]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/sd.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS 16
101 #else
102 #define SD_MINORS 0
103 #endif
104
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int sd_probe(struct device *);
110 static int sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 SD_MAX_RETRIES, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234
235 if (!capable(CAP_SYS_ADMIN))
236 return -EACCES;
237
238 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239
240 return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257 struct scsi_device *sdp = sdkp->device;
258
259 if (!capable(CAP_SYS_ADMIN))
260 return -EACCES;
261
262 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
263 return -EINVAL;
264
265 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266
267 return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 struct scsi_disk *sdkp = to_scsi_disk(dev);
275 int ct = sdkp->RCD + 2*sdkp->WCE;
276
277 return sprintf(buf, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285
286 return sprintf(buf, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 char *buf)
293 {
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295
296 return sprintf(buf, "%u\n", sdkp->protection_type);
297 }
298
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 const char *buf, size_t count)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304 unsigned int val;
305 int err;
306
307 if (!capable(CAP_SYS_ADMIN))
308 return -EACCES;
309
310 err = kstrtouint(buf, 10, &val);
311
312 if (err)
313 return err;
314
315 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
316 sdkp->protection_type = val;
317
318 return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 char *buf)
325 {
326 struct scsi_disk *sdkp = to_scsi_disk(dev);
327 struct scsi_device *sdp = sdkp->device;
328 unsigned int dif, dix;
329
330 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332
333 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
334 dif = 0;
335 dix = 1;
336 }
337
338 if (!dif && !dix)
339 return sprintf(buf, "none\n");
340
341 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 struct scsi_disk *sdkp = to_scsi_disk(dev);
349
350 return sprintf(buf, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 char *buf)
357 {
358 struct scsi_disk *sdkp = to_scsi_disk(dev);
359
360 return sprintf(buf, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363
364 /* sysfs_match_string() requires dense arrays */
365 static const char *lbp_mode[] = {
366 [SD_LBP_FULL] = "full",
367 [SD_LBP_UNMAP] = "unmap",
368 [SD_LBP_WS16] = "writesame_16",
369 [SD_LBP_WS10] = "writesame_10",
370 [SD_LBP_ZERO] = "writesame_zero",
371 [SD_LBP_DISABLE] = "disabled",
372 };
373
374 static ssize_t
375 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
376 char *buf)
377 {
378 struct scsi_disk *sdkp = to_scsi_disk(dev);
379
380 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
381 }
382
383 static ssize_t
384 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
385 const char *buf, size_t count)
386 {
387 struct scsi_disk *sdkp = to_scsi_disk(dev);
388 struct scsi_device *sdp = sdkp->device;
389 int mode;
390
391 if (!capable(CAP_SYS_ADMIN))
392 return -EACCES;
393
394 if (sd_is_zoned(sdkp)) {
395 sd_config_discard(sdkp, SD_LBP_DISABLE);
396 return count;
397 }
398
399 if (sdp->type != TYPE_DISK)
400 return -EINVAL;
401
402 mode = sysfs_match_string(lbp_mode, buf);
403 if (mode < 0)
404 return -EINVAL;
405
406 sd_config_discard(sdkp, mode);
407
408 return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411
412 /* sysfs_match_string() requires dense arrays */
413 static const char *zeroing_mode[] = {
414 [SD_ZERO_WRITE] = "write",
415 [SD_ZERO_WS] = "writesame",
416 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
417 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
418 };
419
420 static ssize_t
421 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
422 char *buf)
423 {
424 struct scsi_disk *sdkp = to_scsi_disk(dev);
425
426 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
427 }
428
429 static ssize_t
