struct request *rq = cmd->request;
850 struct scsi_device *sdp = cmd->device;
851 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
852 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
853 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
854
855 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
856 switch (sdkp->zeroing_mode) {
857 case SD_ZERO_WS16_UNMAP:
858 return sd_setup_write_same16_cmnd(cmd, true);
859 case SD_ZERO_WS10_UNMAP:
860 return sd_setup_write_same10_cmnd(cmd, true);
861 }
862 }
863
864 if (sdp->no_write_same)
865 return BLKPREP_INVALID;
866
867 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
868 return sd_setup_write_same16_cmnd(cmd, false);
869
870 return sd_setup_write_same10_cmnd(cmd, false);
871 }
872
873 static void sd_config_write_same(struct scsi_disk *sdkp)
874 {
875 struct request_queue *q = sdkp->disk->queue;
876 unsigned int logical_block_size = sdkp->device->sector_size;
877
878 if (sdkp->device->no_write_same) {
879 sdkp->max_ws_blocks = 0;
880 goto out;
881 }
882
883 /* Some devices can not handle block counts above 0xffff despite
884 * supporting WRITE SAME(16). Consequently we default to 64k
885 * blocks per I/O unless the device explicitly advertises a
886 * bigger limit.
887 */
888 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
889 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
890 (u32)SD_MAX_WS16_BLOCKS);
891 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
892 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
893 (u32)SD_MAX_WS10_BLOCKS);
894 else {
895 sdkp->device->no_write_same = 1;
896 sdkp->max_ws_blocks = 0;
897 }
898
899 if (sdkp->lbprz && sdkp->lbpws)
900 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
901 else if (sdkp->lbprz && sdkp->lbpws10)
902 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
903 else if (sdkp->max_ws_blocks)
904 sdkp->zeroing_mode = SD_ZERO_WS;
905 else
906 sdkp->zeroing_mode = SD_ZERO_WRITE;
907
908 if (sdkp->max_ws_blocks &&
909 sdkp->physical_block_size > logical_block_size) {
910 /*
911 * Reporting a maximum number of blocks that is not aligned
912 * on the device physical size would cause a large write same
913 * request to be split into physically unaligned chunks by
914 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
915 * even if the caller of these functions took care to align the
916 * large request. So make sure the maximum reported is aligned
917 * to the device physical block size. This is only an optional
918 * optimization for regular disks, but this is mandatory to
919 * avoid failure of large write same requests directed at
920 * sequential write required zones of host-managed ZBC disks.
921 */
922 sdkp->max_ws_blocks =
923 round_down(sdkp->max_ws_blocks,
924 bytes_to_logical(sdkp->device,
925 sdkp->physical_block_size));
926 }
927
928 out:
929 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
930 (logical_block_size >> 9));
931 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
932 (logical_block_size >> 9));
933 }
934
935 /**
936 * sd_setup_write_same_cmnd - write the same data to multiple blocks
937 * @cmd: command to prepare
938 *
939 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
940 * the preference indicated by the target device.
941 **/
942 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
943 {
944 struct request *rq = cmd->request;
945 struct scsi_device *sdp = cmd->device;
946 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
947 struct bio *bio = rq->bio;
948 sector_t sector = blk_rq_pos(rq);
949 unsigned int nr_sectors = blk_rq_sectors(rq);
950 unsigned int nr_bytes = blk_rq_bytes(rq);
951 int ret;
952
953 if (sdkp->device->no_write_same)
954 return BLKPREP_INVALID;
955
956 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
957
958 sector >>= ilog2(sdp->sector_size) - 9;
959 nr_sectors >>= ilog2(sdp->sector_size) - 9;
960
961 rq->timeout = SD_WRITE_SAME_TIMEOUT;
962
963 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
964 cmd->cmd_len = 16;
965 cmd->cmnd[0] = WRITE_SAME_16;
966 put_unaligned_be64(sector, &cmd->cmnd[2]);
967 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
968 } else {
969 cmd->cmd_len = 10;
970 cmd->cmnd[0] = WRITE_SAME;
971 put_unaligned_be32(sector, &cmd->cmnd[2]);
972 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
973 }
974
975 cmd->transfersize = sdp->sector_size;
976 cmd->allowed = SD_MAX_RETRIES;
977
978 /*
979 * For WRITE SAME the data transferred via the DATA OUT buffer is
980 * different from the amount of data actually written to the target.
981 *
982 * We set up __data_len to the amount of data transferred via the
983 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
984 * to transfer a single sector of data first, but then reset it to
985 * the amount of data to be written right after so that the I/O path
986 * knows how much to actually write.
987 */
988 rq->__data_len = sdp->sector_size;
989 ret = scsi_init_io(cmd);
990 rq->__data_len = nr_bytes;
991
992 return ret;
993 }
994
995 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
996 {
997 struct request *rq = cmd->request;
998
999 /* flush requests don't perform I/O, zero the S/G table */
1000 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1001
1002 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1003 cmd->cmd_len = 10;
1004 cmd->transfersize = 0;
1005 cmd->allowed = SD_MAX_RETRIES;
1006
1007 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1008 return BLKPREP_OK;
1009 }
1010
1011 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1012 {
1013 struct request *rq = SCpnt->request;
1014 struct scsi_device *sdp = SCpnt->device;
1015 struct gendisk *disk = rq->rq_disk;
1016 struct scsi_disk *sdkp = scsi_disk(disk);
1017 sector_t block = blk_rq_pos(rq);
1018 sector_t threshold;
1019 unsigned int this_count = blk_rq_sectors(rq);
1020 unsigned int dif, dix;
1021 int ret;
1022 unsigned char protect;
1023
1024 ret = scsi_init_io(SCpnt);
1025 if (ret != BLKPREP_OK)
1026 return ret;
1027 WARN_ON_ONCE(SCpnt != rq->special);
1028
1029 /* from here on until we're complete, any goto out
1030 * is used for a killable error condition */
1031 ret = BLKPREP_KILL;
1032
1033 SCSI_LOG_HLQUEUE(1,
1034 scmd_printk(KERN_INFO, SCpnt,
1035 "%s: block=%llu, count=%d\n",
1036 __func__, (unsigned long long)block, this_count));
1037
1038 if (!sdp || !scsi_device_online(sdp) ||
1039 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1040 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1041 "Finishing %u sectors\n",
1042 blk_rq_sectors(rq)));
1043 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1044 "Retry with 0x%p\n", SCpnt));
1045 goto out;
1046 }
1047
1048 if (sdp->changed) {
1049 /*
1050 * quietly refuse to do anything to a changed disc until
1051 * the changed bit has been reset
1052 */
1053 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1054 goto out;
1055 }
1056
1057 /*
1058 * Some SD card readers can't handle multi-sector accesses which touch
1059 * the last one or two hardware sectors. Split accesses as needed.
1060 */
1061 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1062 (sdp->sector_size / 512);
1063
1064 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1065 if (block < threshold) {
1066 /* Access up to the threshold but not beyond */
1067 this_count = threshold - block;
1068 } else {
1069 /* Access only a single hardware sector */
1070 this_count = sdp->sector_size / 512;
1071 }
1072 }
1073
1074 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1075 (unsigned long long)block));
1076
1077 /*
1078 * If we have a 1K hardware sectorsize, prevent access to single
1079 * 512 byte sectors. In theory we could handle this - in fact
1080 * the scsi cdrom driver must be able to handle this because
1081 * we typically use 1K blocksizes, and cdroms typically have
1082 * 2K hardware sectorsizes. Of course, things are simpler
1083 * with the cdrom, since it is read-only. For performance
1084 * reasons, the filesystems should be able to handle this
1085 * and not force the scsi disk driver to use bounce buffers
1086 * for this.
1087 */
1088 if (sdp->sector_size == 1024) {
1089 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1090 scmd_printk(KERN_ERR, SCpnt,
1091 "Bad block number requested\n");
1092 goto out;
1093 } else {
1094 block = block >> 1;
1095 this_count = this_count >> 1;
1096 }
1097 }
1098 if (sdp->sector_size == 2048) {
1099 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1100 scmd_printk(KERN_ERR, SCpnt,
1101 "Bad block number requested\n");
1102 goto out;
1103 } else {
1104 block = block >> 2;
1105 this_count = this_count >> 2;
1106 }
1107 }
1108 if (sdp->sector_size == 4096) {
1109 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1110 scmd_printk(KERN_ERR, SCpnt,
1111 "Bad block number requested\n");
1112 goto out;
1113 } else {
1114 block = block >> 3;
1115 this_count = this_count >> 3;
1116 }
1117 }
1118 if (rq_data_dir(rq) == WRITE) {
1119 SCpnt->cmnd[0] = WRITE_6;
1120
1121 if (blk_integrity_rq(rq))
1122 t10_pi_prepare(SCpnt->request, sdkp->protection_type);
1123
1124 } else if (rq_data_dir(rq) == READ) {
1125 SCpnt->cmnd[0] = READ_6;
1126 } else {
1127 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1128 goto out;
1129 }
1130
1131 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1132 "%s %d/%u 512 byte blocks.\n",
1133 (rq_data_dir(rq) == WRITE) ?
1134 "writing" : "reading", this_count,
1135 blk_rq_sectors(rq)));
1136
1137 dix = scsi_prot_sg_count(SCpnt);
1138 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1139
1140 if (dif || dix)
1141 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1142 else
1143 protect = 0;
1144
1145 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1146 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1147
1148 if (unlikely(SCpnt->cmnd == NULL)) {
1149 ret = BLKPREP_DEFER;
1150 goto out;
1151 }
1152
1153 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1154 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1155 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1156 SCpnt->cmnd[7] = 0x18;
1157 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1158 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1159
1160 /* LBA */
1161 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1162 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1163 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1164 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1165 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1166 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1167 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1168 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1169
1170 /* Expected Indirect LBA */
1171 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1172 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1173 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1174 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1175
1176 /* Transfer length */
1177 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1178 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1179 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1180 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1181 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1182 SCpnt->cmnd[0] += READ_16 - READ_6;
1183 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1185 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1186 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1187 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1188 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1189 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1190 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1191 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1192 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1193 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1194 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1195 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1196 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1197 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1198 scsi_device_protection(SCpnt->device) ||
1199 SCpnt->device->use_10_for_rw) {
1200 SCpnt->cmnd[0] += READ_10 - READ_6;
1201 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1202 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1203 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1204 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1205 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1206 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1207 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1208 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1209 } else {
1210 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1211 /*
1212 * This happens only if this drive failed
1213 * 10byte rw command with ILLEGAL_REQUEST
1214 * during operation and thus turned off
1215 * use_10_for_rw.
