]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/sd.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS 16
101 #else
102 #define SD_MINORS 0
103 #endif
104
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int sd_probe(struct device *);
110 static int sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 SD_MAX_RETRIES, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234
235 if (!capable(CAP_SYS_ADMIN))
236 return -EACCES;
237
238 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239
240 return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257 struct scsi_device *sdp = sdkp->device;
258
259 if (!capable(CAP_SYS_ADMIN))
260 return -EACCES;
261
262 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
263 return -EINVAL;
264
265 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266
267 return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 struct scsi_disk *sdkp = to_scsi_disk(dev);
275 int ct = sdkp->RCD + 2*sdkp->WCE;
276
277 return sprintf(buf, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285
286 return sprintf(buf, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 char *buf)
293 {
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295
296 return sprintf(buf, "%u\n", sdkp->protection_type);
297 }
298
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 const char *buf, size_t count)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304 unsigned int val;
305 int err;
306
307 if (!capable(CAP_SYS_ADMIN))
308 return -EACCES;
309
310 err = kstrtouint(buf, 10, &val);
311
312 if (err)
313 return err;
314
315 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
316 sdkp->protection_type = val;
317
318 return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 char *buf)
325 {
326 struct scsi_disk *sdkp = to_scsi_disk(dev);
327 struct scsi_device *sdp = sdkp->device;
328 unsigned int dif, dix;
329
330 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332
333 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
334 dif = 0;
335 dix = 1;
336 }
337
338 if (!dif && !dix)
339 return sprintf(buf, "none\n");
340
341 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 struct scsi_disk *sdkp = to_scsi_disk(dev);
349
350 return sprintf(buf, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 char *buf)
357 {
358 struct scsi_disk *sdkp = to_scsi_disk(dev);
359
360 return sprintf(buf, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363
364 /* sysfs_match_string() requires dense arrays */
365 static const char *lbp_mode[] = {
366 [SD_LBP_FULL] = "full",
367 [SD_LBP_UNMAP] = "unmap",
368 [SD_LBP_WS16] = "writesame_16",
369 [SD_LBP_WS10] = "writesame_10",
370 [SD_LBP_ZERO] = "writesame_zero",
371 [SD_LBP_DISABLE] = "disabled",
372 };
373
374 static ssize_t
375 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
376 char *buf)
377 {
378 struct scsi_disk *sdkp = to_scsi_disk(dev);
379
380 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
381 }
382
383 static ssize_t
384 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
385 const char *buf, size_t count)
386 {
387 struct scsi_disk *sdkp = to_scsi_disk(dev);
388 struct scsi_device *sdp = sdkp->device;
389 int mode;
390
391 if (!capable(CAP_SYS_ADMIN))
392 return -EACCES;
393
394 if (sd_is_zoned(sdkp)) {
395 sd_config_discard(sdkp, SD_LBP_DISABLE);
396 return count;
397 }
398
399 if (sdp->type != TYPE_DISK)
400 return -EINVAL;
401
402 mode = sysfs_match_string(lbp_mode, buf);
403 if (mode < 0)
404 return -EINVAL;
405
406 sd_config_discard(sdkp, mode);
407
408 return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411
412 /* sysfs_match_string() requires dense arrays */
413 static const char *zeroing_mode[] = {
414 [SD_ZERO_WRITE] = "write",
415 [SD_ZERO_WS] = "writesame",
416 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
417 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
418 };
419
420 static ssize_t
421 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
422 char *buf)
423 {
424 struct scsi_disk *sdkp = to_scsi_disk(dev);
425
426 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
427 }
428
429 static ssize_t
430 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
431 const char *buf, size_t count)
432 {
433 struct scsi_disk *sdkp = to_scsi_disk(dev);
434 int mode;
435
436 if (!capable(CAP_SYS_ADMIN))
437 return -EACCES;
438
439 mode = sysfs_match_string(zeroing_mode, buf);
440 if (mode < 0)
441 return -EINVAL;
442
443 sdkp->zeroing_mode = mode;
444
445 return count;
446 }
447 static DEVICE_ATTR_RW(zeroing_mode);
448
449 static ssize_t
450 max_medium_access_timeouts_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 struct scsi_disk *sdkp = to_scsi_disk(dev);
454
455 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
456 }
457
458 static ssize_t
459 max_medium_access_timeouts_store(struct device *dev,
460 struct device_attribute *attr, const char *buf,
461 size_t count)
462 {
463 struct scsi_disk *sdkp = to_scsi_disk(dev);
464 int err;
465
466 if (!capable(CAP_SYS_ADMIN))
467 return -EACCES;
468
469 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
470
471 return err ? err : count;
472 }
473 static DEVICE_ATTR_RW(max_medium_access_timeouts);
474
475 static ssize_t
476 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
477 char *buf)
478 {
479 struct scsi_disk *sdkp = to_scsi_disk(dev);
480
481 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
482 }
483
484 static ssize_t
485 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
486 const char *buf, size_t count)
487 {
488 struct scsi_disk *sdkp = to_scsi_disk(dev);
489 struct scsi_device *sdp = sdkp->device;
490 unsigned long max;
491 int err;
492
493 if (!capable(CAP_SYS_ADMIN))
494 return -EACCES;
495
496 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
497 return -EINVAL;
498
499 err = kstrtoul(buf, 10, &max);
500
501 if (err)
502 return err;
503
504 if (max == 0)
505 sdp->no_write_same = 1;
506 else if (max <= SD_MAX_WS16_BLOCKS) {
507 sdp->no_write_same = 0;
508 sdkp->max_ws_blocks = max;
509 }
510
511 sd_config_write_same(sdkp);
512
513 return count;
514 }
515 static DEVICE_ATTR_RW(max_write_same_blocks);
516
517 static struct attribute *sd_disk_attrs[] = {
518 &dev_attr_cache_type.attr,
519 &dev_attr_FUA.attr,
520 &dev_attr_allow_restart.attr,
521 &dev_attr_manage_start_stop.attr,
522 &dev_attr_protection_type.attr,
523 &dev_attr_protection_mode.attr,
524 &dev_attr_app_tag_own.attr,
525 &dev_attr_thin_provisioning.attr,
526 &dev_attr_provisioning_mode.attr,
527 &dev_attr_zeroing_mode.attr,
528 &dev_attr_max_write_same_blocks.attr,
529 &dev_attr_max_medium_access_timeouts.attr,
530 NULL,
531 };
532 ATTRIBUTE_GROUPS(sd_disk);
533
534 static struct class sd_disk_class = {
535 .name = "scsi_disk",
536 .owner = THIS_MODULE,
537 .dev_release = scsi_disk_release,
538 .dev_groups = sd_disk_groups,
539 };
540
541 static const struct dev_pm_ops sd_pm_ops = {
542 .suspend = sd_suspend_system,
543 .resume = sd_resume,
544 .poweroff = sd_suspend_system,
545 .restore = sd_resume,
546 .runtime_suspend = sd_suspend_runtime,
547 .runtime_resume = sd_resume,
548 };
549
550 static struct scsi_driver sd_template = {
551 .gendrv = {
552 .name = "sd",
553 .owner = THIS_MODULE,
554 .probe = sd_probe,
555 .remove = sd_remove,
556 .shutdown = sd_shutdown,
557 .pm = &sd_pm_ops,
558 },
559 .rescan = sd_rescan,
560 .init_command = sd_init_command,
561 .uninit_command = sd_uninit_command,
562 .done = sd_done,
563 .eh_action = sd_eh_action,
564 .eh_reset = sd_eh_reset,
565 };
566
567 /*
568 * Dummy kobj_map->probe function.
569 * The default ->probe function will call modprobe, which is
570 * pointless as this module is already loaded.
571 */
572 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
573 {
574 return NULL;
575 }
576
577 /*
578 * Device no to disk mapping:
579 *
580 * major disc2 disc p1
581 * |............|.............|....|....| <- dev_t
582 * 31 20 19 8 7 4 3 0
583 *
584 * Inside a major, we have 16k disks, however mapped non-
585 * contiguously. The first 16 disks are for major0, the next
586 * ones with major1, ... Disk 256 is for major0 again, disk 272
587 * for major1, ...
588 * As we stay compatible with our numbering scheme, we can reuse
589 * the well-know SCSI majors 8, 65--71, 136--143.
590 */
591 static int sd_major(int major_idx)
592 {
593 switch (major_idx) {
594 case 0:
595 return SCSI_DISK0_MAJOR;
596 case 1 ... 7:
597 return SCSI_DISK1_MAJOR + major_idx - 1;
598 case 8 ... 15:
599 return SCSI_DISK8_MAJOR + major_idx - 8;
600 default:
601 BUG();
602 return 0; /* shut up gcc */
603 }
604 }
605
606 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
607 {
608 struct scsi_disk *sdkp = NULL;
609
610 mutex_lock(&sd_ref_mutex);
611
612 if (disk->private_data) {
613 sdkp = scsi_disk(disk);
614 if (scsi_device_get(sdkp->device) == 0)
615 get_device(&sdkp->dev);
616 else
617 sdkp = NULL;
618 }
619 mutex_unlock(&sd_ref_mutex);
620 return sdkp;
621 }
622
623 static void scsi_disk_put(struct scsi_disk *sdkp)
624 {
625 struct scsi_device *sdev = sdkp->device;
626
627 mutex_lock(&sd_ref_mutex);
628 put_device(&sdkp->dev);
629 scsi_device_put(sdev);
630 mutex_unlock(&sd_ref_mutex);
631 }
632
633 #ifdef CONFIG_BLK_SED_OPAL
634 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
635 size_t len, bool send)
636 {
637 struct scsi_device *sdev = data;
638 u8 cdb[12] = { 0, };
639 int ret;
640
641 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
642 cdb[1] = secp;
643 put_unaligned_be16(spsp, &cdb[2]);
644 put_unaligned_be32(len, &cdb[6]);
645
646 ret = scsi_execute_req(sdev, cdb,
647 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
648 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
649 return ret <= 0 ? ret : -EIO;
650 }
651 #endif /* CONFIG_BLK_SED_OPAL */
652
653 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
654 unsigned int dix, unsigned int dif)
655 {
656 struct bio *bio = scmd->request->bio;
657 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
658 unsigned int protect = 0;
659
660 if (dix) { /* DIX Type 0, 1, 2, 3 */
661 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
662 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
663
664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
666 }
667
668 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
669 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
670
671 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
672 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
673 }
674
675 if (dif) { /* DIX/DIF Type 1, 2, 3 */
676 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
677
678 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
679 protect = 3 << 5; /* Disable target PI checking */
680 else
681 protect = 1 << 5; /* Enable target PI checking */
682 }
683
684 scsi_set_prot_op(scmd, prot_op);
685 scsi_set_prot_type(scmd, dif);
686 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
687
688 return protect;
689 }
690
691 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
692 {
693 struct request_queue *q = sdkp->disk->queue;
694 unsigned int logical_block_size = sdkp->device->sector_size;
695 unsigned int max_blocks = 0;
696
697 q->limits.discard_alignment =
698 sdkp->unmap_alignment * logical_block_size;
699 q->limits.discard_granularity =
700 max(sdkp->physical_block_size,
701 sdkp->unmap_granularity * logical_block_size);
702 sdkp->provisioning_mode = mode;
703
704 switch (mode) {
705
706 case SD_LBP_FULL:
707 case SD_LBP_DISABLE:
708 blk_queue_max_discard_sectors(q, 0);
709 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
710 return;
711
712 case SD_LBP_UNMAP:
713 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
714 (u32)SD_MAX_WS16_BLOCKS);
715 break;
716
717 case SD_LBP_WS16:
718 max_blocks = min_not_zero(sdkp->max_ws_blocks,
719 (u32)SD_MAX_WS16_BLOCKS);
720 break;
721
722 case SD_LBP_WS10:
723 max_blocks = min_not_zero(sdkp->max_ws_blocks,
724 (u32)SD_MAX_WS10_BLOCKS);
725 break;
726
727 case SD_LBP_ZERO:
728 max_blocks = min_not_zero(sdkp->max_ws_blocks,
729 (u32)SD_MAX_WS10_BLOCKS);
730 break;
731 }
732
733 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
734 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
735 }
736
737 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
738 {
739 struct scsi_device *sdp = cmd->device;
740 struct request *rq = cmd->request;
741 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
742 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
743 unsigned int data_len = 24;
744 char *buf;
745
746 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
747 if (!rq->special_vec.bv_page)
748 return BLKPREP_DEFER;
749 rq->special_vec.bv_offset = 0;
750 rq->special_vec.bv_len = data_len;
751 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
752
753 cmd->cmd_len = 10;
754 cmd->cmnd[0] = UNMAP;
755 cmd->cmnd[8] = 24;
756
757 buf = page_address(rq->special_vec.bv_page);
758 put_unaligned_be16(6 + 16, &buf[0]);
759 put_unaligned_be16(16, &buf[2]);
760 put_unaligned_be64(sector, &buf[8]);
761 put_unaligned_be32(nr_sectors, &buf[16]);
762
763 cmd->allowed = SD_MAX_RETRIES;
764 cmd->transfersize = data_len;
765 rq->timeout = SD_TIMEOUT;
766 scsi_req(rq)->resid_len = data_len;
767
768 return scsi_init_io(cmd);
769 }
770
771 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
772 {
773 struct scsi_device *sdp = cmd->device;
774 struct request *rq = cmd->request;
775 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
776 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
777 u32 data_len = sdp->sector_size;
778
779 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
780 if (!rq->special_vec.bv_page)
781 return BLKPREP_DEFER;
782 rq->special_vec.bv_offset = 0;
783 rq->special_vec.bv_len = data_len;
784 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
785
786 cmd->cmd_len = 16;
787 cmd->cmnd[0] = WRITE_SAME_16;
788 if (unmap)
789 cmd->cmnd[1] = 0x8; /* UNMAP */
790 put_unaligned_be64(sector, &cmd->cmnd[2]);
