]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/sd.c
ACPI / PM: Do not disable wakeup GPEs that have not been enabled
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <asm/uaccess.h>
55 #include <asm/unaligned.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_dbg.h>
60 #include <scsi/scsi_device.h>
61 #include <scsi/scsi_driver.h>
62 #include <scsi/scsi_eh.h>
63 #include <scsi/scsi_host.h>
64 #include <scsi/scsi_ioctl.h>
65 #include <scsi/scsicam.h>
66
67 #include "sd.h"
68 #include "scsi_priv.h"
69 #include "scsi_logging.h"
70
71 MODULE_AUTHOR("Eric Youngdale");
72 MODULE_DESCRIPTION("SCSI disk (sd) driver");
73 MODULE_LICENSE("GPL");
74
75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
94
95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
96 #define SD_MINORS 16
97 #else
98 #define SD_MINORS 0
99 #endif
100
101 static void sd_config_discard(struct scsi_disk *, unsigned int);
102 static void sd_config_write_same(struct scsi_disk *);
103 static int sd_revalidate_disk(struct gendisk *);
104 static void sd_unlock_native_capacity(struct gendisk *disk);
105 static int sd_probe(struct device *);
106 static int sd_remove(struct device *);
107 static void sd_shutdown(struct device *);
108 static int sd_suspend_system(struct device *);
109 static int sd_suspend_runtime(struct device *);
110 static int sd_resume(struct device *);
111 static void sd_rescan(struct device *);
112 static int sd_init_command(struct scsi_cmnd *SCpnt);
113 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
114 static int sd_done(struct scsi_cmnd *);
115 static int sd_eh_action(struct scsi_cmnd *, int);
116 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
117 static void scsi_disk_release(struct device *cdev);
118 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
119 static void sd_print_result(struct scsi_disk *, int);
120
121 static DEFINE_SPINLOCK(sd_index_lock);
122 static DEFINE_IDA(sd_index_ida);
123
124 /* This semaphore is used to mediate the 0->1 reference get in the
125 * face of object destruction (i.e. we can't allow a get on an
126 * object after last put) */
127 static DEFINE_MUTEX(sd_ref_mutex);
128
129 static struct kmem_cache *sd_cdb_cache;
130 static mempool_t *sd_cdb_pool;
131
132 static const char *sd_cache_types[] = {
133 "write through", "none", "write back",
134 "write back, no read (daft)"
135 };
136
137 static void sd_set_flush_flag(struct scsi_disk *sdkp)
138 {
139 unsigned flush = 0;
140
141 if (sdkp->WCE) {
142 flush |= REQ_FLUSH;
143 if (sdkp->DPOFUA)
144 flush |= REQ_FUA;
145 }
146
147 blk_queue_flush(sdkp->disk->queue, flush);
148 }
149
150 static ssize_t
151 cache_type_store(struct device *dev, struct device_attribute *attr,
152 const char *buf, size_t count)
153 {
154 int i, ct = -1, rcd, wce, sp;
155 struct scsi_disk *sdkp = to_scsi_disk(dev);
156 struct scsi_device *sdp = sdkp->device;
157 char buffer[64];
158 char *buffer_data;
159 struct scsi_mode_data data;
160 struct scsi_sense_hdr sshdr;
161 static const char temp[] = "temporary ";
162 int len;
163
164 if (sdp->type != TYPE_DISK)
165 /* no cache control on RBC devices; theoretically they
166 * can do it, but there's probably so many exceptions
167 * it's not worth the risk */
168 return -EINVAL;
169
170 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
171 buf += sizeof(temp) - 1;
172 sdkp->cache_override = 1;
173 } else {
174 sdkp->cache_override = 0;
175 }
176
177 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
178 len = strlen(sd_cache_types[i]);
179 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
180 buf[len] == '\n') {
181 ct = i;
182 break;
183 }
184 }
185 if (ct < 0)
186 return -EINVAL;
187 rcd = ct & 0x01 ? 1 : 0;
188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189
190 if (sdkp->cache_override) {
191 sdkp->WCE = wce;
192 sdkp->RCD = rcd;
193 sd_set_flush_flag(sdkp);
194 return count;
195 }
196
197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 SD_MAX_RETRIES, &data, NULL))
199 return -EINVAL;
200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 data.block_descriptor_length);
202 buffer_data = buffer + data.header_length +
203 data.block_descriptor_length;
204 buffer_data[2] &= ~0x05;
205 buffer_data[2] |= wce << 2 | rcd;
206 sp = buffer_data[0] & 0x80 ? 1 : 0;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234
235 if (!capable(CAP_SYS_ADMIN))
236 return -EACCES;
237
238 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239
240 return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257 struct scsi_device *sdp = sdkp->device;
258
259 if (!capable(CAP_SYS_ADMIN))
260 return -EACCES;
261
262 if (sdp->type != TYPE_DISK)
263 return -EINVAL;
264
265 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266
267 return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 struct scsi_disk *sdkp = to_scsi_disk(dev);
275 int ct = sdkp->RCD + 2*sdkp->WCE;
276
277 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285
286 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 char *buf)
293 {
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295
296 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
297 }
298
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 const char *buf, size_t count)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304 unsigned int val;
305 int err;
306
307 if (!capable(CAP_SYS_ADMIN))
308 return -EACCES;
309
310 err = kstrtouint(buf, 10, &val);
311
312 if (err)
313 return err;
314
315 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
316 sdkp->protection_type = val;
317
318 return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 char *buf)
325 {
326 struct scsi_disk *sdkp = to_scsi_disk(dev);
327 struct scsi_device *sdp = sdkp->device;
328 unsigned int dif, dix;
329
330 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332
333 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
334 dif = 0;
335 dix = 1;
336 }
337
338 if (!dif && !dix)
339 return snprintf(buf, 20, "none\n");
340
341 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 struct scsi_disk *sdkp = to_scsi_disk(dev);
349
350 return snprintf(buf, 20, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 char *buf)
357 {
358 struct scsi_disk *sdkp = to_scsi_disk(dev);
359
360 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363
364 static const char *lbp_mode[] = {
365 [SD_LBP_FULL] = "full",
366 [SD_LBP_UNMAP] = "unmap",
367 [SD_LBP_WS16] = "writesame_16",
368 [SD_LBP_WS10] = "writesame_10",
369 [SD_LBP_ZERO] = "writesame_zero",
370 [SD_LBP_DISABLE] = "disabled",
371 };
372
373 static ssize_t
374 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
375 char *buf)
376 {
377 struct scsi_disk *sdkp = to_scsi_disk(dev);
378
379 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
380 }
381
382 static ssize_t
383 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
384 const char *buf, size_t count)
385 {
386 struct scsi_disk *sdkp = to_scsi_disk(dev);
387 struct scsi_device *sdp = sdkp->device;
388
389 if (!capable(CAP_SYS_ADMIN))
390 return -EACCES;
391
392 if (sdp->type != TYPE_DISK)
393 return -EINVAL;
394
395 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
396 sd_config_discard(sdkp, SD_LBP_UNMAP);
397 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
398 sd_config_discard(sdkp, SD_LBP_WS16);
399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
400 sd_config_discard(sdkp, SD_LBP_WS10);
401 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
402 sd_config_discard(sdkp, SD_LBP_ZERO);
403 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
404 sd_config_discard(sdkp, SD_LBP_DISABLE);
405 else
406 return -EINVAL;
407
408 return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411
412 static ssize_t
413 max_medium_access_timeouts_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415 {
416 struct scsi_disk *sdkp = to_scsi_disk(dev);
417
418 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
419 }
420
421 static ssize_t
422 max_medium_access_timeouts_store(struct device *dev,
423 struct device_attribute *attr, const char *buf,
424 size_t count)
425 {
426 struct scsi_disk *sdkp = to_scsi_disk(dev);
427 int err;
428
429 if (!capable(CAP_SYS_ADMIN))
430 return -EACCES;
431
432 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
433
434 return err ? err : count;
435 }
436 static DEVICE_ATTR_RW(max_medium_access_timeouts);
437
438 static ssize_t
439 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
440 char *buf)
441 {
442 struct scsi_disk *sdkp = to_scsi_disk(dev);
443
444 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
445 }
446
447 static ssize_t
448 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
449 const char *buf, size_t count)
450 {
451 struct scsi_disk *sdkp = to_scsi_disk(dev);
452 struct scsi_device *sdp = sdkp->device;
453 unsigned long max;
454 int err;
455
456 if (!capable(CAP_SYS_ADMIN))
457 return -EACCES;
458
459 if (sdp->type != TYPE_DISK)
460 return -EINVAL;
461
462 err = kstrtoul(buf, 10, &max);
463
464 if (err)
465 return err;
466
467 if (max == 0)
468 sdp->no_write_same = 1;
469 else if (max <= SD_MAX_WS16_BLOCKS) {
470 sdp->no_write_same = 0;
471 sdkp->max_ws_blocks = max;
472 }
473
474 sd_config_write_same(sdkp);
475
476 return count;
477 }
478 static DEVICE_ATTR_RW(max_write_same_blocks);
479
480 static struct attribute *sd_disk_attrs[] = {
481 &dev_attr_cache_type.attr,
482 &dev_attr_FUA.attr,
483 &dev_attr_allow_restart.attr,
484 &dev_attr_manage_start_stop.attr,
485 &dev_attr_protection_type.attr,
486 &dev_attr_protection_mode.attr,
487 &dev_attr_app_tag_own.attr,
488 &dev_attr_thin_provisioning.attr,
489 &dev_attr_provisioning_mode.attr,
490 &dev_attr_max_write_same_blocks.attr,
491 &dev_attr_max_medium_access_timeouts.attr,
492 NULL,
493 };
494 ATTRIBUTE_GROUPS(sd_disk);
495
496 static struct class sd_disk_class = {
497 .name = "scsi_disk",
498 .owner = THIS_MODULE,
499 .dev_release = scsi_disk_release,
500 .dev_groups = sd_disk_groups,
501 };
502
503 static const struct dev_pm_ops sd_pm_ops = {
504 .suspend = sd_suspend_system,
505 .resume = sd_resume,
506 .poweroff = sd_suspend_system,
507 .restore = sd_resume,
508 .runtime_suspend = sd_suspend_runtime,
509 .runtime_resume = sd_resume,
510 };
511
512 static struct scsi_driver sd_template = {
513 .owner = THIS_MODULE,
514 .gendrv = {
515 .name = "sd",
516 .probe = sd_probe,
517 .remove = sd_remove,
518 .shutdown = sd_shutdown,
519 .pm = &sd_pm_ops,
520 },
521 .rescan = sd_rescan,
522 .init_command = sd_init_command,
523 .uninit_command = sd_uninit_command,
524 .done = sd_done,
525 .eh_action = sd_eh_action,
526 };
527
528 /*
529 * Dummy kobj_map->probe function.
530 * The default ->probe function will call modprobe, which is
531 * pointless as this module is already loaded.
532 */
533 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
534 {
535 return NULL;
536 }
537
538 /*
539 * Device no to disk mapping:
540 *
541 * major disc2 disc p1
542 * |............|.............|....|....| <- dev_t
543 * 31 20 19 8 7 4 3 0
544 *
545 * Inside a major, we have 16k disks, however mapped non-
546 * contiguously. The first 16 disks are for major0, the next
547 * ones with major1, ... Disk 256 is for major0 again, disk 272
548 * for major1, ...
549 * As we stay compatible with our numbering scheme, we can reuse
550 * the well-know SCSI majors 8, 65--71, 136--143.