1216 */
1217 scmd_printk(KERN_ERR, SCpnt,
1218 "FUA write on READ/WRITE(6) drive\n");
1219 goto out;
1220 }
1221
1222 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1223 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1224 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1225 SCpnt->cmnd[4] = (unsigned char) this_count;
1226 SCpnt->cmnd[5] = 0;
1227 }
1228 SCpnt->sdb.length = this_count * sdp->sector_size;
1229
1230 /*
1231 * We shouldn't disconnect in the middle of a sector, so with a dumb
1232 * host adapter, it's safe to assume that we can at least transfer
1233 * this many bytes between each connect / disconnect.
1234 */
1235 SCpnt->transfersize = sdp->sector_size;
1236 SCpnt->underflow = this_count << 9;
1237 SCpnt->allowed = SD_MAX_RETRIES;
1238
1239 /*
1240 * This indicates that the command is ready from our end to be
1241 * queued.
1242 */
1243 ret = BLKPREP_OK;
1244 out:
1245 return ret;
1246 }
1247
1248 static int sd_init_command(struct scsi_cmnd *cmd)
1249 {
1250 struct request *rq = cmd->request;
1251
1252 switch (req_op(rq)) {
1253 case REQ_OP_DISCARD:
1254 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1255 case SD_LBP_UNMAP:
1256 return sd_setup_unmap_cmnd(cmd);
1257 case SD_LBP_WS16:
1258 return sd_setup_write_same16_cmnd(cmd, true);
1259 case SD_LBP_WS10:
1260 return sd_setup_write_same10_cmnd(cmd, true);
1261 case SD_LBP_ZERO:
1262 return sd_setup_write_same10_cmnd(cmd, false);
1263 default:
1264 return BLKPREP_INVALID;
1265 }
1266 case REQ_OP_WRITE_ZEROES:
1267 return sd_setup_write_zeroes_cmnd(cmd);
1268 case REQ_OP_WRITE_SAME:
1269 return sd_setup_write_same_cmnd(cmd);
1270 case REQ_OP_FLUSH:
1271 return sd_setup_flush_cmnd(cmd);
1272 case REQ_OP_READ:
1273 case REQ_OP_WRITE:
1274 return sd_setup_read_write_cmnd(cmd);
1275 case REQ_OP_ZONE_REPORT:
1276 return sd_zbc_setup_report_cmnd(cmd);
1277 case REQ_OP_ZONE_RESET:
1278 return sd_zbc_setup_reset_cmnd(cmd);
1279 default:
1280 BUG();
1281 }
1282 }
1283
1284 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1285 {
1286 struct request *rq = SCpnt->request;
1287 u8 *cmnd;
1288
1289 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1290 __free_page(rq->special_vec.bv_page);
1291
1292 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1293 cmnd = SCpnt->cmnd;
1294 SCpnt->cmnd = NULL;
1295 SCpnt->cmd_len = 0;
1296 mempool_free(cmnd, sd_cdb_pool);
1297 }
1298 }
1299
1300 /**
1301 * sd_open - open a scsi disk device
1302 * @bdev: Block device of the scsi disk to open
1303 * @mode: FMODE_* mask
1304 *
1305 * Returns 0 if successful. Returns a negated errno value in case
1306 * of error.
1307 *
1308 * Note: This can be called from a user context (e.g. fsck(1) )
1309 * or from within the kernel (e.g. as a result of a mount(1) ).
1310 * In the latter case @inode and @filp carry an abridged amount
1311 * of information as noted above.
1312 *
1313 * Locking: called with bdev->bd_mutex held.
1314 **/
1315 static int sd_open(struct block_device *bdev, fmode_t mode)
1316 {
1317 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1318 struct scsi_device *sdev;
1319 int retval;
1320
1321 if (!sdkp)
1322 return -ENXIO;
1323
1324 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325
1326 sdev = sdkp->device;
1327
1328 /*
1329 * If the device is in error recovery, wait until it is done.
1330 * If the device is offline, then disallow any access to it.
1331 */
1332 retval = -ENXIO;
1333 if (!scsi_block_when_processing_errors(sdev))
1334 goto error_out;
1335
1336 if (sdev->removable || sdkp->write_prot)
1337 check_disk_change(bdev);
1338
1339 /*
1340 * If the drive is empty, just let the open fail.
1341 */
1342 retval = -ENOMEDIUM;
1343 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1344 goto error_out;
1345
1346 /*
1347 * If the device has the write protect tab set, have the open fail
1348 * if the user expects to be able to write to the thing.
1349 */
1350 retval = -EROFS;
1351 if (sdkp->write_prot && (mode & FMODE_WRITE))
1352 goto error_out;
1353
1354 /*
1355 * It is possible that the disk changing stuff resulted in
1356 * the device being taken offline. If this is the case,
1357 * report this to the user, and don't pretend that the
1358 * open actually succeeded.
1359 */
1360 retval = -ENXIO;
1361 if (!scsi_device_online(sdev))
1362 goto error_out;
1363
1364 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1365 if (scsi_block_when_processing_errors(sdev))
1366 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1367 }
1368
1369 return 0;
1370
1371 error_out:
1372 scsi_disk_put(sdkp);
1373 return retval;
1374 }
1375
1376 /**
1377 * sd_release - invoked when the (last) close(2) is called on this
1378 * scsi disk.
1379 * @disk: disk to release
1380 * @mode: FMODE_* mask
1381 *
1382 * Returns 0.
1383 *
1384 * Note: may block (uninterruptible) if error recovery is underway
1385 * on this disk.
1386 *
1387 * Locking: called with bdev->bd_mutex held.
1388 **/
1389 static void sd_release(struct gendisk *disk, fmode_t mode)
1390 {
1391 struct scsi_disk *sdkp = scsi_disk(disk);
1392 struct scsi_device *sdev = sdkp->device;
1393
1394 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1395
1396 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1397 if (scsi_block_when_processing_errors(sdev))
1398 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1399 }
1400
1401 /*
1402 * XXX and what if there are packets in flight and this close()
1403 * XXX is followed by a "rmmod sd_mod"?
1404 */
1405
1406 scsi_disk_put(sdkp);
1407 }
1408
1409 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1410 {
1411 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1412 struct scsi_device *sdp = sdkp->device;
1413 struct Scsi_Host *host = sdp->host;
1414 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1415 int diskinfo[4];
1416
1417 /* default to most commonly used values */
1418 diskinfo[0] = 0x40; /* 1 << 6 */
1419 diskinfo[1] = 0x20; /* 1 << 5 */
1420 diskinfo[2] = capacity >> 11;
1421
1422 /* override with calculated, extended default, or driver values */
1423 if (host->hostt->bios_param)
1424 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1425 else
1426 scsicam_bios_param(bdev, capacity, diskinfo);
1427
1428 geo->heads = diskinfo[0];
1429 geo->sectors = diskinfo[1];
1430 geo->cylinders = diskinfo[2];
1431 return 0;
1432 }
1433
1434 /**
1435 * sd_ioctl - process an ioctl
1436 * @bdev: target block device
1437 * @mode: FMODE_* mask
1438 * @cmd: ioctl command number
1439 * @arg: this is third argument given to ioctl(2) system call.
1440 * Often contains a pointer.
1441 *
1442 * Returns 0 if successful (some ioctls return positive numbers on
1443 * success as well). Returns a negated errno value in case of error.
1444 *
1445 * Note: most ioctls are forward onto the block subsystem or further
1446 * down in the scsi subsystem.
1447 **/
1448 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1449 unsigned int cmd, unsigned long arg)
1450 {
1451 struct gendisk *disk = bdev->bd_disk;
1452 struct scsi_disk *sdkp = scsi_disk(disk);
1453 struct scsi_device *sdp = sdkp->device;
1454 void __user *p = (void __user *)arg;
1455 int error;
1456
1457 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1458 "cmd=0x%x\n", disk->disk_name, cmd));
1459
1460 error = scsi_verify_blk_ioctl(bdev, cmd);
1461 if (error < 0)
1462 return error;
1463
1464 /*
1465 * If we are in the middle of error recovery, don't let anyone
1466 * else try and use this device. Also, if error recovery fails, it
1467 * may try and take the device offline, in which case all further
1468 * access to the device is prohibited.
1469 */
1470 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1471 (mode & FMODE_NDELAY) != 0);
1472 if (error)
1473 goto out;
1474
1475 if (is_sed_ioctl(cmd))
1476 return sed_ioctl(sdkp->opal_dev, cmd, p);
1477
1478 /*
1479 * Send SCSI addressing ioctls directly to mid level, send other
1480 * ioctls to block level and then onto mid level if they can't be
1481 * resolved.
1482 */
1483 switch (cmd) {
1484 case SCSI_IOCTL_GET_IDLUN:
1485 case SCSI_IOCTL_GET_BUS_NUMBER:
1486 error = scsi_ioctl(sdp, cmd, p);
1487 break;
1488 default:
1489 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1490 if (error != -ENOTTY)
1491 break;
1492 error = scsi_ioctl(sdp, cmd, p);
1493 break;
1494 }
1495 out:
1496 return error;
1497 }
1498
1499 static void set_media_not_present(struct scsi_disk *sdkp)
1500 {
1501 if (sdkp->media_present)
1502 sdkp->device->changed = 1;
1503
1504 if (sdkp->device->removable) {
1505 sdkp->media_present = 0;
1506 sdkp->capacity = 0;
1507 }
1508 }
1509
1510 static int media_not_present(struct scsi_disk *sdkp,
1511 struct scsi_sense_hdr *sshdr)
1512 {
1513 if (!scsi_sense_valid(sshdr))
1514 return 0;
1515
1516 /* not invoked for commands that could return deferred errors */
1517 switch (sshdr->sense_key) {
1518 case UNIT_ATTENTION:
1519 case NOT_READY:
1520 /* medium not present */
1521 if (sshdr->asc == 0x3A) {
1522 set_media_not_present(sdkp);
1523 return 1;
1524 }
1525 }
1526 return 0;
1527 }
1528
1529 /**
1530 * sd_check_events - check media events
1531 * @disk: kernel device descriptor
1532 * @clearing: disk events currently being cleared
1533 *
1534 * Returns mask of DISK_EVENT_*.
1535 *
1536 * Note: this function is invoked from the block subsystem.
1537 **/
1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1539 {
1540 struct scsi_disk *sdkp = scsi_disk_get(disk);
1541 struct scsi_device *sdp;
1542 int retval;
1543
1544 if (!sdkp)
1545 return 0;
1546
1547 sdp = sdkp->device;
1548 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1549
1550 /*
1551 * If the device is offline, don't send any commands - just pretend as
1552 * if the command failed. If the device ever comes back online, we
1553 * can deal with it then. It is only because of unrecoverable errors
1554 * that we would ever take a device offline in the first place.
1555 */
1556 if (!scsi_device_online(sdp)) {
1557 set_media_not_present(sdkp);
1558 goto out;
1559 }
1560
1561 /*
1562 * Using TEST_UNIT_READY enables differentiation between drive with
1563 * no cartridge loaded - NOT READY, drive with changed cartridge -
1564 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1565 *
1566 * Drives that auto spin down. eg iomega jaz 1G, will be started
1567 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1568 * sd_revalidate() is called.