791 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
792
793 cmd->allowed = SD_MAX_RETRIES;
794 cmd->transfersize = data_len;
795 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
796 scsi_req(rq)->resid_len = data_len;
797
798 return scsi_init_io(cmd);
799 }
800
801 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
802 {
803 struct scsi_device *sdp = cmd->device;
804 struct request *rq = cmd->request;
805 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
806 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
807 u32 data_len = sdp->sector_size;
808
809 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
810 if (!rq->special_vec.bv_page)
811 return BLKPREP_DEFER;
812 rq->special_vec.bv_offset = 0;
813 rq->special_vec.bv_len = data_len;
814 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
815
816 cmd->cmd_len = 10;
817 cmd->cmnd[0] = WRITE_SAME;
818 if (unmap)
819 cmd->cmnd[1] = 0x8; /* UNMAP */
820 put_unaligned_be32(sector, &cmd->cmnd[2]);
821 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
822
823 cmd->allowed = SD_MAX_RETRIES;
824 cmd->transfersize = data_len;
825 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
826 scsi_req(rq)->resid_len = data_len;
827
828 return scsi_init_io(cmd);
829 }
830
831 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
832 {
833 struct request *rq = cmd->request;
834 struct scsi_device *sdp = cmd->device;
835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
836 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
837 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
838 int ret;
839
840 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
841 switch (sdkp->zeroing_mode) {
842 case SD_ZERO_WS16_UNMAP:
843 ret = sd_setup_write_same16_cmnd(cmd, true);
844 goto out;
845 case SD_ZERO_WS10_UNMAP:
846 ret = sd_setup_write_same10_cmnd(cmd, true);
847 goto out;
848 }
849 }
850
851 if (sdp->no_write_same)
852 return BLKPREP_INVALID;
853
854 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
855 ret = sd_setup_write_same16_cmnd(cmd, false);
856 else
857 ret = sd_setup_write_same10_cmnd(cmd, false);
858
859 out:
860 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
861 return sd_zbc_write_lock_zone(cmd);
862
863 return ret;
864 }
865
866 static void sd_config_write_same(struct scsi_disk *sdkp)
867 {
868 struct request_queue *q = sdkp->disk->queue;
869 unsigned int logical_block_size = sdkp->device->sector_size;
870
871 if (sdkp->device->no_write_same) {
872 sdkp->max_ws_blocks = 0;
873 goto out;
874 }
875
876 /* Some devices can not handle block counts above 0xffff despite
877 * supporting WRITE SAME(16). Consequently we default to 64k
878 * blocks per I/O unless the device explicitly advertises a
879 * bigger limit.
880 */
881 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
882 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
883 (u32)SD_MAX_WS16_BLOCKS);
884 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
885 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
886 (u32)SD_MAX_WS10_BLOCKS);
887 else {
888 sdkp->device->no_write_same = 1;
889 sdkp->max_ws_blocks = 0;
890 }
891
892 if (sdkp->lbprz && sdkp->lbpws)
893 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
894 else if (sdkp->lbprz && sdkp->lbpws10)
895 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
896 else if (sdkp->max_ws_blocks)
897 sdkp->zeroing_mode = SD_ZERO_WS;
898 else
899 sdkp->zeroing_mode = SD_ZERO_WRITE;
900
901 out:
902 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
903 (logical_block_size >> 9));
904 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
905 (logical_block_size >> 9));
906 }
907
908 /**
909 * sd_setup_write_same_cmnd - write the same data to multiple blocks
910 * @cmd: command to prepare
911 *
912 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
913 * the preference indicated by the target device.
914 **/
915 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
916 {
917 struct request *rq = cmd->request;
918 struct scsi_device *sdp = cmd->device;
919 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
920 struct bio *bio = rq->bio;
921 sector_t sector = blk_rq_pos(rq);
922 unsigned int nr_sectors = blk_rq_sectors(rq);
923 unsigned int nr_bytes = blk_rq_bytes(rq);
924 int ret;
925
926 if (sdkp->device->no_write_same)
927 return BLKPREP_INVALID;
928
929 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
930
931 if (sd_is_zoned(sdkp)) {
932 ret = sd_zbc_write_lock_zone(cmd);
933 if (ret != BLKPREP_OK)
934 return ret;
935 }
936
937 sector >>= ilog2(sdp->sector_size) - 9;
938 nr_sectors >>= ilog2(sdp->sector_size) - 9;
939
940 rq->timeout = SD_WRITE_SAME_TIMEOUT;
941
942 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
943 cmd->cmd_len = 16;
944 cmd->cmnd[0] = WRITE_SAME_16;
945 put_unaligned_be64(sector, &cmd->cmnd[2]);
946 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
947 } else {
948 cmd->cmd_len = 10;
949 cmd->cmnd[0] = WRITE_SAME;
950 put_unaligned_be32(sector, &cmd->cmnd[2]);
951 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
952 }
953
954 cmd->transfersize = sdp->sector_size;
955 cmd->allowed = SD_MAX_RETRIES;
956
957 /*
958 * For WRITE SAME the data transferred via the DATA OUT buffer is
959 * different from the amount of data actually written to the target.
960 *
961 * We set up __data_len to the amount of data transferred via the
962 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
963 * to transfer a single sector of data first, but then reset it to
964 * the amount of data to be written right after so that the I/O path
965 * knows how much to actually write.
966 */
967 rq->__data_len = sdp->sector_size;
968 ret = scsi_init_io(cmd);
969 rq->__data_len = nr_bytes;
970
971 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
972 sd_zbc_write_unlock_zone(cmd);
973
974 return ret;
975 }
976
977 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
978 {
979 struct request *rq = cmd->request;
980
981 /* flush requests don't perform I/O, zero the S/G table */
982 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
983
984 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
985 cmd->cmd_len = 10;
986 cmd->transfersize = 0;
987 cmd->allowed = SD_MAX_RETRIES;
988
989 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
990 return BLKPREP_OK;
991 }
992
993 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
994 {
995 struct request *rq = SCpnt->request;
996 struct scsi_device *sdp = SCpnt->device;
997 struct gendisk *disk = rq->rq_disk;
998 struct scsi_disk *sdkp = scsi_disk(disk);
999 sector_t block = blk_rq_pos(rq);
1000 sector_t threshold;
1001 unsigned int this_count = blk_rq_sectors(rq);
1002 unsigned int dif, dix;
1003 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1004 int ret;
1005 unsigned char protect;
1006
1007 if (zoned_write) {
1008 ret = sd_zbc_write_lock_zone(SCpnt);
1009 if (ret != BLKPREP_OK)
1010 return ret;
1011 }
1012
1013 ret = scsi_init_io(SCpnt);
1014 if (ret != BLKPREP_OK)
1015 goto out;
1016 SCpnt = rq->special;
1017
1018 /* from here on until we're complete, any goto out
1019 * is used for a killable error condition */
1020 ret = BLKPREP_KILL;
1021
1022 SCSI_LOG_HLQUEUE(1,
1023 scmd_printk(KERN_INFO, SCpnt,
1024 "%s: block=%llu, count=%d\n",
1025 __func__, (unsigned long long)block, this_count));
1026
1027 if (!sdp || !scsi_device_online(sdp) ||
1028 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1029 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1030 "Finishing %u sectors\n",
1031 blk_rq_sectors(rq)));
1032 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1033 "Retry with 0x%p\n", SCpnt));
1034 goto out;
1035 }
1036
1037 if (sdp->changed) {
1038 /*
1039 * quietly refuse to do anything to a changed disc until
1040 * the changed bit has been reset
1041 */
1042 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1043 goto out;
1044 }
1045
1046 /*
1047 * Some SD card readers can't handle multi-sector accesses which touch
1048 * the last one or two hardware sectors. Split accesses as needed.
1049 */
1050 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1051 (sdp->sector_size / 512);
1052
1053 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1054 if (block < threshold) {
1055 /* Access up to the threshold but not beyond */
1056 this_count = threshold - block;
1057 } else {
1058 /* Access only a single hardware sector */
1059 this_count = sdp->sector_size / 512;
1060 }
1061 }
1062
1063 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1064 (unsigned long long)block));
1065
1066 /*
1067 * If we have a 1K hardware sectorsize, prevent access to single
1068 * 512 byte sectors. In theory we could handle this - in fact
1069 * the scsi cdrom driver must be able to handle this because
1070 * we typically use 1K blocksizes, and cdroms typically have
1071 * 2K hardware sectorsizes. Of course, things are simpler
1072 * with the cdrom, since it is read-only. For performance
1073 * reasons, the filesystems should be able to handle this
1074 * and not force the scsi disk driver to use bounce buffers
1075 * for this.
1076 */
1077 if (sdp->sector_size == 1024) {
1078 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1079 scmd_printk(KERN_ERR, SCpnt,
1080 "Bad block number requested\n");
1081 goto out;
1082 } else {
1083 block = block >> 1;
1084 this_count = this_count >> 1;
1085 }
1086 }
1087 if (sdp->sector_size == 2048) {
1088 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1089 scmd_printk(KERN_ERR, SCpnt,
1090 "Bad block number requested\n");
1091 goto out;
1092 } else {
1093 block = block >> 2;
1094 this_count = this_count >> 2;
1095 }
1096 }
1097 if (sdp->sector_size == 4096) {
1098 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1099 scmd_printk(KERN_ERR, SCpnt,
1100 "Bad block number requested\n");
1101 goto out;
1102 } else {
1103 block = block >> 3;
1104 this_count = this_count >> 3;
1105 }
1106 }
1107 if (rq_data_dir(rq) == WRITE) {
1108 SCpnt->cmnd[0] = WRITE_6;
1109
1110 if (blk_integrity_rq(rq))
1111 sd_dif_prepare(SCpnt);
1112
1113 } else if (rq_data_dir(rq) == READ) {
1114 SCpnt->cmnd[0] = READ_6;
1115 } else {
1116 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1117 goto out;
1118 }
1119
1120 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1121 "%s %d/%u 512 byte blocks.\n",
1122 (rq_data_dir(rq) == WRITE) ?
1123 "writing" : "reading", this_count,
1124 blk_rq_sectors(rq)));
1125
1126 dix = scsi_prot_sg_count(SCpnt);
1127 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1128
1129 if (dif || dix)
1130 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1131 else
1132 protect = 0;
1133
1134 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1135 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1136
1137 if (unlikely(SCpnt->cmnd == NULL)) {
1138 ret = BLKPREP_DEFER;
1139 goto out;
1140 }
1141
1142 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1143 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1144 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1145 SCpnt->cmnd[7] = 0x18;
1146 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1147 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1148
1149 /* LBA */
1150 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1151 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1152 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1153 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1154 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1155 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1156 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1157 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1158
1159 /* Expected Indirect LBA */
1160 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1161 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1162 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1163 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1164
1165 /* Transfer length */
1166 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1167 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1168 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1169 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1170 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1171 SCpnt->cmnd[0] += READ_16 - READ_6;
1172 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1173 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1174 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1175 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1176 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1177 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1178 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1179 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1180 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1181 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1182 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1183 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1184 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1185 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1186 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1187 scsi_device_protection(SCpnt->device) ||
1188 SCpnt->device->use_10_for_rw) {
1189 SCpnt->cmnd[0] += READ_10 - READ_6;
1190 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1191 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1192 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1193 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1194 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1195 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1196 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1197 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1198 } else {
1199 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1200 /*
1201 * This happens only if this drive failed
1202 * 10byte rw command with ILLEGAL_REQUEST
1203 * during operation and thus turned off
1204 * use_10_for_rw.
