]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/sd.c
block: split out request-only flags into a new namespace
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <linux/t10-pi.h>
56 #include <asm/uaccess.h>
57 #include <asm/unaligned.h>
58
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_dbg.h>
62 #include <scsi/scsi_device.h>
63 #include <scsi/scsi_driver.h>
64 #include <scsi/scsi_eh.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsicam.h>
68
69 #include "sd.h"
70 #include "scsi_priv.h"
71 #include "scsi_logging.h"
72
73 MODULE_AUTHOR("Eric Youngdale");
74 MODULE_DESCRIPTION("SCSI disk (sd) driver");
75 MODULE_LICENSE("GPL");
76
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
97
98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
99 #define SD_MINORS 16
100 #else
101 #define SD_MINORS 0
102 #endif
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int sd_probe(struct device *);
109 static int sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static void sd_rescan(struct device *);
115 static int sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
122 static void sd_print_result(const struct scsi_disk *, const char *, int);
123
124 static DEFINE_SPINLOCK(sd_index_lock);
125 static DEFINE_IDA(sd_index_ida);
126
127 /* This semaphore is used to mediate the 0->1 reference get in the
128 * face of object destruction (i.e. we can't allow a get on an
129 * object after last put) */
130 static DEFINE_MUTEX(sd_ref_mutex);
131
132 static struct kmem_cache *sd_cdb_cache;
133 static mempool_t *sd_cdb_pool;
134
135 static const char *sd_cache_types[] = {
136 "write through", "none", "write back",
137 "write back, no read (daft)"
138 };
139
140 static void sd_set_flush_flag(struct scsi_disk *sdkp)
141 {
142 bool wc = false, fua = false;
143
144 if (sdkp->WCE) {
145 wc = true;
146 if (sdkp->DPOFUA)
147 fua = true;
148 }
149
150 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
151 }
152
153 static ssize_t
154 cache_type_store(struct device *dev, struct device_attribute *attr,
155 const char *buf, size_t count)
156 {
157 int i, ct = -1, rcd, wce, sp;
158 struct scsi_disk *sdkp = to_scsi_disk(dev);
159 struct scsi_device *sdp = sdkp->device;
160 char buffer[64];
161 char *buffer_data;
162 struct scsi_mode_data data;
163 struct scsi_sense_hdr sshdr;
164 static const char temp[] = "temporary ";
165 int len;
166
167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
168 /* no cache control on RBC devices; theoretically they
169 * can do it, but there's probably so many exceptions
170 * it's not worth the risk */
171 return -EINVAL;
172
173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
174 buf += sizeof(temp) - 1;
175 sdkp->cache_override = 1;
176 } else {
177 sdkp->cache_override = 0;
178 }
179
180 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
181 len = strlen(sd_cache_types[i]);
182 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
183 buf[len] == '\n') {
184 ct = i;
185 break;
186 }
187 }
188 if (ct < 0)
189 return -EINVAL;
190 rcd = ct & 0x01 ? 1 : 0;
191 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
192
193 if (sdkp->cache_override) {
194 sdkp->WCE = wce;
195 sdkp->RCD = rcd;
196 sd_set_flush_flag(sdkp);
197 return count;
198 }
199
200 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
201 SD_MAX_RETRIES, &data, NULL))
202 return -EINVAL;
203 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
204 data.block_descriptor_length);
205 buffer_data = buffer + data.header_length +
206 data.block_descriptor_length;
207 buffer_data[2] &= ~0x05;
208 buffer_data[2] |= wce << 2 | rcd;
209 sp = buffer_data[0] & 0x80 ? 1 : 0;
210 buffer_data[0] &= ~0x80;
211
212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
213 SD_MAX_RETRIES, &data, &sshdr)) {
214 if (scsi_sense_valid(&sshdr))
215 sd_print_sense_hdr(sdkp, &sshdr);
216 return -EINVAL;
217 }
218 revalidate_disk(sdkp->disk);
219 return count;
220 }
221
222 static ssize_t
223 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
224 char *buf)
225 {
226 struct scsi_disk *sdkp = to_scsi_disk(dev);
227 struct scsi_device *sdp = sdkp->device;
228
229 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
230 }
231
232 static ssize_t
233 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
234 const char *buf, size_t count)
235 {
236 struct scsi_disk *sdkp = to_scsi_disk(dev);
237 struct scsi_device *sdp = sdkp->device;
238
239 if (!capable(CAP_SYS_ADMIN))
240 return -EACCES;
241
242 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
243
244 return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 struct scsi_disk *sdkp = to_scsi_disk(dev);
252
253 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
254 }
255
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 const char *buf, size_t count)
259 {
260 struct scsi_disk *sdkp = to_scsi_disk(dev);
261 struct scsi_device *sdp = sdkp->device;
262
263 if (!capable(CAP_SYS_ADMIN))
264 return -EACCES;
265
266 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
267 return -EINVAL;
268
269 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
270
271 return count;
272 }
273 static DEVICE_ATTR_RW(allow_restart);
274
275 static ssize_t
276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278 struct scsi_disk *sdkp = to_scsi_disk(dev);
279 int ct = sdkp->RCD + 2*sdkp->WCE;
280
281 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
282 }
283 static DEVICE_ATTR_RW(cache_type);
284
285 static ssize_t
286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 struct scsi_disk *sdkp = to_scsi_disk(dev);
289
290 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
291 }
292 static DEVICE_ATTR_RO(FUA);
293
294 static ssize_t
295 protection_type_show(struct device *dev, struct device_attribute *attr,
296 char *buf)
297 {
298 struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
301 }
302
303 static ssize_t
304 protection_type_store(struct device *dev, struct device_attribute *attr,
305 const char *buf, size_t count)
306 {
307 struct scsi_disk *sdkp = to_scsi_disk(dev);
308 unsigned int val;
309 int err;
310
311 if (!capable(CAP_SYS_ADMIN))
312 return -EACCES;
313
314 err = kstrtouint(buf, 10, &val);
315
316 if (err)
317 return err;
318
319 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
320 sdkp->protection_type = val;
321
322 return count;
323 }
324 static DEVICE_ATTR_RW(protection_type);
325
326 static ssize_t
327 protection_mode_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct scsi_disk *sdkp = to_scsi_disk(dev);
331 struct scsi_device *sdp = sdkp->device;
332 unsigned int dif, dix;
333
334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
336
337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
338 dif = 0;
339 dix = 1;
340 }
341
342 if (!dif && !dix)
343 return snprintf(buf, 20, "none\n");
344
345 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
346 }
347 static DEVICE_ATTR_RO(protection_mode);
348
349 static ssize_t
350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352 struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354 return snprintf(buf, 20, "%u\n", sdkp->ATO);
355 }
356 static DEVICE_ATTR_RO(app_tag_own);
357
358 static ssize_t
359 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
360 char *buf)
361 {
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
365 }
366 static DEVICE_ATTR_RO(thin_provisioning);
367
368 static const char *lbp_mode[] = {
369 [SD_LBP_FULL] = "full",
370 [SD_LBP_UNMAP] = "unmap",
371 [SD_LBP_WS16] = "writesame_16",
372 [SD_LBP_WS10] = "writesame_10",
373 [SD_LBP_ZERO] = "writesame_zero",
374 [SD_LBP_DISABLE] = "disabled",
375 };
376
377 static ssize_t
378 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
379 char *buf)
380 {
381 struct scsi_disk *sdkp = to_scsi_disk(dev);
382
383 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
384 }
385
386 static ssize_t
387 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
388 const char *buf, size_t count)
389 {
390 struct scsi_disk *sdkp = to_scsi_disk(dev);
391 struct scsi_device *sdp = sdkp->device;
392
393 if (!capable(CAP_SYS_ADMIN))
394 return -EACCES;
395
396 if (sd_is_zoned(sdkp)) {
397 sd_config_discard(sdkp, SD_LBP_DISABLE);
398 return count;
399 }
400
401 if (sdp->type != TYPE_DISK)
402 return -EINVAL;
403
404 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
405 sd_config_discard(sdkp, SD_LBP_UNMAP);
406 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
407 sd_config_discard(sdkp, SD_LBP_WS16);
408 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
409 sd_config_discard(sdkp, SD_LBP_WS10);
410 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
411 sd_config_discard(sdkp, SD_LBP_ZERO);
412 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
413 sd_config_discard(sdkp, SD_LBP_DISABLE);
414 else
415 return -EINVAL;
416
417 return count;
418 }
419 static DEVICE_ATTR_RW(provisioning_mode);
420
421 static ssize_t
422 max_medium_access_timeouts_show(struct device *dev,
423 struct device_attribute *attr, char *buf)
424 {
425 struct scsi_disk *sdkp = to_scsi_disk(dev);
426
427 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
428 }
429
430 static ssize_t
431 max_medium_access_timeouts_store(struct device *dev,
432 struct device_attribute *attr, const char *buf,
433 size_t count)
434 {
435 struct scsi_disk *sdkp = to_scsi_disk(dev);
436 int err;
437
438 if (!capable(CAP_SYS_ADMIN))
439 return -EACCES;
440
441 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
442
443 return err ? err : count;
444 }
445 static DEVICE_ATTR_RW(max_medium_access_timeouts);
446
447 static ssize_t
448 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
449 char *buf)
450 {
451 struct scsi_disk *sdkp = to_scsi_disk(dev);
452
453 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
454 }
455
456 static ssize_t
457 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
458 const char *buf, size_t count)
459 {
460 struct scsi_disk *sdkp = to_scsi_disk(dev);
461 struct scsi_device *sdp = sdkp->device;
462 unsigned long max;
463 int err;
464
465 if (!capable(CAP_SYS_ADMIN))
466 return -EACCES;
467
468 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
469 return -EINVAL;
470
471 err = kstrtoul(buf, 10, &max);
472
473 if (err)
474 return err;
475
476 if (max == 0)
477 sdp->no_write_same = 1;
478 else if (max <= SD_MAX_WS16_BLOCKS) {
479 sdp->no_write_same = 0;
480 sdkp->max_ws_blocks = max;
481 }
482
483 sd_config_write_same(sdkp);
484
485 return count;
486 }
487 static DEVICE_ATTR_RW(max_write_same_blocks);
488
489 static struct attribute *sd_disk_attrs[] = {
490 &dev_attr_cache_type.attr,
491 &dev_attr_FUA.attr,
492 &dev_attr_allow_restart.attr,
493 &dev_attr_manage_start_stop.attr,
494 &dev_attr_protection_type.attr,
495 &dev_attr_protection_mode.attr,
496 &dev_attr_app_tag_own.attr,
497 &dev_attr_thin_provisioning.attr,
498 &dev_attr_provisioning_mode.attr,
499 &dev_attr_max_write_same_blocks.attr,
500 &dev_attr_max_medium_access_timeouts.attr,
501 NULL,
502 };
503 ATTRIBUTE_GROUPS(sd_disk);
504
505 static struct class sd_disk_class = {
506 .name = "scsi_disk",
507 .owner = THIS_MODULE,
508 .dev_release = scsi_disk_release,
509 .dev_groups = sd_disk_groups,
510 };
511
512 static const struct dev_pm_ops sd_pm_ops = {
513 .suspend = sd_suspend_system,
514 .resume = sd_resume,
515 .poweroff = sd_suspend_system,
516 .restore = sd_resume,
517 .runtime_suspend = sd_suspend_runtime,
518 .runtime_resume = sd_resume,
519 };
520
521 static struct scsi_driver sd_template = {
522 .gendrv = {
523 .name = "sd",
524 .owner = THIS_MODULE,
525 .probe = sd_probe,
526 .remove = sd_remove,
527 .shutdown = sd_shutdown,
528 .pm = &sd_pm_ops,
529 },
530 .rescan = sd_rescan,
531 .init_command = sd_init_command,
532 .uninit_command = sd_uninit_command,
533 .done = sd_done,
534 .eh_action = sd_eh_action,
535 };
536
537 /*
538 * Dummy kobj_map->probe function.
539 * The default ->probe function will call modprobe, which is
540 * pointless as this module is already loaded.
541 */
542 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
543 {
544 return NULL;
545 }
546
547 /*
548 * Device no to disk mapping:
549 *
550 * major disc2 disc p1
551 * |............|.............|....|....| <- dev_t
552 * 31 20 19 8 7 4 3 0
553 *
554 * Inside a major, we have 16k disks, however mapped non-
555 * contiguously. The first 16 disks are for major0, the next
556 * ones with major1, ... Disk 256 is for major0 again, disk 272
557 * for major1, ...