1569 */
1570 if (scsi_block_when_processing_errors(sdp)) {
1571 struct scsi_sense_hdr sshdr = { 0, };
1572
1573 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1574 &sshdr);
1575
1576 /* failed to execute TUR, assume media not present */
1577 if (host_byte(retval)) {
1578 set_media_not_present(sdkp);
1579 goto out;
1580 }
1581
1582 if (media_not_present(sdkp, &sshdr))
1583 goto out;
1584 }
1585
1586 /*
1587 * For removable scsi disk we have to recognise the presence
1588 * of a disk in the drive.
1589 */
1590 if (!sdkp->media_present)
1591 sdp->changed = 1;
1592 sdkp->media_present = 1;
1593 out:
1594 /*
1595 * sdp->changed is set under the following conditions:
1596 *
1597 * Medium present state has changed in either direction.
1598 * Device has indicated UNIT_ATTENTION.
1599 */
1600 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1601 sdp->changed = 0;
1602 scsi_disk_put(sdkp);
1603 return retval;
1604 }
1605
1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1607 {
1608 int retries, res;
1609 struct scsi_device *sdp = sdkp->device;
1610 const int timeout = sdp->request_queue->rq_timeout
1611 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1612 struct scsi_sense_hdr my_sshdr;
1613
1614 if (!scsi_device_online(sdp))
1615 return -ENODEV;
1616
1617 /* caller might not be interested in sense, but we need it */
1618 if (!sshdr)
1619 sshdr = &my_sshdr;
1620
1621 for (retries = 3; retries > 0; --retries) {
1622 unsigned char cmd[10] = { 0 };
1623
1624 cmd[0] = SYNCHRONIZE_CACHE;
1625 /*
1626 * Leave the rest of the command zero to indicate
1627 * flush everything.
1628 */
1629 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1630 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1631 if (res == 0)
1632 break;
1633 }
1634
1635 if (res) {
1636 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1637
1638 if (driver_byte(res) == DRIVER_SENSE)
1639 sd_print_sense_hdr(sdkp, sshdr);
1640
1641 /* we need to evaluate the error return */
1642 if (scsi_sense_valid(sshdr) &&
1643 (sshdr->asc == 0x3a || /* medium not present */
1644 sshdr->asc == 0x20)) /* invalid command */
1645 /* this is no error here */
1646 return 0;
1647
1648 switch (host_byte(res)) {
1649 /* ignore errors due to racing a disconnection */
1650 case DID_BAD_TARGET:
1651 case DID_NO_CONNECT:
1652 return 0;
1653 /* signal the upper layer it might try again */
1654 case DID_BUS_BUSY:
1655 case DID_IMM_RETRY:
1656 case DID_REQUEUE:
1657 case DID_SOFT_ERROR:
1658 return -EBUSY;
1659 default:
1660 return -EIO;
1661 }
1662 }
1663 return 0;
1664 }
1665
1666 static void sd_rescan(struct device *dev)
1667 {
1668 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1669
1670 revalidate_disk(sdkp->disk);
1671 }
1672
1673
1674 #ifdef CONFIG_COMPAT
1675 /*
1676 * This gets directly called from VFS. When the ioctl
1677 * is not recognized we go back to the other translation paths.
1678 */
1679 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1680 unsigned int cmd, unsigned long arg)
1681 {
1682 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1683 int error;
1684
1685 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1686 (mode & FMODE_NDELAY) != 0);
1687 if (error)
1688 return error;
1689
1690 /*
1691 * Let the static ioctl translation table take care of it.
1692 */
1693 if (!sdev->host->hostt->compat_ioctl)
1694 return -ENOIOCTLCMD;
1695 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1696 }
1697 #endif
1698
1699 static char sd_pr_type(enum pr_type type)
1700 {
1701 switch (type) {
1702 case PR_WRITE_EXCLUSIVE:
1703 return 0x01;
1704 case PR_EXCLUSIVE_ACCESS:
1705 return 0x03;
1706 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1707 return 0x05;
1708 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1709 return 0x06;
1710 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1711 return 0x07;
1712 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1713 return 0x08;
1714 default:
1715 return 0;
1716 }
1717 };
1718
1719 static int sd_pr_command(struct block_device *bdev, u8 sa,
1720 u64 key, u64 sa_key, u8 type, u8 flags)
1721 {
1722 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1723 struct scsi_sense_hdr sshdr;
1724 int result;
1725 u8 cmd[16] = { 0, };
1726 u8 data[24] = { 0, };
1727
1728 cmd[0] = PERSISTENT_RESERVE_OUT;
1729 cmd[1] = sa;
1730 cmd[2] = type;
1731 put_unaligned_be32(sizeof(data), &cmd[5]);
1732
1733 put_unaligned_be64(key, &data[0]);
1734 put_unaligned_be64(sa_key, &data[8]);
1735 data[20] = flags;
1736
1737 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1738 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1739
1740 if (driver_byte(result) == DRIVER_SENSE &&
1741 scsi_sense_valid(&sshdr)) {
1742 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1743 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1744 }
1745
1746 return result;
1747 }
1748
1749 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1750 u32 flags)
1751 {
1752 if (flags & ~PR_FL_IGNORE_KEY)
1753 return -EOPNOTSUPP;
1754 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1755 old_key, new_key, 0,
1756 (1 << 0) /* APTPL */);
1757 }
1758
1759 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1760 u32 flags)
1761 {
1762 if (flags)
1763 return -EOPNOTSUPP;
1764 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1765 }
1766
1767 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1768 {
1769 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1770 }
1771
1772 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1773 enum pr_type type, bool abort)
1774 {
1775 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1776 sd_pr_type(type), 0);
1777 }
1778
1779 static int sd_pr_clear(struct block_device *bdev, u64 key)
1780 {
1781 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1782 }
1783
1784 static const struct pr_ops sd_pr_ops = {
1785 .pr_register = sd_pr_register,
1786 .pr_reserve = sd_pr_reserve,
1787 .pr_release = sd_pr_release,
1788 .pr_preempt = sd_pr_preempt,
1789 .pr_clear = sd_pr_clear,
1790 };
1791
1792 static const struct block_device_operations sd_fops = {
1793 .owner = THIS_MODULE,
1794 .open = sd_open,
1795 .release = sd_release,
1796 .ioctl = sd_ioctl,
1797 .getgeo = sd_getgeo,
1798 #ifdef CONFIG_COMPAT
1799 .compat_ioctl = sd_compat_ioctl,
1800 #endif
1801 .check_events = sd_check_events,
1802 .revalidate_disk = sd_revalidate_disk,
1803 .unlock_native_capacity = sd_unlock_native_capacity,
1804 .pr_ops = &sd_pr_ops,
1805 };
1806
1807 /**
1808 * sd_eh_reset - reset error handling callback
1809 * @scmd: sd-issued command that has failed
1810 *
1811 * This function is called by the SCSI midlayer before starting
1812 * SCSI EH. When counting medium access failures we have to be
1813 * careful to register it only only once per device and SCSI EH run;
1814 * there might be several timed out commands which will cause the
1815 * 'max_medium_access_timeouts' counter to trigger after the first
1816 * SCSI EH run already and set the device to offline.
1817 * So this function resets the internal counter before starting SCSI EH.
1818 **/
1819 static void sd_eh_reset(struct scsi_cmnd *scmd)
1820 {
1821 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1822
1823 /* New SCSI EH run, reset gate variable */
1824 sdkp->ignore_medium_access_errors = false;
1825 }
1826
1827 /**
1828 * sd_eh_action - error handling callback
1829 * @scmd: sd-issued command that has failed
1830 * @eh_disp: The recovery disposition suggested by the midlayer
1831 *
1832 * This function is called by the SCSI midlayer upon completion of an
1833 * error test command (currently TEST UNIT READY). The result of sending
1834 * the eh command is passed in eh_disp. We're looking for devices that
1835 * fail medium access commands but are OK with non access commands like
1836 * test unit ready (so wrongly see the device as having a successful
1837 * recovery)
1838 **/
1839 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1840 {
1841 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1842 struct scsi_device *sdev = scmd->device;
1843
1844 if (!scsi_device_online(sdev) ||
1845 !scsi_medium_access_command(scmd) ||
1846 host_byte(scmd->result) != DID_TIME_OUT ||
1847 eh_disp != SUCCESS)
1848 return eh_disp;
1849
1850 /*
1851 * The device has timed out executing a medium access command.
1852 * However, the TEST UNIT READY command sent during error
1853 * handling completed successfully. Either the device is in the
1854 * process of recovering or has it suffered an internal failure
1855 * that prevents access to the storage medium.
1856 */
1857 if (!sdkp->ignore_medium_access_errors) {
1858 sdkp->medium_access_timed_out++;
1859 sdkp->ignore_medium_access_errors = true;
1860 }
1861
1862 /*
1863 * If the device keeps failing read/write commands but TEST UNIT
1864 * READY always completes successfully we assume that medium
1865 * access is no longer possible and take the device offline.
1866 */
1867 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1868 scmd_printk(KERN_ERR, scmd,
1869 "Medium access timeout failure. Offlining disk!\n");
1870 mutex_lock(&sdev->state_mutex);
1871 scsi_device_set_state(sdev, SDEV_OFFLINE);
1872 mutex_unlock(&sdev->state_mutex);
1873
1874 return SUCCESS;
1875 }
1876
1877 return eh_disp;
1878 }
1879
1880 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1881 {
1882 struct request *req = scmd->request;
1883 struct scsi_device *sdev = scmd->device;
1884 unsigned int transferred, good_bytes;
1885 u64 start_lba, end_lba, bad_lba;
1886
1887 /*
1888 * Some commands have a payload smaller than the device logical
1889 * block size (e.g. INQUIRY on a 4K disk).
1890 */
1891 if (scsi_bufflen(scmd) <= sdev->sector_size)
1892 return 0;
1893
1894 /* Check if we have a 'bad_lba' information */
1895 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1896 SCSI_SENSE_BUFFERSIZE,
1897 &bad_lba))
1898 return 0;
1899
1900 /*
1901 * If the bad lba was reported incorrectly, we have no idea where
1902 * the error is.
1903 */
1904 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1905 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1906 if (bad_lba < start_lba || bad_lba >= end_lba)
1907 return 0;
1908
1909 /*
1910 * resid is optional but mostly filled in. When it's unused,
1911 * its value is zero, so we assume the whole buffer transferred
1912 */
1913 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1914
1915 /* This computation should always be done in terms of the
1916 * resolution of the device's medium.
1917 */
1918 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1919
1920 return min(good_bytes, transferred);
1921 }
1922
1923 /**
1924 * sd_done - bottom half handler: called when the lower level
1925 * driver has completed (successfully or otherwise) a scsi command.
1926 * @SCpnt: mid-level's per command structure.