1205 */
1206 scmd_printk(KERN_ERR, SCpnt,
1207 "FUA write on READ/WRITE(6) drive\n");
1208 goto out;
1209 }
1210
1211 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1212 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1213 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1214 SCpnt->cmnd[4] = (unsigned char) this_count;
1215 SCpnt->cmnd[5] = 0;
1216 }
1217 SCpnt->sdb.length = this_count * sdp->sector_size;
1218
1219 /*
1220 * We shouldn't disconnect in the middle of a sector, so with a dumb
1221 * host adapter, it's safe to assume that we can at least transfer
1222 * this many bytes between each connect / disconnect.
1223 */
1224 SCpnt->transfersize = sdp->sector_size;
1225 SCpnt->underflow = this_count << 9;
1226 SCpnt->allowed = SD_MAX_RETRIES;
1227
1228 /*
1229 * This indicates that the command is ready from our end to be
1230 * queued.
1231 */
1232 ret = BLKPREP_OK;
1233 out:
1234 if (zoned_write && ret != BLKPREP_OK)
1235 sd_zbc_write_unlock_zone(SCpnt);
1236
1237 return ret;
1238 }
1239
1240 static int sd_init_command(struct scsi_cmnd *cmd)
1241 {
1242 struct request *rq = cmd->request;
1243
1244 switch (req_op(rq)) {
1245 case REQ_OP_DISCARD:
1246 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1247 case SD_LBP_UNMAP:
1248 return sd_setup_unmap_cmnd(cmd);
1249 case SD_LBP_WS16:
1250 return sd_setup_write_same16_cmnd(cmd, true);
1251 case SD_LBP_WS10:
1252 return sd_setup_write_same10_cmnd(cmd, true);
1253 case SD_LBP_ZERO:
1254 return sd_setup_write_same10_cmnd(cmd, false);
1255 default:
1256 return BLKPREP_INVALID;
1257 }
1258 case REQ_OP_WRITE_ZEROES:
1259 return sd_setup_write_zeroes_cmnd(cmd);
1260 case REQ_OP_WRITE_SAME:
1261 return sd_setup_write_same_cmnd(cmd);
1262 case REQ_OP_FLUSH:
1263 return sd_setup_flush_cmnd(cmd);
1264 case REQ_OP_READ:
1265 case REQ_OP_WRITE:
1266 return sd_setup_read_write_cmnd(cmd);
1267 case REQ_OP_ZONE_REPORT:
1268 return sd_zbc_setup_report_cmnd(cmd);
1269 case REQ_OP_ZONE_RESET:
1270 return sd_zbc_setup_reset_cmnd(cmd);
1271 default:
1272 BUG();
1273 }
1274 }
1275
1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1277 {
1278 struct request *rq = SCpnt->request;
1279
1280 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1281 __free_page(rq->special_vec.bv_page);
1282
1283 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1284 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1285 SCpnt->cmnd = NULL;
1286 SCpnt->cmd_len = 0;
1287 }
1288 }
1289
1290 /**
1291 * sd_open - open a scsi disk device
1292 * @bdev: Block device of the scsi disk to open
1293 * @mode: FMODE_* mask
1294 *
1295 * Returns 0 if successful. Returns a negated errno value in case
1296 * of error.
1297 *
1298 * Note: This can be called from a user context (e.g. fsck(1) )
1299 * or from within the kernel (e.g. as a result of a mount(1) ).
1300 * In the latter case @inode and @filp carry an abridged amount
1301 * of information as noted above.
1302 *
1303 * Locking: called with bdev->bd_mutex held.
1304 **/
1305 static int sd_open(struct block_device *bdev, fmode_t mode)
1306 {
1307 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1308 struct scsi_device *sdev;
1309 int retval;
1310
1311 if (!sdkp)
1312 return -ENXIO;
1313
1314 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1315
1316 sdev = sdkp->device;
1317
1318 /*
1319 * If the device is in error recovery, wait until it is done.
1320 * If the device is offline, then disallow any access to it.
1321 */
1322 retval = -ENXIO;
1323 if (!scsi_block_when_processing_errors(sdev))
1324 goto error_out;
1325
1326 if (sdev->removable || sdkp->write_prot)
1327 check_disk_change(bdev);
1328
1329 /*
1330 * If the drive is empty, just let the open fail.
1331 */
1332 retval = -ENOMEDIUM;
1333 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1334 goto error_out;
1335
1336 /*
1337 * If the device has the write protect tab set, have the open fail
1338 * if the user expects to be able to write to the thing.
1339 */
1340 retval = -EROFS;
1341 if (sdkp->write_prot && (mode & FMODE_WRITE))
1342 goto error_out;
1343
1344 /*
1345 * It is possible that the disk changing stuff resulted in
1346 * the device being taken offline. If this is the case,
1347 * report this to the user, and don't pretend that the
1348 * open actually succeeded.
1349 */
1350 retval = -ENXIO;
1351 if (!scsi_device_online(sdev))
1352 goto error_out;
1353
1354 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1355 if (scsi_block_when_processing_errors(sdev))
1356 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1357 }
1358
1359 return 0;
1360
1361 error_out:
1362 scsi_disk_put(sdkp);
1363 return retval;
1364 }
1365
1366 /**
1367 * sd_release - invoked when the (last) close(2) is called on this
1368 * scsi disk.
1369 * @disk: disk to release
1370 * @mode: FMODE_* mask
1371 *
1372 * Returns 0.
1373 *
1374 * Note: may block (uninterruptible) if error recovery is underway
1375 * on this disk.
1376 *
1377 * Locking: called with bdev->bd_mutex held.
1378 **/
1379 static void sd_release(struct gendisk *disk, fmode_t mode)
1380 {
1381 struct scsi_disk *sdkp = scsi_disk(disk);
1382 struct scsi_device *sdev = sdkp->device;
1383
1384 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1385
1386 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1387 if (scsi_block_when_processing_errors(sdev))
1388 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1389 }
1390
1391 /*
1392 * XXX and what if there are packets in flight and this close()
1393 * XXX is followed by a "rmmod sd_mod"?
1394 */
1395
1396 scsi_disk_put(sdkp);
1397 }
1398
1399 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1400 {
1401 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1402 struct scsi_device *sdp = sdkp->device;
1403 struct Scsi_Host *host = sdp->host;
1404 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1405 int diskinfo[4];
1406
1407 /* default to most commonly used values */
1408 diskinfo[0] = 0x40; /* 1 << 6 */
1409 diskinfo[1] = 0x20; /* 1 << 5 */
1410 diskinfo[2] = capacity >> 11;
1411
1412 /* override with calculated, extended default, or driver values */
1413 if (host->hostt->bios_param)
1414 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1415 else
1416 scsicam_bios_param(bdev, capacity, diskinfo);
1417
1418 geo->heads = diskinfo[0];
1419 geo->sectors = diskinfo[1];
1420 geo->cylinders = diskinfo[2];
1421 return 0;
1422 }
1423
1424 /**
1425 * sd_ioctl - process an ioctl
1426 * @bdev: target block device
1427 * @mode: FMODE_* mask
1428 * @cmd: ioctl command number
1429 * @arg: this is third argument given to ioctl(2) system call.
1430 * Often contains a pointer.
1431 *
1432 * Returns 0 if successful (some ioctls return positive numbers on
1433 * success as well). Returns a negated errno value in case of error.
1434 *
1435 * Note: most ioctls are forward onto the block subsystem or further
1436 * down in the scsi subsystem.
1437 **/
1438 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1439 unsigned int cmd, unsigned long arg)
1440 {
1441 struct gendisk *disk = bdev->bd_disk;
1442 struct scsi_disk *sdkp = scsi_disk(disk);
1443 struct scsi_device *sdp = sdkp->device;
1444 void __user *p = (void __user *)arg;
1445 int error;
1446
1447 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1448 "cmd=0x%x\n", disk->disk_name, cmd));
1449
1450 error = scsi_verify_blk_ioctl(bdev, cmd);
1451 if (error < 0)
1452 return error;
1453
1454 /*
1455 * If we are in the middle of error recovery, don't let anyone
1456 * else try and use this device. Also, if error recovery fails, it
1457 * may try and take the device offline, in which case all further
1458 * access to the device is prohibited.
1459 */
1460 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1461 (mode & FMODE_NDELAY) != 0);
1462 if (error)
1463 goto out;
1464
1465 if (is_sed_ioctl(cmd))
1466 return sed_ioctl(sdkp->opal_dev, cmd, p);
1467
1468 /*
1469 * Send SCSI addressing ioctls directly to mid level, send other
1470 * ioctls to block level and then onto mid level if they can't be
1471 * resolved.
1472 */
1473 switch (cmd) {
1474 case SCSI_IOCTL_GET_IDLUN:
1475 case SCSI_IOCTL_GET_BUS_NUMBER:
1476 error = scsi_ioctl(sdp, cmd, p);
1477 break;
1478 default:
1479 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1480 if (error != -ENOTTY)
1481 break;
1482 error = scsi_ioctl(sdp, cmd, p);
1483 break;
1484 }
1485 out:
1486 return error;
1487 }
1488
1489 static void set_media_not_present(struct scsi_disk *sdkp)
1490 {
1491 if (sdkp->media_present)
1492 sdkp->device->changed = 1;
1493
1494 if (sdkp->device->removable) {
1495 sdkp->media_present = 0;
1496 sdkp->capacity = 0;
1497 }
1498 }
1499
1500 static int media_not_present(struct scsi_disk *sdkp,
1501 struct scsi_sense_hdr *sshdr)
1502 {
1503 if (!scsi_sense_valid(sshdr))
1504 return 0;
1505
1506 /* not invoked for commands that could return deferred errors */
1507 switch (sshdr->sense_key) {
1508 case UNIT_ATTENTION:
1509 case NOT_READY:
1510 /* medium not present */
1511 if (sshdr->asc == 0x3A) {
1512 set_media_not_present(sdkp);
1513 return 1;
1514 }
1515 }
1516 return 0;
1517 }
1518
1519 /**
1520 * sd_check_events - check media events
1521 * @disk: kernel device descriptor
1522 * @clearing: disk events currently being cleared
1523 *
1524 * Returns mask of DISK_EVENT_*.
1525 *
1526 * Note: this function is invoked from the block subsystem.
1527 **/
1528 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1529 {
1530 struct scsi_disk *sdkp = scsi_disk_get(disk);
1531 struct scsi_device *sdp;
1532 int retval;
1533
1534 if (!sdkp)
1535 return 0;
1536
1537 sdp = sdkp->device;
1538 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1539
1540 /*
1541 * If the device is offline, don't send any commands - just pretend as
1542 * if the command failed. If the device ever comes back online, we
1543 * can deal with it then. It is only because of unrecoverable errors
1544 * that we would ever take a device offline in the first place.
1545 */
1546 if (!scsi_device_online(sdp)) {
1547 set_media_not_present(sdkp);
1548 goto out;
1549 }
1550
1551 /*
1552 * Using TEST_UNIT_READY enables differentiation between drive with
1553 * no cartridge loaded - NOT READY, drive with changed cartridge -
1554 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1555 *
1556 * Drives that auto spin down. eg iomega jaz 1G, will be started
1557 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1558 * sd_revalidate() is called.
1559 */
1560 if (scsi_block_when_processing_errors(sdp)) {
1561 struct scsi_sense_hdr sshdr = { 0, };
1562
1563 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1564 &sshdr);
1565
1566 /* failed to execute TUR, assume media not present */
1567 if (host_byte(retval)) {
1568 set_media_not_present(sdkp);
1569 goto out;
1570 }
1571
1572 if (media_not_present(sdkp, &sshdr))
1573 goto out;
1574 }
1575
1576 /*
1577 * For removable scsi disk we have to recognise the presence
1578 * of a disk in the drive.
1579 */
1580 if (!sdkp->media_present)
1581 sdp->changed = 1;
1582 sdkp->media_present = 1;
1583 out:
1584 /*
1585 * sdp->changed is set under the following conditions:
1586 *
1587 * Medium present state has changed in either direction.
1588 * Device has indicated UNIT_ATTENTION.