558 * As we stay compatible with our numbering scheme, we can reuse
559 * the well-know SCSI majors 8, 65--71, 136--143.
560 */
561 static int sd_major(int major_idx)
562 {
563 switch (major_idx) {
564 case 0:
565 return SCSI_DISK0_MAJOR;
566 case 1 ... 7:
567 return SCSI_DISK1_MAJOR + major_idx - 1;
568 case 8 ... 15:
569 return SCSI_DISK8_MAJOR + major_idx - 8;
570 default:
571 BUG();
572 return 0; /* shut up gcc */
573 }
574 }
575
576 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
577 {
578 struct scsi_disk *sdkp = NULL;
579
580 mutex_lock(&sd_ref_mutex);
581
582 if (disk->private_data) {
583 sdkp = scsi_disk(disk);
584 if (scsi_device_get(sdkp->device) == 0)
585 get_device(&sdkp->dev);
586 else
587 sdkp = NULL;
588 }
589 mutex_unlock(&sd_ref_mutex);
590 return sdkp;
591 }
592
593 static void scsi_disk_put(struct scsi_disk *sdkp)
594 {
595 struct scsi_device *sdev = sdkp->device;
596
597 mutex_lock(&sd_ref_mutex);
598 put_device(&sdkp->dev);
599 scsi_device_put(sdev);
600 mutex_unlock(&sd_ref_mutex);
601 }
602
603 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
604 unsigned int dix, unsigned int dif)
605 {
606 struct bio *bio = scmd->request->bio;
607 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
608 unsigned int protect = 0;
609
610 if (dix) { /* DIX Type 0, 1, 2, 3 */
611 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
612 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
613
614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
615 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
616 }
617
618 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
619 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
620
621 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
622 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
623 }
624
625 if (dif) { /* DIX/DIF Type 1, 2, 3 */
626 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
627
628 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
629 protect = 3 << 5; /* Disable target PI checking */
630 else
631 protect = 1 << 5; /* Enable target PI checking */
632 }
633
634 scsi_set_prot_op(scmd, prot_op);
635 scsi_set_prot_type(scmd, dif);
636 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
637
638 return protect;
639 }
640
641 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
642 {
643 struct request_queue *q = sdkp->disk->queue;
644 unsigned int logical_block_size = sdkp->device->sector_size;
645 unsigned int max_blocks = 0;
646
647 q->limits.discard_zeroes_data = 0;
648
649 /*
650 * When LBPRZ is reported, discard alignment and granularity
651 * must be fixed to the logical block size. Otherwise the block
652 * layer will drop misaligned portions of the request which can
653 * lead to data corruption. If LBPRZ is not set, we honor the
654 * device preference.
655 */
656 if (sdkp->lbprz) {
657 q->limits.discard_alignment = 0;
658 q->limits.discard_granularity = logical_block_size;
659 } else {
660 q->limits.discard_alignment = sdkp->unmap_alignment *
661 logical_block_size;
662 q->limits.discard_granularity =
663 max(sdkp->physical_block_size,
664 sdkp->unmap_granularity * logical_block_size);
665 }
666
667 sdkp->provisioning_mode = mode;
668
669 switch (mode) {
670
671 case SD_LBP_DISABLE:
672 blk_queue_max_discard_sectors(q, 0);
673 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
674 return;
675
676 case SD_LBP_UNMAP:
677 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
678 (u32)SD_MAX_WS16_BLOCKS);
679 break;
680
681 case SD_LBP_WS16:
682 max_blocks = min_not_zero(sdkp->max_ws_blocks,
683 (u32)SD_MAX_WS16_BLOCKS);
684 q->limits.discard_zeroes_data = sdkp->lbprz;
685 break;
686
687 case SD_LBP_WS10:
688 max_blocks = min_not_zero(sdkp->max_ws_blocks,
689 (u32)SD_MAX_WS10_BLOCKS);
690 q->limits.discard_zeroes_data = sdkp->lbprz;
691 break;
692
693 case SD_LBP_ZERO:
694 max_blocks = min_not_zero(sdkp->max_ws_blocks,
695 (u32)SD_MAX_WS10_BLOCKS);
696 q->limits.discard_zeroes_data = 1;
697 break;
698 }
699
700 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
701 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
702 }
703
704 /**
705 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
706 * @sdp: scsi device to operate one
707 * @rq: Request to prepare
708 *
709 * Will issue either UNMAP or WRITE SAME(16) depending on preference
710 * indicated by target device.
711 **/
712 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
713 {
714 struct request *rq = cmd->request;
715 struct scsi_device *sdp = cmd->device;
716 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
717 sector_t sector = blk_rq_pos(rq);
718 unsigned int nr_sectors = blk_rq_sectors(rq);
719 unsigned int nr_bytes = blk_rq_bytes(rq);
720 unsigned int len;
721 int ret;
722 char *buf;
723 struct page *page;
724
725 sector >>= ilog2(sdp->sector_size) - 9;
726 nr_sectors >>= ilog2(sdp->sector_size) - 9;
727
728 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
729 if (!page)
730 return BLKPREP_DEFER;
731
732 switch (sdkp->provisioning_mode) {
733 case SD_LBP_UNMAP:
734 buf = page_address(page);
735
736 cmd->cmd_len = 10;
737 cmd->cmnd[0] = UNMAP;
738 cmd->cmnd[8] = 24;
739
740 put_unaligned_be16(6 + 16, &buf[0]);
741 put_unaligned_be16(16, &buf[2]);
742 put_unaligned_be64(sector, &buf[8]);
743 put_unaligned_be32(nr_sectors, &buf[16]);
744
745 len = 24;
746 break;
747
748 case SD_LBP_WS16:
749 cmd->cmd_len = 16;
750 cmd->cmnd[0] = WRITE_SAME_16;
751 cmd->cmnd[1] = 0x8; /* UNMAP */
752 put_unaligned_be64(sector, &cmd->cmnd[2]);
753 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
754
755 len = sdkp->device->sector_size;
756 break;
757
758 case SD_LBP_WS10:
759 case SD_LBP_ZERO:
760 cmd->cmd_len = 10;
761 cmd->cmnd[0] = WRITE_SAME;
762 if (sdkp->provisioning_mode == SD_LBP_WS10)
763 cmd->cmnd[1] = 0x8; /* UNMAP */
764 put_unaligned_be32(sector, &cmd->cmnd[2]);
765 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
766
767 len = sdkp->device->sector_size;
768 break;
769
770 default:
771 ret = BLKPREP_INVALID;
772 goto out;
773 }
774
775 rq->completion_data = page;
776 rq->timeout = SD_TIMEOUT;
777
778 cmd->transfersize = len;
779 cmd->allowed = SD_MAX_RETRIES;
780
781 /*
782 * Initially __data_len is set to the amount of data that needs to be
783 * transferred to the target. This amount depends on whether WRITE SAME
784 * or UNMAP is being used. After the scatterlist has been mapped by
785 * scsi_init_io() we set __data_len to the size of the area to be
786 * discarded on disk. This allows us to report completion on the full
787 * amount of blocks described by the request.
788 */
789 blk_add_request_payload(rq, page, 0, len);
790 ret = scsi_init_io(cmd);
791 rq->__data_len = nr_bytes;
792
793 out:
794 if (ret != BLKPREP_OK)
795 __free_page(page);
796 return ret;
797 }
798
799 static void sd_config_write_same(struct scsi_disk *sdkp)
800 {
801 struct request_queue *q = sdkp->disk->queue;
802 unsigned int logical_block_size = sdkp->device->sector_size;
803
804 if (sdkp->device->no_write_same) {
805 sdkp->max_ws_blocks = 0;
806 goto out;
807 }
808
809 /* Some devices can not handle block counts above 0xffff despite
810 * supporting WRITE SAME(16). Consequently we default to 64k
811 * blocks per I/O unless the device explicitly advertises a
812 * bigger limit.
813 */
814 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
815 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
816 (u32)SD_MAX_WS16_BLOCKS);
817 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
818 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
819 (u32)SD_MAX_WS10_BLOCKS);
820 else {
821 sdkp->device->no_write_same = 1;
822 sdkp->max_ws_blocks = 0;
823 }
824
825 out:
826 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
827 (logical_block_size >> 9));
828 }
829
830 /**
831 * sd_setup_write_same_cmnd - write the same data to multiple blocks
832 * @cmd: command to prepare
833 *
834 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
835 * preference indicated by target device.
836 **/
837 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
838 {
839 struct request *rq = cmd->request;
840 struct scsi_device *sdp = cmd->device;
841 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
842 struct bio *bio = rq->bio;
843 sector_t sector = blk_rq_pos(rq);
844 unsigned int nr_sectors = blk_rq_sectors(rq);
845 unsigned int nr_bytes = blk_rq_bytes(rq);
846 int ret;
847
848 if (sdkp->device->no_write_same)
849 return BLKPREP_INVALID;
850
851 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
852
853 if (sd_is_zoned(sdkp)) {
854 ret = sd_zbc_setup_write_cmnd(cmd);
855 if (ret != BLKPREP_OK)
856 return ret;
857 }
858
859 sector >>= ilog2(sdp->sector_size) - 9;
860 nr_sectors >>= ilog2(sdp->sector_size) - 9;
861
862 rq->timeout = SD_WRITE_SAME_TIMEOUT;
863
864 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
865 cmd->cmd_len = 16;
866 cmd->cmnd[0] = WRITE_SAME_16;
867 put_unaligned_be64(sector, &cmd->cmnd[2]);
868 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
869 } else {
870 cmd->cmd_len = 10;
871 cmd->cmnd[0] = WRITE_SAME;
872 put_unaligned_be32(sector, &cmd->cmnd[2]);
873 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
874 }
875
876 cmd->transfersize = sdp->sector_size;
877 cmd->allowed = SD_MAX_RETRIES;
878
879 /*
880 * For WRITE_SAME the data transferred in the DATA IN buffer is
881 * different from the amount of data actually written to the target.
882 *
883 * We set up __data_len to the amount of data transferred from the
884 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
885 * to transfer a single sector of data first, but then reset it to
886 * the amount of data to be written right after so that the I/O path
887 * knows how much to actually write.
888 */
889 rq->__data_len = sdp->sector_size;
890 ret = scsi_init_io(cmd);
891 rq->__data_len = nr_bytes;
892 return ret;
893 }
894
895 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
896 {
897 struct request *rq = cmd->request;
898
899 /* flush requests don't perform I/O, zero the S/G table */
900 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
901
902 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
903 cmd->cmd_len = 10;
904 cmd->transfersize = 0;
905 cmd->allowed = SD_MAX_RETRIES;
906
907 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
908 return BLKPREP_OK;
909 }
910
911 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
912 {
913 struct request *rq = SCpnt->request;
914 struct scsi_device *sdp = SCpnt->device;
915 struct gendisk *disk = rq->rq_disk;
916 struct scsi_disk *sdkp = scsi_disk(disk);
917 sector_t block = blk_rq_pos(rq);
918 sector_t threshold;
919 unsigned int this_count = blk_rq_sectors(rq);
920 unsigned int dif, dix;
921 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
922 int ret;
923 unsigned char protect;
924
925 if (zoned_write) {
926 ret = sd_zbc_setup_write_cmnd(SCpnt);
927 if (ret != BLKPREP_OK)
928 return ret;
929 }
930
931 ret = scsi_init_io(SCpnt);
932 if (ret != BLKPREP_OK)
933 goto out;
934 SCpnt = rq->special;
935
936 /* from here on until we're complete, any goto out
937 * is used for a killable error condition */
938 ret = BLKPREP_KILL;
939
940 SCSI_LOG_HLQUEUE(1,
941 scmd_printk(KERN_INFO, SCpnt,
942 "%s: block=%llu, count=%d\n",
943 __func__, (unsigned long long)block, this_count));
944
945 if (!sdp || !scsi_device_online(sdp) ||
946 block + blk_rq_sectors(rq) > get_capacity(disk)) {
947 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
948 "Finishing %u sectors\n",
949 blk_rq_sectors(rq)));
950 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
951 "Retry with 0x%p\n", SCpnt));
952 goto out;
953 }
954
955 if (sdp->changed) {
956 /*
957 * quietly refuse to do anything to a changed disc until
958 * the changed bit has been reset
959 */
960 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
961 goto out;
962 }
963
964 /*
965 * Some SD card readers can't handle multi-sector accesses which touch
966 * the last one or two hardware sectors. Split accesses as needed.