1927 *
1928 * Note: potentially run from within an ISR. Must not block.
1929 **/
1930 static int sd_done(struct scsi_cmnd *SCpnt)
1931 {
1932 int result = SCpnt->result;
1933 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1934 unsigned int sector_size = SCpnt->device->sector_size;
1935 unsigned int resid;
1936 struct scsi_sense_hdr sshdr;
1937 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1938 struct request *req = SCpnt->request;
1939 int sense_valid = 0;
1940 int sense_deferred = 0;
1941
1942 switch (req_op(req)) {
1943 case REQ_OP_DISCARD:
1944 case REQ_OP_WRITE_ZEROES:
1945 case REQ_OP_WRITE_SAME:
1946 case REQ_OP_ZONE_RESET:
1947 if (!result) {
1948 good_bytes = blk_rq_bytes(req);
1949 scsi_set_resid(SCpnt, 0);
1950 } else {
1951 good_bytes = 0;
1952 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1953 }
1954 break;
1955 case REQ_OP_ZONE_REPORT:
1956 if (!result) {
1957 good_bytes = scsi_bufflen(SCpnt)
1958 - scsi_get_resid(SCpnt);
1959 scsi_set_resid(SCpnt, 0);
1960 } else {
1961 good_bytes = 0;
1962 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1963 }
1964 break;
1965 default:
1966 /*
1967 * In case of bogus fw or device, we could end up having
1968 * an unaligned partial completion. Check this here and force
1969 * alignment.
1970 */
1971 resid = scsi_get_resid(SCpnt);
1972 if (resid & (sector_size - 1)) {
1973 sd_printk(KERN_INFO, sdkp,
1974 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1975 resid, sector_size);
1976 resid = min(scsi_bufflen(SCpnt),
1977 round_up(resid, sector_size));
1978 scsi_set_resid(SCpnt, resid);
1979 }
1980 }
1981
1982 if (result) {
1983 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1984 if (sense_valid)
1985 sense_deferred = scsi_sense_is_deferred(&sshdr);
1986 }
1987 sdkp->medium_access_timed_out = 0;
1988
1989 if (driver_byte(result) != DRIVER_SENSE &&
1990 (!sense_valid || sense_deferred))
1991 goto out;
1992
1993 switch (sshdr.sense_key) {
1994 case HARDWARE_ERROR:
1995 case MEDIUM_ERROR:
1996 good_bytes = sd_completed_bytes(SCpnt);
1997 break;
1998 case RECOVERED_ERROR:
1999 good_bytes = scsi_bufflen(SCpnt);
2000 break;
2001 case NO_SENSE:
2002 /* This indicates a false check condition, so ignore it. An
2003 * unknown amount of data was transferred so treat it as an
2004 * error.
2005 */
2006 SCpnt->result = 0;
2007 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2008 break;
2009 case ABORTED_COMMAND:
2010 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2011 good_bytes = sd_completed_bytes(SCpnt);
2012 break;
2013 case ILLEGAL_REQUEST:
2014 switch (sshdr.asc) {
2015 case 0x10: /* DIX: Host detected corruption */
2016 good_bytes = sd_completed_bytes(SCpnt);
2017 break;
2018 case 0x20: /* INVALID COMMAND OPCODE */
2019 case 0x24: /* INVALID FIELD IN CDB */
2020 switch (SCpnt->cmnd[0]) {
2021 case UNMAP:
2022 sd_config_discard(sdkp, SD_LBP_DISABLE);
2023 break;
2024 case WRITE_SAME_16:
2025 case WRITE_SAME:
2026 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2027 sd_config_discard(sdkp, SD_LBP_DISABLE);
2028 } else {
2029 sdkp->device->no_write_same = 1;
2030 sd_config_write_same(sdkp);
2031 req->rq_flags |= RQF_QUIET;
2032 }
2033 break;
2034 }
2035 }
2036 break;
2037 default:
2038 break;
2039 }
2040
2041 out:
2042 if (sd_is_zoned(sdkp))
2043 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2044
2045 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2046 "sd_done: completed %d of %d bytes\n",
2047 good_bytes, scsi_bufflen(SCpnt)));
2048
2049 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2050 good_bytes)
2051 t10_pi_complete(SCpnt->request, sdkp->protection_type,
2052 good_bytes / scsi_prot_interval(SCpnt));
2053
2054 return good_bytes;
2055 }
2056
2057 /*
2058 * spinup disk - called only in sd_revalidate_disk()
2059 */
2060 static void
2061 sd_spinup_disk(struct scsi_disk *sdkp)
2062 {
2063 unsigned char cmd[10];
2064 unsigned long spintime_expire = 0;
2065 int retries, spintime;
2066 unsigned int the_result;
2067 struct scsi_sense_hdr sshdr;
2068 int sense_valid = 0;
2069
2070 spintime = 0;
2071
2072 /* Spin up drives, as required. Only do this at boot time */
2073 /* Spinup needs to be done for module loads too. */
2074 do {
2075 retries = 0;
2076
2077 do {
2078 cmd[0] = TEST_UNIT_READY;
2079 memset((void *) &cmd[1], 0, 9);
2080
2081 the_result = scsi_execute_req(sdkp->device, cmd,
2082 DMA_NONE, NULL, 0,
2083 &sshdr, SD_TIMEOUT,
2084 SD_MAX_RETRIES, NULL);
2085
2086 /*
2087 * If the drive has indicated to us that it
2088 * doesn't have any media in it, don't bother
2089 * with any more polling.
2090 */
2091 if (media_not_present(sdkp, &sshdr))
2092 return;
2093
2094 if (the_result)
2095 sense_valid = scsi_sense_valid(&sshdr);
2096 retries++;
2097 } while (retries < 3 &&
2098 (!scsi_status_is_good(the_result) ||
2099 ((driver_byte(the_result) == DRIVER_SENSE) &&
2100 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2101
2102 if (driver_byte(the_result) != DRIVER_SENSE) {
2103 /* no sense, TUR either succeeded or failed
2104 * with a status error */
2105 if(!spintime && !scsi_status_is_good(the_result)) {
2106 sd_print_result(sdkp, "Test Unit Ready failed",
2107 the_result);
2108 }
2109 break;
2110 }
2111
2112 /*
2113 * The device does not want the automatic start to be issued.
2114 */
2115 if (sdkp->device->no_start_on_add)
2116 break;
2117
2118 if (sense_valid && sshdr.sense_key == NOT_READY) {
2119 if (sshdr.asc == 4 && sshdr.ascq == 3)
2120 break; /* manual intervention required */
2121 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2122 break; /* standby */
2123 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2124 break; /* unavailable */
2125 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2126 break; /* sanitize in progress */
2127 /*
2128 * Issue command to spin up drive when not ready
2129 */
2130 if (!spintime) {
2131 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2132 cmd[0] = START_STOP;
2133 cmd[1] = 1; /* Return immediately */
2134 memset((void *) &cmd[2], 0, 8);
2135 cmd[4] = 1; /* Start spin cycle */
2136 if (sdkp->device->start_stop_pwr_cond)
2137 cmd[4] |= 1 << 4;
2138 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2139 NULL, 0, &sshdr,
2140 SD_TIMEOUT, SD_MAX_RETRIES,
2141 NULL);
2142 spintime_expire = jiffies + 100 * HZ;
2143 spintime = 1;
2144 }
2145 /* Wait 1 second for next try */
2146 msleep(1000);
2147 printk(KERN_CONT ".");
2148
2149 /*
2150 * Wait for USB flash devices with slow firmware.
2151 * Yes, this sense key/ASC combination shouldn't
2152 * occur here. It's characteristic of these devices.
2153 */
2154 } else if (sense_valid &&
2155 sshdr.sense_key == UNIT_ATTENTION &&
2156 sshdr.asc == 0x28) {
2157 if (!spintime) {
2158 spintime_expire = jiffies + 5 * HZ;
2159 spintime = 1;
2160 }
2161 /* Wait 1 second for next try */
2162 msleep(1000);
2163 } else {
2164 /* we don't understand the sense code, so it's
2165 * probably pointless to loop */
2166 if(!spintime) {
2167 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2168 sd_print_sense_hdr(sdkp, &sshdr);
2169 }
2170 break;
2171 }
2172
2173 } while (spintime && time_before_eq(jiffies, spintime_expire));
2174
2175 if (spintime) {
2176 if (scsi_status_is_good(the_result))
2177 printk(KERN_CONT "ready\n");
2178 else
2179 printk(KERN_CONT "not responding...\n");
2180 }
2181 }
2182
2183 /*
2184 * Determine whether disk supports Data Integrity Field.
2185 */
2186 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2187 {
2188 struct scsi_device *sdp = sdkp->device;
2189 u8 type;
2190 int ret = 0;
2191
2192 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2193 return ret;
2194
2195 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2196
2197 if (type > T10_PI_TYPE3_PROTECTION)
2198 ret = -ENODEV;
2199 else if (scsi_host_dif_capable(sdp->host, type))
2200 ret = 1;
2201
2202 if (sdkp->first_scan || type != sdkp->protection_type)
2203 switch (ret) {
2204 case -ENODEV:
2205 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2206 " protection type %u. Disabling disk!\n",
2207 type);
2208 break;
2209 case 1:
2210 sd_printk(KERN_NOTICE, sdkp,
2211 "Enabling DIF Type %u protection\n", type);
2212 break;
2213 case 0:
2214 sd_printk(KERN_NOTICE, sdkp,
2215 "Disabling DIF Type %u protection\n", type);
2216 break;
2217 }
2218
2219 sdkp->protection_type = type;
2220
2221 return ret;
2222 }
2223
2224 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2225 struct scsi_sense_hdr *sshdr, int sense_valid,
2226 int the_result)
2227 {
2228 if (driver_byte(the_result) == DRIVER_SENSE)
2229 sd_print_sense_hdr(sdkp, sshdr);
2230 else
2231 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2232
2233 /*
2234 * Set dirty bit for removable devices if not ready -
2235 * sometimes drives will not report this properly.
2236 */
2237 if (sdp->removable &&
2238 sense_valid && sshdr->sense_key == NOT_READY)
2239 set_media_not_present(sdkp);
2240
2241 /*
2242 * We used to set media_present to 0 here to indicate no media
2243 * in the drive, but some drives fail read capacity even with
2244 * media present, so we can't do that.
2245 */
2246 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2247 }
2248
2249 #define RC16_LEN 32
2250 #if RC16_LEN > SD_BUF_SIZE
2251 #error RC16_LEN must not be more than SD_BUF_SIZE
2252 #endif
2253
2254 #define READ_CAPACITY_RETRIES_ON_RESET 10
2255
2256 /*
2257 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2258 * and the reported logical block size is bigger than 512 bytes. Note
2259 * that last_sector is a u64 and therefore logical_to_sectors() is not
2260 * applicable.