1589 */
1590 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1591 sdp->changed = 0;
1592 scsi_disk_put(sdkp);
1593 return retval;
1594 }
1595
1596 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1597 {
1598 int retries, res;
1599 struct scsi_device *sdp = sdkp->device;
1600 const int timeout = sdp->request_queue->rq_timeout
1601 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1602 struct scsi_sense_hdr my_sshdr;
1603
1604 if (!scsi_device_online(sdp))
1605 return -ENODEV;
1606
1607 /* caller might not be interested in sense, but we need it */
1608 if (!sshdr)
1609 sshdr = &my_sshdr;
1610
1611 for (retries = 3; retries > 0; --retries) {
1612 unsigned char cmd[10] = { 0 };
1613
1614 cmd[0] = SYNCHRONIZE_CACHE;
1615 /*
1616 * Leave the rest of the command zero to indicate
1617 * flush everything.
1618 */
1619 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1620 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1621 if (res == 0)
1622 break;
1623 }
1624
1625 if (res) {
1626 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1627
1628 if (driver_byte(res) & DRIVER_SENSE)
1629 sd_print_sense_hdr(sdkp, sshdr);
1630
1631 /* we need to evaluate the error return */
1632 if (scsi_sense_valid(sshdr) &&
1633 (sshdr->asc == 0x3a || /* medium not present */
1634 sshdr->asc == 0x20)) /* invalid command */
1635 /* this is no error here */
1636 return 0;
1637
1638 switch (host_byte(res)) {
1639 /* ignore errors due to racing a disconnection */
1640 case DID_BAD_TARGET:
1641 case DID_NO_CONNECT:
1642 return 0;
1643 /* signal the upper layer it might try again */
1644 case DID_BUS_BUSY:
1645 case DID_IMM_RETRY:
1646 case DID_REQUEUE:
1647 case DID_SOFT_ERROR:
1648 return -EBUSY;
1649 default:
1650 return -EIO;
1651 }
1652 }
1653 return 0;
1654 }
1655
1656 static void sd_rescan(struct device *dev)
1657 {
1658 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1659
1660 revalidate_disk(sdkp->disk);
1661 }
1662
1663
1664 #ifdef CONFIG_COMPAT
1665 /*
1666 * This gets directly called from VFS. When the ioctl
1667 * is not recognized we go back to the other translation paths.
1668 */
1669 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1670 unsigned int cmd, unsigned long arg)
1671 {
1672 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1673 int error;
1674
1675 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1676 (mode & FMODE_NDELAY) != 0);
1677 if (error)
1678 return error;
1679
1680 /*
1681 * Let the static ioctl translation table take care of it.
1682 */
1683 if (!sdev->host->hostt->compat_ioctl)
1684 return -ENOIOCTLCMD;
1685 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1686 }
1687 #endif
1688
1689 static char sd_pr_type(enum pr_type type)
1690 {
1691 switch (type) {
1692 case PR_WRITE_EXCLUSIVE:
1693 return 0x01;
1694 case PR_EXCLUSIVE_ACCESS:
1695 return 0x03;
1696 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1697 return 0x05;
1698 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1699 return 0x06;
1700 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1701 return 0x07;
1702 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1703 return 0x08;
1704 default:
1705 return 0;
1706 }
1707 };
1708
1709 static int sd_pr_command(struct block_device *bdev, u8 sa,
1710 u64 key, u64 sa_key, u8 type, u8 flags)
1711 {
1712 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1713 struct scsi_sense_hdr sshdr;
1714 int result;
1715 u8 cmd[16] = { 0, };
1716 u8 data[24] = { 0, };
1717
1718 cmd[0] = PERSISTENT_RESERVE_OUT;
1719 cmd[1] = sa;
1720 cmd[2] = type;
1721 put_unaligned_be32(sizeof(data), &cmd[5]);
1722
1723 put_unaligned_be64(key, &data[0]);
1724 put_unaligned_be64(sa_key, &data[8]);
1725 data[20] = flags;
1726
1727 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1728 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1729
1730 if ((driver_byte(result) & DRIVER_SENSE) &&
1731 (scsi_sense_valid(&sshdr))) {
1732 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1733 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1734 }
1735
1736 return result;
1737 }
1738
1739 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1740 u32 flags)
1741 {
1742 if (flags & ~PR_FL_IGNORE_KEY)
1743 return -EOPNOTSUPP;
1744 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1745 old_key, new_key, 0,
1746 (1 << 0) /* APTPL */);
1747 }
1748
1749 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1750 u32 flags)
1751 {
1752 if (flags)
1753 return -EOPNOTSUPP;
1754 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1755 }
1756
1757 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1758 {
1759 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1760 }
1761
1762 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1763 enum pr_type type, bool abort)
1764 {
1765 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1766 sd_pr_type(type), 0);
1767 }
1768
1769 static int sd_pr_clear(struct block_device *bdev, u64 key)
1770 {
1771 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1772 }
1773
1774 static const struct pr_ops sd_pr_ops = {
1775 .pr_register = sd_pr_register,
1776 .pr_reserve = sd_pr_reserve,
1777 .pr_release = sd_pr_release,
1778 .pr_preempt = sd_pr_preempt,
1779 .pr_clear = sd_pr_clear,
1780 };
1781
1782 static const struct block_device_operations sd_fops = {
1783 .owner = THIS_MODULE,
1784 .open = sd_open,
1785 .release = sd_release,
1786 .ioctl = sd_ioctl,
1787 .getgeo = sd_getgeo,
1788 #ifdef CONFIG_COMPAT
1789 .compat_ioctl = sd_compat_ioctl,
1790 #endif
1791 .check_events = sd_check_events,
1792 .revalidate_disk = sd_revalidate_disk,
1793 .unlock_native_capacity = sd_unlock_native_capacity,
1794 .pr_ops = &sd_pr_ops,
1795 };
1796
1797 /**
1798 * sd_eh_reset - reset error handling callback
1799 * @scmd: sd-issued command that has failed
1800 *
1801 * This function is called by the SCSI midlayer before starting
1802 * SCSI EH. When counting medium access failures we have to be
1803 * careful to register it only only once per device and SCSI EH run;
1804 * there might be several timed out commands which will cause the
1805 * 'max_medium_access_timeouts' counter to trigger after the first
1806 * SCSI EH run already and set the device to offline.
1807 * So this function resets the internal counter before starting SCSI EH.
1808 **/
1809 static void sd_eh_reset(struct scsi_cmnd *scmd)
1810 {
1811 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1812
1813 /* New SCSI EH run, reset gate variable */
1814 sdkp->ignore_medium_access_errors = false;
1815 }
1816
1817 /**
1818 * sd_eh_action - error handling callback
1819 * @scmd: sd-issued command that has failed
1820 * @eh_disp: The recovery disposition suggested by the midlayer
1821 *
1822 * This function is called by the SCSI midlayer upon completion of an
1823 * error test command (currently TEST UNIT READY). The result of sending
1824 * the eh command is passed in eh_disp. We're looking for devices that
1825 * fail medium access commands but are OK with non access commands like
1826 * test unit ready (so wrongly see the device as having a successful
1827 * recovery)
1828 **/
1829 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1830 {
1831 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1832 struct scsi_device *sdev = scmd->device;
1833
1834 if (!scsi_device_online(sdev) ||
1835 !scsi_medium_access_command(scmd) ||
1836 host_byte(scmd->result) != DID_TIME_OUT ||
1837 eh_disp != SUCCESS)
1838 return eh_disp;
1839
1840 /*
1841 * The device has timed out executing a medium access command.
1842 * However, the TEST UNIT READY command sent during error
1843 * handling completed successfully. Either the device is in the
1844 * process of recovering or has it suffered an internal failure
1845 * that prevents access to the storage medium.
1846 */
1847 if (!sdkp->ignore_medium_access_errors) {
1848 sdkp->medium_access_timed_out++;
1849 sdkp->ignore_medium_access_errors = true;
1850 }
1851
1852 /*
1853 * If the device keeps failing read/write commands but TEST UNIT
1854 * READY always completes successfully we assume that medium
1855 * access is no longer possible and take the device offline.
1856 */
1857 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1858 scmd_printk(KERN_ERR, scmd,
1859 "Medium access timeout failure. Offlining disk!\n");
1860 mutex_lock(&sdev->state_mutex);
1861 scsi_device_set_state(sdev, SDEV_OFFLINE);
1862 mutex_unlock(&sdev->state_mutex);
1863
1864 return SUCCESS;
1865 }
1866
1867 return eh_disp;
1868 }
1869
1870 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1871 {
1872 struct request *req = scmd->request;
1873 struct scsi_device *sdev = scmd->device;
1874 unsigned int transferred, good_bytes;
1875 u64 start_lba, end_lba, bad_lba;
1876
1877 /*
1878 * Some commands have a payload smaller than the device logical
1879 * block size (e.g. INQUIRY on a 4K disk).
1880 */
1881 if (scsi_bufflen(scmd) <= sdev->sector_size)
1882 return 0;
1883
1884 /* Check if we have a 'bad_lba' information */
1885 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1886 SCSI_SENSE_BUFFERSIZE,
1887 &bad_lba))
1888 return 0;
1889
1890 /*
1891 * If the bad lba was reported incorrectly, we have no idea where
1892 * the error is.
1893 */
1894 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1895 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1896 if (bad_lba < start_lba || bad_lba >= end_lba)
1897 return 0;
1898
1899 /*
1900 * resid is optional but mostly filled in. When it's unused,
1901 * its value is zero, so we assume the whole buffer transferred
1902 */
1903 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1904
1905 /* This computation should always be done in terms of the
1906 * resolution of the device's medium.
1907 */
1908 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1909
1910 return min(good_bytes, transferred);
1911 }
1912
1913 /**
1914 * sd_done - bottom half handler: called when the lower level
1915 * driver has completed (successfully or otherwise) a scsi command.
1916 * @SCpnt: mid-level's per command structure.
1917 *
1918 * Note: potentially run from within an ISR. Must not block.
1919 **/
1920 static int sd_done(struct scsi_cmnd *SCpnt)
1921 {
1922 int result = SCpnt->result;
1923 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1924 unsigned int sector_size = SCpnt->device->sector_size;
1925 unsigned int resid;
1926 struct scsi_sense_hdr sshdr;
1927 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1928 struct request *req = SCpnt->request;
1929 int sense_valid = 0;
1930 int sense_deferred = 0;
1931
1932 switch (req_op(req)) {
1933 case REQ_OP_DISCARD:
1934 case REQ_OP_WRITE_ZEROES:
1935 case REQ_OP_WRITE_SAME:
1936 case REQ_OP_ZONE_RESET:
1937 if (!result) {
1938 good_bytes = blk_rq_bytes(req);
1939 scsi_set_resid(SCpnt, 0);
1940 } else {
1941 good_bytes = 0;
1942 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1943 }
1944 break;
1945 case REQ_OP_ZONE_REPORT:
1946 if (!result) {
1947 good_bytes = scsi_bufflen(SCpnt)
1948 - scsi_get_resid(SCpnt);
1949 scsi_set_resid(SCpnt, 0);
1950 } else {
1951 good_bytes = 0;
1952 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1953 }
1954 break;
1955 default:
1956 /*
1957 * In case of bogus fw or device, we could end up having
1958 * an unaligned partial completion. Check this here and force
1959 * alignment.
1960 */
1961 resid = scsi_get_resid(SCpnt);
1962 if (resid & (sector_size - 1)) {
1963 sd_printk(KERN_INFO, sdkp,
1964 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1965 resid, sector_size);
1966 resid = min(scsi_bufflen(SCpnt),
1967 round_up(resid, sector_size));
1968 scsi_set_resid(SCpnt, resid);
1969 }
1970 }
1971
1972 if (result) {
1973 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1974 if (sense_valid)
1975 sense_deferred = scsi_sense_is_deferred(&sshdr);
1976 }
1977 sdkp->medium_access_timed_out = 0;
1978
1979 if (driver_byte(result) != DRIVER_SENSE &&
1980 (!sense_valid || sense_deferred))
1981 goto out;
1982
1983 switch (sshdr.sense_key) {
1984 case HARDWARE_ERROR:
1985 case MEDIUM_ERROR:
1986 good_bytes = sd_completed_bytes(SCpnt);
1987 break;
1988 case RECOVERED_ERROR:
1989 good_bytes = scsi_bufflen(SCpnt);
1990 break;
1991 case NO_SENSE:
1992 /* This indicates a false check condition, so ignore it. An
1993 * unknown amount of data was transferred so treat it as an
1994 * error.