430 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
431 const char *buf, size_t count)
432 {
433 struct scsi_disk *sdkp = to_scsi_disk(dev);
434 int mode;
435
436 if (!capable(CAP_SYS_ADMIN))
437 return -EACCES;
438
439 mode = sysfs_match_string(zeroing_mode, buf);
440 if (mode < 0)
441 return -EINVAL;
442
443 sdkp->zeroing_mode = mode;
444
445 return count;
446 }
447 static DEVICE_ATTR_RW(zeroing_mode);
448
449 static ssize_t
450 max_medium_access_timeouts_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 struct scsi_disk *sdkp = to_scsi_disk(dev);
454
455 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
456 }
457
458 static ssize_t
459 max_medium_access_timeouts_store(struct device *dev,
460 struct device_attribute *attr, const char *buf,
461 size_t count)
462 {
463 struct scsi_disk *sdkp = to_scsi_disk(dev);
464 int err;
465
466 if (!capable(CAP_SYS_ADMIN))
467 return -EACCES;
468
469 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
470
471 return err ? err : count;
472 }
473 static DEVICE_ATTR_RW(max_medium_access_timeouts);
474
475 static ssize_t
476 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
477 char *buf)
478 {
479 struct scsi_disk *sdkp = to_scsi_disk(dev);
480
481 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
482 }
483
484 static ssize_t
485 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
486 const char *buf, size_t count)
487 {
488 struct scsi_disk *sdkp = to_scsi_disk(dev);
489 struct scsi_device *sdp = sdkp->device;
490 unsigned long max;
491 int err;
492
493 if (!capable(CAP_SYS_ADMIN))
494 return -EACCES;
495
496 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
497 return -EINVAL;
498
499 err = kstrtoul(buf, 10, &max);
500
501 if (err)
502 return err;
503
504 if (max == 0)
505 sdp->no_write_same = 1;
506 else if (max <= SD_MAX_WS16_BLOCKS) {
507 sdp->no_write_same = 0;
508 sdkp->max_ws_blocks = max;
509 }
510
511 sd_config_write_same(sdkp);
512
513 return count;
514 }
515 static DEVICE_ATTR_RW(max_write_same_blocks);
516
517 static struct attribute *sd_disk_attrs[] = {
518 &dev_attr_cache_type.attr,
519 &dev_attr_FUA.attr,
520 &dev_attr_allow_restart.attr,
521 &dev_attr_manage_start_stop.attr,
522 &dev_attr_protection_type.attr,
523 &dev_attr_protection_mode.attr,
524 &dev_attr_app_tag_own.attr,
525 &dev_attr_thin_provisioning.attr,
526 &dev_attr_provisioning_mode.attr,
527 &dev_attr_zeroing_mode.attr,
528 &dev_attr_max_write_same_blocks.attr,
529 &dev_attr_max_medium_access_timeouts.attr,
530 NULL,
531 };
532 ATTRIBUTE_GROUPS(sd_disk);
533
534 static struct class sd_disk_class = {
535 .name = "scsi_disk",
536 .owner = THIS_MODULE,
537 .dev_release = scsi_disk_release,
538 .dev_groups = sd_disk_groups,
539 };
540
541 static const struct dev_pm_ops sd_pm_ops = {
542 .suspend = sd_suspend_system,
543 .resume = sd_resume,
544 .poweroff = sd_suspend_system,
545 .restore = sd_resume,
546 .runtime_suspend = sd_suspend_runtime,
547 .runtime_resume = sd_resume,
548 };
549
550 static struct scsi_driver sd_template = {
551 .gendrv = {
552 .name = "sd",
553 .owner = THIS_MODULE,
554 .probe = sd_probe,
555 .remove = sd_remove,
556 .shutdown = sd_shutdown,
557 .pm = &sd_pm_ops,
558 },
559 .rescan = sd_rescan,
560 .init_command = sd_init_command,
561 .uninit_command = sd_uninit_command,
562 .done = sd_done,
563 .eh_action = sd_eh_action,
564 .eh_reset = sd_eh_reset,
565 };
566
567 /*
568 * Dummy kobj_map->probe function.
569 * The default ->probe function will call modprobe, which is
570 * pointless as this module is already loaded.
571 */
572 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
573 {
574 return NULL;
575 }
576
577 /*
578 * Device no to disk mapping:
579 *
580 * major disc2 disc p1
581 * |............|.............|....|....| <- dev_t
582 * 31 20 19 8 7 4 3 0
583 *
584 * Inside a major, we have 16k disks, however mapped non-
585 * contiguously. The first 16 disks are for major0, the next
586 * ones with major1, ... Disk 256 is for major0 again, disk 272
587 * for major1, ...
588 * As we stay compatible with our numbering scheme, we can reuse
589 * the well-know SCSI majors 8, 65--71, 136--143.