2261 */
2262 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2263 {
2264 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2265
2266 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2267 return false;
2268
2269 return true;
2270 }
2271
2272 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2273 unsigned char *buffer)
2274 {
2275 unsigned char cmd[16];
2276 struct scsi_sense_hdr sshdr;
2277 int sense_valid = 0;
2278 int the_result;
2279 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2280 unsigned int alignment;
2281 unsigned long long lba;
2282 unsigned sector_size;
2283
2284 if (sdp->no_read_capacity_16)
2285 return -EINVAL;
2286
2287 do {
2288 memset(cmd, 0, 16);
2289 cmd[0] = SERVICE_ACTION_IN_16;
2290 cmd[1] = SAI_READ_CAPACITY_16;
2291 cmd[13] = RC16_LEN;
2292 memset(buffer, 0, RC16_LEN);
2293
2294 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2295 buffer, RC16_LEN, &sshdr,
2296 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2297
2298 if (media_not_present(sdkp, &sshdr))
2299 return -ENODEV;
2300
2301 if (the_result) {
2302 sense_valid = scsi_sense_valid(&sshdr);
2303 if (sense_valid &&
2304 sshdr.sense_key == ILLEGAL_REQUEST &&
2305 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2306 sshdr.ascq == 0x00)
2307 /* Invalid Command Operation Code or
2308 * Invalid Field in CDB, just retry
2309 * silently with RC10 */
2310 return -EINVAL;
2311 if (sense_valid &&
2312 sshdr.sense_key == UNIT_ATTENTION &&
2313 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2314 /* Device reset might occur several times,
2315 * give it one more chance */
2316 if (--reset_retries > 0)
2317 continue;
2318 }
2319 retries--;
2320
2321 } while (the_result && retries);
2322
2323 if (the_result) {
2324 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2325 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2326 return -EINVAL;
2327 }
2328
2329 sector_size = get_unaligned_be32(&buffer[8]);
2330 lba = get_unaligned_be64(&buffer[0]);
2331
2332 if (sd_read_protection_type(sdkp, buffer) < 0) {
2333 sdkp->capacity = 0;
2334 return -ENODEV;
2335 }
2336
2337 if (!sd_addressable_capacity(lba, sector_size)) {
2338 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2339 "kernel compiled with support for large block "
2340 "devices.\n");
2341 sdkp->capacity = 0;
2342 return -EOVERFLOW;
2343 }
2344
2345 /* Logical blocks per physical block exponent */
2346 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2347
2348 /* RC basis */
2349 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2350
2351 /* Lowest aligned logical block */
2352 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2353 blk_queue_alignment_offset(sdp->request_queue, alignment);
2354 if (alignment && sdkp->first_scan)
2355 sd_printk(KERN_NOTICE, sdkp,
2356 "physical block alignment offset: %u\n", alignment);
2357
2358 if (buffer[14] & 0x80) { /* LBPME */
2359 sdkp->lbpme = 1;
2360
2361 if (buffer[14] & 0x40) /* LBPRZ */
2362 sdkp->lbprz = 1;
2363
2364 sd_config_discard(sdkp, SD_LBP_WS16);
2365 }
2366
2367 sdkp->capacity = lba + 1;
2368 return sector_size;
2369 }
2370
2371 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2372 unsigned char *buffer)
2373 {
2374 unsigned char cmd[16];
2375 struct scsi_sense_hdr sshdr;
2376 int sense_valid = 0;
2377 int the_result;
2378 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2379 sector_t lba;
2380 unsigned sector_size;
2381
2382 do {
2383 cmd[0] = READ_CAPACITY;
2384 memset(&cmd[1], 0, 9);
2385 memset(buffer, 0, 8);
2386
2387 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2388 buffer, 8, &sshdr,
2389 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2390
2391 if (media_not_present(sdkp, &sshdr))
2392 return -ENODEV;
2393
2394 if (the_result) {
2395 sense_valid = scsi_sense_valid(&sshdr);
2396 if (sense_valid &&
2397 sshdr.sense_key == UNIT_ATTENTION &&
2398 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2399 /* Device reset might occur several times,
2400 * give it one more chance */
2401 if (--reset_retries > 0)
2402 continue;
2403 }
2404 retries--;
2405
2406 } while (the_result && retries);
2407
2408 if (the_result) {
2409 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2410 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2411 return -EINVAL;
2412 }
2413
2414 sector_size = get_unaligned_be32(&buffer[4]);
2415 lba = get_unaligned_be32(&buffer[0]);
2416
2417 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2418 /* Some buggy (usb cardreader) devices return an lba of
2419 0xffffffff when the want to report a size of 0 (with
2420 which they really mean no media is present) */
2421 sdkp->capacity = 0;
2422 sdkp->physical_block_size = sector_size;
2423 return sector_size;
2424 }
2425
2426 if (!sd_addressable_capacity(lba, sector_size)) {
2427 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2428 "kernel compiled with support for large block "
2429 "devices.\n");
2430 sdkp->capacity = 0;
2431 return -EOVERFLOW;
2432 }
2433
2434 sdkp->capacity = lba + 1;
2435 sdkp->physical_block_size = sector_size;
2436 return sector_size;
2437 }
2438
2439 static int sd_try_rc16_first(struct scsi_device *sdp)
2440 {
2441 if (sdp->host->max_cmd_len < 16)
2442 return 0;
2443 if (sdp->try_rc_10_first)
2444 return 0;
2445 if (sdp->scsi_level > SCSI_SPC_2)
2446 return 1;
2447 if (scsi_device_protection(sdp))
2448 return 1;
2449 return 0;
2450 }
2451
2452 /*
2453 * read disk capacity
2454 */
2455 static void
2456 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2457 {
2458 int sector_size;
2459 struct scsi_device *sdp = sdkp->device;
2460
2461 if (sd_try_rc16_first(sdp)) {
2462 sector_size = read_capacity_16(sdkp, sdp, buffer);
2463 if (sector_size == -EOVERFLOW)
2464 goto got_data;
2465 if (sector_size == -ENODEV)
2466 return;
2467 if (sector_size < 0)
2468 sector_size = read_capacity_10(sdkp, sdp, buffer);
2469 if (sector_size < 0)
2470 return;
2471 } else {
2472 sector_size = read_capacity_10(sdkp, sdp, buffer);
2473 if (sector_size == -EOVERFLOW)
2474 goto got_data;
2475 if (sector_size < 0)
2476 return;
2477 if ((sizeof(sdkp->capacity) > 4) &&
2478 (sdkp->capacity > 0xffffffffULL)) {
2479 int old_sector_size = sector_size;
2480 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2481 "Trying to use READ CAPACITY(16).\n");
2482 sector_size = read_capacity_16(sdkp, sdp, buffer);
2483 if (sector_size < 0) {
2484 sd_printk(KERN_NOTICE, sdkp,
2485 "Using 0xffffffff as device size\n");
2486 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2487 sector_size = old_sector_size;
2488 goto got_data;
2489 }
2490 /* Remember that READ CAPACITY(16) succeeded */
2491 sdp->try_rc_10_first = 0;
2492 }
2493 }
2494
2495 /* Some devices are known to return the total number of blocks,
2496 * not the highest block number. Some devices have versions
2497 * which do this and others which do not. Some devices we might
2498 * suspect of doing this but we don't know for certain.
2499 *
2500 * If we know the reported capacity is wrong, decrement it. If
2501 * we can only guess, then assume the number of blocks is even
2502 * (usually true but not always) and err on the side of lowering
2503 * the capacity.
2504 */
2505 if (sdp->fix_capacity ||
2506 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2507 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2508 "from its reported value: %llu\n",
2509 (unsigned long long) sdkp->capacity);
2510 --sdkp->capacity;
2511 }
2512
2513 got_data:
2514 if (sector_size == 0) {
2515 sector_size = 512;
2516 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2517 "assuming 512.\n");
2518 }
2519
2520 if (sector_size != 512 &&
2521 sector_size != 1024 &&
2522 sector_size != 2048 &&
2523 sector_size != 4096) {
2524 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2525 sector_size);
2526 /*
2527 * The user might want to re-format the drive with
2528 * a supported sectorsize. Once this happens, it
2529 * would be relatively trivial to set the thing up.
2530 * For this reason, we leave the thing in the table.
2531 */
2532 sdkp->capacity = 0;
2533 /*
2534 * set a bogus sector size so the normal read/write
2535 * logic in the block layer will eventually refuse any
2536 * request on this device without tripping over power
2537 * of two sector size assumptions
2538 */
2539 sector_size = 512;
2540 }
2541 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2542 blk_queue_physical_block_size(sdp->request_queue,
2543 sdkp->physical_block_size);
2544 sdkp->device->sector_size = sector_size;
2545
2546 if (sdkp->capacity > 0xffffffff)
2547 sdp->use_16_for_rw = 1;
2548
2549 }
2550
2551 /*
2552 * Print disk capacity
2553 */
2554 static void
2555 sd_print_capacity(struct scsi_disk *sdkp,
2556 sector_t old_capacity)
2557 {
2558 int sector_size = sdkp->device->sector_size;
2559 char cap_str_2[10], cap_str_10[10];
2560
2561 string_get_size(sdkp->capacity, sector_size,
2562 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2563 string_get_size(sdkp->capacity, sector_size,
2564 STRING_UNITS_10, cap_str_10,
2565 sizeof(cap_str_10));
2566
2567 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2568 sd_printk(KERN_NOTICE, sdkp,
2569 "%llu %d-byte logical blocks: (%s/%s)\n",
2570 (unsigned long long)sdkp->capacity,
2571 sector_size, cap_str_10, cap_str_2);
2572
2573 if (sdkp->physical_block_size != sector_size)
2574 sd_printk(KERN_NOTICE, sdkp,
2575 "%u-byte physical blocks\n",
2576 sdkp->physical_block_size);
2577
2578 sd_zbc_print_zones(sdkp);
2579 }
2580 }
2581
2582 /* called with buffer of length 512 */
2583 static inline int
2584 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2585 unsigned char *buffer, int len, struct scsi_mode_data *data,
2586 struct scsi_sense_hdr *sshdr)
2587 {
2588 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2589 SD_TIMEOUT, SD_MAX_RETRIES, data,
2590 sshdr);
2591 }
2592
2593 /*
2594 * read write protect setting, if possible - called only in sd_revalidate_disk()
2595 * called with buffer of length SD_BUF_SIZE
2596 */
2597 static void
2598 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2599 {
2600 int res;
2601 struct scsi_device *sdp = sdkp->device;
2602 struct scsi_mode_data data;
2603 int disk_ro = get_disk_ro(sdkp->disk);
2604 int old_wp = sdkp->write_prot;
2605
2606 set_disk_ro(sdkp->disk, 0);
2607 if (sdp->skip_ms_page_3f) {
2608 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2609 return;
2610 }
2611
2612 if (sdp->use_192_bytes_for_3f) {
2613 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2614 } else {
2615 /*
2616 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2617 * We have to start carefully: some devices hang if we ask
2618 * for more than is available.