551 */
552 static int sd_major(int major_idx)
553 {
554 switch (major_idx) {
555 case 0:
556 return SCSI_DISK0_MAJOR;
557 case 1 ... 7:
558 return SCSI_DISK1_MAJOR + major_idx - 1;
559 case 8 ... 15:
560 return SCSI_DISK8_MAJOR + major_idx - 8;
561 default:
562 BUG();
563 return 0; /* shut up gcc */
564 }
565 }
566
567 static struct scsi_disk *__scsi_disk_get(struct gendisk *disk)
568 {
569 struct scsi_disk *sdkp = NULL;
570
571 if (disk->private_data) {
572 sdkp = scsi_disk(disk);
573 if (scsi_device_get(sdkp->device) == 0)
574 get_device(&sdkp->dev);
575 else
576 sdkp = NULL;
577 }
578 return sdkp;
579 }
580
581 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
582 {
583 struct scsi_disk *sdkp;
584
585 mutex_lock(&sd_ref_mutex);
586 sdkp = __scsi_disk_get(disk);
587 mutex_unlock(&sd_ref_mutex);
588 return sdkp;
589 }
590
591 static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev)
592 {
593 struct scsi_disk *sdkp;
594
595 mutex_lock(&sd_ref_mutex);
596 sdkp = dev_get_drvdata(dev);
597 if (sdkp)
598 sdkp = __scsi_disk_get(sdkp->disk);
599 mutex_unlock(&sd_ref_mutex);
600 return sdkp;
601 }
602
603 static void scsi_disk_put(struct scsi_disk *sdkp)
604 {
605 struct scsi_device *sdev = sdkp->device;
606
607 mutex_lock(&sd_ref_mutex);
608 put_device(&sdkp->dev);
609 scsi_device_put(sdev);
610 mutex_unlock(&sd_ref_mutex);
611 }
612
613
614
615 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
616 unsigned int dix, unsigned int dif)
617 {
618 struct bio *bio = scmd->request->bio;
619 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
620 unsigned int protect = 0;
621
622 if (dix) { /* DIX Type 0, 1, 2, 3 */
623 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
624 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
625
626 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
627 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
628 }
629
630 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
631 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
632
633 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
634 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
635 }
636
637 if (dif) { /* DIX/DIF Type 1, 2, 3 */
638 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
639
640 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
641 protect = 3 << 5; /* Disable target PI checking */
642 else
643 protect = 1 << 5; /* Enable target PI checking */
644 }
645
646 scsi_set_prot_op(scmd, prot_op);
647 scsi_set_prot_type(scmd, dif);
648 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
649
650 return protect;
651 }
652
653 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
654 {
655 struct request_queue *q = sdkp->disk->queue;
656 unsigned int logical_block_size = sdkp->device->sector_size;
657 unsigned int max_blocks = 0;
658
659 q->limits.discard_zeroes_data = sdkp->lbprz;
660 q->limits.discard_alignment = sdkp->unmap_alignment *
661 logical_block_size;
662 q->limits.discard_granularity =
663 max(sdkp->physical_block_size,
664 sdkp->unmap_granularity * logical_block_size);
665
666 sdkp->provisioning_mode = mode;
667
668 switch (mode) {
669
670 case SD_LBP_DISABLE:
671 q->limits.max_discard_sectors = 0;
672 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
673 return;
674
675 case SD_LBP_UNMAP:
676 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
677 (u32)SD_MAX_WS16_BLOCKS);
678 break;
679
680 case SD_LBP_WS16:
681 max_blocks = min_not_zero(sdkp->max_ws_blocks,
682 (u32)SD_MAX_WS16_BLOCKS);
683 break;
684
685 case SD_LBP_WS10:
686 max_blocks = min_not_zero(sdkp->max_ws_blocks,
687 (u32)SD_MAX_WS10_BLOCKS);
688 break;
689
690 case SD_LBP_ZERO:
691 max_blocks = min_not_zero(sdkp->max_ws_blocks,
692 (u32)SD_MAX_WS10_BLOCKS);
693 q->limits.discard_zeroes_data = 1;
694 break;
695 }
696
697 q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9);
698 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
699 }
700
701 /**
702 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
703 * @sdp: scsi device to operate one
704 * @rq: Request to prepare
705 *
706 * Will issue either UNMAP or WRITE SAME(16) depending on preference
707 * indicated by target device.
708 **/
709 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
710 {
711 struct request *rq = cmd->request;
712 struct scsi_device *sdp = cmd->device;
713 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
714 sector_t sector = blk_rq_pos(rq);
715 unsigned int nr_sectors = blk_rq_sectors(rq);
716 unsigned int nr_bytes = blk_rq_bytes(rq);
717 unsigned int len;
718 int ret;
719 char *buf;
720 struct page *page;
721
722 sector >>= ilog2(sdp->sector_size) - 9;
723 nr_sectors >>= ilog2(sdp->sector_size) - 9;
724
725 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
726 if (!page)
727 return BLKPREP_DEFER;
728
729 switch (sdkp->provisioning_mode) {
730 case SD_LBP_UNMAP:
731 buf = page_address(page);
732
733 cmd->cmd_len = 10;
734 cmd->cmnd[0] = UNMAP;
735 cmd->cmnd[8] = 24;
736
737 put_unaligned_be16(6 + 16, &buf[0]);
738 put_unaligned_be16(16, &buf[2]);
739 put_unaligned_be64(sector, &buf[8]);
740 put_unaligned_be32(nr_sectors, &buf[16]);
741
742 len = 24;
743 break;
744
745 case SD_LBP_WS16:
746 cmd->cmd_len = 16;
747 cmd->cmnd[0] = WRITE_SAME_16;
748 cmd->cmnd[1] = 0x8; /* UNMAP */
749 put_unaligned_be64(sector, &cmd->cmnd[2]);
750 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
751
752 len = sdkp->device->sector_size;
753 break;
754
755 case SD_LBP_WS10:
756 case SD_LBP_ZERO:
757 cmd->cmd_len = 10;
758 cmd->cmnd[0] = WRITE_SAME;
759 if (sdkp->provisioning_mode == SD_LBP_WS10)
760 cmd->cmnd[1] = 0x8; /* UNMAP */
761 put_unaligned_be32(sector, &cmd->cmnd[2]);
762 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
763
764 len = sdkp->device->sector_size;
765 break;
766
767 default:
768 ret = BLKPREP_KILL;
769 goto out;
770 }
771
772 rq->completion_data = page;
773 rq->timeout = SD_TIMEOUT;
774
775 cmd->transfersize = len;
776 cmd->allowed = SD_MAX_RETRIES;
777
778 /*
779 * Initially __data_len is set to the amount of data that needs to be
780 * transferred to the target. This amount depends on whether WRITE SAME
781 * or UNMAP is being used. After the scatterlist has been mapped by
782 * scsi_init_io() we set __data_len to the size of the area to be
783 * discarded on disk. This allows us to report completion on the full
784 * amount of blocks described by the request.
785 */
786 blk_add_request_payload(rq, page, len);
787 ret = scsi_init_io(cmd, GFP_ATOMIC);
788 rq->__data_len = nr_bytes;
789
790 out:
791 if (ret != BLKPREP_OK)
792 __free_page(page);
793 return ret;
794 }
795
796 static void sd_config_write_same(struct scsi_disk *sdkp)
797 {
798 struct request_queue *q = sdkp->disk->queue;
799 unsigned int logical_block_size = sdkp->device->sector_size;
800
801 if (sdkp->device->no_write_same) {
802 sdkp->max_ws_blocks = 0;
803 goto out;
804 }
805
806 /* Some devices can not handle block counts above 0xffff despite
807 * supporting WRITE SAME(16). Consequently we default to 64k
808 * blocks per I/O unless the device explicitly advertises a
809 * bigger limit.
810 */
811 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
812 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
813 (u32)SD_MAX_WS16_BLOCKS);
814 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
815 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
816 (u32)SD_MAX_WS10_BLOCKS);
817 else {
818 sdkp->device->no_write_same = 1;
819 sdkp->max_ws_blocks = 0;
820 }
821
822 out:
823 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
824 (logical_block_size >> 9));
825 }
826
827 /**
828 * sd_setup_write_same_cmnd - write the same data to multiple blocks
829 * @cmd: command to prepare
830 *
831 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
832 * preference indicated by target device.
833 **/
834 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
835 {
836 struct request *rq = cmd->request;
837 struct scsi_device *sdp = cmd->device;
838 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
839 struct bio *bio = rq->bio;
840 sector_t sector = blk_rq_pos(rq);
841 unsigned int nr_sectors = blk_rq_sectors(rq);
842 unsigned int nr_bytes = blk_rq_bytes(rq);
843 int ret;
844
845 if (sdkp->device->no_write_same)
846 return BLKPREP_KILL;
847
848 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
849
850 sector >>= ilog2(sdp->sector_size) - 9;
851 nr_sectors >>= ilog2(sdp->sector_size) - 9;
852
853 rq->timeout = SD_WRITE_SAME_TIMEOUT;
854
855 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
856 cmd->cmd_len = 16;
857 cmd->cmnd[0] = WRITE_SAME_16;
858 put_unaligned_be64(sector, &cmd->cmnd[2]);
859 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
860 } else {
861 cmd->cmd_len = 10;
862 cmd->cmnd[0] = WRITE_SAME;
863 put_unaligned_be32(sector, &cmd->cmnd[2]);
864 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
865 }
866
867 cmd->transfersize = sdp->sector_size;
868 cmd->allowed = SD_MAX_RETRIES;
869
870 /*
871 * For WRITE_SAME the data transferred in the DATA IN buffer is
872 * different from the amount of data actually written to the target.
873 *
874 * We set up __data_len to the amount of data transferred from the
875 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
876 * to transfer a single sector of data first, but then reset it to
877 * the amount of data to be written right after so that the I/O path
878 * knows how much to actually write.
879 */
880 rq->__data_len = sdp->sector_size;
881 ret = scsi_init_io(cmd, GFP_ATOMIC);
882 rq->__data_len = nr_bytes;
883 return ret;
884 }
885
886 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
887 {
888 struct request *rq = cmd->request;
889
890 /* flush requests don't perform I/O, zero the S/G table */
891 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
892
893 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
894 cmd->cmd_len = 10;
895 cmd->transfersize = 0;
896 cmd->allowed = SD_MAX_RETRIES;
897
898 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
899 return BLKPREP_OK;
900 }
901
902 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
903 {
904 struct request *rq = SCpnt->request;
905 struct scsi_device *sdp = SCpnt->device;
906 struct gendisk *disk = rq->rq_disk;
907 struct scsi_disk *sdkp;
908 sector_t block = blk_rq_pos(rq);
909 sector_t threshold;
910 unsigned int this_count = blk_rq_sectors(rq);
911 unsigned int dif, dix;
912 int ret;
913 unsigned char protect;
914
915 ret = scsi_init_io(SCpnt, GFP_ATOMIC);
916 if (ret != BLKPREP_OK)
917 goto out;
918 SCpnt = rq->special;
919 sdkp = scsi_disk(disk);
920
921 /* from here on until we're complete, any goto out
922 * is used for a killable error condition */
923 ret = BLKPREP_KILL;
924
925 SCSI_LOG_HLQUEUE(1,
926 scmd_printk(KERN_INFO, SCpnt,
927 "%s: block=%llu, count=%d\n",
928 __func__, (unsigned long long)block, this_count));
929
930 if (!sdp || !scsi_device_online(sdp) ||
931 block + blk_rq_sectors(rq) > get_capacity(disk)) {
932 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
933 "Finishing %u sectors\n",
934 blk_rq_sectors(rq)));
935 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
936 "Retry with 0x%p\n", SCpnt));
937 goto out;
938 }
939
940 if (sdp->changed) {
941 /*
942 * quietly refuse to do anything to a changed disc until
943 * the changed bit has been reset
944 */
945 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
946 goto out;
947 }
948
949 /*
950 * Some SD card readers can't handle multi-sector accesses which touch
951 * the last one or two hardware sectors. Split accesses as needed.
952 */
953 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
954 (sdp->sector_size / 512);
955
956 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
957 if (block < threshold) {
958 /* Access up to the threshold but not beyond */
959 this_count = threshold - block;
960 } else {
961 /* Access only a single hardware sector */
962 this_count = sdp->sector_size / 512;
963 }
964 }
965
966 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
967 (unsigned long long)block));
968
969 /*
970 * If we have a 1K hardware sectorsize, prevent access to single
971 * 512 byte sectors. In theory we could handle this - in fact
972 * the scsi cdrom driver must be able to handle this because
973 * we typically use 1K blocksizes, and cdroms typically have
974 * 2K hardware sectorsizes. Of course, things are simpler
975 * with the cdrom, since it is read-only. For performance
976 * reasons, the filesystems should be able to handle this
977 * and not force the scsi disk driver to use bounce buffers
978 * for this.