590 */
591 static int sd_major(int major_idx)
592 {
593 switch (major_idx) {
594 case 0:
595 return SCSI_DISK0_MAJOR;
596 case 1 ... 7:
597 return SCSI_DISK1_MAJOR + major_idx - 1;
598 case 8 ... 15:
599 return SCSI_DISK8_MAJOR + major_idx - 8;
600 default:
601 BUG();
602 return 0; /* shut up gcc */
603 }
604 }
605
606 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
607 {
608 struct scsi_disk *sdkp = NULL;
609
610 mutex_lock(&sd_ref_mutex);
611
612 if (disk->private_data) {
613 sdkp = scsi_disk(disk);
614 if (scsi_device_get(sdkp->device) == 0)
615 get_device(&sdkp->dev);
616 else
617 sdkp = NULL;
618 }
619 mutex_unlock(&sd_ref_mutex);
620 return sdkp;
621 }
622
623 static void scsi_disk_put(struct scsi_disk *sdkp)
624 {
625 struct scsi_device *sdev = sdkp->device;
626
627 mutex_lock(&sd_ref_mutex);
628 put_device(&sdkp->dev);
629 scsi_device_put(sdev);
630 mutex_unlock(&sd_ref_mutex);
631 }
632
633 #ifdef CONFIG_BLK_SED_OPAL
634 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
635 size_t len, bool send)
636 {
637 struct scsi_device *sdev = data;
638 u8 cdb[12] = { 0, };
639 int ret;
640
641 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
642 cdb[1] = secp;
643 put_unaligned_be16(spsp, &cdb[2]);
644 put_unaligned_be32(len, &cdb[6]);
645
646 ret = scsi_execute_req(sdev, cdb,
647 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
648 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
649 return ret <= 0 ? ret : -EIO;
650 }
651 #endif /* CONFIG_BLK_SED_OPAL */
652
653 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
654 unsigned int dix, unsigned int dif)
655 {
656 struct bio *bio = scmd->request->bio;
657 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
658 unsigned int protect = 0;
659
660 if (dix) { /* DIX Type 0, 1, 2, 3 */
661 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
662 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
663
664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
666 }
667
668 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
669 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
670
671 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
672 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
673 }
674
675 if (dif) { /* DIX/DIF Type 1, 2, 3 */
676 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
677
678 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
679 protect = 3 << 5; /* Disable target PI checking */
680 else
681 protect = 1 << 5; /* Enable target PI checking */
682 }
683
684 scsi_set_prot_op(scmd, prot_op);
685 scsi_set_prot_type(scmd, dif);
686 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
687
688 return protect;
689 }
690
691 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
692 {
693 struct request_queue *q = sdkp->disk->queue;
694 unsigned int logical_block_size = sdkp->device->sector_size;
695 unsigned int max_blocks = 0;
696
697 q->limits.discard_alignment =
698 sdkp->unmap_alignment * logical_block_size;
699 q->limits.discard_granularity =
700 max(sdkp->physical_block_size,
701 sdkp->unmap_granularity * logical_block_size);
702 sdkp->provisioning_mode = mode;
703
704 switch (mode) {
705
706 case SD_LBP_FULL:
707 case SD_LBP_DISABLE:
708 blk_queue_max_discard_sectors(q, 0);
709 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
710 return;
711
712 case SD_LBP_UNMAP:
713 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
714 (u32)SD_MAX_WS16_BLOCKS);
715 break;
716
717 case SD_LBP_WS16:
718 max_blocks = min_not_zero(sdkp->max_ws_blocks,
719 (u32)SD_MAX_WS16_BLOCKS);
720 break;
721
722 case SD_LBP_WS10:
723 max_blocks = min_not_zero(sdkp->max_ws_blocks,
724 (u32)SD_MAX_WS10_BLOCKS);
725 break;
726
727 case SD_LBP_ZERO:
728 max_blocks = min_not_zero(sdkp->max_ws_blocks,
729 (u32)SD_MAX_WS10_BLOCKS);
730 break;
731 }
732
733 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
734 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
735 }
736
737 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
738 {
739 struct scsi_device *sdp = cmd->device;
740 struct request *rq = cmd->request;
741 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
742 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
743 unsigned int data_len = 24;