967 */
968 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
969 (sdp->sector_size / 512);
970
971 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
972 if (block < threshold) {
973 /* Access up to the threshold but not beyond */
974 this_count = threshold - block;
975 } else {
976 /* Access only a single hardware sector */
977 this_count = sdp->sector_size / 512;
978 }
979 }
980
981 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
982 (unsigned long long)block));
983
984 /*
985 * If we have a 1K hardware sectorsize, prevent access to single
986 * 512 byte sectors. In theory we could handle this - in fact
987 * the scsi cdrom driver must be able to handle this because
988 * we typically use 1K blocksizes, and cdroms typically have
989 * 2K hardware sectorsizes. Of course, things are simpler
990 * with the cdrom, since it is read-only. For performance
991 * reasons, the filesystems should be able to handle this
992 * and not force the scsi disk driver to use bounce buffers
993 * for this.
994 */
995 if (sdp->sector_size == 1024) {
996 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
997 scmd_printk(KERN_ERR, SCpnt,
998 "Bad block number requested\n");
999 goto out;
1000 } else {
1001 block = block >> 1;
1002 this_count = this_count >> 1;
1003 }
1004 }
1005 if (sdp->sector_size == 2048) {
1006 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1007 scmd_printk(KERN_ERR, SCpnt,
1008 "Bad block number requested\n");
1009 goto out;
1010 } else {
1011 block = block >> 2;
1012 this_count = this_count >> 2;
1013 }
1014 }
1015 if (sdp->sector_size == 4096) {
1016 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1017 scmd_printk(KERN_ERR, SCpnt,
1018 "Bad block number requested\n");
1019 goto out;
1020 } else {
1021 block = block >> 3;
1022 this_count = this_count >> 3;
1023 }
1024 }
1025 if (rq_data_dir(rq) == WRITE) {
1026 SCpnt->cmnd[0] = WRITE_6;
1027
1028 if (blk_integrity_rq(rq))
1029 sd_dif_prepare(SCpnt);
1030
1031 } else if (rq_data_dir(rq) == READ) {
1032 SCpnt->cmnd[0] = READ_6;
1033 } else {
1034 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llu,%llx\n",
1035 req_op(rq), (unsigned long long) rq->cmd_flags);
1036 goto out;
1037 }
1038
1039 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1040 "%s %d/%u 512 byte blocks.\n",
1041 (rq_data_dir(rq) == WRITE) ?
1042 "writing" : "reading", this_count,
1043 blk_rq_sectors(rq)));
1044
1045 dix = scsi_prot_sg_count(SCpnt);
1046 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1047
1048 if (dif || dix)
1049 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1050 else
1051 protect = 0;
1052
1053 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1054 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1055
1056 if (unlikely(SCpnt->cmnd == NULL)) {
1057 ret = BLKPREP_DEFER;
1058 goto out;
1059 }
1060
1061 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1062 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1063 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1064 SCpnt->cmnd[7] = 0x18;
1065 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1066 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1067
1068 /* LBA */
1069 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1070 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1071 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1072 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1073 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1074 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1075 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1076 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1077
1078 /* Expected Indirect LBA */
1079 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1080 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1081 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1082 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1083
1084 /* Transfer length */
1085 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1086 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1087 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1088 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1089 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1090 SCpnt->cmnd[0] += READ_16 - READ_6;
1091 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1092 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1093 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1094 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1095 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1096 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1097 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1098 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1099 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1100 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1101 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1102 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1103 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1104 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1105 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1106 scsi_device_protection(SCpnt->device) ||
1107 SCpnt->device->use_10_for_rw) {
1108 SCpnt->cmnd[0] += READ_10 - READ_6;
1109 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1110 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1111 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1112 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1113 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1114 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1115 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1116 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1117 } else {
1118 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1119 /*
1120 * This happens only if this drive failed
1121 * 10byte rw command with ILLEGAL_REQUEST
1122 * during operation and thus turned off
1123 * use_10_for_rw.
1124 */
1125 scmd_printk(KERN_ERR, SCpnt,
1126 "FUA write on READ/WRITE(6) drive\n");
1127 goto out;
1128 }
1129
1130 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1131 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1132 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1133 SCpnt->cmnd[4] = (unsigned char) this_count;
1134 SCpnt->cmnd[5] = 0;
1135 }
1136 SCpnt->sdb.length = this_count * sdp->sector_size;
1137
1138 /*
1139 * We shouldn't disconnect in the middle of a sector, so with a dumb
1140 * host adapter, it's safe to assume that we can at least transfer
1141 * this many bytes between each connect / disconnect.
1142 */
1143 SCpnt->transfersize = sdp->sector_size;
1144 SCpnt->underflow = this_count << 9;
1145 SCpnt->allowed = SD_MAX_RETRIES;
1146
1147 /*
1148 * This indicates that the command is ready from our end to be
1149 * queued.
1150 */
1151 ret = BLKPREP_OK;
1152 out:
1153 if (zoned_write && ret != BLKPREP_OK)
1154 sd_zbc_cancel_write_cmnd(SCpnt);
1155
1156 return ret;
1157 }
1158
1159 static int sd_init_command(struct scsi_cmnd *cmd)
1160 {
1161 struct request *rq = cmd->request;
1162
1163 switch (req_op(rq)) {
1164 case REQ_OP_DISCARD:
1165 return sd_setup_discard_cmnd(cmd);
1166 case REQ_OP_WRITE_SAME:
1167 return sd_setup_write_same_cmnd(cmd);
1168 case REQ_OP_FLUSH:
1169 return sd_setup_flush_cmnd(cmd);
1170 case REQ_OP_READ:
1171 case REQ_OP_WRITE:
1172 return sd_setup_read_write_cmnd(cmd);
1173 case REQ_OP_ZONE_REPORT:
1174 return sd_zbc_setup_report_cmnd(cmd);
1175 case REQ_OP_ZONE_RESET:
1176 return sd_zbc_setup_reset_cmnd(cmd);
1177 default:
1178 BUG();
1179 }
1180 }
1181
1182 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1183 {
1184 struct request *rq = SCpnt->request;
1185
1186 if (req_op(rq) == REQ_OP_DISCARD)
1187 __free_page(rq->completion_data);
1188
1189 if (SCpnt->cmnd != rq->cmd) {
1190 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1191 SCpnt->cmnd = NULL;
1192 SCpnt->cmd_len = 0;
1193 }
1194 }
1195
1196 /**
1197 * sd_open - open a scsi disk device
1198 * @inode: only i_rdev member may be used
1199 * @filp: only f_mode and f_flags may be used
1200 *
1201 * Returns 0 if successful. Returns a negated errno value in case
1202 * of error.
1203 *
1204 * Note: This can be called from a user context (e.g. fsck(1) )
1205 * or from within the kernel (e.g. as a result of a mount(1) ).
1206 * In the latter case @inode and @filp carry an abridged amount
1207 * of information as noted above.
1208 *
1209 * Locking: called with bdev->bd_mutex held.
1210 **/
1211 static int sd_open(struct block_device *bdev, fmode_t mode)
1212 {
1213 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1214 struct scsi_device *sdev;
1215 int retval;
1216
1217 if (!sdkp)
1218 return -ENXIO;
1219
1220 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1221
1222 sdev = sdkp->device;
1223
1224 /*
1225 * If the device is in error recovery, wait until it is done.
1226 * If the device is offline, then disallow any access to it.
1227 */
1228 retval = -ENXIO;
1229 if (!scsi_block_when_processing_errors(sdev))
1230 goto error_out;
1231
1232 if (sdev->removable || sdkp->write_prot)
1233 check_disk_change(bdev);
1234
1235 /*
1236 * If the drive is empty, just let the open fail.
1237 */
1238 retval = -ENOMEDIUM;
1239 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1240 goto error_out;
1241
1242 /*
1243 * If the device has the write protect tab set, have the open fail
1244 * if the user expects to be able to write to the thing.
1245 */
1246 retval = -EROFS;
1247 if (sdkp->write_prot && (mode & FMODE_WRITE))
1248 goto error_out;
1249
1250 /*
1251 * It is possible that the disk changing stuff resulted in
1252 * the device being taken offline. If this is the case,
1253 * report this to the user, and don't pretend that the
1254 * open actually succeeded.
1255 */
1256 retval = -ENXIO;
1257 if (!scsi_device_online(sdev))
1258 goto error_out;
1259
1260 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1261 if (scsi_block_when_processing_errors(sdev))
1262 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1263 }
1264
1265 return 0;
1266
1267 error_out:
1268 scsi_disk_put(sdkp);
1269 return retval;
1270 }
1271
1272 /**
1273 * sd_release - invoked when the (last) close(2) is called on this
1274 * scsi disk.
1275 * @inode: only i_rdev member may be used
1276 * @filp: only f_mode and f_flags may be used
1277 *
1278 * Returns 0.
1279 *
1280 * Note: may block (uninterruptible) if error recovery is underway
1281 * on this disk.
1282 *
1283 * Locking: called with bdev->bd_mutex held.
1284 **/
1285 static void sd_release(struct gendisk *disk, fmode_t mode)
1286 {
1287 struct scsi_disk *sdkp = scsi_disk(disk);
1288 struct scsi_device *sdev = sdkp->device;
1289
1290 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1291
1292 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1293 if (scsi_block_when_processing_errors(sdev))
1294 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1295 }
1296
1297 /*
1298 * XXX and what if there are packets in flight and this close()
1299 * XXX is followed by a "rmmod sd_mod"?
1300 */
1301
1302 scsi_disk_put(sdkp);
1303 }
1304
1305 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1306 {
1307 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1308 struct scsi_device *sdp = sdkp->device;
1309 struct Scsi_Host *host = sdp->host;
1310 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1311 int diskinfo[4];
1312
1313 /* default to most commonly used values */
1314 diskinfo[0] = 0x40; /* 1 << 6 */
1315 diskinfo[1] = 0x20; /* 1 << 5 */
1316 diskinfo[2] = capacity >> 11;
1317
1318 /* override with calculated, extended default, or driver values */
1319 if (host->hostt->bios_param)
1320 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1321 else
1322 scsicam_bios_param(bdev, capacity, diskinfo);
1323
1324 geo->heads = diskinfo[0];
1325 geo->sectors = diskinfo[1];
1326 geo->cylinders = diskinfo[2];
1327 return 0;
1328 }
1329
1330 /**
1331 * sd_ioctl - process an ioctl
1332 * @inode: only i_rdev/i_bdev members may be used
1333 * @filp: only f_mode and f_flags may be used
1334 * @cmd: ioctl command number
1335 * @arg: this is third argument given to ioctl(2) system call.
1336 * Often contains a pointer.
1337 *
1338 * Returns 0 if successful (some ioctls return positive numbers on
1339 * success as well). Returns a negated errno value in case of error.
1340 *
1341 * Note: most ioctls are forward onto the block subsystem or further
1342 * down in the scsi subsystem.
1343 **/
1344 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1345 unsigned int cmd, unsigned long arg)
1346 {
1347 struct gendisk *disk = bdev->bd_disk;
1348 struct scsi_disk *sdkp = scsi_disk(disk);
1349 struct scsi_device *sdp = sdkp->device;
1350 void __user *p = (void __user *)arg;
1351 int error;
1352
1353 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1354 "cmd=0x%x\n", disk->disk_name, cmd));
1355
1356 error = scsi_verify_blk_ioctl(bdev, cmd);
1357 if (error < 0)
1358 return error;
1359
1360 /*
1361 * If we are in the middle of error recovery, don't let anyone
1362 * else try and use this device. Also, if error recovery fails, it
1363 * may try and take the device offline, in which case all further
1364 * access to the device is prohibited.
1365 */
1366 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1367 (mode & FMODE_NDELAY) != 0);
1368 if (error)
1369 goto out;
1370
1371 /*
1372 * Send SCSI addressing ioctls directly to mid level, send other
1373 * ioctls to block level and then onto mid level if they can't be
1374 * resolved.
1375 */
1376 switch (cmd) {
1377 case SCSI_IOCTL_GET_IDLUN:
1378 case SCSI_IOCTL_GET_BUS_NUMBER:
1379 error = scsi_ioctl(sdp, cmd, p);
1380 break;
1381 default:
1382 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1383 if (error != -ENOTTY)
1384 break;
1385 error = scsi_ioctl(sdp, cmd, p);
1386 break;
1387 }
1388 out:
1389 return error;
1390 }
1391
1392 static void set_media_not_present(struct scsi_disk *sdkp)
1393 {
1394 if (sdkp->media_present)
1395 sdkp->device->changed = 1;
1396
1397 if (sdkp->device->removable) {
1398 sdkp->media_present = 0;
1399 sdkp->capacity = 0;
1400 }
1401 }
1402
1403 static int media_not_present(struct scsi_disk *sdkp,
1404 struct scsi_sense_hdr *sshdr)
1405 {
1406 if (!scsi_sense_valid(sshdr))
1407 return 0;
1408
1409 /* not invoked for commands that could return deferred errors */
1410 switch (sshdr->sense_key) {
1411 case UNIT_ATTENTION:
1412 case NOT_READY:
1413 /* medium not present */
1414 if (sshdr->asc == 0x3A) {
1415 set_media_not_present(sdkp);
1416 return 1;
1417 }
1418 }
1419 return 0;
1420 }
1421
1422 /**
1423 * sd_check_events - check media events
1424 * @disk: kernel device descriptor
1425 * @clearing: disk events currently being cleared
1426 *
1427 * Returns mask of DISK_EVENT_*.