979 */
980 if (sdp->sector_size == 1024) {
981 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
982 scmd_printk(KERN_ERR, SCpnt,
983 "Bad block number requested\n");
984 goto out;
985 } else {
986 block = block >> 1;
987 this_count = this_count >> 1;
988 }
989 }
990 if (sdp->sector_size == 2048) {
991 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
992 scmd_printk(KERN_ERR, SCpnt,
993 "Bad block number requested\n");
994 goto out;
995 } else {
996 block = block >> 2;
997 this_count = this_count >> 2;
998 }
999 }
1000 if (sdp->sector_size == 4096) {
1001 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1002 scmd_printk(KERN_ERR, SCpnt,
1003 "Bad block number requested\n");
1004 goto out;
1005 } else {
1006 block = block >> 3;
1007 this_count = this_count >> 3;
1008 }
1009 }
1010 if (rq_data_dir(rq) == WRITE) {
1011 SCpnt->cmnd[0] = WRITE_6;
1012
1013 if (blk_integrity_rq(rq))
1014 sd_dif_prepare(SCpnt);
1015
1016 } else if (rq_data_dir(rq) == READ) {
1017 SCpnt->cmnd[0] = READ_6;
1018 } else {
1019 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1020 goto out;
1021 }
1022
1023 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1024 "%s %d/%u 512 byte blocks.\n",
1025 (rq_data_dir(rq) == WRITE) ?
1026 "writing" : "reading", this_count,
1027 blk_rq_sectors(rq)));
1028
1029 dix = scsi_prot_sg_count(SCpnt);
1030 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1031
1032 if (dif || dix)
1033 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1034 else
1035 protect = 0;
1036
1037 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1038 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1039
1040 if (unlikely(SCpnt->cmnd == NULL)) {
1041 ret = BLKPREP_DEFER;
1042 goto out;
1043 }
1044
1045 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1046 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1047 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1048 SCpnt->cmnd[7] = 0x18;
1049 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1050 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1051
1052 /* LBA */
1053 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1054 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1055 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1056 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1057 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1058 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1059 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1060 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1061
1062 /* Expected Indirect LBA */
1063 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1064 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1065 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1066 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1067
1068 /* Transfer length */
1069 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1070 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1071 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1072 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1073 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1074 SCpnt->cmnd[0] += READ_16 - READ_6;
1075 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1076 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1077 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1078 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1079 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1080 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1081 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1082 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1083 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1084 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1085 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1086 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1087 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1088 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1089 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1090 scsi_device_protection(SCpnt->device) ||
1091 SCpnt->device->use_10_for_rw) {
1092 SCpnt->cmnd[0] += READ_10 - READ_6;
1093 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1094 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1095 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1096 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1097 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1098 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1099 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1100 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1101 } else {
1102 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1103 /*
1104 * This happens only if this drive failed
1105 * 10byte rw command with ILLEGAL_REQUEST
1106 * during operation and thus turned off
1107 * use_10_for_rw.
1108 */
1109 scmd_printk(KERN_ERR, SCpnt,
1110 "FUA write on READ/WRITE(6) drive\n");
1111 goto out;
1112 }
1113
1114 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1115 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1116 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1117 SCpnt->cmnd[4] = (unsigned char) this_count;
1118 SCpnt->cmnd[5] = 0;
1119 }
1120 SCpnt->sdb.length = this_count * sdp->sector_size;
1121
1122 /*
1123 * We shouldn't disconnect in the middle of a sector, so with a dumb
1124 * host adapter, it's safe to assume that we can at least transfer
1125 * this many bytes between each connect / disconnect.
1126 */
1127 SCpnt->transfersize = sdp->sector_size;
1128 SCpnt->underflow = this_count << 9;
1129 SCpnt->allowed = SD_MAX_RETRIES;
1130
1131 /*
1132 * This indicates that the command is ready from our end to be
1133 * queued.
1134 */
1135 ret = BLKPREP_OK;
1136 out:
1137 return ret;
1138 }
1139
1140 static int sd_init_command(struct scsi_cmnd *cmd)
1141 {
1142 struct request *rq = cmd->request;
1143
1144 if (rq->cmd_flags & REQ_DISCARD)
1145 return sd_setup_discard_cmnd(cmd);
1146 else if (rq->cmd_flags & REQ_WRITE_SAME)
1147 return sd_setup_write_same_cmnd(cmd);
1148 else if (rq->cmd_flags & REQ_FLUSH)
1149 return sd_setup_flush_cmnd(cmd);
1150 else
1151 return sd_setup_read_write_cmnd(cmd);
1152 }
1153
1154 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1155 {
1156 struct request *rq = SCpnt->request;
1157
1158 if (rq->cmd_flags & REQ_DISCARD)
1159 __free_page(rq->completion_data);
1160
1161 if (SCpnt->cmnd != rq->cmd) {
1162 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1163 SCpnt->cmnd = NULL;
1164 SCpnt->cmd_len = 0;
1165 }
1166 }
1167
1168 /**
1169 * sd_open - open a scsi disk device
1170 * @inode: only i_rdev member may be used
1171 * @filp: only f_mode and f_flags may be used
1172 *
1173 * Returns 0 if successful. Returns a negated errno value in case
1174 * of error.
1175 *
1176 * Note: This can be called from a user context (e.g. fsck(1) )
1177 * or from within the kernel (e.g. as a result of a mount(1) ).
1178 * In the latter case @inode and @filp carry an abridged amount
1179 * of information as noted above.
1180 *
1181 * Locking: called with bdev->bd_mutex held.
1182 **/
1183 static int sd_open(struct block_device *bdev, fmode_t mode)
1184 {
1185 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1186 struct scsi_device *sdev;
1187 int retval;
1188
1189 if (!sdkp)
1190 return -ENXIO;
1191
1192 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1193
1194 sdev = sdkp->device;
1195
1196 /*
1197 * If the device is in error recovery, wait until it is done.
1198 * If the device is offline, then disallow any access to it.
1199 */
1200 retval = -ENXIO;
1201 if (!scsi_block_when_processing_errors(sdev))
1202 goto error_out;
1203
1204 if (sdev->removable || sdkp->write_prot)
1205 check_disk_change(bdev);
1206
1207 /*
1208 * If the drive is empty, just let the open fail.
1209 */
1210 retval = -ENOMEDIUM;
1211 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1212 goto error_out;
1213
1214 /*
1215 * If the device has the write protect tab set, have the open fail
1216 * if the user expects to be able to write to the thing.
1217 */
1218 retval = -EROFS;
1219 if (sdkp->write_prot && (mode & FMODE_WRITE))
1220 goto error_out;
1221
1222 /*
1223 * It is possible that the disk changing stuff resulted in
1224 * the device being taken offline. If this is the case,
1225 * report this to the user, and don't pretend that the
1226 * open actually succeeded.
1227 */
1228 retval = -ENXIO;
1229 if (!scsi_device_online(sdev))
1230 goto error_out;
1231
1232 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1233 if (scsi_block_when_processing_errors(sdev))
1234 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1235 }
1236
1237 return 0;
1238
1239 error_out:
1240 scsi_disk_put(sdkp);
1241 return retval;
1242 }
1243
1244 /**
1245 * sd_release - invoked when the (last) close(2) is called on this
1246 * scsi disk.
1247 * @inode: only i_rdev member may be used
1248 * @filp: only f_mode and f_flags may be used
1249 *
1250 * Returns 0.
1251 *
1252 * Note: may block (uninterruptible) if error recovery is underway
1253 * on this disk.
1254 *
1255 * Locking: called with bdev->bd_mutex held.
1256 **/
1257 static void sd_release(struct gendisk *disk, fmode_t mode)
1258 {
1259 struct scsi_disk *sdkp = scsi_disk(disk);
1260 struct scsi_device *sdev = sdkp->device;
1261
1262 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1263
1264 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1265 if (scsi_block_when_processing_errors(sdev))
1266 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1267 }
1268
1269 /*
1270 * XXX and what if there are packets in flight and this close()
1271 * XXX is followed by a "rmmod sd_mod"?
1272 */
1273
1274 scsi_disk_put(sdkp);
1275 }
1276
1277 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1278 {
1279 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1280 struct scsi_device *sdp = sdkp->device;
1281 struct Scsi_Host *host = sdp->host;
1282 int diskinfo[4];
1283
1284 /* default to most commonly used values */
1285 diskinfo[0] = 0x40; /* 1 << 6 */
1286 diskinfo[1] = 0x20; /* 1 << 5 */
1287 diskinfo[2] = sdkp->capacity >> 11;
1288
1289 /* override with calculated, extended default, or driver values */
1290 if (host->hostt->bios_param)
1291 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo);
1292 else
1293 scsicam_bios_param(bdev, sdkp->capacity, diskinfo);
1294
1295 geo->heads = diskinfo[0];
1296 geo->sectors = diskinfo[1];
1297 geo->cylinders = diskinfo[2];
1298 return 0;
1299 }
1300
1301 /**
1302 * sd_ioctl - process an ioctl
1303 * @inode: only i_rdev/i_bdev members may be used
1304 * @filp: only f_mode and f_flags may be used
1305 * @cmd: ioctl command number
1306 * @arg: this is third argument given to ioctl(2) system call.
1307 * Often contains a pointer.
1308 *
1309 * Returns 0 if successful (some ioctls return positive numbers on
1310 * success as well). Returns a negated errno value in case of error.
1311 *
1312 * Note: most ioctls are forward onto the block subsystem or further
1313 * down in the scsi subsystem.
1314 **/
1315 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1316 unsigned int cmd, unsigned long arg)
1317 {
1318 struct gendisk *disk = bdev->bd_disk;
1319 struct scsi_disk *sdkp = scsi_disk(disk);
1320 struct scsi_device *sdp = sdkp->device;
1321 void __user *p = (void __user *)arg;
1322 int error;
1323
1324 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1325 "cmd=0x%x\n", disk->disk_name, cmd));
1326
1327 error = scsi_verify_blk_ioctl(bdev, cmd);
1328 if (error < 0)
1329 return error;
1330
1331 /*
1332 * If we are in the middle of error recovery, don't let anyone
1333 * else try and use this device. Also, if error recovery fails, it
1334 * may try and take the device offline, in which case all further
1335 * access to the device is prohibited.
1336 */
1337 error = scsi_nonblockable_ioctl(sdp, cmd, p,
1338 (mode & FMODE_NDELAY) != 0);
1339 if (!scsi_block_when_processing_errors(sdp) || !error)
1340 goto out;
1341
1342 /*
1343 * Send SCSI addressing ioctls directly to mid level, send other
1344 * ioctls to block level and then onto mid level if they can't be
1345 * resolved.
1346 */
1347 switch (cmd) {
1348 case SCSI_IOCTL_GET_IDLUN:
1349 case SCSI_IOCTL_GET_BUS_NUMBER:
1350 error = scsi_ioctl(sdp, cmd, p);
1351 break;
1352 default:
1353 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1354 if (error != -ENOTTY)
1355 break;
1356 error = scsi_ioctl(sdp, cmd, p);
1357 break;
1358 }
1359 out:
1360 return error;
1361 }
1362
1363 static void set_media_not_present(struct scsi_disk *sdkp)
1364 {
1365 if (sdkp->media_present)
1366 sdkp->device->changed = 1;
1367
1368 if (sdkp->device->removable) {
1369 sdkp->media_present = 0;
1370 sdkp->capacity = 0;
1371 }
1372 }
1373
1374 static int media_not_present(struct scsi_disk *sdkp,
1375 struct scsi_sense_hdr *sshdr)
1376 {
1377 if (!scsi_sense_valid(sshdr))
1378 return 0;
1379
1380 /* not invoked for commands that could return deferred errors */
1381 switch (sshdr->sense_key) {
1382 case UNIT_ATTENTION:
1383 case NOT_READY:
1384 /* medium not present */
1385 if (sshdr->asc == 0x3A) {
1386 set_media_not_present(sdkp);
1387 return 1;
1388 }
1389 }
1390 return 0;
1391 }
1392
1393 /**
1394 * sd_check_events - check media events
1395 * @disk: kernel device descriptor
1396 * @clearing: disk events currently being cleared
1397 *
1398 * Returns mask of DISK_EVENT_*.