744 char *buf;
745
746 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
747 if (!rq->special_vec.bv_page)
748 return BLKPREP_DEFER;
749 rq->special_vec.bv_offset = 0;
750 rq->special_vec.bv_len = data_len;
751 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
752
753 cmd->cmd_len = 10;
754 cmd->cmnd[0] = UNMAP;
755 cmd->cmnd[8] = 24;
756
757 buf = page_address(rq->special_vec.bv_page);
758 put_unaligned_be16(6 + 16, &buf[0]);
759 put_unaligned_be16(16, &buf[2]);
760 put_unaligned_be64(sector, &buf[8]);
761 put_unaligned_be32(nr_sectors, &buf[16]);
762
763 cmd->allowed = SD_MAX_RETRIES;
764 cmd->transfersize = data_len;
765 rq->timeout = SD_TIMEOUT;
766 scsi_req(rq)->resid_len = data_len;
767
768 return scsi_init_io(cmd);
769 }
770
771 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
772 {
773 struct scsi_device *sdp = cmd->device;
774 struct request *rq = cmd->request;
775 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
776 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
777 u32 data_len = sdp->sector_size;
778
779 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
780 if (!rq->special_vec.bv_page)
781 return BLKPREP_DEFER;
782 rq->special_vec.bv_offset = 0;
783 rq->special_vec.bv_len = data_len;
784 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
785
786 cmd->cmd_len = 16;
787 cmd->cmnd[0] = WRITE_SAME_16;
788 if (unmap)
789 cmd->cmnd[1] = 0x8; /* UNMAP */
790 put_unaligned_be64(sector, &cmd->cmnd[2]);
791 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
792
793 cmd->allowed = SD_MAX_RETRIES;
794 cmd->transfersize = data_len;
795 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
796 scsi_req(rq)->resid_len = data_len;
797
798 return scsi_init_io(cmd);
799 }
800
801 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
802 {
803 struct scsi_device *sdp = cmd->device;
804 struct request *rq = cmd->request;
805 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
806 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
807 u32 data_len = sdp->sector_size;
808
809 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
810 if (!rq->special_vec.bv_page)
811 return BLKPREP_DEFER;
812 rq->special_vec.bv_offset = 0;
813 rq->special_vec.bv_len = data_len;
814 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
815
816 cmd->cmd_len = 10;
817 cmd->cmnd[0] = WRITE_SAME;
818 if (unmap)
819 cmd->cmnd[1] = 0x8; /* UNMAP */
820 put_unaligned_be32(sector, &cmd->cmnd[2]);
821 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
822
823 cmd->allowed = SD_MAX_RETRIES;
824 cmd->transfersize = data_len;
825 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
826 scsi_req(rq)->resid_len = data_len;
827
828 return scsi_init_io(cmd);
829 }
830
831 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
832 {
833 struct request *rq = cmd->request;
834 struct scsi_device *sdp = cmd->device;
835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
836 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
837 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
838 int ret;
839
840 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
841 switch (sdkp->zeroing_mode) {
842 case SD_ZERO_WS16_UNMAP:
843 ret = sd_setup_write_same16_cmnd(cmd, true);
844 goto out;
845 case SD_ZERO_WS10_UNMAP:
846 ret = sd_setup_write_same10_cmnd(cmd, true);
847 goto out;
848 }
849 }
850
851 if (sdp->no_write_same)
852 return BLKPREP_INVALID;
853
854 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
855 ret = sd_setup_write_same16_cmnd(cmd, false);
856 else
857 ret = sd_setup_write_same10_cmnd(cmd, false);
858
859 out:
860 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
861 return sd_zbc_write_lock_zone(cmd);
862
863 return ret;
864 }
865
866 static void sd_config_write_same(struct scsi_disk *sdkp)
867 {
868 struct request_queue *q = sdkp->disk->queue;
869 unsigned int logical_block_size = sdkp->device->sector_size;
870
871 if (sdkp->device->no_write_same) {
872 sdkp->max_ws_blocks = 0;
873 goto out;
874 }
875
876 /* Some devices can not handle block counts above 0xffff despite
877 * supporting WRITE SAME(16). Consequently we default to 64k
878 * blocks per I/O unless the device explicitly advertises a
879 * bigger limit.