1428 *
1429 * Note: this function is invoked from the block subsystem.
1430 **/
1431 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1432 {
1433 struct scsi_disk *sdkp = scsi_disk_get(disk);
1434 struct scsi_device *sdp;
1435 struct scsi_sense_hdr *sshdr = NULL;
1436 int retval;
1437
1438 if (!sdkp)
1439 return 0;
1440
1441 sdp = sdkp->device;
1442 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1443
1444 /*
1445 * If the device is offline, don't send any commands - just pretend as
1446 * if the command failed. If the device ever comes back online, we
1447 * can deal with it then. It is only because of unrecoverable errors
1448 * that we would ever take a device offline in the first place.
1449 */
1450 if (!scsi_device_online(sdp)) {
1451 set_media_not_present(sdkp);
1452 goto out;
1453 }
1454
1455 /*
1456 * Using TEST_UNIT_READY enables differentiation between drive with
1457 * no cartridge loaded - NOT READY, drive with changed cartridge -
1458 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1459 *
1460 * Drives that auto spin down. eg iomega jaz 1G, will be started
1461 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1462 * sd_revalidate() is called.
1463 */
1464 retval = -ENODEV;
1465
1466 if (scsi_block_when_processing_errors(sdp)) {
1467 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1468 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1469 sshdr);
1470 }
1471
1472 /* failed to execute TUR, assume media not present */
1473 if (host_byte(retval)) {
1474 set_media_not_present(sdkp);
1475 goto out;
1476 }
1477
1478 if (media_not_present(sdkp, sshdr))
1479 goto out;
1480
1481 /*
1482 * For removable scsi disk we have to recognise the presence
1483 * of a disk in the drive.
1484 */
1485 if (!sdkp->media_present)
1486 sdp->changed = 1;
1487 sdkp->media_present = 1;
1488 out:
1489 /*
1490 * sdp->changed is set under the following conditions:
1491 *
1492 * Medium present state has changed in either direction.
1493 * Device has indicated UNIT_ATTENTION.
1494 */
1495 kfree(sshdr);
1496 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1497 sdp->changed = 0;
1498 scsi_disk_put(sdkp);
1499 return retval;
1500 }
1501
1502 static int sd_sync_cache(struct scsi_disk *sdkp)
1503 {
1504 int retries, res;
1505 struct scsi_device *sdp = sdkp->device;
1506 const int timeout = sdp->request_queue->rq_timeout
1507 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1508 struct scsi_sense_hdr sshdr;
1509
1510 if (!scsi_device_online(sdp))
1511 return -ENODEV;
1512
1513 for (retries = 3; retries > 0; --retries) {
1514 unsigned char cmd[10] = { 0 };
1515
1516 cmd[0] = SYNCHRONIZE_CACHE;
1517 /*
1518 * Leave the rest of the command zero to indicate
1519 * flush everything.
1520 */
1521 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1522 &sshdr, timeout, SD_MAX_RETRIES,
1523 NULL, 0, RQF_PM);
1524 if (res == 0)
1525 break;
1526 }
1527
1528 if (res) {
1529 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1530
1531 if (driver_byte(res) & DRIVER_SENSE)
1532 sd_print_sense_hdr(sdkp, &sshdr);
1533 /* we need to evaluate the error return */
1534 if (scsi_sense_valid(&sshdr) &&
1535 (sshdr.asc == 0x3a || /* medium not present */
1536 sshdr.asc == 0x20)) /* invalid command */
1537 /* this is no error here */
1538 return 0;
1539
1540 switch (host_byte(res)) {
1541 /* ignore errors due to racing a disconnection */
1542 case DID_BAD_TARGET:
1543 case DID_NO_CONNECT:
1544 return 0;
1545 /* signal the upper layer it might try again */
1546 case DID_BUS_BUSY:
1547 case DID_IMM_RETRY:
1548 case DID_REQUEUE:
1549 case DID_SOFT_ERROR:
1550 return -EBUSY;
1551 default:
1552 return -EIO;
1553 }
1554 }
1555 return 0;
1556 }
1557
1558 static void sd_rescan(struct device *dev)
1559 {
1560 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1561
1562 revalidate_disk(sdkp->disk);
1563 }
1564
1565
1566 #ifdef CONFIG_COMPAT
1567 /*
1568 * This gets directly called from VFS. When the ioctl
1569 * is not recognized we go back to the other translation paths.
1570 */
1571 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1572 unsigned int cmd, unsigned long arg)
1573 {
1574 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1575 int error;
1576
1577 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1578 (mode & FMODE_NDELAY) != 0);
1579 if (error)
1580 return error;
1581
1582 /*
1583 * Let the static ioctl translation table take care of it.
1584 */
1585 if (!sdev->host->hostt->compat_ioctl)
1586 return -ENOIOCTLCMD;
1587 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1588 }
1589 #endif
1590
1591 static char sd_pr_type(enum pr_type type)
1592 {
1593 switch (type) {
1594 case PR_WRITE_EXCLUSIVE:
1595 return 0x01;
1596 case PR_EXCLUSIVE_ACCESS:
1597 return 0x03;
1598 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1599 return 0x05;
1600 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1601 return 0x06;
1602 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1603 return 0x07;
1604 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1605 return 0x08;
1606 default:
1607 return 0;
1608 }
1609 };
1610
1611 static int sd_pr_command(struct block_device *bdev, u8 sa,
1612 u64 key, u64 sa_key, u8 type, u8 flags)
1613 {
1614 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1615 struct scsi_sense_hdr sshdr;
1616 int result;
1617 u8 cmd[16] = { 0, };
1618 u8 data[24] = { 0, };
1619
1620 cmd[0] = PERSISTENT_RESERVE_OUT;
1621 cmd[1] = sa;
1622 cmd[2] = type;
1623 put_unaligned_be32(sizeof(data), &cmd[5]);
1624
1625 put_unaligned_be64(key, &data[0]);
1626 put_unaligned_be64(sa_key, &data[8]);
1627 data[20] = flags;
1628
1629 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1630 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1631
1632 if ((driver_byte(result) & DRIVER_SENSE) &&
1633 (scsi_sense_valid(&sshdr))) {
1634 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1635 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1636 }
1637
1638 return result;
1639 }
1640
1641 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1642 u32 flags)
1643 {
1644 if (flags & ~PR_FL_IGNORE_KEY)
1645 return -EOPNOTSUPP;
1646 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1647 old_key, new_key, 0,
1648 (1 << 0) /* APTPL */);
1649 }
1650
1651 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1652 u32 flags)
1653 {
1654 if (flags)
1655 return -EOPNOTSUPP;
1656 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1657 }
1658
1659 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1660 {
1661 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1662 }
1663
1664 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1665 enum pr_type type, bool abort)
1666 {
1667 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1668 sd_pr_type(type), 0);
1669 }
1670
1671 static int sd_pr_clear(struct block_device *bdev, u64 key)
1672 {
1673 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1674 }
1675
1676 static const struct pr_ops sd_pr_ops = {
1677 .pr_register = sd_pr_register,
1678 .pr_reserve = sd_pr_reserve,
1679 .pr_release = sd_pr_release,
1680 .pr_preempt = sd_pr_preempt,
1681 .pr_clear = sd_pr_clear,
1682 };
1683
1684 static const struct block_device_operations sd_fops = {
1685 .owner = THIS_MODULE,
1686 .open = sd_open,
1687 .release = sd_release,
1688 .ioctl = sd_ioctl,
1689 .getgeo = sd_getgeo,
1690 #ifdef CONFIG_COMPAT
1691 .compat_ioctl = sd_compat_ioctl,
1692 #endif
1693 .check_events = sd_check_events,
1694 .revalidate_disk = sd_revalidate_disk,
1695 .unlock_native_capacity = sd_unlock_native_capacity,
1696 .pr_ops = &sd_pr_ops,
1697 };
1698
1699 /**
1700 * sd_eh_action - error handling callback
1701 * @scmd: sd-issued command that has failed
1702 * @eh_disp: The recovery disposition suggested by the midlayer
1703 *
1704 * This function is called by the SCSI midlayer upon completion of an
1705 * error test command (currently TEST UNIT READY). The result of sending
1706 * the eh command is passed in eh_disp. We're looking for devices that
1707 * fail medium access commands but are OK with non access commands like
1708 * test unit ready (so wrongly see the device as having a successful
1709 * recovery)
1710 **/
1711 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1712 {
1713 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1714
1715 if (!scsi_device_online(scmd->device) ||
1716 !scsi_medium_access_command(scmd) ||
1717 host_byte(scmd->result) != DID_TIME_OUT ||
1718 eh_disp != SUCCESS)
1719 return eh_disp;
1720
1721 /*
1722 * The device has timed out executing a medium access command.
1723 * However, the TEST UNIT READY command sent during error
1724 * handling completed successfully. Either the device is in the
1725 * process of recovering or has it suffered an internal failure
1726 * that prevents access to the storage medium.
1727 */
1728 sdkp->medium_access_timed_out++;
1729
1730 /*
1731 * If the device keeps failing read/write commands but TEST UNIT
1732 * READY always completes successfully we assume that medium
1733 * access is no longer possible and take the device offline.
1734 */
1735 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1736 scmd_printk(KERN_ERR, scmd,
1737 "Medium access timeout failure. Offlining disk!\n");
1738 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1739
1740 return FAILED;
1741 }
1742
1743 return eh_disp;
1744 }
1745
1746 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1747 {
1748 u64 start_lba = blk_rq_pos(scmd->request);
1749 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1750 u64 factor = scmd->device->sector_size / 512;
1751 u64 bad_lba;
1752 int info_valid;
1753 /*
1754 * resid is optional but mostly filled in. When it's unused,
1755 * its value is zero, so we assume the whole buffer transferred
1756 */
1757 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1758 unsigned int good_bytes;
1759
1760 if (scmd->request->cmd_type != REQ_TYPE_FS)
1761 return 0;
1762
1763 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1764 SCSI_SENSE_BUFFERSIZE,
1765 &bad_lba);
1766 if (!info_valid)
1767 return 0;
1768
1769 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1770 return 0;
1771
1772 /* be careful ... don't want any overflows */
1773 do_div(start_lba, factor);
1774 do_div(end_lba, factor);
1775
1776 /* The bad lba was reported incorrectly, we have no idea where
1777 * the error is.
1778 */
1779 if (bad_lba < start_lba || bad_lba >= end_lba)
1780 return 0;
1781
1782 /* This computation should always be done in terms of
1783 * the resolution of the device's medium.
1784 */
1785 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1786 return min(good_bytes, transferred);
1787 }
1788
1789 /**
1790 * sd_done - bottom half handler: called when the lower level
1791 * driver has completed (successfully or otherwise) a scsi command.
1792 * @SCpnt: mid-level's per command structure.
1793 *
1794 * Note: potentially run from within an ISR. Must not block.