1995 */
1996 SCpnt->result = 0;
1997 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1998 break;
1999 case ABORTED_COMMAND:
2000 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2001 good_bytes = sd_completed_bytes(SCpnt);
2002 break;
2003 case ILLEGAL_REQUEST:
2004 switch (sshdr.asc) {
2005 case 0x10: /* DIX: Host detected corruption */
2006 good_bytes = sd_completed_bytes(SCpnt);
2007 break;
2008 case 0x20: /* INVALID COMMAND OPCODE */
2009 case 0x24: /* INVALID FIELD IN CDB */
2010 switch (SCpnt->cmnd[0]) {
2011 case UNMAP:
2012 sd_config_discard(sdkp, SD_LBP_DISABLE);
2013 break;
2014 case WRITE_SAME_16:
2015 case WRITE_SAME:
2016 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2017 sd_config_discard(sdkp, SD_LBP_DISABLE);
2018 } else {
2019 sdkp->device->no_write_same = 1;
2020 sd_config_write_same(sdkp);
2021 req->__data_len = blk_rq_bytes(req);
2022 req->rq_flags |= RQF_QUIET;
2023 }
2024 break;
2025 }
2026 }
2027 break;
2028 default:
2029 break;
2030 }
2031
2032 out:
2033 if (sd_is_zoned(sdkp))
2034 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2035
2036 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2037 "sd_done: completed %d of %d bytes\n",
2038 good_bytes, scsi_bufflen(SCpnt)));
2039
2040 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2041 sd_dif_complete(SCpnt, good_bytes);
2042
2043 return good_bytes;
2044 }
2045
2046 /*
2047 * spinup disk - called only in sd_revalidate_disk()
2048 */
2049 static void
2050 sd_spinup_disk(struct scsi_disk *sdkp)
2051 {
2052 unsigned char cmd[10];
2053 unsigned long spintime_expire = 0;
2054 int retries, spintime;
2055 unsigned int the_result;
2056 struct scsi_sense_hdr sshdr;
2057 int sense_valid = 0;
2058
2059 spintime = 0;
2060
2061 /* Spin up drives, as required. Only do this at boot time */
2062 /* Spinup needs to be done for module loads too. */
2063 do {
2064 retries = 0;
2065
2066 do {
2067 cmd[0] = TEST_UNIT_READY;
2068 memset((void *) &cmd[1], 0, 9);
2069
2070 the_result = scsi_execute_req(sdkp->device, cmd,
2071 DMA_NONE, NULL, 0,
2072 &sshdr, SD_TIMEOUT,
2073 SD_MAX_RETRIES, NULL);
2074
2075 /*
2076 * If the drive has indicated to us that it
2077 * doesn't have any media in it, don't bother
2078 * with any more polling.
2079 */
2080 if (media_not_present(sdkp, &sshdr))
2081 return;
2082
2083 if (the_result)
2084 sense_valid = scsi_sense_valid(&sshdr);
2085 retries++;
2086 } while (retries < 3 &&
2087 (!scsi_status_is_good(the_result) ||
2088 ((driver_byte(the_result) & DRIVER_SENSE) &&
2089 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2090
2091 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2092 /* no sense, TUR either succeeded or failed
2093 * with a status error */
2094 if(!spintime && !scsi_status_is_good(the_result)) {
2095 sd_print_result(sdkp, "Test Unit Ready failed",
2096 the_result);
2097 }
2098 break;
2099 }
2100
2101 /*
2102 * The device does not want the automatic start to be issued.
2103 */
2104 if (sdkp->device->no_start_on_add)
2105 break;
2106
2107 if (sense_valid && sshdr.sense_key == NOT_READY) {
2108 if (sshdr.asc == 4 && sshdr.ascq == 3)
2109 break; /* manual intervention required */
2110 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2111 break; /* standby */
2112 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2113 break; /* unavailable */
2114 /*
2115 * Issue command to spin up drive when not ready
2116 */
2117 if (!spintime) {
2118 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2119 cmd[0] = START_STOP;
2120 cmd[1] = 1; /* Return immediately */
2121 memset((void *) &cmd[2], 0, 8);
2122 cmd[4] = 1; /* Start spin cycle */
2123 if (sdkp->device->start_stop_pwr_cond)
2124 cmd[4] |= 1 << 4;
2125 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2126 NULL, 0, &sshdr,
2127 SD_TIMEOUT, SD_MAX_RETRIES,
2128 NULL);
2129 spintime_expire = jiffies + 100 * HZ;
2130 spintime = 1;
2131 }
2132 /* Wait 1 second for next try */
2133 msleep(1000);
2134 printk(".");
2135
2136 /*
2137 * Wait for USB flash devices with slow firmware.
2138 * Yes, this sense key/ASC combination shouldn't
2139 * occur here. It's characteristic of these devices.
2140 */
2141 } else if (sense_valid &&
2142 sshdr.sense_key == UNIT_ATTENTION &&
2143 sshdr.asc == 0x28) {
2144 if (!spintime) {
2145 spintime_expire = jiffies + 5 * HZ;
2146 spintime = 1;
2147 }
2148 /* Wait 1 second for next try */
2149 msleep(1000);
2150 } else {
2151 /* we don't understand the sense code, so it's
2152 * probably pointless to loop */
2153 if(!spintime) {
2154 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2155 sd_print_sense_hdr(sdkp, &sshdr);
2156 }
2157 break;
2158 }
2159
2160 } while (spintime && time_before_eq(jiffies, spintime_expire));
2161
2162 if (spintime) {
2163 if (scsi_status_is_good(the_result))
2164 printk("ready\n");
2165 else
2166 printk("not responding...\n");
2167 }
2168 }
2169
2170 /*
2171 * Determine whether disk supports Data Integrity Field.
2172 */
2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2174 {
2175 struct scsi_device *sdp = sdkp->device;
2176 u8 type;
2177 int ret = 0;
2178
2179 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2180 return ret;
2181
2182 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2183
2184 if (type > T10_PI_TYPE3_PROTECTION)
2185 ret = -ENODEV;
2186 else if (scsi_host_dif_capable(sdp->host, type))
2187 ret = 1;
2188
2189 if (sdkp->first_scan || type != sdkp->protection_type)
2190 switch (ret) {
2191 case -ENODEV:
2192 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2193 " protection type %u. Disabling disk!\n",
2194 type);
2195 break;
2196 case 1:
2197 sd_printk(KERN_NOTICE, sdkp,
2198 "Enabling DIF Type %u protection\n", type);
2199 break;
2200 case 0:
2201 sd_printk(KERN_NOTICE, sdkp,
2202 "Disabling DIF Type %u protection\n", type);
2203 break;
2204 }
2205
2206 sdkp->protection_type = type;
2207
2208 return ret;
2209 }
2210
2211 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2212 struct scsi_sense_hdr *sshdr, int sense_valid,
2213 int the_result)
2214 {
2215 if (driver_byte(the_result) & DRIVER_SENSE)
2216 sd_print_sense_hdr(sdkp, sshdr);
2217 else
2218 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2219
2220 /*
2221 * Set dirty bit for removable devices if not ready -
2222 * sometimes drives will not report this properly.
2223 */
2224 if (sdp->removable &&
2225 sense_valid && sshdr->sense_key == NOT_READY)
2226 set_media_not_present(sdkp);
2227
2228 /*
2229 * We used to set media_present to 0 here to indicate no media
2230 * in the drive, but some drives fail read capacity even with
2231 * media present, so we can't do that.
2232 */
2233 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2234 }
2235
2236 #define RC16_LEN 32
2237 #if RC16_LEN > SD_BUF_SIZE
2238 #error RC16_LEN must not be more than SD_BUF_SIZE
2239 #endif
2240
2241 #define READ_CAPACITY_RETRIES_ON_RESET 10
2242
2243 /*
2244 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2245 * and the reported logical block size is bigger than 512 bytes. Note
2246 * that last_sector is a u64 and therefore logical_to_sectors() is not
2247 * applicable.
2248 */
2249 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2250 {
2251 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2252
2253 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2254 return false;
2255
2256 return true;
2257 }
2258
2259 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260 unsigned char *buffer)
2261 {
2262 unsigned char cmd[16];
2263 struct scsi_sense_hdr sshdr;
2264 int sense_valid = 0;
2265 int the_result;
2266 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2267 unsigned int alignment;
2268 unsigned long long lba;
2269 unsigned sector_size;
2270
2271 if (sdp->no_read_capacity_16)
2272 return -EINVAL;
2273
2274 do {
2275 memset(cmd, 0, 16);
2276 cmd[0] = SERVICE_ACTION_IN_16;
2277 cmd[1] = SAI_READ_CAPACITY_16;
2278 cmd[13] = RC16_LEN;
2279 memset(buffer, 0, RC16_LEN);
2280
2281 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2282 buffer, RC16_LEN, &sshdr,
2283 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2284
2285 if (media_not_present(sdkp, &sshdr))
2286 return -ENODEV;
2287
2288 if (the_result) {
2289 sense_valid = scsi_sense_valid(&sshdr);
2290 if (sense_valid &&
2291 sshdr.sense_key == ILLEGAL_REQUEST &&
2292 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2293 sshdr.ascq == 0x00)
2294 /* Invalid Command Operation Code or
2295 * Invalid Field in CDB, just retry
2296 * silently with RC10 */
2297 return -EINVAL;
2298 if (sense_valid &&
2299 sshdr.sense_key == UNIT_ATTENTION &&
2300 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2301 /* Device reset might occur several times,
2302 * give it one more chance */
2303 if (--reset_retries > 0)
2304 continue;
2305 }
2306 retries--;
2307
2308 } while (the_result && retries);
2309
2310 if (the_result) {
2311 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2312 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2313 return -EINVAL;
2314 }
2315
2316 sector_size = get_unaligned_be32(&buffer[8]);
2317 lba = get_unaligned_be64(&buffer[0]);
2318
2319 if (sd_read_protection_type(sdkp, buffer) < 0) {
2320 sdkp->capacity = 0;
2321 return -ENODEV;
2322 }
2323
2324 if (!sd_addressable_capacity(lba, sector_size)) {
2325 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2326 "kernel compiled with support for large block "
2327 "devices.\n");
2328 sdkp->capacity = 0;
2329 return -EOVERFLOW;
2330 }
2331
2332 /* Logical blocks per physical block exponent */
2333 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2334
2335 /* RC basis */
2336 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2337
2338 /* Lowest aligned logical block */
2339 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2340 blk_queue_alignment_offset(sdp->request_queue, alignment);
2341 if (alignment && sdkp->first_scan)
2342 sd_printk(KERN_NOTICE, sdkp,
2343 "physical block alignment offset: %u\n", alignment);
2344
2345 if (buffer[14] & 0x80) { /* LBPME */
2346 sdkp->lbpme = 1;
2347
2348 if (buffer[14] & 0x40) /* LBPRZ */
2349 sdkp->lbprz = 1;
2350
2351 sd_config_discard(sdkp, SD_LBP_WS16);
2352 }
2353
2354 sdkp->capacity = lba + 1;
2355 return sector_size;
2356 }
2357
2358 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2359 unsigned char *buffer)
2360 {
2361 unsigned char cmd[16];
2362 struct scsi_sense_hdr sshdr;
2363 int sense_valid = 0;
2364 int the_result;
2365 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2366 sector_t lba;
2367 unsigned sector_size;
2368
2369 do {
2370 cmd[0] = READ_CAPACITY;
2371 memset(&cmd[1], 0, 9);
2372 memset(buffer, 0, 8);
2373
2374 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2375 buffer, 8, &sshdr,
2376 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2377
2378 if (media_not_present(sdkp, &sshdr))
2379 return -ENODEV;
2380
2381 if (the_result) {
2382 sense_valid = scsi_sense_valid(&sshdr);
2383 if (sense_valid &&
2384 sshdr.sense_key == UNIT_ATTENTION &&
2385 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2386 /* Device reset might occur several times,
2387 * give it one more chance */
2388 if (--reset_retries > 0)
2389 continue;
2390 }
2391 retries--;
2392
2393 } while (the_result && retries);
2394
2395 if (the_result) {
2396 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2397 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2398 return -EINVAL;
2399 }
2400
2401 sector_size = get_unaligned_be32(&buffer[4]);
2402 lba = get_unaligned_be32(&buffer[0]);
2403
2404 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2405 /* Some buggy (usb cardreader) devices return an lba of
2406 0xffffffff when the want to report a size of 0 (with
2407 which they really mean no media is present) */
2408 sdkp->capacity = 0;
2409 sdkp->physical_block_size = sector_size;
2410 return sector_size;
2411 }
2412
2413 if (!sd_addressable_capacity(lba, sector_size)) {
2414 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2415 "kernel compiled with support for large block "
2416 "devices.\n");
2417 sdkp->capacity = 0;
2418 return -EOVERFLOW;
2419 }
2420
2421 sdkp->capacity = lba + 1;
2422 sdkp->physical_block_size = sector_size;
2423 return sector_size;
2424 }
2425
2426 static int sd_try_rc16_first(struct scsi_device *sdp)
2427 {
2428 if (sdp->host->max_cmd_len < 16)
2429 return 0;
2430 if (sdp->try_rc_10_first)
2431 return 0;
2432 if (sdp->scsi_level > SCSI_SPC_2)
2433 return 1;
2434 if (scsi_device_protection(sdp))
2435 return 1;
2436 return 0;
2437 }
2438
2439 /*
2440 * read disk capacity
2441 */
2442 static void
2443 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2444 {
2445 int sector_size;
2446 struct scsi_device *sdp = sdkp->device;
2447
2448 if (sd_try_rc16_first(sdp)) {
2449 sector_size = read_capacity_16(sdkp, sdp, buffer);
2450 if (sector_size == -EOVERFLOW)
2451 goto got_data;
2452 if (sector_size == -ENODEV)
2453 return;
2454 if (sector_size < 0)
2455 sector_size = read_capacity_10(sdkp, sdp, buffer);
2456 if (sector_size < 0)
2457 return;
2458 } else {
2459 sector_size = read_capacity_10(sdkp, sdp, buffer);
2460 if (sector_size == -EOVERFLOW)
2461 goto got_data;
2462 if (sector_size < 0)
2463 return;
2464 if ((sizeof(sdkp->capacity) > 4) &&
2465 (sdkp->capacity > 0xffffffffULL)) {
2466 int old_sector_size = sector_size;
2467 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2468 "Trying to use READ CAPACITY(16).\n");
2469 sector_size = read_capacity_16(sdkp, sdp, buffer);
2470 if (sector_size < 0) {
2471 sd_printk(KERN_NOTICE, sdkp,
2472 "Using 0xffffffff as device size\n");
2473 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2474 sector_size = old_sector_size;
2475 goto got_data;
2476 }
2477 }
2478 }
2479
2480 /* Some devices are known to return the total number of blocks,
2481 * not the highest block number. Some devices have versions
2482 * which do this and others which do not. Some devices we might
2483 * suspect of doing this but we don't know for certain.