880 */
881 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
882 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
883 (u32)SD_MAX_WS16_BLOCKS);
884 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
885 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
886 (u32)SD_MAX_WS10_BLOCKS);
887 else {
888 sdkp->device->no_write_same = 1;
889 sdkp->max_ws_blocks = 0;
890 }
891
892 if (sdkp->lbprz && sdkp->lbpws)
893 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
894 else if (sdkp->lbprz && sdkp->lbpws10)
895 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
896 else if (sdkp->max_ws_blocks)
897 sdkp->zeroing_mode = SD_ZERO_WS;
898 else
899 sdkp->zeroing_mode = SD_ZERO_WRITE;
900
901 out:
902 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
903 (logical_block_size >> 9));
904 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
905 (logical_block_size >> 9));
906 }
907
908 /**
909 * sd_setup_write_same_cmnd - write the same data to multiple blocks
910 * @cmd: command to prepare
911 *
912 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
913 * the preference indicated by the target device.
914 **/
915 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
916 {
917 struct request *rq = cmd->request;
918 struct scsi_device *sdp = cmd->device;
919 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
920 struct bio *bio = rq->bio;
921 sector_t sector = blk_rq_pos(rq);
922 unsigned int nr_sectors = blk_rq_sectors(rq);
923 unsigned int nr_bytes = blk_rq_bytes(rq);
924 int ret;
925
926 if (sdkp->device->no_write_same)
927 return BLKPREP_INVALID;
928
929 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
930
931 if (sd_is_zoned(sdkp)) {
932 ret = sd_zbc_write_lock_zone(cmd);
933 if (ret != BLKPREP_OK)
934 return ret;
935 }
936
937 sector >>= ilog2(sdp->sector_size) - 9;
938 nr_sectors >>= ilog2(sdp->sector_size) - 9;
939
940 rq->timeout = SD_WRITE_SAME_TIMEOUT;
941
942 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
943 cmd->cmd_len = 16;
944 cmd->cmnd[0] = WRITE_SAME_16;
945 put_unaligned_be64(sector, &cmd->cmnd[2]);
946 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
947 } else {
948 cmd->cmd_len = 10;
949 cmd->cmnd[0] = WRITE_SAME;
950 put_unaligned_be32(sector, &cmd->cmnd[2]);
951 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
952 }
953
954 cmd->transfersize = sdp->sector_size;
955 cmd->allowed = SD_MAX_RETRIES;
956
957 /*
958 * For WRITE SAME the data transferred via the DATA OUT buffer is
959 * different from the amount of data actually written to the target.
960 *
961 * We set up __data_len to the amount of data transferred via the
962 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
963 * to transfer a single sector of data first, but then reset it to
964 * the amount of data to be written right after so that the I/O path
965 * knows how much to actually write.
966 */
967 rq->__data_len = sdp->sector_size;
968 ret = scsi_init_io(cmd);
969 rq->__data_len = nr_bytes;
970
971 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
972 sd_zbc_write_unlock_zone(cmd);
973
974 return ret;
975 }
976
977 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
978 {
979 struct request *rq = cmd->request;
980
981 /* flush requests don't perform I/O, zero the S/G table */
982 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
983
984 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
985 cmd->cmd_len = 10;
986 cmd->transfersize = 0;
987 cmd->allowed = SD_MAX_RETRIES;
988
989 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
990 return BLKPREP_OK;
991 }
992
993 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
994 {
995 struct request *rq = SCpnt->request;
996 struct scsi_device *sdp = SCpnt->device;
997 struct gendisk *disk = rq->rq_disk;
998 struct scsi_disk *sdkp = scsi_disk(disk);
999 sector_t block = blk_rq_pos(rq);
1000 sector_t threshold;
1001 unsigned int this_count = blk_rq_sectors(rq);
1002 unsigned int dif, dix;
1003 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1004 int ret;
1005 unsigned char protect;
1006
1007 if (zoned_write) {
1008 ret = sd_zbc_write_lock_zone(SCpnt);
1009 if (ret != BLKPREP_OK)
1010 return ret;
1011 }
1012
1013 ret = scsi_init_io(SCpnt);
1014 if (ret != BLKPREP_OK)
1015 goto out;
1016 SCpnt = rq->special;
1017
1018 /* from here on until we're complete, any goto out
1019 * is used for a killable error condition */
1020 ret = BLKPREP_KILL;
1021
1022 SCSI_LOG_HLQUEUE(1,
1023 scmd_printk(KERN_INFO, SCpnt,
1024 "%s: block=%llu, count=%d\n",
1025 __func__, (unsigned long long)block, this_count));
1026
1027 if (!sdp || !scsi_device_online(sdp) ||
1028 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1029 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1030 "Finishing %u sectors\n",
1031 blk_rq_sectors(rq)));
1032 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1033 "Retry with 0x%p\n", SCpnt));
1034 goto out;
1035 }
1036
1037 if (sdp->changed) {
1038 /*
1039 * quietly refuse to do anything to a changed disc until
1040 * the changed bit has been reset
1041 */
1042 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1043 goto out;
1044 }
1045
1046 /*
1047 * Some SD card readers can't handle multi-sector accesses which touch
1048 * the last one or two hardware sectors. Split accesses as needed.