1399 *
1400 * Note: this function is invoked from the block subsystem.
1401 **/
1402 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1403 {
1404 struct scsi_disk *sdkp = scsi_disk(disk);
1405 struct scsi_device *sdp = sdkp->device;
1406 struct scsi_sense_hdr *sshdr = NULL;
1407 int retval;
1408
1409 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1410
1411 /*
1412 * If the device is offline, don't send any commands - just pretend as
1413 * if the command failed. If the device ever comes back online, we
1414 * can deal with it then. It is only because of unrecoverable errors
1415 * that we would ever take a device offline in the first place.
1416 */
1417 if (!scsi_device_online(sdp)) {
1418 set_media_not_present(sdkp);
1419 goto out;
1420 }
1421
1422 /*
1423 * Using TEST_UNIT_READY enables differentiation between drive with
1424 * no cartridge loaded - NOT READY, drive with changed cartridge -
1425 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1426 *
1427 * Drives that auto spin down. eg iomega jaz 1G, will be started
1428 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1429 * sd_revalidate() is called.
1430 */
1431 retval = -ENODEV;
1432
1433 if (scsi_block_when_processing_errors(sdp)) {
1434 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1435 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1436 sshdr);
1437 }
1438
1439 /* failed to execute TUR, assume media not present */
1440 if (host_byte(retval)) {
1441 set_media_not_present(sdkp);
1442 goto out;
1443 }
1444
1445 if (media_not_present(sdkp, sshdr))
1446 goto out;
1447
1448 /*
1449 * For removable scsi disk we have to recognise the presence
1450 * of a disk in the drive.
1451 */
1452 if (!sdkp->media_present)
1453 sdp->changed = 1;
1454 sdkp->media_present = 1;
1455 out:
1456 /*
1457 * sdp->changed is set under the following conditions:
1458 *
1459 * Medium present state has changed in either direction.
1460 * Device has indicated UNIT_ATTENTION.
1461 */
1462 kfree(sshdr);
1463 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1464 sdp->changed = 0;
1465 return retval;
1466 }
1467
1468 static int sd_sync_cache(struct scsi_disk *sdkp)
1469 {
1470 int retries, res;
1471 struct scsi_device *sdp = sdkp->device;
1472 const int timeout = sdp->request_queue->rq_timeout
1473 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1474 struct scsi_sense_hdr sshdr;
1475
1476 if (!scsi_device_online(sdp))
1477 return -ENODEV;
1478
1479 for (retries = 3; retries > 0; --retries) {
1480 unsigned char cmd[10] = { 0 };
1481
1482 cmd[0] = SYNCHRONIZE_CACHE;
1483 /*
1484 * Leave the rest of the command zero to indicate
1485 * flush everything.
1486 */
1487 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1488 &sshdr, timeout, SD_MAX_RETRIES,
1489 NULL, REQ_PM);
1490 if (res == 0)
1491 break;
1492 }
1493
1494 if (res) {
1495 sd_print_result(sdkp, res);
1496
1497 if (driver_byte(res) & DRIVER_SENSE)
1498 sd_print_sense_hdr(sdkp, &sshdr);
1499 /* we need to evaluate the error return */
1500 if (scsi_sense_valid(&sshdr) &&
1501 (sshdr.asc == 0x3a || /* medium not present */
1502 sshdr.asc == 0x20)) /* invalid command */
1503 /* this is no error here */
1504 return 0;
1505
1506 switch (host_byte(res)) {
1507 /* ignore errors due to racing a disconnection */
1508 case DID_BAD_TARGET:
1509 case DID_NO_CONNECT:
1510 return 0;
1511 /* signal the upper layer it might try again */
1512 case DID_BUS_BUSY:
1513 case DID_IMM_RETRY:
1514 case DID_REQUEUE:
1515 case DID_SOFT_ERROR:
1516 return -EBUSY;
1517 default:
1518 return -EIO;
1519 }
1520 }
1521 return 0;
1522 }
1523
1524 static void sd_rescan(struct device *dev)
1525 {
1526 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
1527
1528 if (sdkp) {
1529 revalidate_disk(sdkp->disk);
1530 scsi_disk_put(sdkp);
1531 }
1532 }
1533
1534
1535 #ifdef CONFIG_COMPAT
1536 /*
1537 * This gets directly called from VFS. When the ioctl
1538 * is not recognized we go back to the other translation paths.
1539 */
1540 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1541 unsigned int cmd, unsigned long arg)
1542 {
1543 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1544 int ret;
1545
1546 ret = scsi_verify_blk_ioctl(bdev, cmd);
1547 if (ret < 0)
1548 return ret;
1549
1550 /*
1551 * If we are in the middle of error recovery, don't let anyone
1552 * else try and use this device. Also, if error recovery fails, it
1553 * may try and take the device offline, in which case all further
1554 * access to the device is prohibited.
1555 */
1556 if (!scsi_block_when_processing_errors(sdev))
1557 return -ENODEV;
1558
1559 if (sdev->host->hostt->compat_ioctl) {
1560 ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1561
1562 return ret;
1563 }
1564
1565 /*
1566 * Let the static ioctl translation table take care of it.
1567 */
1568 return -ENOIOCTLCMD;
1569 }
1570 #endif
1571
1572 static const struct block_device_operations sd_fops = {
1573 .owner = THIS_MODULE,
1574 .open = sd_open,
1575 .release = sd_release,
1576 .ioctl = sd_ioctl,
1577 .getgeo = sd_getgeo,
1578 #ifdef CONFIG_COMPAT
1579 .compat_ioctl = sd_compat_ioctl,
1580 #endif
1581 .check_events = sd_check_events,
1582 .revalidate_disk = sd_revalidate_disk,
1583 .unlock_native_capacity = sd_unlock_native_capacity,
1584 };
1585
1586 /**
1587 * sd_eh_action - error handling callback
1588 * @scmd: sd-issued command that has failed
1589 * @eh_disp: The recovery disposition suggested by the midlayer
1590 *
1591 * This function is called by the SCSI midlayer upon completion of an
1592 * error test command (currently TEST UNIT READY). The result of sending
1593 * the eh command is passed in eh_disp. We're looking for devices that
1594 * fail medium access commands but are OK with non access commands like
1595 * test unit ready (so wrongly see the device as having a successful
1596 * recovery)
1597 **/
1598 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1599 {
1600 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1601
1602 if (!scsi_device_online(scmd->device) ||
1603 !scsi_medium_access_command(scmd) ||
1604 host_byte(scmd->result) != DID_TIME_OUT ||
1605 eh_disp != SUCCESS)
1606 return eh_disp;
1607
1608 /*
1609 * The device has timed out executing a medium access command.
1610 * However, the TEST UNIT READY command sent during error
1611 * handling completed successfully. Either the device is in the
1612 * process of recovering or has it suffered an internal failure
1613 * that prevents access to the storage medium.
1614 */
1615 sdkp->medium_access_timed_out++;
1616
1617 /*
1618 * If the device keeps failing read/write commands but TEST UNIT
1619 * READY always completes successfully we assume that medium
1620 * access is no longer possible and take the device offline.
1621 */
1622 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1623 scmd_printk(KERN_ERR, scmd,
1624 "Medium access timeout failure. Offlining disk!\n");
1625 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1626
1627 return FAILED;
1628 }
1629
1630 return eh_disp;
1631 }
1632
1633 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1634 {
1635 u64 start_lba = blk_rq_pos(scmd->request);
1636 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1637 u64 bad_lba;
1638 int info_valid;
1639 /*
1640 * resid is optional but mostly filled in. When it's unused,
1641 * its value is zero, so we assume the whole buffer transferred
1642 */
1643 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1644 unsigned int good_bytes;
1645
1646 if (scmd->request->cmd_type != REQ_TYPE_FS)
1647 return 0;
1648
1649 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1650 SCSI_SENSE_BUFFERSIZE,
1651 &bad_lba);
1652 if (!info_valid)
1653 return 0;
1654
1655 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1656 return 0;
1657
1658 if (scmd->device->sector_size < 512) {
1659 /* only legitimate sector_size here is 256 */
1660 start_lba <<= 1;
1661 end_lba <<= 1;
1662 } else {
1663 /* be careful ... don't want any overflows */
1664 unsigned int factor = scmd->device->sector_size / 512;
1665 do_div(start_lba, factor);
1666 do_div(end_lba, factor);
1667 }
1668
1669 /* The bad lba was reported incorrectly, we have no idea where
1670 * the error is.
1671 */
1672 if (bad_lba < start_lba || bad_lba >= end_lba)
1673 return 0;
1674
1675 /* This computation should always be done in terms of
1676 * the resolution of the device's medium.
1677 */
1678 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1679 return min(good_bytes, transferred);
1680 }
1681
1682 /**
1683 * sd_done - bottom half handler: called when the lower level
1684 * driver has completed (successfully or otherwise) a scsi command.
1685 * @SCpnt: mid-level's per command structure.
1686 *
1687 * Note: potentially run from within an ISR. Must not block.
1688 **/
1689 static int sd_done(struct scsi_cmnd *SCpnt)
1690 {
1691 int result = SCpnt->result;
1692 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1693 struct scsi_sense_hdr sshdr;
1694 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1695 struct request *req = SCpnt->request;
1696 int sense_valid = 0;
1697 int sense_deferred = 0;
1698 unsigned char op = SCpnt->cmnd[0];
1699 unsigned char unmap = SCpnt->cmnd[1] & 8;
1700
1701 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
1702 if (!result) {
1703 good_bytes = blk_rq_bytes(req);
1704 scsi_set_resid(SCpnt, 0);
1705 } else {
1706 good_bytes = 0;
1707 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1708 }
1709 }
1710
1711 if (result) {
1712 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1713 if (sense_valid)
1714 sense_deferred = scsi_sense_is_deferred(&sshdr);
1715 }
1716 #ifdef CONFIG_SCSI_LOGGING
1717 SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt));
1718 if (sense_valid) {
1719 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1720 "sd_done: sb[respc,sk,asc,"
1721 "ascq]=%x,%x,%x,%x\n",
1722 sshdr.response_code,
1723 sshdr.sense_key, sshdr.asc,
1724 sshdr.ascq));
1725 }
1726 #endif
1727 sdkp->medium_access_timed_out = 0;
1728
1729 if (driver_byte(result) != DRIVER_SENSE &&
1730 (!sense_valid || sense_deferred))
1731 goto out;
1732
1733 switch (sshdr.sense_key) {
1734 case HARDWARE_ERROR:
1735 case MEDIUM_ERROR:
1736 good_bytes = sd_completed_bytes(SCpnt);
1737 break;
1738 case RECOVERED_ERROR:
1739 good_bytes = scsi_bufflen(SCpnt);
1740 break;
1741 case NO_SENSE:
1742 /* This indicates a false check condition, so ignore it. An
1743 * unknown amount of data was transferred so treat it as an
1744 * error.