2619 */
2620 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2621
2622 /*
2623 * Second attempt: ask for page 0 When only page 0 is
2624 * implemented, a request for page 3F may return Sense Key
2625 * 5: Illegal Request, Sense Code 24: Invalid field in
2626 * CDB.
2627 */
2628 if (!scsi_status_is_good(res))
2629 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2630
2631 /*
2632 * Third attempt: ask 255 bytes, as we did earlier.
2633 */
2634 if (!scsi_status_is_good(res))
2635 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2636 &data, NULL);
2637 }
2638
2639 if (!scsi_status_is_good(res)) {
2640 sd_first_printk(KERN_WARNING, sdkp,
2641 "Test WP failed, assume Write Enabled\n");
2642 } else {
2643 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2644 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2645 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2646 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2647 sdkp->write_prot ? "on" : "off");
2648 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2649 }
2650 }
2651 }
2652
2653 /*
2654 * sd_read_cache_type - called only from sd_revalidate_disk()
2655 * called with buffer of length SD_BUF_SIZE
2656 */
2657 static void
2658 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2659 {
2660 int len = 0, res;
2661 struct scsi_device *sdp = sdkp->device;
2662
2663 int dbd;
2664 int modepage;
2665 int first_len;
2666 struct scsi_mode_data data;
2667 struct scsi_sense_hdr sshdr;
2668 int old_wce = sdkp->WCE;
2669 int old_rcd = sdkp->RCD;
2670 int old_dpofua = sdkp->DPOFUA;
2671
2672
2673 if (sdkp->cache_override)
2674 return;
2675
2676 first_len = 4;
2677 if (sdp->skip_ms_page_8) {
2678 if (sdp->type == TYPE_RBC)
2679 goto defaults;
2680 else {
2681 if (sdp->skip_ms_page_3f)
2682 goto defaults;
2683 modepage = 0x3F;
2684 if (sdp->use_192_bytes_for_3f)
2685 first_len = 192;
2686 dbd = 0;
2687 }
2688 } else if (sdp->type == TYPE_RBC) {
2689 modepage = 6;
2690 dbd = 8;
2691 } else {
2692 modepage = 8;
2693 dbd = 0;
2694 }
2695
2696 /* cautiously ask */
2697 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2698 &data, &sshdr);
2699
2700 if (!scsi_status_is_good(res))
2701 goto bad_sense;
2702
2703 if (!data.header_length) {
2704 modepage = 6;
2705 first_len = 0;
2706 sd_first_printk(KERN_ERR, sdkp,
2707 "Missing header in MODE_SENSE response\n");
2708 }
2709
2710 /* that went OK, now ask for the proper length */
2711 len = data.length;
2712
2713 /*
2714 * We're only interested in the first three bytes, actually.
2715 * But the data cache page is defined for the first 20.
2716 */
2717 if (len < 3)
2718 goto bad_sense;
2719 else if (len > SD_BUF_SIZE) {
2720 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2721 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2722 len = SD_BUF_SIZE;
2723 }
2724 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2725 len = 192;
2726
2727 /* Get the data */
2728 if (len > first_len)
2729 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2730 &data, &sshdr);
2731
2732 if (scsi_status_is_good(res)) {
2733 int offset = data.header_length + data.block_descriptor_length;
2734
2735 while (offset < len) {
2736 u8 page_code = buffer[offset] & 0x3F;
2737 u8 spf = buffer[offset] & 0x40;
2738
2739 if (page_code == 8 || page_code == 6) {
2740 /* We're interested only in the first 3 bytes.
2741 */
2742 if (len - offset <= 2) {
2743 sd_first_printk(KERN_ERR, sdkp,
2744 "Incomplete mode parameter "
2745 "data\n");
2746 goto defaults;
2747 } else {
2748 modepage = page_code;
2749 goto Page_found;
2750 }
2751 } else {
2752 /* Go to the next page */
2753 if (spf && len - offset > 3)
2754 offset += 4 + (buffer[offset+2] << 8) +
2755 buffer[offset+3];
2756 else if (!spf && len - offset > 1)
2757 offset += 2 + buffer[offset+1];
2758 else {
2759 sd_first_printk(KERN_ERR, sdkp,
2760 "Incomplete mode "
2761 "parameter data\n");
2762 goto defaults;
2763 }
2764 }
2765 }
2766
2767 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2768 goto defaults;
2769
2770 Page_found:
2771 if (modepage == 8) {
2772 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2773 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2774 } else {
2775 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2776 sdkp->RCD = 0;
2777 }
2778
2779 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2780 if (sdp->broken_fua) {
2781 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2782 sdkp->DPOFUA = 0;
2783 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2784 !sdkp->device->use_16_for_rw) {
2785 sd_first_printk(KERN_NOTICE, sdkp,
2786 "Uses READ/WRITE(6), disabling FUA\n");
2787 sdkp->DPOFUA = 0;
2788 }
2789
2790 /* No cache flush allowed for write protected devices */
2791 if (sdkp->WCE && sdkp->write_prot)
2792 sdkp->WCE = 0;
2793
2794 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2795 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2796 sd_printk(KERN_NOTICE, sdkp,
2797 "Write cache: %s, read cache: %s, %s\n",
2798 sdkp->WCE ? "enabled" : "disabled",
2799 sdkp->RCD ? "disabled" : "enabled",
2800 sdkp->DPOFUA ? "supports DPO and FUA"
2801 : "doesn't support DPO or FUA");
2802
2803 return;
2804 }
2805
2806 bad_sense:
2807 if (scsi_sense_valid(&sshdr) &&
2808 sshdr.sense_key == ILLEGAL_REQUEST &&
2809 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2810 /* Invalid field in CDB */
2811 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2812 else
2813 sd_first_printk(KERN_ERR, sdkp,
2814 "Asking for cache data failed\n");
2815
2816 defaults:
2817 if (sdp->wce_default_on) {
2818 sd_first_printk(KERN_NOTICE, sdkp,
2819 "Assuming drive cache: write back\n");
2820 sdkp->WCE = 1;
2821 } else {
2822 sd_first_printk(KERN_ERR, sdkp,
2823 "Assuming drive cache: write through\n");
2824 sdkp->WCE = 0;
2825 }
2826 sdkp->RCD = 0;
2827 sdkp->DPOFUA = 0;
2828 }
2829
2830 /*
2831 * The ATO bit indicates whether the DIF application tag is available
2832 * for use by the operating system.
2833 */
2834 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2835 {
2836 int res, offset;
2837 struct scsi_device *sdp = sdkp->device;
2838 struct scsi_mode_data data;
2839 struct scsi_sense_hdr sshdr;
2840
2841 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2842 return;
2843
2844 if (sdkp->protection_type == 0)
2845 return;
2846
2847 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2848 SD_MAX_RETRIES, &data, &sshdr);
2849
2850 if (!scsi_status_is_good(res) || !data.header_length ||
2851 data.length < 6) {
2852 sd_first_printk(KERN_WARNING, sdkp,
2853 "getting Control mode page failed, assume no ATO\n");
2854
2855 if (scsi_sense_valid(&sshdr))
2856 sd_print_sense_hdr(sdkp, &sshdr);
2857
2858 return;
2859 }
2860
2861 offset = data.header_length + data.block_descriptor_length;
2862
2863 if ((buffer[offset] & 0x3f) != 0x0a) {
2864 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2865 return;
2866 }
2867
2868 if ((buffer[offset + 5] & 0x80) == 0)
2869 return;
2870
2871 sdkp->ATO = 1;
2872
2873 return;
2874 }
2875
2876 /**
2877 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2878 * @sdkp: disk to query
2879 */
2880 static void sd_read_block_limits(struct scsi_disk *sdkp)
2881 {
2882 unsigned int sector_sz = sdkp->device->sector_size;
2883 const int vpd_len = 64;
2884 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2885
2886 if (!buffer ||
2887 /* Block Limits VPD */
2888 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2889 goto out;
2890
2891 blk_queue_io_min(sdkp->disk->queue,
2892 get_unaligned_be16(&buffer[6]) * sector_sz);
2893
2894 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2895 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2896
2897 if (buffer[3] == 0x3c) {
2898 unsigned int lba_count, desc_count;
2899
2900 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2901
2902 if (!sdkp->lbpme)
2903 goto out;
2904
2905 lba_count = get_unaligned_be32(&buffer[20]);
2906 desc_count = get_unaligned_be32(&buffer[24]);
2907
2908 if (lba_count && desc_count)
2909 sdkp->max_unmap_blocks = lba_count;
2910
2911 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2912
2913 if (buffer[32] & 0x80)
2914 sdkp->unmap_alignment =
2915 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2916
2917 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2918
2919 if (sdkp->max_unmap_blocks)
2920 sd_config_discard(sdkp, SD_LBP_UNMAP);
2921 else
2922 sd_config_discard(sdkp, SD_LBP_WS16);
2923
2924 } else { /* LBP VPD page tells us what to use */
2925 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2926 sd_config_discard(sdkp, SD_LBP_UNMAP);
2927 else if (sdkp->lbpws)
2928 sd_config_discard(sdkp, SD_LBP_WS16);
2929 else if (sdkp->lbpws10)
2930 sd_config_discard(sdkp, SD_LBP_WS10);
2931 else
2932 sd_config_discard(sdkp, SD_LBP_DISABLE);
2933 }
2934 }
2935
2936 out:
2937 kfree(buffer);
2938 }
2939
2940 /**
2941 * sd_read_block_characteristics - Query block dev. characteristics
2942 * @sdkp: disk to query
2943 */
2944 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2945 {
2946 struct request_queue *q = sdkp->disk->queue;
2947 unsigned char *buffer;
2948 u16 rot;
2949 const int vpd_len = 64;
2950
2951 buffer = kmalloc(vpd_len, GFP_KERNEL);
2952
2953 if (!buffer ||
2954 /* Block Device Characteristics VPD */
2955 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2956 goto out;
2957
2958 rot = get_unaligned_be16(&buffer[4]);
2959
2960 if (rot == 1) {
2961 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2962 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2963 }
2964
2965 if (sdkp->device->type == TYPE_ZBC) {
2966 /* Host-managed */
2967 q->limits.zoned = BLK_ZONED_HM;
2968 } else {
2969 sdkp->zoned = (buffer[8] >> 4) & 3;
2970 if (sdkp->zoned == 1)
2971 /* Host-aware */
2972 q->limits.zoned = BLK_ZONED_HA;
2973 else
2974 /*
2975 * Treat drive-managed devices as
2976 * regular block devices.