2484 *
2485 * If we know the reported capacity is wrong, decrement it. If
2486 * we can only guess, then assume the number of blocks is even
2487 * (usually true but not always) and err on the side of lowering
2488 * the capacity.
2489 */
2490 if (sdp->fix_capacity ||
2491 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2492 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2493 "from its reported value: %llu\n",
2494 (unsigned long long) sdkp->capacity);
2495 --sdkp->capacity;
2496 }
2497
2498 got_data:
2499 if (sector_size == 0) {
2500 sector_size = 512;
2501 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2502 "assuming 512.\n");
2503 }
2504
2505 if (sector_size != 512 &&
2506 sector_size != 1024 &&
2507 sector_size != 2048 &&
2508 sector_size != 4096) {
2509 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2510 sector_size);
2511 /*
2512 * The user might want to re-format the drive with
2513 * a supported sectorsize. Once this happens, it
2514 * would be relatively trivial to set the thing up.
2515 * For this reason, we leave the thing in the table.
2516 */
2517 sdkp->capacity = 0;
2518 /*
2519 * set a bogus sector size so the normal read/write
2520 * logic in the block layer will eventually refuse any
2521 * request on this device without tripping over power
2522 * of two sector size assumptions
2523 */
2524 sector_size = 512;
2525 }
2526 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2527 blk_queue_physical_block_size(sdp->request_queue,
2528 sdkp->physical_block_size);
2529 sdkp->device->sector_size = sector_size;
2530
2531 if (sdkp->capacity > 0xffffffff)
2532 sdp->use_16_for_rw = 1;
2533
2534 }
2535
2536 /*
2537 * Print disk capacity
2538 */
2539 static void
2540 sd_print_capacity(struct scsi_disk *sdkp,
2541 sector_t old_capacity)
2542 {
2543 int sector_size = sdkp->device->sector_size;
2544 char cap_str_2[10], cap_str_10[10];
2545
2546 string_get_size(sdkp->capacity, sector_size,
2547 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2548 string_get_size(sdkp->capacity, sector_size,
2549 STRING_UNITS_10, cap_str_10,
2550 sizeof(cap_str_10));
2551
2552 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2553 sd_printk(KERN_NOTICE, sdkp,
2554 "%llu %d-byte logical blocks: (%s/%s)\n",
2555 (unsigned long long)sdkp->capacity,
2556 sector_size, cap_str_10, cap_str_2);
2557
2558 if (sdkp->physical_block_size != sector_size)
2559 sd_printk(KERN_NOTICE, sdkp,
2560 "%u-byte physical blocks\n",
2561 sdkp->physical_block_size);
2562
2563 sd_zbc_print_zones(sdkp);
2564 }
2565 }
2566
2567 /* called with buffer of length 512 */
2568 static inline int
2569 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2570 unsigned char *buffer, int len, struct scsi_mode_data *data,
2571 struct scsi_sense_hdr *sshdr)
2572 {
2573 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2574 SD_TIMEOUT, SD_MAX_RETRIES, data,
2575 sshdr);
2576 }
2577
2578 /*
2579 * read write protect setting, if possible - called only in sd_revalidate_disk()
2580 * called with buffer of length SD_BUF_SIZE
2581 */
2582 static void
2583 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2584 {
2585 int res;
2586 struct scsi_device *sdp = sdkp->device;
2587 struct scsi_mode_data data;
2588 int old_wp = sdkp->write_prot;
2589
2590 set_disk_ro(sdkp->disk, 0);
2591 if (sdp->skip_ms_page_3f) {
2592 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2593 return;
2594 }
2595
2596 if (sdp->use_192_bytes_for_3f) {
2597 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2598 } else {
2599 /*
2600 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2601 * We have to start carefully: some devices hang if we ask
2602 * for more than is available.
2603 */
2604 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2605
2606 /*
2607 * Second attempt: ask for page 0 When only page 0 is
2608 * implemented, a request for page 3F may return Sense Key
2609 * 5: Illegal Request, Sense Code 24: Invalid field in
2610 * CDB.
2611 */
2612 if (!scsi_status_is_good(res))
2613 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2614
2615 /*
2616 * Third attempt: ask 255 bytes, as we did earlier.
2617 */
2618 if (!scsi_status_is_good(res))
2619 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2620 &data, NULL);
2621 }
2622
2623 if (!scsi_status_is_good(res)) {
2624 sd_first_printk(KERN_WARNING, sdkp,
2625 "Test WP failed, assume Write Enabled\n");
2626 } else {
2627 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2628 set_disk_ro(sdkp->disk, sdkp->write_prot);
2629 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2630 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2631 sdkp->write_prot ? "on" : "off");
2632 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2633 }
2634 }
2635 }
2636
2637 /*
2638 * sd_read_cache_type - called only from sd_revalidate_disk()
2639 * called with buffer of length SD_BUF_SIZE
2640 */
2641 static void
2642 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2643 {
2644 int len = 0, res;
2645 struct scsi_device *sdp = sdkp->device;
2646
2647 int dbd;
2648 int modepage;
2649 int first_len;
2650 struct scsi_mode_data data;
2651 struct scsi_sense_hdr sshdr;
2652 int old_wce = sdkp->WCE;
2653 int old_rcd = sdkp->RCD;
2654 int old_dpofua = sdkp->DPOFUA;
2655
2656
2657 if (sdkp->cache_override)
2658 return;
2659
2660 first_len = 4;
2661 if (sdp->skip_ms_page_8) {
2662 if (sdp->type == TYPE_RBC)
2663 goto defaults;
2664 else {
2665 if (sdp->skip_ms_page_3f)
2666 goto defaults;
2667 modepage = 0x3F;
2668 if (sdp->use_192_bytes_for_3f)
2669 first_len = 192;
2670 dbd = 0;
2671 }
2672 } else if (sdp->type == TYPE_RBC) {
2673 modepage = 6;
2674 dbd = 8;
2675 } else {
2676 modepage = 8;
2677 dbd = 0;
2678 }
2679
2680 /* cautiously ask */
2681 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2682 &data, &sshdr);
2683
2684 if (!scsi_status_is_good(res))
2685 goto bad_sense;
2686
2687 if (!data.header_length) {
2688 modepage = 6;
2689 first_len = 0;
2690 sd_first_printk(KERN_ERR, sdkp,
2691 "Missing header in MODE_SENSE response\n");
2692 }
2693
2694 /* that went OK, now ask for the proper length */
2695 len = data.length;
2696
2697 /*
2698 * We're only interested in the first three bytes, actually.
2699 * But the data cache page is defined for the first 20.
2700 */
2701 if (len < 3)
2702 goto bad_sense;
2703 else if (len > SD_BUF_SIZE) {
2704 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2705 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2706 len = SD_BUF_SIZE;
2707 }
2708 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2709 len = 192;
2710
2711 /* Get the data */
2712 if (len > first_len)
2713 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2714 &data, &sshdr);
2715
2716 if (scsi_status_is_good(res)) {
2717 int offset = data.header_length + data.block_descriptor_length;
2718
2719 while (offset < len) {
2720 u8 page_code = buffer[offset] & 0x3F;
2721 u8 spf = buffer[offset] & 0x40;
2722
2723 if (page_code == 8 || page_code == 6) {
2724 /* We're interested only in the first 3 bytes.
2725 */
2726 if (len - offset <= 2) {
2727 sd_first_printk(KERN_ERR, sdkp,
2728 "Incomplete mode parameter "
2729 "data\n");
2730 goto defaults;
2731 } else {
2732 modepage = page_code;
2733 goto Page_found;
2734 }
2735 } else {
2736 /* Go to the next page */
2737 if (spf && len - offset > 3)
2738 offset += 4 + (buffer[offset+2] << 8) +
2739 buffer[offset+3];
2740 else if (!spf && len - offset > 1)
2741 offset += 2 + buffer[offset+1];
2742 else {
2743 sd_first_printk(KERN_ERR, sdkp,
2744 "Incomplete mode "
2745 "parameter data\n");
2746 goto defaults;
2747 }
2748 }
2749 }
2750
2751 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2752 goto defaults;
2753
2754 Page_found:
2755 if (modepage == 8) {
2756 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2757 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2758 } else {
2759 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2760 sdkp->RCD = 0;
2761 }
2762
2763 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2764 if (sdp->broken_fua) {
2765 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2766 sdkp->DPOFUA = 0;
2767 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2768 !sdkp->device->use_16_for_rw) {
2769 sd_first_printk(KERN_NOTICE, sdkp,
2770 "Uses READ/WRITE(6), disabling FUA\n");
2771 sdkp->DPOFUA = 0;
2772 }
2773
2774 /* No cache flush allowed for write protected devices */
2775 if (sdkp->WCE && sdkp->write_prot)
2776 sdkp->WCE = 0;
2777
2778 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2779 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2780 sd_printk(KERN_NOTICE, sdkp,
2781 "Write cache: %s, read cache: %s, %s\n",
2782 sdkp->WCE ? "enabled" : "disabled",
2783 sdkp->RCD ? "disabled" : "enabled",
2784 sdkp->DPOFUA ? "supports DPO and FUA"
2785 : "doesn't support DPO or FUA");
2786
2787 return;
2788 }
2789
2790 bad_sense:
2791 if (scsi_sense_valid(&sshdr) &&
2792 sshdr.sense_key == ILLEGAL_REQUEST &&
2793 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2794 /* Invalid field in CDB */
2795 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2796 else
2797 sd_first_printk(KERN_ERR, sdkp,
2798 "Asking for cache data failed\n");
2799
2800 defaults:
2801 if (sdp->wce_default_on) {
2802 sd_first_printk(KERN_NOTICE, sdkp,
2803 "Assuming drive cache: write back\n");
2804 sdkp->WCE = 1;
2805 } else {
2806 sd_first_printk(KERN_ERR, sdkp,
2807 "Assuming drive cache: write through\n");
2808 sdkp->WCE = 0;
2809 }
2810 sdkp->RCD = 0;
2811 sdkp->DPOFUA = 0;
2812 }
2813
2814 /*
2815 * The ATO bit indicates whether the DIF application tag is available
2816 * for use by the operating system.