1745 */
1746 scsi_print_sense("sd", SCpnt);
1747 SCpnt->result = 0;
1748 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1749 break;
1750 case ABORTED_COMMAND:
1751 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1752 good_bytes = sd_completed_bytes(SCpnt);
1753 break;
1754 case ILLEGAL_REQUEST:
1755 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1756 good_bytes = sd_completed_bytes(SCpnt);
1757 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1758 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1759 switch (op) {
1760 case UNMAP:
1761 sd_config_discard(sdkp, SD_LBP_DISABLE);
1762 break;
1763 case WRITE_SAME_16:
1764 case WRITE_SAME:
1765 if (unmap)
1766 sd_config_discard(sdkp, SD_LBP_DISABLE);
1767 else {
1768 sdkp->device->no_write_same = 1;
1769 sd_config_write_same(sdkp);
1770
1771 good_bytes = 0;
1772 req->__data_len = blk_rq_bytes(req);
1773 req->cmd_flags |= REQ_QUIET;
1774 }
1775 }
1776 }
1777 break;
1778 default:
1779 break;
1780 }
1781 out:
1782 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1783 sd_dif_complete(SCpnt, good_bytes);
1784
1785 return good_bytes;
1786 }
1787
1788 /*
1789 * spinup disk - called only in sd_revalidate_disk()
1790 */
1791 static void
1792 sd_spinup_disk(struct scsi_disk *sdkp)
1793 {
1794 unsigned char cmd[10];
1795 unsigned long spintime_expire = 0;
1796 int retries, spintime;
1797 unsigned int the_result;
1798 struct scsi_sense_hdr sshdr;
1799 int sense_valid = 0;
1800
1801 spintime = 0;
1802
1803 /* Spin up drives, as required. Only do this at boot time */
1804 /* Spinup needs to be done for module loads too. */
1805 do {
1806 retries = 0;
1807
1808 do {
1809 cmd[0] = TEST_UNIT_READY;
1810 memset((void *) &cmd[1], 0, 9);
1811
1812 the_result = scsi_execute_req(sdkp->device, cmd,
1813 DMA_NONE, NULL, 0,
1814 &sshdr, SD_TIMEOUT,
1815 SD_MAX_RETRIES, NULL);
1816
1817 /*
1818 * If the drive has indicated to us that it
1819 * doesn't have any media in it, don't bother
1820 * with any more polling.
1821 */
1822 if (media_not_present(sdkp, &sshdr))
1823 return;
1824
1825 if (the_result)
1826 sense_valid = scsi_sense_valid(&sshdr);
1827 retries++;
1828 } while (retries < 3 &&
1829 (!scsi_status_is_good(the_result) ||
1830 ((driver_byte(the_result) & DRIVER_SENSE) &&
1831 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1832
1833 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1834 /* no sense, TUR either succeeded or failed
1835 * with a status error */
1836 if(!spintime && !scsi_status_is_good(the_result)) {
1837 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1838 sd_print_result(sdkp, the_result);
1839 }
1840 break;
1841 }
1842
1843 /*
1844 * The device does not want the automatic start to be issued.
1845 */
1846 if (sdkp->device->no_start_on_add)
1847 break;
1848
1849 if (sense_valid && sshdr.sense_key == NOT_READY) {
1850 if (sshdr.asc == 4 && sshdr.ascq == 3)
1851 break; /* manual intervention required */
1852 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1853 break; /* standby */
1854 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1855 break; /* unavailable */
1856 /*
1857 * Issue command to spin up drive when not ready
1858 */
1859 if (!spintime) {
1860 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1861 cmd[0] = START_STOP;
1862 cmd[1] = 1; /* Return immediately */
1863 memset((void *) &cmd[2], 0, 8);
1864 cmd[4] = 1; /* Start spin cycle */
1865 if (sdkp->device->start_stop_pwr_cond)
1866 cmd[4] |= 1 << 4;
1867 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1868 NULL, 0, &sshdr,
1869 SD_TIMEOUT, SD_MAX_RETRIES,
1870 NULL);
1871 spintime_expire = jiffies + 100 * HZ;
1872 spintime = 1;
1873 }
1874 /* Wait 1 second for next try */
1875 msleep(1000);
1876 printk(".");
1877
1878 /*
1879 * Wait for USB flash devices with slow firmware.
1880 * Yes, this sense key/ASC combination shouldn't
1881 * occur here. It's characteristic of these devices.
1882 */
1883 } else if (sense_valid &&
1884 sshdr.sense_key == UNIT_ATTENTION &&
1885 sshdr.asc == 0x28) {
1886 if (!spintime) {
1887 spintime_expire = jiffies + 5 * HZ;
1888 spintime = 1;
1889 }
1890 /* Wait 1 second for next try */
1891 msleep(1000);
1892 } else {
1893 /* we don't understand the sense code, so it's
1894 * probably pointless to loop */
1895 if(!spintime) {
1896 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1897 sd_print_sense_hdr(sdkp, &sshdr);
1898 }
1899 break;
1900 }
1901
1902 } while (spintime && time_before_eq(jiffies, spintime_expire));
1903
1904 if (spintime) {
1905 if (scsi_status_is_good(the_result))
1906 printk("ready\n");
1907 else
1908 printk("not responding...\n");
1909 }
1910 }
1911
1912
1913 /*
1914 * Determine whether disk supports Data Integrity Field.
1915 */
1916 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1917 {
1918 struct scsi_device *sdp = sdkp->device;
1919 u8 type;
1920 int ret = 0;
1921
1922 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1923 return ret;
1924
1925 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1926
1927 if (type > SD_DIF_TYPE3_PROTECTION)
1928 ret = -ENODEV;
1929 else if (scsi_host_dif_capable(sdp->host, type))
1930 ret = 1;
1931
1932 if (sdkp->first_scan || type != sdkp->protection_type)
1933 switch (ret) {
1934 case -ENODEV:
1935 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1936 " protection type %u. Disabling disk!\n",
1937 type);
1938 break;
1939 case 1:
1940 sd_printk(KERN_NOTICE, sdkp,
1941 "Enabling DIF Type %u protection\n", type);
1942 break;
1943 case 0:
1944 sd_printk(KERN_NOTICE, sdkp,
1945 "Disabling DIF Type %u protection\n", type);
1946 break;
1947 }
1948
1949 sdkp->protection_type = type;
1950
1951 return ret;
1952 }
1953
1954 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
1955 struct scsi_sense_hdr *sshdr, int sense_valid,
1956 int the_result)
1957 {
1958 sd_print_result(sdkp, the_result);
1959 if (driver_byte(the_result) & DRIVER_SENSE)
1960 sd_print_sense_hdr(sdkp, sshdr);
1961 else
1962 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
1963
1964 /*
1965 * Set dirty bit for removable devices if not ready -
1966 * sometimes drives will not report this properly.
1967 */
1968 if (sdp->removable &&
1969 sense_valid && sshdr->sense_key == NOT_READY)
1970 set_media_not_present(sdkp);
1971
1972 /*
1973 * We used to set media_present to 0 here to indicate no media
1974 * in the drive, but some drives fail read capacity even with
1975 * media present, so we can't do that.
1976 */
1977 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
1978 }
1979
1980 #define RC16_LEN 32
1981 #if RC16_LEN > SD_BUF_SIZE
1982 #error RC16_LEN must not be more than SD_BUF_SIZE
1983 #endif
1984
1985 #define READ_CAPACITY_RETRIES_ON_RESET 10
1986
1987 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
1988 unsigned char *buffer)
1989 {
1990 unsigned char cmd[16];
1991 struct scsi_sense_hdr sshdr;
1992 int sense_valid = 0;
1993 int the_result;
1994 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
1995 unsigned int alignment;
1996 unsigned long long lba;
1997 unsigned sector_size;
1998
1999 if (sdp->no_read_capacity_16)
2000 return -EINVAL;
2001
2002 do {
2003 memset(cmd, 0, 16);
2004 cmd[0] = SERVICE_ACTION_IN;
2005 cmd[1] = SAI_READ_CAPACITY_16;
2006 cmd[13] = RC16_LEN;
2007 memset(buffer, 0, RC16_LEN);
2008
2009 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2010 buffer, RC16_LEN, &sshdr,
2011 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2012
2013 if (media_not_present(sdkp, &sshdr))
2014 return -ENODEV;
2015
2016 if (the_result) {
2017 sense_valid = scsi_sense_valid(&sshdr);
2018 if (sense_valid &&
2019 sshdr.sense_key == ILLEGAL_REQUEST &&
2020 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2021 sshdr.ascq == 0x00)
2022 /* Invalid Command Operation Code or
2023 * Invalid Field in CDB, just retry
2024 * silently with RC10 */
2025 return -EINVAL;
2026 if (sense_valid &&
2027 sshdr.sense_key == UNIT_ATTENTION &&
2028 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2029 /* Device reset might occur several times,
2030 * give it one more chance */
2031 if (--reset_retries > 0)
2032 continue;
2033 }
2034 retries--;
2035
2036 } while (the_result && retries);
2037
2038 if (the_result) {
2039 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n");
2040 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2041 return -EINVAL;
2042 }
2043
2044 sector_size = get_unaligned_be32(&buffer[8]);
2045 lba = get_unaligned_be64(&buffer[0]);
2046
2047 if (sd_read_protection_type(sdkp, buffer) < 0) {
2048 sdkp->capacity = 0;
2049 return -ENODEV;
2050 }
2051
2052 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2053 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2054 "kernel compiled with support for large block "
2055 "devices.\n");
2056 sdkp->capacity = 0;
2057 return -EOVERFLOW;
2058 }
2059
2060 /* Logical blocks per physical block exponent */
2061 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2062
2063 /* Lowest aligned logical block */
2064 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2065 blk_queue_alignment_offset(sdp->request_queue, alignment);
2066 if (alignment && sdkp->first_scan)
2067 sd_printk(KERN_NOTICE, sdkp,
2068 "physical block alignment offset: %u\n", alignment);
2069
2070 if (buffer[14] & 0x80) { /* LBPME */
2071 sdkp->lbpme = 1;
2072
2073 if (buffer[14] & 0x40) /* LBPRZ */
2074 sdkp->lbprz = 1;
2075
2076 sd_config_discard(sdkp, SD_LBP_WS16);
2077 }
2078
2079 sdkp->capacity = lba + 1;
2080 return sector_size;
2081 }
2082
2083 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2084 unsigned char *buffer)
2085 {
2086 unsigned char cmd[16];
2087 struct scsi_sense_hdr sshdr;
2088 int sense_valid = 0;
2089 int the_result;
2090 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2091 sector_t lba;
2092 unsigned sector_size;
2093
2094 do {
2095 cmd[0] = READ_CAPACITY;
2096 memset(&cmd[1], 0, 9);
2097 memset(buffer, 0, 8);
2098
2099 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2100 buffer, 8, &sshdr,
2101 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2102
2103 if (media_not_present(sdkp, &sshdr))
2104 return -ENODEV;
2105
2106 if (the_result) {
2107 sense_valid = scsi_sense_valid(&sshdr);
2108 if (sense_valid &&
2109 sshdr.sense_key == UNIT_ATTENTION &&
2110 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2111 /* Device reset might occur several times,
2112 * give it one more chance */
2113 if (--reset_retries > 0)
2114 continue;
2115 }
2116 retries--;
2117
2118 } while (the_result && retries);
2119
2120 if (the_result) {
2121 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n");
2122 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2123 return -EINVAL;
2124 }
2125
2126 sector_size = get_unaligned_be32(&buffer[4]);
2127 lba = get_unaligned_be32(&buffer[0]);
2128
2129 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2130 /* Some buggy (usb cardreader) devices return an lba of
2131 0xffffffff when the want to report a size of 0 (with
2132 which they really mean no media is present) */
2133 sdkp->capacity = 0;
2134 sdkp->physical_block_size = sector_size;
2135 return sector_size;
2136 }
2137
2138 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2139 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2140 "kernel compiled with support for large block "
2141 "devices.\n");
2142 sdkp->capacity = 0;
2143 return -EOVERFLOW;
2144 }
2145
2146 sdkp->capacity = lba + 1;
2147 sdkp->physical_block_size = sector_size;
2148 return sector_size;
2149 }
2150
2151 static int sd_try_rc16_first(struct scsi_device *sdp)
2152 {
2153 if (sdp->host->max_cmd_len < 16)
2154 return 0;
2155 if (sdp->try_rc_10_first)
2156 return 0;
2157 if (sdp->scsi_level > SCSI_SPC_2)
2158 return 1;
2159 if (scsi_device_protection(sdp))
2160 return 1;
2161 return 0;
2162 }
2163
2164 /*
2165 * read disk capacity
2166 */
2167 static void
2168 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2169 {
2170 int sector_size;
2171 struct scsi_device *sdp = sdkp->device;
2172 sector_t old_capacity = sdkp->capacity;
2173
2174 if (sd_try_rc16_first(sdp)) {
2175 sector_size = read_capacity_16(sdkp, sdp, buffer);
2176 if (sector_size == -EOVERFLOW)
2177 goto got_data;
2178 if (sector_size == -ENODEV)
2179 return;
2180 if (sector_size < 0)
2181 sector_size = read_capacity_10(sdkp, sdp, buffer);
2182 if (sector_size < 0)
2183 return;
2184 } else {
2185 sector_size = read_capacity_10(sdkp, sdp, buffer);
2186 if (sector_size == -EOVERFLOW)
2187 goto got_data;
2188 if (sector_size < 0)
2189 return;
2190 if ((sizeof(sdkp->capacity) > 4) &&
2191 (sdkp->capacity > 0xffffffffULL)) {
2192 int old_sector_size = sector_size;
2193 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2194 "Trying to use READ CAPACITY(16).\n");
2195 sector_size = read_capacity_16(sdkp, sdp, buffer);
2196 if (sector_size < 0) {
2197 sd_printk(KERN_NOTICE, sdkp,
2198 "Using 0xffffffff as device size\n");
2199 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2200 sector_size = old_sector_size;
2201 goto got_data;
2202 }
2203 }
2204 }
2205
2206 /* Some devices are known to return the total number of blocks,
2207 * not the highest block number. Some devices have versions
2208 * which do this and others which do not. Some devices we might
2209 * suspect of doing this but we don't know for certain.