1795 **/
1796 static int sd_done(struct scsi_cmnd *SCpnt)
1797 {
1798 int result = SCpnt->result;
1799 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1800 struct scsi_sense_hdr sshdr;
1801 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1802 struct request *req = SCpnt->request;
1803 int sense_valid = 0;
1804 int sense_deferred = 0;
1805 unsigned char op = SCpnt->cmnd[0];
1806 unsigned char unmap = SCpnt->cmnd[1] & 8;
1807
1808 switch (req_op(req)) {
1809 case REQ_OP_DISCARD:
1810 case REQ_OP_WRITE_SAME:
1811 case REQ_OP_ZONE_RESET:
1812 if (!result) {
1813 good_bytes = blk_rq_bytes(req);
1814 scsi_set_resid(SCpnt, 0);
1815 } else {
1816 good_bytes = 0;
1817 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1818 }
1819 break;
1820 case REQ_OP_ZONE_REPORT:
1821 if (!result) {
1822 good_bytes = scsi_bufflen(SCpnt)
1823 - scsi_get_resid(SCpnt);
1824 scsi_set_resid(SCpnt, 0);
1825 } else {
1826 good_bytes = 0;
1827 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1828 }
1829 break;
1830 }
1831
1832 if (result) {
1833 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1834 if (sense_valid)
1835 sense_deferred = scsi_sense_is_deferred(&sshdr);
1836 }
1837 sdkp->medium_access_timed_out = 0;
1838
1839 if (driver_byte(result) != DRIVER_SENSE &&
1840 (!sense_valid || sense_deferred))
1841 goto out;
1842
1843 switch (sshdr.sense_key) {
1844 case HARDWARE_ERROR:
1845 case MEDIUM_ERROR:
1846 good_bytes = sd_completed_bytes(SCpnt);
1847 break;
1848 case RECOVERED_ERROR:
1849 good_bytes = scsi_bufflen(SCpnt);
1850 break;
1851 case NO_SENSE:
1852 /* This indicates a false check condition, so ignore it. An
1853 * unknown amount of data was transferred so treat it as an
1854 * error.
1855 */
1856 SCpnt->result = 0;
1857 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1858 break;
1859 case ABORTED_COMMAND:
1860 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1861 good_bytes = sd_completed_bytes(SCpnt);
1862 break;
1863 case ILLEGAL_REQUEST:
1864 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1865 good_bytes = sd_completed_bytes(SCpnt);
1866 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1867 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1868 switch (op) {
1869 case UNMAP:
1870 sd_config_discard(sdkp, SD_LBP_DISABLE);
1871 break;
1872 case WRITE_SAME_16:
1873 case WRITE_SAME:
1874 if (unmap)
1875 sd_config_discard(sdkp, SD_LBP_DISABLE);
1876 else {
1877 sdkp->device->no_write_same = 1;
1878 sd_config_write_same(sdkp);
1879
1880 good_bytes = 0;
1881 req->__data_len = blk_rq_bytes(req);
1882 req->rq_flags |= RQF_QUIET;
1883 }
1884 }
1885 }
1886 break;
1887 default:
1888 break;
1889 }
1890
1891 out:
1892 if (sd_is_zoned(sdkp))
1893 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
1894
1895 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1896 "sd_done: completed %d of %d bytes\n",
1897 good_bytes, scsi_bufflen(SCpnt)));
1898
1899 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1900 sd_dif_complete(SCpnt, good_bytes);
1901
1902 return good_bytes;
1903 }
1904
1905 /*
1906 * spinup disk - called only in sd_revalidate_disk()
1907 */
1908 static void
1909 sd_spinup_disk(struct scsi_disk *sdkp)
1910 {
1911 unsigned char cmd[10];
1912 unsigned long spintime_expire = 0;
1913 int retries, spintime;
1914 unsigned int the_result;
1915 struct scsi_sense_hdr sshdr;
1916 int sense_valid = 0;
1917
1918 spintime = 0;
1919
1920 /* Spin up drives, as required. Only do this at boot time */
1921 /* Spinup needs to be done for module loads too. */
1922 do {
1923 retries = 0;
1924
1925 do {
1926 cmd[0] = TEST_UNIT_READY;
1927 memset((void *) &cmd[1], 0, 9);
1928
1929 the_result = scsi_execute_req(sdkp->device, cmd,
1930 DMA_NONE, NULL, 0,
1931 &sshdr, SD_TIMEOUT,
1932 SD_MAX_RETRIES, NULL);
1933
1934 /*
1935 * If the drive has indicated to us that it
1936 * doesn't have any media in it, don't bother
1937 * with any more polling.
1938 */
1939 if (media_not_present(sdkp, &sshdr))
1940 return;
1941
1942 if (the_result)
1943 sense_valid = scsi_sense_valid(&sshdr);
1944 retries++;
1945 } while (retries < 3 &&
1946 (!scsi_status_is_good(the_result) ||
1947 ((driver_byte(the_result) & DRIVER_SENSE) &&
1948 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1949
1950 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1951 /* no sense, TUR either succeeded or failed
1952 * with a status error */
1953 if(!spintime && !scsi_status_is_good(the_result)) {
1954 sd_print_result(sdkp, "Test Unit Ready failed",
1955 the_result);
1956 }
1957 break;
1958 }
1959
1960 /*
1961 * The device does not want the automatic start to be issued.
1962 */
1963 if (sdkp->device->no_start_on_add)
1964 break;
1965
1966 if (sense_valid && sshdr.sense_key == NOT_READY) {
1967 if (sshdr.asc == 4 && sshdr.ascq == 3)
1968 break; /* manual intervention required */
1969 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1970 break; /* standby */
1971 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1972 break; /* unavailable */
1973 /*
1974 * Issue command to spin up drive when not ready
1975 */
1976 if (!spintime) {
1977 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1978 cmd[0] = START_STOP;
1979 cmd[1] = 1; /* Return immediately */
1980 memset((void *) &cmd[2], 0, 8);
1981 cmd[4] = 1; /* Start spin cycle */
1982 if (sdkp->device->start_stop_pwr_cond)
1983 cmd[4] |= 1 << 4;
1984 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1985 NULL, 0, &sshdr,
1986 SD_TIMEOUT, SD_MAX_RETRIES,
1987 NULL);
1988 spintime_expire = jiffies + 100 * HZ;
1989 spintime = 1;
1990 }
1991 /* Wait 1 second for next try */
1992 msleep(1000);
1993 printk(".");
1994
1995 /*
1996 * Wait for USB flash devices with slow firmware.
1997 * Yes, this sense key/ASC combination shouldn't
1998 * occur here. It's characteristic of these devices.
1999 */
2000 } else if (sense_valid &&
2001 sshdr.sense_key == UNIT_ATTENTION &&
2002 sshdr.asc == 0x28) {
2003 if (!spintime) {
2004 spintime_expire = jiffies + 5 * HZ;
2005 spintime = 1;
2006 }
2007 /* Wait 1 second for next try */
2008 msleep(1000);
2009 } else {
2010 /* we don't understand the sense code, so it's
2011 * probably pointless to loop */
2012 if(!spintime) {
2013 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2014 sd_print_sense_hdr(sdkp, &sshdr);
2015 }
2016 break;
2017 }
2018
2019 } while (spintime && time_before_eq(jiffies, spintime_expire));
2020
2021 if (spintime) {
2022 if (scsi_status_is_good(the_result))
2023 printk("ready\n");
2024 else
2025 printk("not responding...\n");
2026 }
2027 }
2028
2029 /*
2030 * Determine whether disk supports Data Integrity Field.
2031 */
2032 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2033 {
2034 struct scsi_device *sdp = sdkp->device;
2035 u8 type;
2036 int ret = 0;
2037
2038 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2039 return ret;
2040
2041 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2042
2043 if (type > T10_PI_TYPE3_PROTECTION)
2044 ret = -ENODEV;
2045 else if (scsi_host_dif_capable(sdp->host, type))
2046 ret = 1;
2047
2048 if (sdkp->first_scan || type != sdkp->protection_type)
2049 switch (ret) {
2050 case -ENODEV:
2051 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2052 " protection type %u. Disabling disk!\n",
2053 type);
2054 break;
2055 case 1:
2056 sd_printk(KERN_NOTICE, sdkp,
2057 "Enabling DIF Type %u protection\n", type);
2058 break;
2059 case 0:
2060 sd_printk(KERN_NOTICE, sdkp,
2061 "Disabling DIF Type %u protection\n", type);
2062 break;
2063 }
2064
2065 sdkp->protection_type = type;
2066
2067 return ret;
2068 }
2069
2070 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2071 struct scsi_sense_hdr *sshdr, int sense_valid,
2072 int the_result)
2073 {
2074 if (driver_byte(the_result) & DRIVER_SENSE)
2075 sd_print_sense_hdr(sdkp, sshdr);
2076 else
2077 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2078
2079 /*
2080 * Set dirty bit for removable devices if not ready -
2081 * sometimes drives will not report this properly.
2082 */
2083 if (sdp->removable &&
2084 sense_valid && sshdr->sense_key == NOT_READY)
2085 set_media_not_present(sdkp);
2086
2087 /*
2088 * We used to set media_present to 0 here to indicate no media
2089 * in the drive, but some drives fail read capacity even with
2090 * media present, so we can't do that.
2091 */
2092 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2093 }
2094
2095 #define RC16_LEN 32
2096 #if RC16_LEN > SD_BUF_SIZE
2097 #error RC16_LEN must not be more than SD_BUF_SIZE
2098 #endif
2099
2100 #define READ_CAPACITY_RETRIES_ON_RESET 10
2101
2102 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2103 unsigned char *buffer)
2104 {
2105 unsigned char cmd[16];
2106 struct scsi_sense_hdr sshdr;
2107 int sense_valid = 0;
2108 int the_result;
2109 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2110 unsigned int alignment;
2111 unsigned long long lba;
2112 unsigned sector_size;
2113
2114 if (sdp->no_read_capacity_16)
2115 return -EINVAL;
2116
2117 do {
2118 memset(cmd, 0, 16);
2119 cmd[0] = SERVICE_ACTION_IN_16;
2120 cmd[1] = SAI_READ_CAPACITY_16;
2121 cmd[13] = RC16_LEN;
2122 memset(buffer, 0, RC16_LEN);
2123
2124 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2125 buffer, RC16_LEN, &sshdr,
2126 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2127
2128 if (media_not_present(sdkp, &sshdr))
2129 return -ENODEV;
2130
2131 if (the_result) {
2132 sense_valid = scsi_sense_valid(&sshdr);
2133 if (sense_valid &&
2134 sshdr.sense_key == ILLEGAL_REQUEST &&
2135 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2136 sshdr.ascq == 0x00)
2137 /* Invalid Command Operation Code or
2138 * Invalid Field in CDB, just retry
2139 * silently with RC10 */
2140 return -EINVAL;
2141 if (sense_valid &&
2142 sshdr.sense_key == UNIT_ATTENTION &&
2143 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2144 /* Device reset might occur several times,
2145 * give it one more chance */
2146 if (--reset_retries > 0)
2147 continue;
2148 }
2149 retries--;
2150
2151 } while (the_result && retries);
2152
2153 if (the_result) {
2154 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2155 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2156 return -EINVAL;
2157 }
2158
2159 sector_size = get_unaligned_be32(&buffer[8]);
2160 lba = get_unaligned_be64(&buffer[0]);
2161
2162 if (sd_read_protection_type(sdkp, buffer) < 0) {
2163 sdkp->capacity = 0;
2164 return -ENODEV;
2165 }
2166
2167 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2168 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2169 "kernel compiled with support for large block "
2170 "devices.\n");
2171 sdkp->capacity = 0;
2172 return -EOVERFLOW;
2173 }
2174
2175 /* Logical blocks per physical block exponent */
2176 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2177
2178 /* RC basis */
2179 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2180
2181 /* Lowest aligned logical block */
2182 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2183 blk_queue_alignment_offset(sdp->request_queue, alignment);
2184 if (alignment && sdkp->first_scan)
2185 sd_printk(KERN_NOTICE, sdkp,
2186 "physical block alignment offset: %u\n", alignment);
2187
2188 if (buffer[14] & 0x80) { /* LBPME */
2189 sdkp->lbpme = 1;
2190
2191 if (buffer[14] & 0x40) /* LBPRZ */
2192 sdkp->lbprz = 1;
2193
2194 sd_config_discard(sdkp, SD_LBP_WS16);
2195 }
2196
2197 sdkp->capacity = lba + 1;
2198 return sector_size;
2199 }
2200
2201 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2202 unsigned char *buffer)
2203 {
2204 unsigned char cmd[16];
2205 struct scsi_sense_hdr sshdr;
2206 int sense_valid = 0;
2207 int the_result;
2208 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2209 sector_t lba;
2210 unsigned sector_size;
2211
2212 do {
2213 cmd[0] = READ_CAPACITY;
2214 memset(&cmd[1], 0, 9);
2215 memset(buffer, 0, 8);
2216
2217 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2218 buffer, 8, &sshdr,
2219 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2220
2221 if (media_not_present(sdkp, &sshdr))
2222 return -ENODEV;
2223
2224 if (the_result) {
2225 sense_valid = scsi_sense_valid(&sshdr);
2226 if (sense_valid &&
2227 sshdr.sense_key == UNIT_ATTENTION &&
2228 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2229 /* Device reset might occur several times,
2230 * give it one more chance */
2231 if (--reset_retries > 0)
2232 continue;
2233 }
2234 retries--;
2235
2236 } while (the_result && retries);
2237
2238 if (the_result) {
2239 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2240 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2241 return -EINVAL;
2242 }
2243
2244 sector_size = get_unaligned_be32(&buffer[4]);
2245 lba = get_unaligned_be32(&buffer[0]);
2246
2247 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2248 /* Some buggy (usb cardreader) devices return an lba of
2249 0xffffffff when the want to report a size of 0 (with
2250 which they really mean no media is present) */
2251 sdkp->capacity = 0;
2252 sdkp->physical_block_size = sector_size;
2253 return sector_size;
2254 }
2255
2256 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2257 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2258 "kernel compiled with support for large block "
2259 "devices.\n");
2260 sdkp->capacity = 0;
2261 return -EOVERFLOW;
2262 }
2263
2264 sdkp->capacity = lba + 1;
2265 sdkp->physical_block_size = sector_size;
2266 return sector_size;
2267 }
2268
2269 static int sd_try_rc16_first(struct scsi_device *sdp)
2270 {
2271 if (sdp->host->max_cmd_len < 16)
2272 return 0;
2273 if (sdp->try_rc_10_first)
2274 return 0;
2275 if (sdp->scsi_level > SCSI_SPC_2)
2276 return 1;
2277 if (scsi_device_protection(sdp))
2278 return 1;
2279 return 0;
2280 }
2281
2282 /*
2283 * read disk capacity
2284 */
2285 static void
2286 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2287 {
2288 int sector_size;
2289 struct scsi_device *sdp = sdkp->device;
2290
2291 if (sd_try_rc16_first(sdp)) {
2292 sector_size = read_capacity_16(sdkp, sdp, buffer);
2293 if (sector_size == -EOVERFLOW)
2294 goto got_data;
2295 if (sector_size == -ENODEV)
2296 return;
2297 if (sector_size < 0)
2298 sector_size = read_capacity_10(sdkp, sdp, buffer);
2299 if (sector_size < 0)
2300 return;
2301 } else {
2302 sector_size = read_capacity_10(sdkp, sdp, buffer);
2303 if (sector_size == -EOVERFLOW)
2304 goto got_data;
2305 if (sector_size < 0)
2306 return;
2307 if ((sizeof(sdkp->capacity) > 4) &&
2308 (sdkp->capacity > 0xffffffffULL)) {
2309 int old_sector_size = sector_size;
2310 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2311 "Trying to use READ CAPACITY(16).\n");
2312 sector_size = read_capacity_16(sdkp, sdp, buffer);
2313 if (sector_size < 0) {
2314 sd_printk(KERN_NOTICE, sdkp,
2315 "Using 0xffffffff as device size\n");
2316 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2317 sector_size = old_sector_size;
2318 goto got_data;
2319 }
2320 }
2321 }
2322
2323 /* Some devices are known to return the total number of blocks,
2324 * not the highest block number. Some devices have versions
2325 * which do this and others which do not. Some devices we might
2326 * suspect of doing this but we don't know for certain.