2817 */
2818 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2819 {
2820 int res, offset;
2821 struct scsi_device *sdp = sdkp->device;
2822 struct scsi_mode_data data;
2823 struct scsi_sense_hdr sshdr;
2824
2825 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2826 return;
2827
2828 if (sdkp->protection_type == 0)
2829 return;
2830
2831 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2832 SD_MAX_RETRIES, &data, &sshdr);
2833
2834 if (!scsi_status_is_good(res) || !data.header_length ||
2835 data.length < 6) {
2836 sd_first_printk(KERN_WARNING, sdkp,
2837 "getting Control mode page failed, assume no ATO\n");
2838
2839 if (scsi_sense_valid(&sshdr))
2840 sd_print_sense_hdr(sdkp, &sshdr);
2841
2842 return;
2843 }
2844
2845 offset = data.header_length + data.block_descriptor_length;
2846
2847 if ((buffer[offset] & 0x3f) != 0x0a) {
2848 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2849 return;
2850 }
2851
2852 if ((buffer[offset + 5] & 0x80) == 0)
2853 return;
2854
2855 sdkp->ATO = 1;
2856
2857 return;
2858 }
2859
2860 /**
2861 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2862 * @sdkp: disk to query
2863 */
2864 static void sd_read_block_limits(struct scsi_disk *sdkp)
2865 {
2866 unsigned int sector_sz = sdkp->device->sector_size;
2867 const int vpd_len = 64;
2868 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2869
2870 if (!buffer ||
2871 /* Block Limits VPD */
2872 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2873 goto out;
2874
2875 blk_queue_io_min(sdkp->disk->queue,
2876 get_unaligned_be16(&buffer[6]) * sector_sz);
2877
2878 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2879 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2880
2881 if (buffer[3] == 0x3c) {
2882 unsigned int lba_count, desc_count;
2883
2884 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2885
2886 if (!sdkp->lbpme)
2887 goto out;
2888
2889 lba_count = get_unaligned_be32(&buffer[20]);
2890 desc_count = get_unaligned_be32(&buffer[24]);
2891
2892 if (lba_count && desc_count)
2893 sdkp->max_unmap_blocks = lba_count;
2894
2895 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2896
2897 if (buffer[32] & 0x80)
2898 sdkp->unmap_alignment =
2899 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2900
2901 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2902
2903 if (sdkp->max_unmap_blocks)
2904 sd_config_discard(sdkp, SD_LBP_UNMAP);
2905 else
2906 sd_config_discard(sdkp, SD_LBP_WS16);
2907
2908 } else { /* LBP VPD page tells us what to use */
2909 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2910 sd_config_discard(sdkp, SD_LBP_UNMAP);
2911 else if (sdkp->lbpws)
2912 sd_config_discard(sdkp, SD_LBP_WS16);
2913 else if (sdkp->lbpws10)
2914 sd_config_discard(sdkp, SD_LBP_WS10);
2915 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2916 sd_config_discard(sdkp, SD_LBP_UNMAP);
2917 else
2918 sd_config_discard(sdkp, SD_LBP_DISABLE);
2919 }
2920 }
2921
2922 out:
2923 kfree(buffer);
2924 }
2925
2926 /**
2927 * sd_read_block_characteristics - Query block dev. characteristics
2928 * @sdkp: disk to query
2929 */
2930 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2931 {
2932 struct request_queue *q = sdkp->disk->queue;
2933 unsigned char *buffer;
2934 u16 rot;
2935 const int vpd_len = 64;
2936
2937 buffer = kmalloc(vpd_len, GFP_KERNEL);
2938
2939 if (!buffer ||
2940 /* Block Device Characteristics VPD */
2941 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2942 goto out;
2943
2944 rot = get_unaligned_be16(&buffer[4]);
2945
2946 if (rot == 1) {
2947 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2948 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2949 }
2950
2951 if (sdkp->device->type == TYPE_ZBC) {
2952 /* Host-managed */
2953 q->limits.zoned = BLK_ZONED_HM;
2954 } else {
2955 sdkp->zoned = (buffer[8] >> 4) & 3;
2956 if (sdkp->zoned == 1)
2957 /* Host-aware */
2958 q->limits.zoned = BLK_ZONED_HA;
2959 else
2960 /*
2961 * Treat drive-managed devices as
2962 * regular block devices.
2963 */
2964 q->limits.zoned = BLK_ZONED_NONE;
2965 }
2966 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2967 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2968 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2969
2970 out:
2971 kfree(buffer);
2972 }
2973
2974 /**
2975 * sd_read_block_provisioning - Query provisioning VPD page
2976 * @sdkp: disk to query
2977 */
2978 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2979 {
2980 unsigned char *buffer;
2981 const int vpd_len = 8;
2982
2983 if (sdkp->lbpme == 0)
2984 return;
2985
2986 buffer = kmalloc(vpd_len, GFP_KERNEL);
2987
2988 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2989 goto out;
2990
2991 sdkp->lbpvpd = 1;
2992 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2993 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2994 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2995
2996 out:
2997 kfree(buffer);
2998 }
2999
3000 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3001 {
3002 struct scsi_device *sdev = sdkp->device;
3003
3004 if (sdev->host->no_write_same) {
3005 sdev->no_write_same = 1;
3006
3007 return;
3008 }
3009
3010 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3011 /* too large values might cause issues with arcmsr */
3012 int vpd_buf_len = 64;
3013
3014 sdev->no_report_opcodes = 1;
3015
3016 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3017 * CODES is unsupported and the device has an ATA
3018 * Information VPD page (SAT).
3019 */
3020 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3021 sdev->no_write_same = 1;
3022 }
3023
3024 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3025 sdkp->ws16 = 1;
3026
3027 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3028 sdkp->ws10 = 1;
3029 }
3030
3031 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3032 {
3033 struct scsi_device *sdev = sdkp->device;
3034
3035 if (!sdev->security_supported)
3036 return;
3037
3038 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3039 SECURITY_PROTOCOL_IN) == 1 &&
3040 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3041 SECURITY_PROTOCOL_OUT) == 1)
3042 sdkp->security = 1;
3043 }
3044
3045 /**
3046 * sd_revalidate_disk - called the first time a new disk is seen,
3047 * performs disk spin up, read_capacity, etc.
3048 * @disk: struct gendisk we care about
3049 **/
3050 static int sd_revalidate_disk(struct gendisk *disk)
3051 {
3052 struct scsi_disk *sdkp = scsi_disk(disk);
3053 struct scsi_device *sdp = sdkp->device;
3054 struct request_queue *q = sdkp->disk->queue;
3055 sector_t old_capacity = sdkp->capacity;
3056 unsigned char *buffer;
3057 unsigned int dev_max, rw_max;
3058
3059 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3060 "sd_revalidate_disk\n"));
3061
3062 /*
3063 * If the device is offline, don't try and read capacity or any
3064 * of the other niceties.
3065 */
3066 if (!scsi_device_online(sdp))
3067 goto out;
3068
3069 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3070 if (!buffer) {
3071 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3072 "allocation failure.\n");
3073 goto out;
3074 }
3075
3076 sd_spinup_disk(sdkp);
3077
3078 /*
3079 * Without media there is no reason to ask; moreover, some devices
3080 * react badly if we do.
3081 */
3082 if (sdkp->media_present) {
3083 sd_read_capacity(sdkp, buffer);
3084
3085 if (scsi_device_supports_vpd(sdp)) {
3086 sd_read_block_provisioning(sdkp);
3087 sd_read_block_limits(sdkp);
3088 sd_read_block_characteristics(sdkp);
3089 sd_zbc_read_zones(sdkp, buffer);
3090 }
3091
3092 sd_print_capacity(sdkp, old_capacity);
3093
3094 sd_read_write_protect_flag(sdkp, buffer);
3095 sd_read_cache_type(sdkp, buffer);
3096 sd_read_app_tag_own(sdkp, buffer);
3097 sd_read_write_same(sdkp, buffer);
3098 sd_read_security(sdkp, buffer);
3099 }
3100
3101 sdkp->first_scan = 0;
3102
3103 /*
3104 * We now have all cache related info, determine how we deal
3105 * with flush requests.
3106 */
3107 sd_set_flush_flag(sdkp);
3108
3109 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3110 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3111
3112 /* Some devices report a maximum block count for READ/WRITE requests. */
3113 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3114 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3115
3116 /*
3117 * Use the device's preferred I/O size for reads and writes
3118 * unless the reported value is unreasonably small, large, or
3119 * garbage.
3120 */
3121 if (sdkp->opt_xfer_blocks &&
3122 sdkp->opt_xfer_blocks <= dev_max &&
3123 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3124 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3125 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3126 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3127 } else
3128 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3129 (sector_t)BLK_DEF_MAX_SECTORS);
3130
3131 /* Combine with controller limits */
3132 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3133
3134 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3135 sd_config_write_same(sdkp);
3136 kfree(buffer);
3137
3138 out:
3139 return 0;
3140 }
3141
3142 /**
3143 * sd_unlock_native_capacity - unlock native capacity
3144 * @disk: struct gendisk to set capacity for
3145 *
3146 * Block layer calls this function if it detects that partitions
3147 * on @disk reach beyond the end of the device. If the SCSI host
3148 * implements ->unlock_native_capacity() method, it's invoked to
3149 * give it a chance to adjust the device capacity.
3150 *
3151 * CONTEXT:
3152 * Defined by block layer. Might sleep.
3153 */
3154 static void sd_unlock_native_capacity(struct gendisk *disk)
3155 {
3156 struct scsi_device *sdev = scsi_disk(disk)->device;
3157
3158 if (sdev->host->hostt->unlock_native_capacity)
3159 sdev->host->hostt->unlock_native_capacity(sdev);
3160 }
3161
3162 /**
3163 * sd_format_disk_name - format disk name
3164 * @prefix: name prefix - ie. "sd" for SCSI disks
3165 * @index: index of the disk to format name for
3166 * @buf: output buffer
3167 * @buflen: length of the output buffer
3168 *
3169 * SCSI disk names starts at sda. The 26th device is sdz and the
3170 * 27th is sdaa. The last one for two lettered suffix is sdzz
3171 * which is followed by sdaaa.
3172 *
3173 * This is basically 26 base counting with one extra 'nil' entry
3174 * at the beginning from the second digit on and can be
3175 * determined using similar method as 26 base conversion with the
3176 * index shifted -1 after each digit is computed.
3177 *
3178 * CONTEXT:
3179 * Don't care.
3180 *
3181 * RETURNS:
3182 * 0 on success, -errno on failure.
3183 */
3184 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3185 {
3186 const int base = 'z' - 'a' + 1;
3187 char *begin = buf + strlen(prefix);
3188 char *end = buf + buflen;
3189 char *p;
3190 int unit;
3191
3192 p = end - 1;
3193 *p = '\0';
3194 unit = base;
3195 do {
3196 if (p == begin)
3197 return -EINVAL;
3198 *--p = 'a' + (index % unit);
3199 index = (index / unit) - 1;
3200 } while (index >= 0);
3201
3202 memmove(begin, p, end - p);
3203 memcpy(buf, prefix, strlen(prefix));
3204
3205 return 0;
3206 }
3207
3208 /*
3209 * The asynchronous part of sd_probe
3210 */
3211 static void sd_probe_async(void *data, async_cookie_t cookie)
3212 {
3213 struct scsi_disk *sdkp = data;
3214 struct scsi_device *sdp;
3215 struct gendisk *gd;
3216 u32 index;
3217 struct device *dev;
3218
3219 sdp = sdkp->device;
3220 gd = sdkp->disk;
3221 index = sdkp->index;
3222 dev = &sdp->sdev_gendev;
3223
3224 gd->major = sd_major((index & 0xf0) >> 4);
3225 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3226 gd->minors = SD_MINORS;
3227
3228 gd->fops = &sd_fops;
3229 gd->private_data = &sdkp->driver;
3230 gd->queue = sdkp->device->request_queue;
3231
3232 /* defaults, until the device tells us otherwise */
3233 sdp->sector_size = 512;
3234 sdkp->capacity = 0;
3235 sdkp->media_present = 1;
3236 sdkp->write_prot = 0;
3237 sdkp->cache_override = 0;
3238 sdkp->WCE = 0;
3239 sdkp->RCD = 0;
3240 sdkp->ATO = 0;
3241 sdkp->first_scan = 1;
3242 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3243
3244 sd_revalidate_disk(gd);
3245
3246 gd->flags = GENHD_FL_EXT_DEVT;
3247 if (sdp->removable) {
3248 gd->flags |= GENHD_FL_REMOVABLE;
3249 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3250 }
3251
3252 blk_pm_runtime_init(sdp->request_queue, dev);
3253 device_add_disk(dev, gd);
3254 if (sdkp->capacity)
3255 sd_dif_config_host(sdkp);
3256
3257 sd_revalidate_disk(gd);
3258
3259 if (sdkp->security) {
3260 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3261 if (sdkp->opal_dev)
3262 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3263 }
3264
3265 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3266 sdp->removable ? "removable " : "");
3267 scsi_autopm_put_device(sdp);
3268 put_device(&sdkp->dev);
3269 }
3270
3271 /**
3272 * sd_probe - called during driver initialization and whenever a
3273 * new scsi device is attached to the system. It is called once
3274 * for each scsi device (not just disks) present.