2977 */
2978 q->limits.zoned = BLK_ZONED_NONE;
2979 }
2980 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2981 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2982 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2983
2984 out:
2985 kfree(buffer);
2986 }
2987
2988 /**
2989 * sd_read_block_provisioning - Query provisioning VPD page
2990 * @sdkp: disk to query
2991 */
2992 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2993 {
2994 unsigned char *buffer;
2995 const int vpd_len = 8;
2996
2997 if (sdkp->lbpme == 0)
2998 return;
2999
3000 buffer = kmalloc(vpd_len, GFP_KERNEL);
3001
3002 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3003 goto out;
3004
3005 sdkp->lbpvpd = 1;
3006 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3007 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3008 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3009
3010 out:
3011 kfree(buffer);
3012 }
3013
3014 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3015 {
3016 struct scsi_device *sdev = sdkp->device;
3017
3018 if (sdev->host->no_write_same) {
3019 sdev->no_write_same = 1;
3020
3021 return;
3022 }
3023
3024 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3025 /* too large values might cause issues with arcmsr */
3026 int vpd_buf_len = 64;
3027
3028 sdev->no_report_opcodes = 1;
3029
3030 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3031 * CODES is unsupported and the device has an ATA
3032 * Information VPD page (SAT).
3033 */
3034 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3035 sdev->no_write_same = 1;
3036 }
3037
3038 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3039 sdkp->ws16 = 1;
3040
3041 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3042 sdkp->ws10 = 1;
3043 }
3044
3045 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3046 {
3047 struct scsi_device *sdev = sdkp->device;
3048
3049 if (!sdev->security_supported)
3050 return;
3051
3052 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3053 SECURITY_PROTOCOL_IN) == 1 &&
3054 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3055 SECURITY_PROTOCOL_OUT) == 1)
3056 sdkp->security = 1;
3057 }
3058
3059 /**
3060 * sd_revalidate_disk - called the first time a new disk is seen,
3061 * performs disk spin up, read_capacity, etc.
3062 * @disk: struct gendisk we care about
3063 **/
3064 static int sd_revalidate_disk(struct gendisk *disk)
3065 {
3066 struct scsi_disk *sdkp = scsi_disk(disk);
3067 struct scsi_device *sdp = sdkp->device;
3068 struct request_queue *q = sdkp->disk->queue;
3069 sector_t old_capacity = sdkp->capacity;
3070 unsigned char *buffer;
3071 unsigned int dev_max, rw_max;
3072
3073 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3074 "sd_revalidate_disk\n"));
3075
3076 /*
3077 * If the device is offline, don't try and read capacity or any
3078 * of the other niceties.
3079 */
3080 if (!scsi_device_online(sdp))
3081 goto out;
3082
3083 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3084 if (!buffer) {
3085 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3086 "allocation failure.\n");
3087 goto out;
3088 }
3089
3090 sd_spinup_disk(sdkp);
3091
3092 /*
3093 * Without media there is no reason to ask; moreover, some devices
3094 * react badly if we do.
3095 */
3096 if (sdkp->media_present) {
3097 sd_read_capacity(sdkp, buffer);
3098
3099 if (scsi_device_supports_vpd(sdp)) {
3100 sd_read_block_provisioning(sdkp);
3101 sd_read_block_limits(sdkp);
3102 sd_read_block_characteristics(sdkp);
3103 sd_zbc_read_zones(sdkp, buffer);
3104 }
3105
3106 sd_print_capacity(sdkp, old_capacity);
3107
3108 sd_read_write_protect_flag(sdkp, buffer);
3109 sd_read_cache_type(sdkp, buffer);
3110 sd_read_app_tag_own(sdkp, buffer);
3111 sd_read_write_same(sdkp, buffer);
3112 sd_read_security(sdkp, buffer);
3113 }
3114
3115 /*
3116 * We now have all cache related info, determine how we deal
3117 * with flush requests.
3118 */
3119 sd_set_flush_flag(sdkp);
3120
3121 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3122 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3123
3124 /* Some devices report a maximum block count for READ/WRITE requests. */
3125 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3126 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3127
3128 /*
3129 * Determine the device's preferred I/O size for reads and writes
3130 * unless the reported value is unreasonably small, large, or
3131 * garbage.
3132 */
3133 if (sdkp->opt_xfer_blocks &&
3134 sdkp->opt_xfer_blocks <= dev_max &&
3135 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3136 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3137 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3138 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3139 } else
3140 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3141 (sector_t)BLK_DEF_MAX_SECTORS);
3142
3143 /* Do not exceed controller limit */
3144 rw_max = min(rw_max, queue_max_hw_sectors(q));
3145
3146 /*
3147 * Only update max_sectors if previously unset or if the current value
3148 * exceeds the capabilities of the hardware.
3149 */
3150 if (sdkp->first_scan ||
3151 q->limits.max_sectors > q->limits.max_dev_sectors ||
3152 q->limits.max_sectors > q->limits.max_hw_sectors)
3153 q->limits.max_sectors = rw_max;
3154
3155 sdkp->first_scan = 0;
3156
3157 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3158 sd_config_write_same(sdkp);
3159 kfree(buffer);
3160
3161 out:
3162 return 0;
3163 }
3164
3165 /**
3166 * sd_unlock_native_capacity - unlock native capacity
3167 * @disk: struct gendisk to set capacity for
3168 *
3169 * Block layer calls this function if it detects that partitions
3170 * on @disk reach beyond the end of the device. If the SCSI host
3171 * implements ->unlock_native_capacity() method, it's invoked to
3172 * give it a chance to adjust the device capacity.
3173 *
3174 * CONTEXT:
3175 * Defined by block layer. Might sleep.
3176 */
3177 static void sd_unlock_native_capacity(struct gendisk *disk)
3178 {
3179 struct scsi_device *sdev = scsi_disk(disk)->device;
3180
3181 if (sdev->host->hostt->unlock_native_capacity)
3182 sdev->host->hostt->unlock_native_capacity(sdev);
3183 }
3184
3185 /**
3186 * sd_format_disk_name - format disk name
3187 * @prefix: name prefix - ie. "sd" for SCSI disks
3188 * @index: index of the disk to format name for
3189 * @buf: output buffer
3190 * @buflen: length of the output buffer
3191 *
3192 * SCSI disk names starts at sda. The 26th device is sdz and the
3193 * 27th is sdaa. The last one for two lettered suffix is sdzz
3194 * which is followed by sdaaa.
3195 *
3196 * This is basically 26 base counting with one extra 'nil' entry
3197 * at the beginning from the second digit on and can be
3198 * determined using similar method as 26 base conversion with the
3199 * index shifted -1 after each digit is computed.
3200 *
3201 * CONTEXT:
3202 * Don't care.
3203 *
3204 * RETURNS:
3205 * 0 on success, -errno on failure.
3206 */
3207 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3208 {
3209 const int base = 'z' - 'a' + 1;
3210 char *begin = buf + strlen(prefix);
3211 char *end = buf + buflen;
3212 char *p;
3213 int unit;
3214
3215 p = end - 1;
3216 *p = '\0';
3217 unit = base;
3218 do {
3219 if (p == begin)
3220 return -EINVAL;
3221 *--p = 'a' + (index % unit);
3222 index = (index / unit) - 1;
3223 } while (index >= 0);
3224
3225 memmove(begin, p, end - p);
3226 memcpy(buf, prefix, strlen(prefix));
3227
3228 return 0;
3229 }
3230
3231 /*
3232 * The asynchronous part of sd_probe
3233 */
3234 static void sd_probe_async(void *data, async_cookie_t cookie)
3235 {
3236 struct scsi_disk *sdkp = data;
3237 struct scsi_device *sdp;
3238 struct gendisk *gd;
3239 u32 index;
3240 struct device *dev;
3241
3242 sdp = sdkp->device;
3243 gd = sdkp->disk;
3244 index = sdkp->index;
3245 dev = &sdp->sdev_gendev;
3246
3247 gd->major = sd_major((index & 0xf0) >> 4);
3248 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3249
3250 gd->fops = &sd_fops;
3251 gd->private_data = &sdkp->driver;
3252 gd->queue = sdkp->device->request_queue;
3253
3254 /* defaults, until the device tells us otherwise */
3255 sdp->sector_size = 512;
3256 sdkp->capacity = 0;
3257 sdkp->media_present = 1;
3258 sdkp->write_prot = 0;
3259 sdkp->cache_override = 0;
3260 sdkp->WCE = 0;
3261 sdkp->RCD = 0;
3262 sdkp->ATO = 0;
3263 sdkp->first_scan = 1;
3264 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3265
3266 sd_revalidate_disk(gd);
3267
3268 gd->flags = GENHD_FL_EXT_DEVT;
3269 if (sdp->removable) {
3270 gd->flags |= GENHD_FL_REMOVABLE;
3271 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3272 }
3273
3274 blk_pm_runtime_init(sdp->request_queue, dev);
3275 device_add_disk(dev, gd);
3276 if (sdkp->capacity)
3277 sd_dif_config_host(sdkp);
3278
3279 sd_revalidate_disk(gd);
3280
3281 if (sdkp->security) {
3282 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3283 if (sdkp->opal_dev)
3284 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3285 }
3286
3287 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3288 sdp->removable ? "removable " : "");
3289 scsi_autopm_put_device(sdp);
3290 put_device(&sdkp->dev);
3291 }
3292
3293 /**
3294 * sd_probe - called during driver initialization and whenever a
3295 * new scsi device is attached to the system. It is called once
3296 * for each scsi device (not just disks) present.
3297 * @dev: pointer to device object
3298 *
3299 * Returns 0 if successful (or not interested in this scsi device
3300 * (e.g. scanner)); 1 when there is an error.
3301 *
3302 * Note: this function is invoked from the scsi mid-level.
3303 * This function sets up the mapping between a given
3304 * <host,channel,id,lun> (found in sdp) and new device name
3305 * (e.g. /dev/sda). More precisely it is the block device major
3306 * and minor number that is chosen here.
3307 *
3308 * Assume sd_probe is not re-entrant (for time being)
3309 * Also think about sd_probe() and sd_remove() running coincidentally.