2327 *
2328 * If we know the reported capacity is wrong, decrement it. If
2329 * we can only guess, then assume the number of blocks is even
2330 * (usually true but not always) and err on the side of lowering
2331 * the capacity.
2332 */
2333 if (sdp->fix_capacity ||
2334 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2335 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2336 "from its reported value: %llu\n",
2337 (unsigned long long) sdkp->capacity);
2338 --sdkp->capacity;
2339 }
2340
2341 got_data:
2342 if (sector_size == 0) {
2343 sector_size = 512;
2344 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2345 "assuming 512.\n");
2346 }
2347
2348 if (sector_size != 512 &&
2349 sector_size != 1024 &&
2350 sector_size != 2048 &&
2351 sector_size != 4096) {
2352 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2353 sector_size);
2354 /*
2355 * The user might want to re-format the drive with
2356 * a supported sectorsize. Once this happens, it
2357 * would be relatively trivial to set the thing up.
2358 * For this reason, we leave the thing in the table.
2359 */
2360 sdkp->capacity = 0;
2361 /*
2362 * set a bogus sector size so the normal read/write
2363 * logic in the block layer will eventually refuse any
2364 * request on this device without tripping over power
2365 * of two sector size assumptions
2366 */
2367 sector_size = 512;
2368 }
2369 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2370 blk_queue_physical_block_size(sdp->request_queue,
2371 sdkp->physical_block_size);
2372 sdkp->device->sector_size = sector_size;
2373
2374 if (sdkp->capacity > 0xffffffff)
2375 sdp->use_16_for_rw = 1;
2376
2377 }
2378
2379 /*
2380 * Print disk capacity
2381 */
2382 static void
2383 sd_print_capacity(struct scsi_disk *sdkp,
2384 sector_t old_capacity)
2385 {
2386 int sector_size = sdkp->device->sector_size;
2387 char cap_str_2[10], cap_str_10[10];
2388
2389 string_get_size(sdkp->capacity, sector_size,
2390 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2391 string_get_size(sdkp->capacity, sector_size,
2392 STRING_UNITS_10, cap_str_10,
2393 sizeof(cap_str_10));
2394
2395 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2396 sd_printk(KERN_NOTICE, sdkp,
2397 "%llu %d-byte logical blocks: (%s/%s)\n",
2398 (unsigned long long)sdkp->capacity,
2399 sector_size, cap_str_10, cap_str_2);
2400
2401 if (sdkp->physical_block_size != sector_size)
2402 sd_printk(KERN_NOTICE, sdkp,
2403 "%u-byte physical blocks\n",
2404 sdkp->physical_block_size);
2405
2406 sd_zbc_print_zones(sdkp);
2407 }
2408 }
2409
2410 /* called with buffer of length 512 */
2411 static inline int
2412 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2413 unsigned char *buffer, int len, struct scsi_mode_data *data,
2414 struct scsi_sense_hdr *sshdr)
2415 {
2416 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2417 SD_TIMEOUT, SD_MAX_RETRIES, data,
2418 sshdr);
2419 }
2420
2421 /*
2422 * read write protect setting, if possible - called only in sd_revalidate_disk()
2423 * called with buffer of length SD_BUF_SIZE
2424 */
2425 static void
2426 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2427 {
2428 int res;
2429 struct scsi_device *sdp = sdkp->device;
2430 struct scsi_mode_data data;
2431 int old_wp = sdkp->write_prot;
2432
2433 set_disk_ro(sdkp->disk, 0);
2434 if (sdp->skip_ms_page_3f) {
2435 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2436 return;
2437 }
2438
2439 if (sdp->use_192_bytes_for_3f) {
2440 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2441 } else {
2442 /*
2443 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2444 * We have to start carefully: some devices hang if we ask
2445 * for more than is available.
2446 */
2447 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2448
2449 /*
2450 * Second attempt: ask for page 0 When only page 0 is
2451 * implemented, a request for page 3F may return Sense Key
2452 * 5: Illegal Request, Sense Code 24: Invalid field in
2453 * CDB.
2454 */
2455 if (!scsi_status_is_good(res))
2456 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2457
2458 /*
2459 * Third attempt: ask 255 bytes, as we did earlier.
2460 */
2461 if (!scsi_status_is_good(res))
2462 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2463 &data, NULL);
2464 }
2465
2466 if (!scsi_status_is_good(res)) {
2467 sd_first_printk(KERN_WARNING, sdkp,
2468 "Test WP failed, assume Write Enabled\n");
2469 } else {
2470 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2471 set_disk_ro(sdkp->disk, sdkp->write_prot);
2472 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2473 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2474 sdkp->write_prot ? "on" : "off");
2475 sd_printk(KERN_DEBUG, sdkp,
2476 "Mode Sense: %02x %02x %02x %02x\n",
2477 buffer[0], buffer[1], buffer[2], buffer[3]);
2478 }
2479 }
2480 }
2481
2482 /*
2483 * sd_read_cache_type - called only from sd_revalidate_disk()
2484 * called with buffer of length SD_BUF_SIZE
2485 */
2486 static void
2487 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2488 {
2489 int len = 0, res;
2490 struct scsi_device *sdp = sdkp->device;
2491
2492 int dbd;
2493 int modepage;
2494 int first_len;
2495 struct scsi_mode_data data;
2496 struct scsi_sense_hdr sshdr;
2497 int old_wce = sdkp->WCE;
2498 int old_rcd = sdkp->RCD;
2499 int old_dpofua = sdkp->DPOFUA;
2500
2501
2502 if (sdkp->cache_override)
2503 return;
2504
2505 first_len = 4;
2506 if (sdp->skip_ms_page_8) {
2507 if (sdp->type == TYPE_RBC)
2508 goto defaults;
2509 else {
2510 if (sdp->skip_ms_page_3f)
2511 goto defaults;
2512 modepage = 0x3F;
2513 if (sdp->use_192_bytes_for_3f)
2514 first_len = 192;
2515 dbd = 0;
2516 }
2517 } else if (sdp->type == TYPE_RBC) {
2518 modepage = 6;
2519 dbd = 8;
2520 } else {
2521 modepage = 8;
2522 dbd = 0;
2523 }
2524
2525 /* cautiously ask */
2526 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2527 &data, &sshdr);
2528
2529 if (!scsi_status_is_good(res))
2530 goto bad_sense;
2531
2532 if (!data.header_length) {
2533 modepage = 6;
2534 first_len = 0;
2535 sd_first_printk(KERN_ERR, sdkp,
2536 "Missing header in MODE_SENSE response\n");
2537 }
2538
2539 /* that went OK, now ask for the proper length */
2540 len = data.length;
2541
2542 /*
2543 * We're only interested in the first three bytes, actually.
2544 * But the data cache page is defined for the first 20.
2545 */
2546 if (len < 3)
2547 goto bad_sense;
2548 else if (len > SD_BUF_SIZE) {
2549 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2550 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2551 len = SD_BUF_SIZE;
2552 }
2553 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2554 len = 192;
2555
2556 /* Get the data */
2557 if (len > first_len)
2558 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2559 &data, &sshdr);
2560
2561 if (scsi_status_is_good(res)) {
2562 int offset = data.header_length + data.block_descriptor_length;
2563
2564 while (offset < len) {
2565 u8 page_code = buffer[offset] & 0x3F;
2566 u8 spf = buffer[offset] & 0x40;
2567
2568 if (page_code == 8 || page_code == 6) {
2569 /* We're interested only in the first 3 bytes.
2570 */
2571 if (len - offset <= 2) {
2572 sd_first_printk(KERN_ERR, sdkp,
2573 "Incomplete mode parameter "
2574 "data\n");
2575 goto defaults;
2576 } else {
2577 modepage = page_code;
2578 goto Page_found;
2579 }
2580 } else {
2581 /* Go to the next page */
2582 if (spf && len - offset > 3)
2583 offset += 4 + (buffer[offset+2] << 8) +
2584 buffer[offset+3];
2585 else if (!spf && len - offset > 1)
2586 offset += 2 + buffer[offset+1];
2587 else {
2588 sd_first_printk(KERN_ERR, sdkp,
2589 "Incomplete mode "
2590 "parameter data\n");
2591 goto defaults;
2592 }
2593 }
2594 }
2595
2596 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2597 goto defaults;
2598
2599 Page_found:
2600 if (modepage == 8) {
2601 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2602 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2603 } else {
2604 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2605 sdkp->RCD = 0;
2606 }
2607
2608 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2609 if (sdp->broken_fua) {
2610 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2611 sdkp->DPOFUA = 0;
2612 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2613 sd_first_printk(KERN_NOTICE, sdkp,
2614 "Uses READ/WRITE(6), disabling FUA\n");
2615 sdkp->DPOFUA = 0;
2616 }
2617
2618 /* No cache flush allowed for write protected devices */
2619 if (sdkp->WCE && sdkp->write_prot)
2620 sdkp->WCE = 0;
2621
2622 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2623 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2624 sd_printk(KERN_NOTICE, sdkp,
2625 "Write cache: %s, read cache: %s, %s\n",
2626 sdkp->WCE ? "enabled" : "disabled",
2627 sdkp->RCD ? "disabled" : "enabled",
2628 sdkp->DPOFUA ? "supports DPO and FUA"
2629 : "doesn't support DPO or FUA");
2630
2631 return;
2632 }
2633
2634 bad_sense:
2635 if (scsi_sense_valid(&sshdr) &&
2636 sshdr.sense_key == ILLEGAL_REQUEST &&
2637 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2638 /* Invalid field in CDB */
2639 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2640 else
2641 sd_first_printk(KERN_ERR, sdkp,
2642 "Asking for cache data failed\n");
2643
2644 defaults:
2645 if (sdp->wce_default_on) {
2646 sd_first_printk(KERN_NOTICE, sdkp,
2647 "Assuming drive cache: write back\n");
2648 sdkp->WCE = 1;
2649 } else {
2650 sd_first_printk(KERN_ERR, sdkp,
2651 "Assuming drive cache: write through\n");
2652 sdkp->WCE = 0;
2653 }
2654 sdkp->RCD = 0;
2655 sdkp->DPOFUA = 0;
2656 }
2657
2658 /*
2659 * The ATO bit indicates whether the DIF application tag is available
2660 * for use by the operating system.