2210 *
2211 * If we know the reported capacity is wrong, decrement it. If
2212 * we can only guess, then assume the number of blocks is even
2213 * (usually true but not always) and err on the side of lowering
2214 * the capacity.
2215 */
2216 if (sdp->fix_capacity ||
2217 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2218 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2219 "from its reported value: %llu\n",
2220 (unsigned long long) sdkp->capacity);
2221 --sdkp->capacity;
2222 }
2223
2224 got_data:
2225 if (sector_size == 0) {
2226 sector_size = 512;
2227 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2228 "assuming 512.\n");
2229 }
2230
2231 if (sector_size != 512 &&
2232 sector_size != 1024 &&
2233 sector_size != 2048 &&
2234 sector_size != 4096 &&
2235 sector_size != 256) {
2236 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2237 sector_size);
2238 /*
2239 * The user might want to re-format the drive with
2240 * a supported sectorsize. Once this happens, it
2241 * would be relatively trivial to set the thing up.
2242 * For this reason, we leave the thing in the table.
2243 */
2244 sdkp->capacity = 0;
2245 /*
2246 * set a bogus sector size so the normal read/write
2247 * logic in the block layer will eventually refuse any
2248 * request on this device without tripping over power
2249 * of two sector size assumptions
2250 */
2251 sector_size = 512;
2252 }
2253 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2254
2255 {
2256 char cap_str_2[10], cap_str_10[10];
2257 u64 sz = (u64)sdkp->capacity << ilog2(sector_size);
2258
2259 string_get_size(sz, STRING_UNITS_2, cap_str_2,
2260 sizeof(cap_str_2));
2261 string_get_size(sz, STRING_UNITS_10, cap_str_10,
2262 sizeof(cap_str_10));
2263
2264 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2265 sd_printk(KERN_NOTICE, sdkp,
2266 "%llu %d-byte logical blocks: (%s/%s)\n",
2267 (unsigned long long)sdkp->capacity,
2268 sector_size, cap_str_10, cap_str_2);
2269
2270 if (sdkp->physical_block_size != sector_size)
2271 sd_printk(KERN_NOTICE, sdkp,
2272 "%u-byte physical blocks\n",
2273 sdkp->physical_block_size);
2274 }
2275 }
2276
2277 if (sdkp->capacity > 0xffffffff) {
2278 sdp->use_16_for_rw = 1;
2279 sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS;
2280 } else
2281 sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS;
2282
2283 /* Rescale capacity to 512-byte units */
2284 if (sector_size == 4096)
2285 sdkp->capacity <<= 3;
2286 else if (sector_size == 2048)
2287 sdkp->capacity <<= 2;
2288 else if (sector_size == 1024)
2289 sdkp->capacity <<= 1;
2290 else if (sector_size == 256)
2291 sdkp->capacity >>= 1;
2292
2293 blk_queue_physical_block_size(sdp->request_queue,
2294 sdkp->physical_block_size);
2295 sdkp->device->sector_size = sector_size;
2296 }
2297
2298 /* called with buffer of length 512 */
2299 static inline int
2300 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2301 unsigned char *buffer, int len, struct scsi_mode_data *data,
2302 struct scsi_sense_hdr *sshdr)
2303 {
2304 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2305 SD_TIMEOUT, SD_MAX_RETRIES, data,
2306 sshdr);
2307 }
2308
2309 /*
2310 * read write protect setting, if possible - called only in sd_revalidate_disk()
2311 * called with buffer of length SD_BUF_SIZE
2312 */
2313 static void
2314 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2315 {
2316 int res;
2317 struct scsi_device *sdp = sdkp->device;
2318 struct scsi_mode_data data;
2319 int old_wp = sdkp->write_prot;
2320
2321 set_disk_ro(sdkp->disk, 0);
2322 if (sdp->skip_ms_page_3f) {
2323 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2324 return;
2325 }
2326
2327 if (sdp->use_192_bytes_for_3f) {
2328 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2329 } else {
2330 /*
2331 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2332 * We have to start carefully: some devices hang if we ask
2333 * for more than is available.
2334 */
2335 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2336
2337 /*
2338 * Second attempt: ask for page 0 When only page 0 is
2339 * implemented, a request for page 3F may return Sense Key
2340 * 5: Illegal Request, Sense Code 24: Invalid field in
2341 * CDB.
2342 */
2343 if (!scsi_status_is_good(res))
2344 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2345
2346 /*
2347 * Third attempt: ask 255 bytes, as we did earlier.
2348 */
2349 if (!scsi_status_is_good(res))
2350 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2351 &data, NULL);
2352 }
2353
2354 if (!scsi_status_is_good(res)) {
2355 sd_first_printk(KERN_WARNING, sdkp,
2356 "Test WP failed, assume Write Enabled\n");
2357 } else {
2358 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2359 set_disk_ro(sdkp->disk, sdkp->write_prot);
2360 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2361 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2362 sdkp->write_prot ? "on" : "off");
2363 sd_printk(KERN_DEBUG, sdkp,
2364 "Mode Sense: %02x %02x %02x %02x\n",
2365 buffer[0], buffer[1], buffer[2], buffer[3]);
2366 }
2367 }
2368 }
2369
2370 /*
2371 * sd_read_cache_type - called only from sd_revalidate_disk()
2372 * called with buffer of length SD_BUF_SIZE
2373 */
2374 static void
2375 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2376 {
2377 int len = 0, res;
2378 struct scsi_device *sdp = sdkp->device;
2379
2380 int dbd;
2381 int modepage;
2382 int first_len;
2383 struct scsi_mode_data data;
2384 struct scsi_sense_hdr sshdr;
2385 int old_wce = sdkp->WCE;
2386 int old_rcd = sdkp->RCD;
2387 int old_dpofua = sdkp->DPOFUA;
2388
2389
2390 if (sdkp->cache_override)
2391 return;
2392
2393 first_len = 4;
2394 if (sdp->skip_ms_page_8) {
2395 if (sdp->type == TYPE_RBC)
2396 goto defaults;
2397 else {
2398 if (sdp->skip_ms_page_3f)
2399 goto defaults;
2400 modepage = 0x3F;
2401 if (sdp->use_192_bytes_for_3f)
2402 first_len = 192;
2403 dbd = 0;
2404 }
2405 } else if (sdp->type == TYPE_RBC) {
2406 modepage = 6;
2407 dbd = 8;
2408 } else {
2409 modepage = 8;
2410 dbd = 0;
2411 }
2412
2413 /* cautiously ask */
2414 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2415 &data, &sshdr);
2416
2417 if (!scsi_status_is_good(res))
2418 goto bad_sense;
2419
2420 if (!data.header_length) {
2421 modepage = 6;
2422 first_len = 0;
2423 sd_first_printk(KERN_ERR, sdkp,
2424 "Missing header in MODE_SENSE response\n");
2425 }
2426
2427 /* that went OK, now ask for the proper length */
2428 len = data.length;
2429
2430 /*
2431 * We're only interested in the first three bytes, actually.
2432 * But the data cache page is defined for the first 20.
2433 */
2434 if (len < 3)
2435 goto bad_sense;
2436 else if (len > SD_BUF_SIZE) {
2437 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2438 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2439 len = SD_BUF_SIZE;
2440 }
2441 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2442 len = 192;
2443
2444 /* Get the data */
2445 if (len > first_len)
2446 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2447 &data, &sshdr);
2448
2449 if (scsi_status_is_good(res)) {
2450 int offset = data.header_length + data.block_descriptor_length;
2451
2452 while (offset < len) {
2453 u8 page_code = buffer[offset] & 0x3F;
2454 u8 spf = buffer[offset] & 0x40;
2455
2456 if (page_code == 8 || page_code == 6) {
2457 /* We're interested only in the first 3 bytes.
2458 */
2459 if (len - offset <= 2) {
2460 sd_first_printk(KERN_ERR, sdkp,
2461 "Incomplete mode parameter "
2462 "data\n");
2463 goto defaults;
2464 } else {
2465 modepage = page_code;
2466 goto Page_found;
2467 }
2468 } else {
2469 /* Go to the next page */
2470 if (spf && len - offset > 3)
2471 offset += 4 + (buffer[offset+2] << 8) +
2472 buffer[offset+3];
2473 else if (!spf && len - offset > 1)
2474 offset += 2 + buffer[offset+1];
2475 else {
2476 sd_first_printk(KERN_ERR, sdkp,
2477 "Incomplete mode "
2478 "parameter data\n");
2479 goto defaults;
2480 }
2481 }
2482 }
2483
2484 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2485 goto defaults;
2486
2487 Page_found:
2488 if (modepage == 8) {
2489 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2490 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2491 } else {
2492 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2493 sdkp->RCD = 0;
2494 }
2495
2496 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2497 if (sdp->broken_fua) {
2498 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2499 sdkp->DPOFUA = 0;
2500 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2501 sd_first_printk(KERN_NOTICE, sdkp,
2502 "Uses READ/WRITE(6), disabling FUA\n");
2503 sdkp->DPOFUA = 0;
2504 }
2505
2506 /* No cache flush allowed for write protected devices */
2507 if (sdkp->WCE && sdkp->write_prot)
2508 sdkp->WCE = 0;
2509
2510 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2511 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2512 sd_printk(KERN_NOTICE, sdkp,
2513 "Write cache: %s, read cache: %s, %s\n",
2514 sdkp->WCE ? "enabled" : "disabled",
2515 sdkp->RCD ? "disabled" : "enabled",
2516 sdkp->DPOFUA ? "supports DPO and FUA"
2517 : "doesn't support DPO or FUA");
2518
2519 return;
2520 }
2521
2522 bad_sense:
2523 if (scsi_sense_valid(&sshdr) &&
2524 sshdr.sense_key == ILLEGAL_REQUEST &&
2525 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2526 /* Invalid field in CDB */
2527 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2528 else
2529 sd_first_printk(KERN_ERR, sdkp,
2530 "Asking for cache data failed\n");
2531
2532 defaults:
2533 if (sdp->wce_default_on) {
2534 sd_first_printk(KERN_NOTICE, sdkp,
2535 "Assuming drive cache: write back\n");
2536 sdkp->WCE = 1;
2537 } else {
2538 sd_first_printk(KERN_ERR, sdkp,
2539 "Assuming drive cache: write through\n");
2540 sdkp->WCE = 0;
2541 }
2542 sdkp->RCD = 0;
2543 sdkp->DPOFUA = 0;
2544 }
2545
2546 /*
2547 * The ATO bit indicates whether the DIF application tag is available
2548 * for use by the operating system.