3310 **/
3311 static int sd_probe(struct device *dev)
3312 {
3313 struct scsi_device *sdp = to_scsi_device(dev);
3314 struct scsi_disk *sdkp;
3315 struct gendisk *gd;
3316 int index;
3317 int error;
3318
3319 scsi_autopm_get_device(sdp);
3320 error = -ENODEV;
3321 if (sdp->type != TYPE_DISK &&
3322 sdp->type != TYPE_ZBC &&
3323 sdp->type != TYPE_MOD &&
3324 sdp->type != TYPE_RBC)
3325 goto out;
3326
3327 #ifndef CONFIG_BLK_DEV_ZONED
3328 if (sdp->type == TYPE_ZBC)
3329 goto out;
3330 #endif
3331 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3332 "sd_probe\n"));
3333
3334 error = -ENOMEM;
3335 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3336 if (!sdkp)
3337 goto out;
3338
3339 gd = alloc_disk(SD_MINORS);
3340 if (!gd)
3341 goto out_free;
3342
3343 do {
3344 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3345 goto out_put;
3346
3347 spin_lock(&sd_index_lock);
3348 error = ida_get_new(&sd_index_ida, &index);
3349 spin_unlock(&sd_index_lock);
3350 } while (error == -EAGAIN);
3351
3352 if (error) {
3353 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3354 goto out_put;
3355 }
3356
3357 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3358 if (error) {
3359 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3360 goto out_free_index;
3361 }
3362
3363 sdkp->device = sdp;
3364 sdkp->driver = &sd_template;
3365 sdkp->disk = gd;
3366 sdkp->index = index;
3367 atomic_set(&sdkp->openers, 0);
3368 atomic_set(&sdkp->device->ioerr_cnt, 0);
3369
3370 if (!sdp->request_queue->rq_timeout) {
3371 if (sdp->type != TYPE_MOD)
3372 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3373 else
3374 blk_queue_rq_timeout(sdp->request_queue,
3375 SD_MOD_TIMEOUT);
3376 }
3377
3378 device_initialize(&sdkp->dev);
3379 sdkp->dev.parent = dev;
3380 sdkp->dev.class = &sd_disk_class;
3381 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3382
3383 error = device_add(&sdkp->dev);
3384 if (error)
3385 goto out_free_index;
3386
3387 get_device(dev);
3388 dev_set_drvdata(dev, sdkp);
3389
3390 get_device(&sdkp->dev); /* prevent release before async_schedule */
3391 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3392
3393 return 0;
3394
3395 out_free_index:
3396 spin_lock(&sd_index_lock);
3397 ida_remove(&sd_index_ida, index);
3398 spin_unlock(&sd_index_lock);
3399 out_put:
3400 put_disk(gd);
3401 out_free:
3402 kfree(sdkp);
3403 out:
3404 scsi_autopm_put_device(sdp);
3405 return error;
3406 }
3407
3408 /**
3409 * sd_remove - called whenever a scsi disk (previously recognized by
3410 * sd_probe) is detached from the system. It is called (potentially
3411 * multiple times) during sd module unload.
3412 * @dev: pointer to device object
3413 *
3414 * Note: this function is invoked from the scsi mid-level.
3415 * This function potentially frees up a device name (e.g. /dev/sdc)
3416 * that could be re-used by a subsequent sd_probe().
3417 * This function is not called when the built-in sd driver is "exit-ed".
3418 **/
3419 static int sd_remove(struct device *dev)
3420 {
3421 struct scsi_disk *sdkp;
3422 dev_t devt;
3423
3424 sdkp = dev_get_drvdata(dev);
3425 devt = disk_devt(sdkp->disk);
3426 scsi_autopm_get_device(sdkp->device);
3427
3428 async_synchronize_full_domain(&scsi_sd_pm_domain);
3429 async_synchronize_full_domain(&scsi_sd_probe_domain);
3430 device_del(&sdkp->dev);
3431 del_gendisk(sdkp->disk);
3432 sd_shutdown(dev);
3433
3434 sd_zbc_remove(sdkp);
3435
3436 free_opal_dev(sdkp->opal_dev);
3437
3438 blk_register_region(devt, SD_MINORS, NULL,
3439 sd_default_probe, NULL, NULL);
3440
3441 mutex_lock(&sd_ref_mutex);
3442 dev_set_drvdata(dev, NULL);
3443 put_device(&sdkp->dev);
3444 mutex_unlock(&sd_ref_mutex);
3445
3446 return 0;
3447 }
3448
3449 /**
3450 * scsi_disk_release - Called to free the scsi_disk structure
3451 * @dev: pointer to embedded class device
3452 *
3453 * sd_ref_mutex must be held entering this routine. Because it is
3454 * called on last put, you should always use the scsi_disk_get()
3455 * scsi_disk_put() helpers which manipulate the semaphore directly
3456 * and never do a direct put_device.
3457 **/
3458 static void scsi_disk_release(struct device *dev)
3459 {
3460 struct scsi_disk *sdkp = to_scsi_disk(dev);
3461 struct gendisk *disk = sdkp->disk;
3462
3463 spin_lock(&sd_index_lock);
3464 ida_remove(&sd_index_ida, sdkp->index);
3465 spin_unlock(&sd_index_lock);
3466
3467 disk->private_data = NULL;
3468 put_disk(disk);
3469 put_device(&sdkp->device->sdev_gendev);
3470
3471 kfree(sdkp);
3472 }
3473
3474 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3475 {
3476 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3477 struct scsi_sense_hdr sshdr;
3478 struct scsi_device *sdp = sdkp->device;
3479 int res;
3480
3481 if (start)
3482 cmd[4] |= 1; /* START */
3483
3484 if (sdp->start_stop_pwr_cond)
3485 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3486
3487 if (!scsi_device_online(sdp))
3488 return -ENODEV;
3489
3490 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3491 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3492 if (res) {
3493 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3494 if (driver_byte(res) == DRIVER_SENSE)
3495 sd_print_sense_hdr(sdkp, &sshdr);
3496 if (scsi_sense_valid(&sshdr) &&
3497 /* 0x3a is medium not present */
3498 sshdr.asc == 0x3a)
3499 res = 0;
3500 }
3501
3502 /* SCSI error codes must not go to the generic layer */
3503 if (res)
3504 return -EIO;
3505
3506 return 0;
3507 }
3508
3509 /*
3510 * Send a SYNCHRONIZE CACHE instruction down to the device through
3511 * the normal SCSI command structure. Wait for the command to
3512 * complete.
3513 */
3514 static void sd_shutdown(struct device *dev)
3515 {
3516 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3517
3518 if (!sdkp)
3519 return; /* this can happen */
3520
3521 if (pm_runtime_suspended(dev))
3522 return;
3523
3524 if (sdkp->WCE && sdkp->media_present) {
3525 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3526 sd_sync_cache(sdkp, NULL);
3527 }
3528
3529 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3530 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3531 sd_start_stop_device(sdkp, 0);
3532 }
3533 }
3534
3535 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3536 {
3537 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3538 struct scsi_sense_hdr sshdr;
3539 int ret = 0;
3540
3541 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3542 return 0;
3543
3544 if (sdkp->WCE && sdkp->media_present) {
3545 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3546 ret = sd_sync_cache(sdkp, &sshdr);
3547
3548 if (ret) {
3549 /* ignore OFFLINE device */
3550 if (ret == -ENODEV)
3551 return 0;
3552
3553 if (!scsi_sense_valid(&sshdr) ||
3554 sshdr.sense_key != ILLEGAL_REQUEST)
3555 return ret;
3556
3557 /*
3558 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3559 * doesn't support sync. There's not much to do and
3560 * suspend shouldn't fail.
3561 */
3562 ret = 0;
3563 }
3564 }
3565
3566 if (sdkp->device->manage_start_stop) {
3567 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3568 /* an error is not worth aborting a system sleep */
3569 ret = sd_start_stop_device(sdkp, 0);
3570 if (ignore_stop_errors)
3571 ret = 0;
3572 }
3573
3574 return ret;
3575 }
3576
3577 static int sd_suspend_system(struct device *dev)
3578 {
3579 return sd_suspend_common(dev, true);
3580 }
3581
3582 static int sd_suspend_runtime(struct device *dev)
3583 {
3584 return sd_suspend_common(dev, false);
3585 }
3586
3587 static int sd_resume(struct device *dev)
3588 {
3589 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3590 int ret;
3591
3592 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3593 return 0;
3594
3595 if (!sdkp->device->manage_start_stop)
3596 return 0;
3597
3598 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3599 ret = sd_start_stop_device(sdkp, 1);
3600 if (!ret)
3601 opal_unlock_from_suspend(sdkp->opal_dev);
3602 return ret;
3603 }
3604
3605 /**
3606 * init_sd - entry point for this driver (both when built in or when
3607 * a module).
3608 *
3609 * Note: this function registers this driver with the scsi mid-level.
3610 **/
3611 static int __init init_sd(void)
3612 {
3613 int majors = 0, i, err;
3614
3615 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3616
3617 for (i = 0; i < SD_MAJORS; i++) {
3618 if (register_blkdev(sd_major(i), "sd") != 0)
3619 continue;
3620 majors++;
3621 blk_register_region(sd_major(i), SD_MINORS, NULL,
3622 sd_default_probe, NULL, NULL);
3623 }
3624
3625 if (!majors)
3626 return -ENODEV;
3627
3628 err = class_register(&sd_disk_class);
3629 if (err)
3630 goto err_out;
3631
3632 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3633 0, 0, NULL);
3634 if (!sd_cdb_cache) {
3635 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3636 err = -ENOMEM;
3637 goto err_out_class;
3638 }
3639
3640 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3641 if (!sd_cdb_pool) {
3642 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3643 err = -ENOMEM;
3644 goto err_out_cache;
3645 }
3646
3647 err = scsi_register_driver(&sd_template.gendrv);
3648 if (err)
3649 goto err_out_driver;
3650
3651 return 0;
3652
3653 err_out_driver:
3654 mempool_destroy(sd_cdb_pool);
3655
3656 err_out_cache:
3657 kmem_cache_destroy(sd_cdb_cache);
3658
3659 err_out_class:
3660 class_unregister(&sd_disk_class);
3661 err_out:
3662 for (i = 0; i < SD_MAJORS; i++)
3663 unregister_blkdev(sd_major(i), "sd");
3664 return err;
3665 }
3666
3667 /**
3668 * exit_sd - exit point for this driver (when it is a module).
3669 *
3670 * Note: this function unregisters this driver from the scsi mid-level.
3671 **/
3672 static void __exit exit_sd(void)
3673 {
3674 int i;
3675
3676 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3677
3678 scsi_unregister_driver(&sd_template.gendrv);
3679 mempool_destroy(sd_cdb_pool);
3680 kmem_cache_destroy(sd_cdb_cache);
3681
3682 class_unregister(&sd_disk_class);
3683
3684 for (i = 0; i < SD_MAJORS; i++) {
3685 blk_unregister_region(sd_major(i), SD_MINORS);
3686 unregister_blkdev(sd_major(i), "sd");
3687 }
3688 }
3689
3690 module_init(init_sd);
3691 module_exit(exit_sd);
3692
3693 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3694 struct scsi_sense_hdr *sshdr)
3695 {
3696 scsi_print_sense_hdr(sdkp->device,
3697 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3698 }
3699
3700 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3701 int result)
3702 {
3703 const char *hb_string = scsi_hostbyte_string(result);
3704 const char *db_string = scsi_driverbyte_string(result);
3705
3706 if (hb_string || db_string)
3707 sd_printk(KERN_INFO, sdkp,
3708 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3709 hb_string ? hb_string : "invalid",
3710 db_string ? db_string : "invalid");
3711 else
3712 sd_printk(KERN_INFO, sdkp,
3713 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3714 msg, host_byte(result), driver_byte(result));
3715 }
3716