2661 */
2662 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2663 {
2664 int res, offset;
2665 struct scsi_device *sdp = sdkp->device;
2666 struct scsi_mode_data data;
2667 struct scsi_sense_hdr sshdr;
2668
2669 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2670 return;
2671
2672 if (sdkp->protection_type == 0)
2673 return;
2674
2675 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2676 SD_MAX_RETRIES, &data, &sshdr);
2677
2678 if (!scsi_status_is_good(res) || !data.header_length ||
2679 data.length < 6) {
2680 sd_first_printk(KERN_WARNING, sdkp,
2681 "getting Control mode page failed, assume no ATO\n");
2682
2683 if (scsi_sense_valid(&sshdr))
2684 sd_print_sense_hdr(sdkp, &sshdr);
2685
2686 return;
2687 }
2688
2689 offset = data.header_length + data.block_descriptor_length;
2690
2691 if ((buffer[offset] & 0x3f) != 0x0a) {
2692 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2693 return;
2694 }
2695
2696 if ((buffer[offset + 5] & 0x80) == 0)
2697 return;
2698
2699 sdkp->ATO = 1;
2700
2701 return;
2702 }
2703
2704 /**
2705 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2706 * @disk: disk to query
2707 */
2708 static void sd_read_block_limits(struct scsi_disk *sdkp)
2709 {
2710 unsigned int sector_sz = sdkp->device->sector_size;
2711 const int vpd_len = 64;
2712 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2713
2714 if (!buffer ||
2715 /* Block Limits VPD */
2716 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2717 goto out;
2718
2719 blk_queue_io_min(sdkp->disk->queue,
2720 get_unaligned_be16(&buffer[6]) * sector_sz);
2721
2722 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2723 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2724
2725 if (buffer[3] == 0x3c) {
2726 unsigned int lba_count, desc_count;
2727
2728 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2729
2730 if (!sdkp->lbpme)
2731 goto out;
2732
2733 lba_count = get_unaligned_be32(&buffer[20]);
2734 desc_count = get_unaligned_be32(&buffer[24]);
2735
2736 if (lba_count && desc_count)
2737 sdkp->max_unmap_blocks = lba_count;
2738
2739 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2740
2741 if (buffer[32] & 0x80)
2742 sdkp->unmap_alignment =
2743 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2744
2745 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2746
2747 if (sdkp->max_unmap_blocks)
2748 sd_config_discard(sdkp, SD_LBP_UNMAP);
2749 else
2750 sd_config_discard(sdkp, SD_LBP_WS16);
2751
2752 } else { /* LBP VPD page tells us what to use */
2753 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2754 sd_config_discard(sdkp, SD_LBP_UNMAP);
2755 else if (sdkp->lbpws)
2756 sd_config_discard(sdkp, SD_LBP_WS16);
2757 else if (sdkp->lbpws10)
2758 sd_config_discard(sdkp, SD_LBP_WS10);
2759 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2760 sd_config_discard(sdkp, SD_LBP_UNMAP);
2761 else
2762 sd_config_discard(sdkp, SD_LBP_DISABLE);
2763 }
2764 }
2765
2766 out:
2767 kfree(buffer);
2768 }
2769
2770 /**
2771 * sd_read_block_characteristics - Query block dev. characteristics
2772 * @disk: disk to query
2773 */
2774 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2775 {
2776 struct request_queue *q = sdkp->disk->queue;
2777 unsigned char *buffer;
2778 u16 rot;
2779 const int vpd_len = 64;
2780
2781 buffer = kmalloc(vpd_len, GFP_KERNEL);
2782
2783 if (!buffer ||
2784 /* Block Device Characteristics VPD */
2785 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2786 goto out;
2787
2788 rot = get_unaligned_be16(&buffer[4]);
2789
2790 if (rot == 1) {
2791 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2792 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2793 }
2794
2795 sdkp->zoned = (buffer[8] >> 4) & 3;
2796 if (sdkp->zoned == 1)
2797 q->limits.zoned = BLK_ZONED_HA;
2798 else if (sdkp->device->type == TYPE_ZBC)
2799 q->limits.zoned = BLK_ZONED_HM;
2800 else
2801 q->limits.zoned = BLK_ZONED_NONE;
2802 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2803 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2804 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2805
2806 out:
2807 kfree(buffer);
2808 }
2809
2810 /**
2811 * sd_read_block_provisioning - Query provisioning VPD page
2812 * @disk: disk to query
2813 */
2814 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2815 {
2816 unsigned char *buffer;
2817 const int vpd_len = 8;
2818
2819 if (sdkp->lbpme == 0)
2820 return;
2821
2822 buffer = kmalloc(vpd_len, GFP_KERNEL);
2823
2824 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2825 goto out;
2826
2827 sdkp->lbpvpd = 1;
2828 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2829 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2830 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2831
2832 out:
2833 kfree(buffer);
2834 }
2835
2836 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2837 {
2838 struct scsi_device *sdev = sdkp->device;
2839
2840 if (sdev->host->no_write_same) {
2841 sdev->no_write_same = 1;
2842
2843 return;
2844 }
2845
2846 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2847 /* too large values might cause issues with arcmsr */
2848 int vpd_buf_len = 64;
2849
2850 sdev->no_report_opcodes = 1;
2851
2852 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2853 * CODES is unsupported and the device has an ATA
2854 * Information VPD page (SAT).
2855 */
2856 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2857 sdev->no_write_same = 1;
2858 }
2859
2860 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2861 sdkp->ws16 = 1;
2862
2863 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2864 sdkp->ws10 = 1;
2865 }
2866
2867 /**
2868 * sd_revalidate_disk - called the first time a new disk is seen,
2869 * performs disk spin up, read_capacity, etc.
2870 * @disk: struct gendisk we care about
2871 **/
2872 static int sd_revalidate_disk(struct gendisk *disk)
2873 {
2874 struct scsi_disk *sdkp = scsi_disk(disk);
2875 struct scsi_device *sdp = sdkp->device;
2876 struct request_queue *q = sdkp->disk->queue;
2877 sector_t old_capacity = sdkp->capacity;
2878 unsigned char *buffer;
2879 unsigned int dev_max, rw_max;
2880
2881 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2882 "sd_revalidate_disk\n"));
2883
2884 /*
2885 * If the device is offline, don't try and read capacity or any
2886 * of the other niceties.
2887 */
2888 if (!scsi_device_online(sdp))
2889 goto out;
2890
2891 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2892 if (!buffer) {
2893 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2894 "allocation failure.\n");
2895 goto out;
2896 }
2897
2898 sd_spinup_disk(sdkp);
2899
2900 /*
2901 * Without media there is no reason to ask; moreover, some devices
2902 * react badly if we do.
2903 */
2904 if (sdkp->media_present) {
2905 sd_read_capacity(sdkp, buffer);
2906
2907 if (scsi_device_supports_vpd(sdp)) {
2908 sd_read_block_provisioning(sdkp);
2909 sd_read_block_limits(sdkp);
2910 sd_read_block_characteristics(sdkp);
2911 sd_zbc_read_zones(sdkp, buffer);
2912 }
2913
2914 sd_print_capacity(sdkp, old_capacity);
2915
2916 sd_read_write_protect_flag(sdkp, buffer);
2917 sd_read_cache_type(sdkp, buffer);
2918 sd_read_app_tag_own(sdkp, buffer);
2919 sd_read_write_same(sdkp, buffer);
2920 }
2921
2922 sdkp->first_scan = 0;
2923
2924 /*
2925 * We now have all cache related info, determine how we deal
2926 * with flush requests.
2927 */
2928 sd_set_flush_flag(sdkp);
2929
2930 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
2931 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
2932
2933 /* Some devices report a maximum block count for READ/WRITE requests. */
2934 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
2935 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
2936
2937 /*
2938 * Use the device's preferred I/O size for reads and writes
2939 * unless the reported value is unreasonably small, large, or
2940 * garbage.
2941 */
2942 if (sdkp->opt_xfer_blocks &&
2943 sdkp->opt_xfer_blocks <= dev_max &&
2944 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
2945 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
2946 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
2947 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
2948 } else
2949 rw_max = BLK_DEF_MAX_SECTORS;
2950
2951 /* Combine with controller limits */
2952 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
2953
2954 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
2955 sd_config_write_same(sdkp);
2956 kfree(buffer);
2957
2958 out:
2959 return 0;
2960 }
2961
2962 /**
2963 * sd_unlock_native_capacity - unlock native capacity
2964 * @disk: struct gendisk to set capacity for
2965 *
2966 * Block layer calls this function if it detects that partitions
2967 * on @disk reach beyond the end of the device. If the SCSI host
2968 * implements ->unlock_native_capacity() method, it's invoked to
2969 * give it a chance to adjust the device capacity.
2970 *
2971 * CONTEXT:
2972 * Defined by block layer. Might sleep.
2973 */
2974 static void sd_unlock_native_capacity(struct gendisk *disk)
2975 {
2976 struct scsi_device *sdev = scsi_disk(disk)->device;
2977
2978 if (sdev->host->hostt->unlock_native_capacity)
2979 sdev->host->hostt->unlock_native_capacity(sdev);
2980 }
2981
2982 /**
2983 * sd_format_disk_name - format disk name
2984 * @prefix: name prefix - ie. "sd" for SCSI disks
2985 * @index: index of the disk to format name for
2986 * @buf: output buffer
2987 * @buflen: length of the output buffer
2988 *
2989 * SCSI disk names starts at sda. The 26th device is sdz and the
2990 * 27th is sdaa. The last one for two lettered suffix is sdzz
2991 * which is followed by sdaaa.
2992 *
2993 * This is basically 26 base counting with one extra 'nil' entry
2994 * at the beginning from the second digit on and can be
2995 * determined using similar method as 26 base conversion with the
2996 * index shifted -1 after each digit is computed.
2997 *
2998 * CONTEXT:
2999 * Don't care.
3000 *
3001 * RETURNS:
3002 * 0 on success, -errno on failure.
3003 */
3004 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3005 {
3006 const int base = 'z' - 'a' + 1;
3007 char *begin = buf + strlen(prefix);
3008 char *end = buf + buflen;
3009 char *p;
3010 int unit;
3011
3012 p = end - 1;
3013 *p = '\0';
3014 unit = base;
3015 do {
3016 if (p == begin)
3017 return -EINVAL;
3018 *--p = 'a' + (index % unit);
3019 index = (index / unit) - 1;
3020 } while (index >= 0);
3021
3022 memmove(begin, p, end - p);
3023 memcpy(buf, prefix, strlen(prefix));
3024
3025 return 0;
3026 }
3027
3028 /*
3029 * The asynchronous part of sd_probe
3030 */
3031 static void sd_probe_async(void *data, async_cookie_t cookie)
3032 {
3033 struct scsi_disk *sdkp = data;
3034 struct scsi_device *sdp;
3035 struct gendisk *gd;
3036 u32 index;
3037 struct device *dev;
3038
3039 sdp = sdkp->device;
3040 gd = sdkp->disk;
3041 index = sdkp->index;
3042 dev = &sdp->sdev_gendev;
3043
3044 gd->major = sd_major((index & 0xf0) >> 4);
3045 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3046 gd->minors = SD_MINORS;
3047
3048 gd->fops = &sd_fops;
3049 gd->private_data = &sdkp->driver;
3050 gd->queue = sdkp->device->request_queue;
3051
3052 /* defaults, until the device tells us otherwise */
3053 sdp->sector_size = 512;
3054 sdkp->capacity = 0;
3055 sdkp->media_present = 1;
3056 sdkp->write_prot = 0;
3057 sdkp->cache_override = 0;
3058 sdkp->WCE = 0;
3059 sdkp->RCD = 0;
3060 sdkp->ATO = 0;
3061 sdkp->first_scan = 1;
3062 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3063
3064 sd_revalidate_disk(gd);
3065
3066 gd->flags = GENHD_FL_EXT_DEVT;
3067 if (sdp->removable) {
3068 gd->flags |= GENHD_FL_REMOVABLE;
3069 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3070 }
3071
3072 blk_pm_runtime_init(sdp->request_queue, dev);
3073 device_add_disk(dev, gd);
3074 if (sdkp->capacity)
3075 sd_dif_config_host(sdkp);
3076
3077 sd_revalidate_disk(gd);
3078
3079 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3080 sdp->removable ? "removable " : "");
3081 scsi_autopm_put_device(sdp);
3082 put_device(&sdkp->dev);
3083 }
3084
3085 /**
3086 * sd_probe - called during driver initialization and whenever a
3087 * new scsi device is attached to the system. It is called once
3088 * for each scsi device (not just disks) present.