3275 * @dev: pointer to device object
3276 *
3277 * Returns 0 if successful (or not interested in this scsi device
3278 * (e.g. scanner)); 1 when there is an error.
3279 *
3280 * Note: this function is invoked from the scsi mid-level.
3281 * This function sets up the mapping between a given
3282 * <host,channel,id,lun> (found in sdp) and new device name
3283 * (e.g. /dev/sda). More precisely it is the block device major
3284 * and minor number that is chosen here.
3285 *
3286 * Assume sd_probe is not re-entrant (for time being)
3287 * Also think about sd_probe() and sd_remove() running coincidentally.
3288 **/
3289 static int sd_probe(struct device *dev)
3290 {
3291 struct scsi_device *sdp = to_scsi_device(dev);
3292 struct scsi_disk *sdkp;
3293 struct gendisk *gd;
3294 int index;
3295 int error;
3296
3297 scsi_autopm_get_device(sdp);
3298 error = -ENODEV;
3299 if (sdp->type != TYPE_DISK &&
3300 sdp->type != TYPE_ZBC &&
3301 sdp->type != TYPE_MOD &&
3302 sdp->type != TYPE_RBC)
3303 goto out;
3304
3305 #ifndef CONFIG_BLK_DEV_ZONED
3306 if (sdp->type == TYPE_ZBC)
3307 goto out;
3308 #endif
3309 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3310 "sd_probe\n"));
3311
3312 error = -ENOMEM;
3313 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3314 if (!sdkp)
3315 goto out;
3316
3317 gd = alloc_disk(SD_MINORS);
3318 if (!gd)
3319 goto out_free;
3320
3321 do {
3322 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3323 goto out_put;
3324
3325 spin_lock(&sd_index_lock);
3326 error = ida_get_new(&sd_index_ida, &index);
3327 spin_unlock(&sd_index_lock);
3328 } while (error == -EAGAIN);
3329
3330 if (error) {
3331 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3332 goto out_put;
3333 }
3334
3335 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3336 if (error) {
3337 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3338 goto out_free_index;
3339 }
3340
3341 sdkp->device = sdp;
3342 sdkp->driver = &sd_template;
3343 sdkp->disk = gd;
3344 sdkp->index = index;
3345 atomic_set(&sdkp->openers, 0);
3346 atomic_set(&sdkp->device->ioerr_cnt, 0);
3347
3348 if (!sdp->request_queue->rq_timeout) {
3349 if (sdp->type != TYPE_MOD)
3350 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3351 else
3352 blk_queue_rq_timeout(sdp->request_queue,
3353 SD_MOD_TIMEOUT);
3354 }
3355
3356 device_initialize(&sdkp->dev);
3357 sdkp->dev.parent = dev;
3358 sdkp->dev.class = &sd_disk_class;
3359 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3360
3361 error = device_add(&sdkp->dev);
3362 if (error)
3363 goto out_free_index;
3364
3365 get_device(dev);
3366 dev_set_drvdata(dev, sdkp);
3367
3368 get_device(&sdkp->dev); /* prevent release before async_schedule */
3369 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3370
3371 return 0;
3372
3373 out_free_index:
3374 spin_lock(&sd_index_lock);
3375 ida_remove(&sd_index_ida, index);
3376 spin_unlock(&sd_index_lock);
3377 out_put:
3378 put_disk(gd);
3379 out_free:
3380 kfree(sdkp);
3381 out:
3382 scsi_autopm_put_device(sdp);
3383 return error;
3384 }
3385
3386 /**
3387 * sd_remove - called whenever a scsi disk (previously recognized by
3388 * sd_probe) is detached from the system. It is called (potentially
3389 * multiple times) during sd module unload.
3390 * @dev: pointer to device object
3391 *
3392 * Note: this function is invoked from the scsi mid-level.
3393 * This function potentially frees up a device name (e.g. /dev/sdc)
3394 * that could be re-used by a subsequent sd_probe().
3395 * This function is not called when the built-in sd driver is "exit-ed".
3396 **/
3397 static int sd_remove(struct device *dev)
3398 {
3399 struct scsi_disk *sdkp;
3400 dev_t devt;
3401
3402 sdkp = dev_get_drvdata(dev);
3403 devt = disk_devt(sdkp->disk);
3404 scsi_autopm_get_device(sdkp->device);
3405
3406 async_synchronize_full_domain(&scsi_sd_pm_domain);
3407 async_synchronize_full_domain(&scsi_sd_probe_domain);
3408 device_del(&sdkp->dev);
3409 del_gendisk(sdkp->disk);
3410 sd_shutdown(dev);
3411
3412 sd_zbc_remove(sdkp);
3413
3414 free_opal_dev(sdkp->opal_dev);
3415
3416 blk_register_region(devt, SD_MINORS, NULL,
3417 sd_default_probe, NULL, NULL);
3418
3419 mutex_lock(&sd_ref_mutex);
3420 dev_set_drvdata(dev, NULL);
3421 put_device(&sdkp->dev);
3422 mutex_unlock(&sd_ref_mutex);
3423
3424 return 0;
3425 }
3426
3427 /**
3428 * scsi_disk_release - Called to free the scsi_disk structure
3429 * @dev: pointer to embedded class device
3430 *
3431 * sd_ref_mutex must be held entering this routine. Because it is
3432 * called on last put, you should always use the scsi_disk_get()
3433 * scsi_disk_put() helpers which manipulate the semaphore directly
3434 * and never do a direct put_device.
3435 **/
3436 static void scsi_disk_release(struct device *dev)
3437 {
3438 struct scsi_disk *sdkp = to_scsi_disk(dev);
3439 struct gendisk *disk = sdkp->disk;
3440
3441 spin_lock(&sd_index_lock);
3442 ida_remove(&sd_index_ida, sdkp->index);
3443 spin_unlock(&sd_index_lock);
3444
3445 disk->private_data = NULL;
3446 put_disk(disk);
3447 put_device(&sdkp->device->sdev_gendev);
3448
3449 kfree(sdkp);
3450 }
3451
3452 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3453 {
3454 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3455 struct scsi_sense_hdr sshdr;
3456 struct scsi_device *sdp = sdkp->device;
3457 int res;
3458
3459 if (start)
3460 cmd[4] |= 1; /* START */
3461
3462 if (sdp->start_stop_pwr_cond)
3463 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3464
3465 if (!scsi_device_online(sdp))
3466 return -ENODEV;
3467
3468 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3469 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3470 if (res) {
3471 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3472 if (driver_byte(res) & DRIVER_SENSE)
3473 sd_print_sense_hdr(sdkp, &sshdr);
3474 if (scsi_sense_valid(&sshdr) &&
3475 /* 0x3a is medium not present */
3476 sshdr.asc == 0x3a)
3477 res = 0;
3478 }
3479
3480 /* SCSI error codes must not go to the generic layer */
3481 if (res)
3482 return -EIO;
3483
3484 return 0;
3485 }
3486
3487 /*
3488 * Send a SYNCHRONIZE CACHE instruction down to the device through
3489 * the normal SCSI command structure. Wait for the command to
3490 * complete.
3491 */
3492 static void sd_shutdown(struct device *dev)
3493 {
3494 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3495
3496 if (!sdkp)
3497 return; /* this can happen */
3498
3499 if (pm_runtime_suspended(dev))
3500 return;
3501
3502 if (sdkp->WCE && sdkp->media_present) {
3503 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3504 sd_sync_cache(sdkp, NULL);
3505 }
3506
3507 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3508 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3509 sd_start_stop_device(sdkp, 0);
3510 }
3511 }
3512
3513 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3514 {
3515 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3516 struct scsi_sense_hdr sshdr;
3517 int ret = 0;
3518
3519 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3520 return 0;
3521
3522 if (sdkp->WCE && sdkp->media_present) {
3523 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3524 ret = sd_sync_cache(sdkp, &sshdr);
3525
3526 if (ret) {
3527 /* ignore OFFLINE device */
3528 if (ret == -ENODEV)
3529 return 0;
3530
3531 if (!scsi_sense_valid(&sshdr) ||
3532 sshdr.sense_key != ILLEGAL_REQUEST)
3533 return ret;
3534
3535 /*
3536 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3537 * doesn't support sync. There's not much to do and
3538 * suspend shouldn't fail.
3539 */
3540 ret = 0;
3541 }
3542 }
3543
3544 if (sdkp->device->manage_start_stop) {
3545 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3546 /* an error is not worth aborting a system sleep */
3547 ret = sd_start_stop_device(sdkp, 0);
3548 if (ignore_stop_errors)
3549 ret = 0;
3550 }
3551
3552 return ret;
3553 }
3554
3555 static int sd_suspend_system(struct device *dev)
3556 {
3557 return sd_suspend_common(dev, true);
3558 }
3559
3560 static int sd_suspend_runtime(struct device *dev)
3561 {
3562 return sd_suspend_common(dev, false);
3563 }
3564
3565 static int sd_resume(struct device *dev)
3566 {
3567 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3568 int ret;
3569
3570 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3571 return 0;
3572
3573 if (!sdkp->device->manage_start_stop)
3574 return 0;
3575
3576 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3577 ret = sd_start_stop_device(sdkp, 1);
3578 if (!ret)
3579 opal_unlock_from_suspend(sdkp->opal_dev);
3580 return ret;
3581 }
3582
3583 /**
3584 * init_sd - entry point for this driver (both when built in or when
3585 * a module).
3586 *
3587 * Note: this function registers this driver with the scsi mid-level.
3588 **/
3589 static int __init init_sd(void)
3590 {
3591 int majors = 0, i, err;
3592
3593 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3594
3595 for (i = 0; i < SD_MAJORS; i++) {
3596 if (register_blkdev(sd_major(i), "sd") != 0)
3597 continue;
3598 majors++;
3599 blk_register_region(sd_major(i), SD_MINORS, NULL,
3600 sd_default_probe, NULL, NULL);
3601 }
3602
3603 if (!majors)
3604 return -ENODEV;
3605
3606 err = class_register(&sd_disk_class);
3607 if (err)
3608 goto err_out;
3609
3610 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3611 0, 0, NULL);
3612 if (!sd_cdb_cache) {
3613 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3614 err = -ENOMEM;
3615 goto err_out_class;
3616 }
3617
3618 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3619 if (!sd_cdb_pool) {
3620 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3621 err = -ENOMEM;
3622 goto err_out_cache;
3623 }
3624
3625 err = scsi_register_driver(&sd_template.gendrv);
3626 if (err)
3627 goto err_out_driver;
3628
3629 return 0;
3630
3631 err_out_driver:
3632 mempool_destroy(sd_cdb_pool);
3633
3634 err_out_cache:
3635 kmem_cache_destroy(sd_cdb_cache);
3636
3637 err_out_class:
3638 class_unregister(&sd_disk_class);
3639 err_out:
3640 for (i = 0; i < SD_MAJORS; i++)
3641 unregister_blkdev(sd_major(i), "sd");
3642 return err;
3643 }
3644
3645 /**
3646 * exit_sd - exit point for this driver (when it is a module).
3647 *
3648 * Note: this function unregisters this driver from the scsi mid-level.
3649 **/
3650 static void __exit exit_sd(void)
3651 {
3652 int i;
3653
3654 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3655
3656 scsi_unregister_driver(&sd_template.gendrv);
3657 mempool_destroy(sd_cdb_pool);
3658 kmem_cache_destroy(sd_cdb_cache);
3659
3660 class_unregister(&sd_disk_class);
3661
3662 for (i = 0; i < SD_MAJORS; i++) {
3663 blk_unregister_region(sd_major(i), SD_MINORS);
3664 unregister_blkdev(sd_major(i), "sd");
3665 }
3666 }
3667
3668 module_init(init_sd);
3669 module_exit(exit_sd);
3670
3671 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3672 struct scsi_sense_hdr *sshdr)
3673 {
3674 scsi_print_sense_hdr(sdkp->device,
3675 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3676 }
3677
3678 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3679 int result)
3680 {
3681 const char *hb_string = scsi_hostbyte_string(result);
3682 const char *db_string = scsi_driverbyte_string(result);
3683
3684 if (hb_string || db_string)
3685 sd_printk(KERN_INFO, sdkp,
3686 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3687 hb_string ? hb_string : "invalid",
3688 db_string ? db_string : "invalid");
3689 else
3690 sd_printk(KERN_INFO, sdkp,
3691 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3692 msg, host_byte(result), driver_byte(result));
3693 }
3694