2549 */
2550 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2551 {
2552 int res, offset;
2553 struct scsi_device *sdp = sdkp->device;
2554 struct scsi_mode_data data;
2555 struct scsi_sense_hdr sshdr;
2556
2557 if (sdp->type != TYPE_DISK)
2558 return;
2559
2560 if (sdkp->protection_type == 0)
2561 return;
2562
2563 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2564 SD_MAX_RETRIES, &data, &sshdr);
2565
2566 if (!scsi_status_is_good(res) || !data.header_length ||
2567 data.length < 6) {
2568 sd_first_printk(KERN_WARNING, sdkp,
2569 "getting Control mode page failed, assume no ATO\n");
2570
2571 if (scsi_sense_valid(&sshdr))
2572 sd_print_sense_hdr(sdkp, &sshdr);
2573
2574 return;
2575 }
2576
2577 offset = data.header_length + data.block_descriptor_length;
2578
2579 if ((buffer[offset] & 0x3f) != 0x0a) {
2580 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2581 return;
2582 }
2583
2584 if ((buffer[offset + 5] & 0x80) == 0)
2585 return;
2586
2587 sdkp->ATO = 1;
2588
2589 return;
2590 }
2591
2592 /**
2593 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2594 * @disk: disk to query
2595 */
2596 static void sd_read_block_limits(struct scsi_disk *sdkp)
2597 {
2598 unsigned int sector_sz = sdkp->device->sector_size;
2599 const int vpd_len = 64;
2600 u32 max_xfer_length;
2601 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2602
2603 if (!buffer ||
2604 /* Block Limits VPD */
2605 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2606 goto out;
2607
2608 max_xfer_length = get_unaligned_be32(&buffer[8]);
2609 if (max_xfer_length)
2610 sdkp->max_xfer_blocks = max_xfer_length;
2611
2612 blk_queue_io_min(sdkp->disk->queue,
2613 get_unaligned_be16(&buffer[6]) * sector_sz);
2614 blk_queue_io_opt(sdkp->disk->queue,
2615 get_unaligned_be32(&buffer[12]) * sector_sz);
2616
2617 if (buffer[3] == 0x3c) {
2618 unsigned int lba_count, desc_count;
2619
2620 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2621
2622 if (!sdkp->lbpme)
2623 goto out;
2624
2625 lba_count = get_unaligned_be32(&buffer[20]);
2626 desc_count = get_unaligned_be32(&buffer[24]);
2627
2628 if (lba_count && desc_count)
2629 sdkp->max_unmap_blocks = lba_count;
2630
2631 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2632
2633 if (buffer[32] & 0x80)
2634 sdkp->unmap_alignment =
2635 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2636
2637 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2638
2639 if (sdkp->max_unmap_blocks)
2640 sd_config_discard(sdkp, SD_LBP_UNMAP);
2641 else
2642 sd_config_discard(sdkp, SD_LBP_WS16);
2643
2644 } else { /* LBP VPD page tells us what to use */
2645
2646 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2647 sd_config_discard(sdkp, SD_LBP_UNMAP);
2648 else if (sdkp->lbpws)
2649 sd_config_discard(sdkp, SD_LBP_WS16);
2650 else if (sdkp->lbpws10)
2651 sd_config_discard(sdkp, SD_LBP_WS10);
2652 else
2653 sd_config_discard(sdkp, SD_LBP_DISABLE);
2654 }
2655 }
2656
2657 out:
2658 kfree(buffer);
2659 }
2660
2661 /**
2662 * sd_read_block_characteristics - Query block dev. characteristics
2663 * @disk: disk to query
2664 */
2665 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2666 {
2667 unsigned char *buffer;
2668 u16 rot;
2669 const int vpd_len = 64;
2670
2671 buffer = kmalloc(vpd_len, GFP_KERNEL);
2672
2673 if (!buffer ||
2674 /* Block Device Characteristics VPD */
2675 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2676 goto out;
2677
2678 rot = get_unaligned_be16(&buffer[4]);
2679
2680 if (rot == 1) {
2681 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2682 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2683 }
2684
2685 out:
2686 kfree(buffer);
2687 }
2688
2689 /**
2690 * sd_read_block_provisioning - Query provisioning VPD page
2691 * @disk: disk to query
2692 */
2693 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2694 {
2695 unsigned char *buffer;
2696 const int vpd_len = 8;
2697
2698 if (sdkp->lbpme == 0)
2699 return;
2700
2701 buffer = kmalloc(vpd_len, GFP_KERNEL);
2702
2703 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2704 goto out;
2705
2706 sdkp->lbpvpd = 1;
2707 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2708 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2709 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2710
2711 out:
2712 kfree(buffer);
2713 }
2714
2715 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2716 {
2717 struct scsi_device *sdev = sdkp->device;
2718
2719 if (sdev->host->no_write_same) {
2720 sdev->no_write_same = 1;
2721
2722 return;
2723 }
2724
2725 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2726 /* too large values might cause issues with arcmsr */
2727 int vpd_buf_len = 64;
2728
2729 sdev->no_report_opcodes = 1;
2730
2731 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2732 * CODES is unsupported and the device has an ATA
2733 * Information VPD page (SAT).
2734 */
2735 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2736 sdev->no_write_same = 1;
2737 }
2738
2739 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2740 sdkp->ws16 = 1;
2741
2742 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2743 sdkp->ws10 = 1;
2744 }
2745
2746 static int sd_try_extended_inquiry(struct scsi_device *sdp)
2747 {
2748 /* Attempt VPD inquiry if the device blacklist explicitly calls
2749 * for it.
2750 */
2751 if (sdp->try_vpd_pages)
2752 return 1;
2753 /*
2754 * Although VPD inquiries can go to SCSI-2 type devices,
2755 * some USB ones crash on receiving them, and the pages
2756 * we currently ask for are for SPC-3 and beyond
2757 */
2758 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2759 return 1;
2760 return 0;
2761 }
2762
2763 /**
2764 * sd_revalidate_disk - called the first time a new disk is seen,
2765 * performs disk spin up, read_capacity, etc.
2766 * @disk: struct gendisk we care about
2767 **/
2768 static int sd_revalidate_disk(struct gendisk *disk)
2769 {
2770 struct scsi_disk *sdkp = scsi_disk(disk);
2771 struct scsi_device *sdp = sdkp->device;
2772 unsigned char *buffer;
2773 unsigned int max_xfer;
2774
2775 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2776 "sd_revalidate_disk\n"));
2777
2778 /*
2779 * If the device is offline, don't try and read capacity or any
2780 * of the other niceties.
2781 */
2782 if (!scsi_device_online(sdp))
2783 goto out;
2784
2785 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2786 if (!buffer) {
2787 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2788 "allocation failure.\n");
2789 goto out;
2790 }
2791
2792 sd_spinup_disk(sdkp);
2793
2794 /*
2795 * Without media there is no reason to ask; moreover, some devices
2796 * react badly if we do.
2797 */
2798 if (sdkp->media_present) {
2799 sd_read_capacity(sdkp, buffer);
2800
2801 if (sd_try_extended_inquiry(sdp)) {
2802 sd_read_block_provisioning(sdkp);
2803 sd_read_block_limits(sdkp);
2804 sd_read_block_characteristics(sdkp);
2805 }
2806
2807 sd_read_write_protect_flag(sdkp, buffer);
2808 sd_read_cache_type(sdkp, buffer);
2809 sd_read_app_tag_own(sdkp, buffer);
2810 sd_read_write_same(sdkp, buffer);
2811 }
2812
2813 sdkp->first_scan = 0;
2814
2815 /*
2816 * We now have all cache related info, determine how we deal
2817 * with flush requests.
2818 */
2819 sd_set_flush_flag(sdkp);
2820
2821 max_xfer = min_not_zero(queue_max_hw_sectors(sdkp->disk->queue),
2822 sdkp->max_xfer_blocks);
2823 max_xfer <<= ilog2(sdp->sector_size) - 9;
2824 blk_queue_max_hw_sectors(sdkp->disk->queue, max_xfer);
2825 set_capacity(disk, sdkp->capacity);
2826 sd_config_write_same(sdkp);
2827 kfree(buffer);
2828
2829 out:
2830 return 0;
2831 }
2832
2833 /**
2834 * sd_unlock_native_capacity - unlock native capacity
2835 * @disk: struct gendisk to set capacity for
2836 *
2837 * Block layer calls this function if it detects that partitions
2838 * on @disk reach beyond the end of the device. If the SCSI host
2839 * implements ->unlock_native_capacity() method, it's invoked to
2840 * give it a chance to adjust the device capacity.
2841 *
2842 * CONTEXT:
2843 * Defined by block layer. Might sleep.
2844 */
2845 static void sd_unlock_native_capacity(struct gendisk *disk)
2846 {
2847 struct scsi_device *sdev = scsi_disk(disk)->device;
2848
2849 if (sdev->host->hostt->unlock_native_capacity)
2850 sdev->host->hostt->unlock_native_capacity(sdev);
2851 }
2852
2853 /**
2854 * sd_format_disk_name - format disk name
2855 * @prefix: name prefix - ie. "sd" for SCSI disks
2856 * @index: index of the disk to format name for
2857 * @buf: output buffer
2858 * @buflen: length of the output buffer
2859 *
2860 * SCSI disk names starts at sda. The 26th device is sdz and the
2861 * 27th is sdaa. The last one for two lettered suffix is sdzz
2862 * which is followed by sdaaa.
2863 *
2864 * This is basically 26 base counting with one extra 'nil' entry
2865 * at the beginning from the second digit on and can be
2866 * determined using similar method as 26 base conversion with the
2867 * index shifted -1 after each digit is computed.
2868 *
2869 * CONTEXT:
2870 * Don't care.
2871 *
2872 * RETURNS:
2873 * 0 on success, -errno on failure.
2874 */
2875 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2876 {
2877 const int base = 'z' - 'a' + 1;
2878 char *begin = buf + strlen(prefix);
2879 char *end = buf + buflen;
2880 char *p;
2881 int unit;
2882
2883 p = end - 1;
2884 *p = '\0';
2885 unit = base;
2886 do {
2887 if (p == begin)
2888 return -EINVAL;
2889 *--p = 'a' + (index % unit);
2890 index = (index / unit) - 1;
2891 } while (index >= 0);
2892
2893 memmove(begin, p, end - p);
2894 memcpy(buf, prefix, strlen(prefix));
2895
2896 return 0;
2897 }
2898
2899 /*
2900 * The asynchronous part of sd_probe
2901 */
2902 static void sd_probe_async(void *data, async_cookie_t cookie)
2903 {
2904 struct scsi_disk *sdkp = data;
2905 struct scsi_device *sdp;
2906 struct gendisk *gd;
2907 u32 index;
2908 struct device *dev;
2909
2910 sdp = sdkp->device;
2911 gd = sdkp->disk;
2912 index = sdkp->index;
2913 dev = &sdp->sdev_gendev;
2914
2915 gd->major = sd_major((index & 0xf0) >> 4);
2916 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2917 gd->minors = SD_MINORS;
2918
2919 gd->fops = &sd_fops;
2920 gd->private_data = &sdkp->driver;
2921 gd->queue = sdkp->device->request_queue;
2922
2923 /* defaults, until the device tells us otherwise */
2924 sdp->sector_size = 512;
2925 sdkp->capacity = 0;
2926 sdkp->media_present = 1;
2927 sdkp->write_prot = 0;
2928 sdkp->cache_override = 0;
2929 sdkp->WCE = 0;
2930 sdkp->RCD = 0;
2931 sdkp->ATO = 0;
2932 sdkp->first_scan = 1;
2933 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2934
2935 sd_revalidate_disk(gd);
2936
2937 gd->driverfs_dev = &sdp->sdev_gendev;
2938 gd->flags = GENHD_FL_EXT_DEVT;
2939 if (sdp->removable) {
2940 gd->flags |= GENHD_FL_REMOVABLE;
2941 gd->events |= DISK_EVENT_MEDIA_CHANGE;
2942 }
2943
2944 blk_pm_runtime_init(sdp->request_queue, dev);
2945 add_disk(gd);
2946 if (sdkp->capacity)
2947 sd_dif_config_host(sdkp);
2948
2949 sd_revalidate_disk(gd);
2950
2951 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
2952 sdp->removable ? "removable " : "");
2953 scsi_autopm_put_device(sdp);
2954 put_device(&sdkp->dev);
2955 }
2956
2957 /**
2958 * sd_probe - called during driver initialization and whenever a
2959 * new scsi device is attached to the system. It is called once
2960 * for each scsi device (not just disks) present.