3089 * @dev: pointer to device object
3090 *
3091 * Returns 0 if successful (or not interested in this scsi device
3092 * (e.g. scanner)); 1 when there is an error.
3093 *
3094 * Note: this function is invoked from the scsi mid-level.
3095 * This function sets up the mapping between a given
3096 * <host,channel,id,lun> (found in sdp) and new device name
3097 * (e.g. /dev/sda). More precisely it is the block device major
3098 * and minor number that is chosen here.
3099 *
3100 * Assume sd_probe is not re-entrant (for time being)
3101 * Also think about sd_probe() and sd_remove() running coincidentally.
3102 **/
3103 static int sd_probe(struct device *dev)
3104 {
3105 struct scsi_device *sdp = to_scsi_device(dev);
3106 struct scsi_disk *sdkp;
3107 struct gendisk *gd;
3108 int index;
3109 int error;
3110
3111 scsi_autopm_get_device(sdp);
3112 error = -ENODEV;
3113 if (sdp->type != TYPE_DISK &&
3114 sdp->type != TYPE_ZBC &&
3115 sdp->type != TYPE_MOD &&
3116 sdp->type != TYPE_RBC)
3117 goto out;
3118
3119 #ifndef CONFIG_BLK_DEV_ZONED
3120 if (sdp->type == TYPE_ZBC)
3121 goto out;
3122 #endif
3123 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3124 "sd_probe\n"));
3125
3126 error = -ENOMEM;
3127 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3128 if (!sdkp)
3129 goto out;
3130
3131 gd = alloc_disk(SD_MINORS);
3132 if (!gd)
3133 goto out_free;
3134
3135 do {
3136 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3137 goto out_put;
3138
3139 spin_lock(&sd_index_lock);
3140 error = ida_get_new(&sd_index_ida, &index);
3141 spin_unlock(&sd_index_lock);
3142 } while (error == -EAGAIN);
3143
3144 if (error) {
3145 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3146 goto out_put;
3147 }
3148
3149 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3150 if (error) {
3151 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3152 goto out_free_index;
3153 }
3154
3155 sdkp->device = sdp;
3156 sdkp->driver = &sd_template;
3157 sdkp->disk = gd;
3158 sdkp->index = index;
3159 atomic_set(&sdkp->openers, 0);
3160 atomic_set(&sdkp->device->ioerr_cnt, 0);
3161
3162 if (!sdp->request_queue->rq_timeout) {
3163 if (sdp->type != TYPE_MOD)
3164 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3165 else
3166 blk_queue_rq_timeout(sdp->request_queue,
3167 SD_MOD_TIMEOUT);
3168 }
3169
3170 device_initialize(&sdkp->dev);
3171 sdkp->dev.parent = dev;
3172 sdkp->dev.class = &sd_disk_class;
3173 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3174
3175 error = device_add(&sdkp->dev);
3176 if (error)
3177 goto out_free_index;
3178
3179 get_device(dev);
3180 dev_set_drvdata(dev, sdkp);
3181
3182 get_device(&sdkp->dev); /* prevent release before async_schedule */
3183 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3184
3185 return 0;
3186
3187 out_free_index:
3188 spin_lock(&sd_index_lock);
3189 ida_remove(&sd_index_ida, index);
3190 spin_unlock(&sd_index_lock);
3191 out_put:
3192 put_disk(gd);
3193 out_free:
3194 kfree(sdkp);
3195 out:
3196 scsi_autopm_put_device(sdp);
3197 return error;
3198 }
3199
3200 /**
3201 * sd_remove - called whenever a scsi disk (previously recognized by
3202 * sd_probe) is detached from the system. It is called (potentially
3203 * multiple times) during sd module unload.
3204 * @sdp: pointer to mid level scsi device object
3205 *
3206 * Note: this function is invoked from the scsi mid-level.
3207 * This function potentially frees up a device name (e.g. /dev/sdc)
3208 * that could be re-used by a subsequent sd_probe().
3209 * This function is not called when the built-in sd driver is "exit-ed".
3210 **/
3211 static int sd_remove(struct device *dev)
3212 {
3213 struct scsi_disk *sdkp;
3214 dev_t devt;
3215
3216 sdkp = dev_get_drvdata(dev);
3217 devt = disk_devt(sdkp->disk);
3218 scsi_autopm_get_device(sdkp->device);
3219
3220 async_synchronize_full_domain(&scsi_sd_pm_domain);
3221 async_synchronize_full_domain(&scsi_sd_probe_domain);
3222 device_del(&sdkp->dev);
3223 del_gendisk(sdkp->disk);
3224 sd_shutdown(dev);
3225
3226 sd_zbc_remove(sdkp);
3227
3228 blk_register_region(devt, SD_MINORS, NULL,
3229 sd_default_probe, NULL, NULL);
3230
3231 mutex_lock(&sd_ref_mutex);
3232 dev_set_drvdata(dev, NULL);
3233 put_device(&sdkp->dev);
3234 mutex_unlock(&sd_ref_mutex);
3235
3236 return 0;
3237 }
3238
3239 /**
3240 * scsi_disk_release - Called to free the scsi_disk structure
3241 * @dev: pointer to embedded class device
3242 *
3243 * sd_ref_mutex must be held entering this routine. Because it is
3244 * called on last put, you should always use the scsi_disk_get()
3245 * scsi_disk_put() helpers which manipulate the semaphore directly
3246 * and never do a direct put_device.
3247 **/
3248 static void scsi_disk_release(struct device *dev)
3249 {
3250 struct scsi_disk *sdkp = to_scsi_disk(dev);
3251 struct gendisk *disk = sdkp->disk;
3252
3253 spin_lock(&sd_index_lock);
3254 ida_remove(&sd_index_ida, sdkp->index);
3255 spin_unlock(&sd_index_lock);
3256
3257 disk->private_data = NULL;
3258 put_disk(disk);
3259 put_device(&sdkp->device->sdev_gendev);
3260
3261 kfree(sdkp);
3262 }
3263
3264 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3265 {
3266 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3267 struct scsi_sense_hdr sshdr;
3268 struct scsi_device *sdp = sdkp->device;
3269 int res;
3270
3271 if (start)
3272 cmd[4] |= 1; /* START */
3273
3274 if (sdp->start_stop_pwr_cond)
3275 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3276
3277 if (!scsi_device_online(sdp))
3278 return -ENODEV;
3279
3280 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3281 SD_TIMEOUT, SD_MAX_RETRIES, NULL, 0, RQF_PM);
3282 if (res) {
3283 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3284 if (driver_byte(res) & DRIVER_SENSE)
3285 sd_print_sense_hdr(sdkp, &sshdr);
3286 if (scsi_sense_valid(&sshdr) &&
3287 /* 0x3a is medium not present */
3288 sshdr.asc == 0x3a)
3289 res = 0;
3290 }
3291
3292 /* SCSI error codes must not go to the generic layer */
3293 if (res)
3294 return -EIO;
3295
3296 return 0;
3297 }
3298
3299 /*
3300 * Send a SYNCHRONIZE CACHE instruction down to the device through
3301 * the normal SCSI command structure. Wait for the command to
3302 * complete.
3303 */
3304 static void sd_shutdown(struct device *dev)
3305 {
3306 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3307
3308 if (!sdkp)
3309 return; /* this can happen */
3310
3311 if (pm_runtime_suspended(dev))
3312 return;
3313
3314 if (sdkp->WCE && sdkp->media_present) {
3315 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3316 sd_sync_cache(sdkp);
3317 }
3318
3319 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3320 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3321 sd_start_stop_device(sdkp, 0);
3322 }
3323 }
3324
3325 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3326 {
3327 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3328 int ret = 0;
3329
3330 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3331 return 0;
3332
3333 if (sdkp->WCE && sdkp->media_present) {
3334 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3335 ret = sd_sync_cache(sdkp);
3336 if (ret) {
3337 /* ignore OFFLINE device */
3338 if (ret == -ENODEV)
3339 ret = 0;
3340 goto done;
3341 }
3342 }
3343
3344 if (sdkp->device->manage_start_stop) {
3345 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3346 /* an error is not worth aborting a system sleep */
3347 ret = sd_start_stop_device(sdkp, 0);
3348 if (ignore_stop_errors)
3349 ret = 0;
3350 }
3351
3352 done:
3353 return ret;
3354 }
3355
3356 static int sd_suspend_system(struct device *dev)
3357 {
3358 return sd_suspend_common(dev, true);
3359 }
3360
3361 static int sd_suspend_runtime(struct device *dev)
3362 {
3363 return sd_suspend_common(dev, false);
3364 }
3365
3366 static int sd_resume(struct device *dev)
3367 {
3368 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3369
3370 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3371 return 0;
3372
3373 if (!sdkp->device->manage_start_stop)
3374 return 0;
3375
3376 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3377 return sd_start_stop_device(sdkp, 1);
3378 }
3379
3380 /**
3381 * init_sd - entry point for this driver (both when built in or when
3382 * a module).
3383 *
3384 * Note: this function registers this driver with the scsi mid-level.
3385 **/
3386 static int __init init_sd(void)
3387 {
3388 int majors = 0, i, err;
3389
3390 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3391
3392 for (i = 0; i < SD_MAJORS; i++) {
3393 if (register_blkdev(sd_major(i), "sd") != 0)
3394 continue;
3395 majors++;
3396 blk_register_region(sd_major(i), SD_MINORS, NULL,
3397 sd_default_probe, NULL, NULL);
3398 }
3399
3400 if (!majors)
3401 return -ENODEV;
3402
3403 err = class_register(&sd_disk_class);
3404 if (err)
3405 goto err_out;
3406
3407 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3408 0, 0, NULL);
3409 if (!sd_cdb_cache) {
3410 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3411 err = -ENOMEM;
3412 goto err_out_class;
3413 }
3414
3415 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3416 if (!sd_cdb_pool) {
3417 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3418 err = -ENOMEM;
3419 goto err_out_cache;
3420 }
3421
3422 err = scsi_register_driver(&sd_template.gendrv);
3423 if (err)
3424 goto err_out_driver;
3425
3426 return 0;
3427
3428 err_out_driver:
3429 mempool_destroy(sd_cdb_pool);
3430
3431 err_out_cache:
3432 kmem_cache_destroy(sd_cdb_cache);
3433
3434 err_out_class:
3435 class_unregister(&sd_disk_class);
3436 err_out:
3437 for (i = 0; i < SD_MAJORS; i++)
3438 unregister_blkdev(sd_major(i), "sd");
3439 return err;
3440 }
3441
3442 /**
3443 * exit_sd - exit point for this driver (when it is a module).
3444 *
3445 * Note: this function unregisters this driver from the scsi mid-level.
3446 **/
3447 static void __exit exit_sd(void)
3448 {
3449 int i;
3450
3451 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3452
3453 scsi_unregister_driver(&sd_template.gendrv);
3454 mempool_destroy(sd_cdb_pool);
3455 kmem_cache_destroy(sd_cdb_cache);
3456
3457 class_unregister(&sd_disk_class);
3458
3459 for (i = 0; i < SD_MAJORS; i++) {
3460 blk_unregister_region(sd_major(i), SD_MINORS);
3461 unregister_blkdev(sd_major(i), "sd");
3462 }
3463 }
3464
3465 module_init(init_sd);
3466 module_exit(exit_sd);
3467
3468 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3469 struct scsi_sense_hdr *sshdr)
3470 {
3471 scsi_print_sense_hdr(sdkp->device,
3472 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3473 }
3474
3475 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3476 int result)
3477 {
3478 const char *hb_string = scsi_hostbyte_string(result);
3479 const char *db_string = scsi_driverbyte_string(result);
3480
3481 if (hb_string || db_string)
3482 sd_printk(KERN_INFO, sdkp,
3483 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3484 hb_string ? hb_string : "invalid",
3485 db_string ? db_string : "invalid");
3486 else
3487 sd_printk(KERN_INFO, sdkp,
3488 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3489 msg, host_byte(result), driver_byte(result));
3490 }
3491