2961 * @dev: pointer to device object
2962 *
2963 * Returns 0 if successful (or not interested in this scsi device
2964 * (e.g. scanner)); 1 when there is an error.
2965 *
2966 * Note: this function is invoked from the scsi mid-level.
2967 * This function sets up the mapping between a given
2968 * <host,channel,id,lun> (found in sdp) and new device name
2969 * (e.g. /dev/sda). More precisely it is the block device major
2970 * and minor number that is chosen here.
2971 *
2972 * Assume sd_probe is not re-entrant (for time being)
2973 * Also think about sd_probe() and sd_remove() running coincidentally.
2974 **/
2975 static int sd_probe(struct device *dev)
2976 {
2977 struct scsi_device *sdp = to_scsi_device(dev);
2978 struct scsi_disk *sdkp;
2979 struct gendisk *gd;
2980 int index;
2981 int error;
2982
2983 scsi_autopm_get_device(sdp);
2984 error = -ENODEV;
2985 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
2986 goto out;
2987
2988 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
2989 "sd_probe\n"));
2990
2991 error = -ENOMEM;
2992 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
2993 if (!sdkp)
2994 goto out;
2995
2996 gd = alloc_disk(SD_MINORS);
2997 if (!gd)
2998 goto out_free;
2999
3000 do {
3001 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3002 goto out_put;
3003
3004 spin_lock(&sd_index_lock);
3005 error = ida_get_new(&sd_index_ida, &index);
3006 spin_unlock(&sd_index_lock);
3007 } while (error == -EAGAIN);
3008
3009 if (error) {
3010 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3011 goto out_put;
3012 }
3013
3014 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3015 if (error) {
3016 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3017 goto out_free_index;
3018 }
3019
3020 sdkp->device = sdp;
3021 sdkp->driver = &sd_template;
3022 sdkp->disk = gd;
3023 sdkp->index = index;
3024 atomic_set(&sdkp->openers, 0);
3025 atomic_set(&sdkp->device->ioerr_cnt, 0);
3026
3027 if (!sdp->request_queue->rq_timeout) {
3028 if (sdp->type != TYPE_MOD)
3029 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3030 else
3031 blk_queue_rq_timeout(sdp->request_queue,
3032 SD_MOD_TIMEOUT);
3033 }
3034
3035 device_initialize(&sdkp->dev);
3036 sdkp->dev.parent = dev;
3037 sdkp->dev.class = &sd_disk_class;
3038 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3039
3040 if (device_add(&sdkp->dev))
3041 goto out_free_index;
3042
3043 get_device(dev);
3044 dev_set_drvdata(dev, sdkp);
3045
3046 get_device(&sdkp->dev); /* prevent release before async_schedule */
3047 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3048
3049 return 0;
3050
3051 out_free_index:
3052 spin_lock(&sd_index_lock);
3053 ida_remove(&sd_index_ida, index);
3054 spin_unlock(&sd_index_lock);
3055 out_put:
3056 put_disk(gd);
3057 out_free:
3058 kfree(sdkp);
3059 out:
3060 scsi_autopm_put_device(sdp);
3061 return error;
3062 }
3063
3064 /**
3065 * sd_remove - called whenever a scsi disk (previously recognized by
3066 * sd_probe) is detached from the system. It is called (potentially
3067 * multiple times) during sd module unload.
3068 * @sdp: pointer to mid level scsi device object
3069 *
3070 * Note: this function is invoked from the scsi mid-level.
3071 * This function potentially frees up a device name (e.g. /dev/sdc)
3072 * that could be re-used by a subsequent sd_probe().
3073 * This function is not called when the built-in sd driver is "exit-ed".
3074 **/
3075 static int sd_remove(struct device *dev)
3076 {
3077 struct scsi_disk *sdkp;
3078 dev_t devt;
3079
3080 sdkp = dev_get_drvdata(dev);
3081 devt = disk_devt(sdkp->disk);
3082 scsi_autopm_get_device(sdkp->device);
3083
3084 async_synchronize_full_domain(&scsi_sd_pm_domain);
3085 async_synchronize_full_domain(&scsi_sd_probe_domain);
3086 device_del(&sdkp->dev);
3087 del_gendisk(sdkp->disk);
3088 sd_shutdown(dev);
3089
3090 blk_register_region(devt, SD_MINORS, NULL,
3091 sd_default_probe, NULL, NULL);
3092
3093 mutex_lock(&sd_ref_mutex);
3094 dev_set_drvdata(dev, NULL);
3095 put_device(&sdkp->dev);
3096 mutex_unlock(&sd_ref_mutex);
3097
3098 return 0;
3099 }
3100
3101 /**
3102 * scsi_disk_release - Called to free the scsi_disk structure
3103 * @dev: pointer to embedded class device
3104 *
3105 * sd_ref_mutex must be held entering this routine. Because it is
3106 * called on last put, you should always use the scsi_disk_get()
3107 * scsi_disk_put() helpers which manipulate the semaphore directly
3108 * and never do a direct put_device.
3109 **/
3110 static void scsi_disk_release(struct device *dev)
3111 {
3112 struct scsi_disk *sdkp = to_scsi_disk(dev);
3113 struct gendisk *disk = sdkp->disk;
3114
3115 spin_lock(&sd_index_lock);
3116 ida_remove(&sd_index_ida, sdkp->index);
3117 spin_unlock(&sd_index_lock);
3118
3119 disk->private_data = NULL;
3120 put_disk(disk);
3121 put_device(&sdkp->device->sdev_gendev);
3122
3123 kfree(sdkp);
3124 }
3125
3126 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3127 {
3128 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3129 struct scsi_sense_hdr sshdr;
3130 struct scsi_device *sdp = sdkp->device;
3131 int res;
3132
3133 if (start)
3134 cmd[4] |= 1; /* START */
3135
3136 if (sdp->start_stop_pwr_cond)
3137 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3138
3139 if (!scsi_device_online(sdp))
3140 return -ENODEV;
3141
3142 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3143 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3144 if (res) {
3145 sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n");
3146 sd_print_result(sdkp, res);
3147 if (driver_byte(res) & DRIVER_SENSE)
3148 sd_print_sense_hdr(sdkp, &sshdr);
3149 if (scsi_sense_valid(&sshdr) &&
3150 /* 0x3a is medium not present */
3151 sshdr.asc == 0x3a)
3152 res = 0;
3153 }
3154
3155 /* SCSI error codes must not go to the generic layer */
3156 if (res)
3157 return -EIO;
3158
3159 return 0;
3160 }
3161
3162 /*
3163 * Send a SYNCHRONIZE CACHE instruction down to the device through
3164 * the normal SCSI command structure. Wait for the command to
3165 * complete.
3166 */
3167 static void sd_shutdown(struct device *dev)
3168 {
3169 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3170
3171 if (!sdkp)
3172 return; /* this can happen */
3173
3174 if (pm_runtime_suspended(dev))
3175 goto exit;
3176
3177 if (sdkp->WCE && sdkp->media_present) {
3178 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3179 sd_sync_cache(sdkp);
3180 }
3181
3182 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3183 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3184 sd_start_stop_device(sdkp, 0);
3185 }
3186
3187 exit:
3188 scsi_disk_put(sdkp);
3189 }
3190
3191 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3192 {
3193 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3194 int ret = 0;
3195
3196 if (!sdkp)
3197 return 0; /* this can happen */
3198
3199 if (sdkp->WCE && sdkp->media_present) {
3200 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3201 ret = sd_sync_cache(sdkp);
3202 if (ret) {
3203 /* ignore OFFLINE device */
3204 if (ret == -ENODEV)
3205 ret = 0;
3206 goto done;
3207 }
3208 }
3209
3210 if (sdkp->device->manage_start_stop) {
3211 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3212 /* an error is not worth aborting a system sleep */
3213 ret = sd_start_stop_device(sdkp, 0);
3214 if (ignore_stop_errors)
3215 ret = 0;
3216 }
3217
3218 done:
3219 scsi_disk_put(sdkp);
3220 return ret;
3221 }
3222
3223 static int sd_suspend_system(struct device *dev)
3224 {
3225 return sd_suspend_common(dev, true);
3226 }
3227
3228 static int sd_suspend_runtime(struct device *dev)
3229 {
3230 return sd_suspend_common(dev, false);
3231 }
3232
3233 static int sd_resume(struct device *dev)
3234 {
3235 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3236 int ret = 0;
3237
3238 if (!sdkp->device->manage_start_stop)
3239 goto done;
3240
3241 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3242 ret = sd_start_stop_device(sdkp, 1);
3243
3244 done:
3245 scsi_disk_put(sdkp);
3246 return ret;
3247 }
3248
3249 /**
3250 * init_sd - entry point for this driver (both when built in or when
3251 * a module).
3252 *
3253 * Note: this function registers this driver with the scsi mid-level.
3254 **/
3255 static int __init init_sd(void)
3256 {
3257 int majors = 0, i, err;
3258
3259 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3260
3261 for (i = 0; i < SD_MAJORS; i++) {
3262 if (register_blkdev(sd_major(i), "sd") != 0)
3263 continue;
3264 majors++;
3265 blk_register_region(sd_major(i), SD_MINORS, NULL,
3266 sd_default_probe, NULL, NULL);
3267 }
3268
3269 if (!majors)
3270 return -ENODEV;
3271
3272 err = class_register(&sd_disk_class);
3273 if (err)
3274 goto err_out;
3275
3276 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3277 0, 0, NULL);
3278 if (!sd_cdb_cache) {
3279 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3280 err = -ENOMEM;
3281 goto err_out_class;
3282 }
3283
3284 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3285 if (!sd_cdb_pool) {
3286 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3287 err = -ENOMEM;
3288 goto err_out_cache;
3289 }
3290
3291 err = scsi_register_driver(&sd_template.gendrv);
3292 if (err)
3293 goto err_out_driver;
3294
3295 return 0;
3296
3297 err_out_driver:
3298 mempool_destroy(sd_cdb_pool);
3299
3300 err_out_cache:
3301 kmem_cache_destroy(sd_cdb_cache);
3302
3303 err_out_class:
3304 class_unregister(&sd_disk_class);
3305 err_out:
3306 for (i = 0; i < SD_MAJORS; i++)
3307 unregister_blkdev(sd_major(i), "sd");
3308 return err;
3309 }
3310
3311 /**
3312 * exit_sd - exit point for this driver (when it is a module).
3313 *
3314 * Note: this function unregisters this driver from the scsi mid-level.
3315 **/
3316 static void __exit exit_sd(void)
3317 {
3318 int i;
3319
3320 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3321
3322 scsi_unregister_driver(&sd_template.gendrv);
3323 mempool_destroy(sd_cdb_pool);
3324 kmem_cache_destroy(sd_cdb_cache);
3325
3326 class_unregister(&sd_disk_class);
3327
3328 for (i = 0; i < SD_MAJORS; i++) {
3329 blk_unregister_region(sd_major(i), SD_MINORS);
3330 unregister_blkdev(sd_major(i), "sd");
3331 }
3332 }
3333
3334 module_init(init_sd);
3335 module_exit(exit_sd);
3336
3337 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3338 struct scsi_sense_hdr *sshdr)
3339 {
3340 sd_printk(KERN_INFO, sdkp, " ");
3341 scsi_show_sense_hdr(sshdr);
3342 sd_printk(KERN_INFO, sdkp, " ");
3343 scsi_show_extd_sense(sshdr->asc, sshdr->ascq);
3344 }
3345
3346 static void sd_print_result(struct scsi_disk *sdkp, int result)
3347 {
3348 sd_printk(KERN_INFO, sdkp, " ");
3349 scsi_show_result(result);
3350 }
3351