1049 */
1050 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1051 (sdp->sector_size / 512);
1052
1053 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1054 if (block < threshold) {
1055 /* Access up to the threshold but not beyond */
1056 this_count = threshold - block;
1057 } else {
1058 /* Access only a single hardware sector */
1059 this_count = sdp->sector_size / 512;
1060 }
1061 }
1062
1063 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1064 (unsigned long long)block));
1065
1066 /*
1067 * If we have a 1K hardware sectorsize, prevent access to single
1068 * 512 byte sectors. In theory we could handle this - in fact
1069 * the scsi cdrom driver must be able to handle this because
1070 * we typically use 1K blocksizes, and cdroms typically have
1071 * 2K hardware sectorsizes. Of course, things are simpler
1072 * with the cdrom, since it is read-only. For performance
1073 * reasons, the filesystems should be able to handle this
1074 * and not force the scsi disk driver to use bounce buffers
1075 * for this.
1076 */
1077 if (sdp->sector_size == 1024) {
1078 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1079 scmd_printk(KERN_ERR, SCpnt,
1080 "Bad block number requested\n");
1081 goto out;
1082 } else {
1083 block = block >> 1;
1084 this_count = this_count >> 1;
1085 }
1086 }
1087 if (sdp->sector_size == 2048) {
1088 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1089 scmd_printk(KERN_ERR, SCpnt,
1090 "Bad block number requested\n");
1091 goto out;
1092 } else {
1093 block = block >> 2;
1094 this_count = this_count >> 2;
1095 }
1096 }
1097 if (sdp->sector_size == 4096) {
1098 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1099 scmd_printk(KERN_ERR, SCpnt,
1100 "Bad block number requested\n");
1101 goto out;
1102 } else {
1103 block = block >> 3;
1104 this_count = this_count >> 3;
1105 }
1106 }
1107 if (rq_data_dir(rq) == WRITE) {
1108 SCpnt->cmnd[0] = WRITE_6;
1109
1110 if (blk_integrity_rq(rq))
1111 sd_dif_prepare(SCpnt);
1112
1113 } else if (rq_data_dir(rq) == READ) {
1114 SCpnt->cmnd[0] = READ_6;
1115 } else {
1116 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1117 goto out;
1118 }
1119
1120 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1121 "%s %d/%u 512 byte blocks.\n",
1122 (rq_data_dir(rq) == WRITE) ?
1123 "writing" : "reading", this_count,
1124 blk_rq_sectors(rq)));
1125
1126 dix = scsi_prot_sg_count(SCpnt);
1127 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1128
1129 if (dif || dix)
1130 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1131 else
1132 protect = 0;
1133
1134 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1135 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1136
1137 if (unlikely(SCpnt->cmnd == NULL)) {
1138 ret = BLKPREP_DEFER;
1139 goto out;
1140 }
1141
1142 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1143 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1144 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1145 SCpnt->cmnd[7] = 0x18;
1146 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1147 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1148
1149 /* LBA */
1150 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1151 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1152 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1153 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1154 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1155 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1156 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1157 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1158
1159 /* Expected Indirect LBA */
1160 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1161 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1162 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1163 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1164
1165 /* Transfer length */
1166 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1167 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1168 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1169 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1170 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1171 SCpnt->cmnd[0] += READ_16 - READ_6;
1172 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1173 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1174 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1175 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1176 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1177 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1178 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1179 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1180 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1181 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1182 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1183 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1184 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1185 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1186 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1187 scsi_device_protection(SCpnt->device) ||
1188 SCpnt->device->use_10_for_rw) {
1189 SCpnt->cmnd[0] += READ_10 - READ_6;
1190 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1191 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1192 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1193 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1194 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1195 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1196 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1197 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1198 } else {
1199 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1200 /*
1201 * This happens only if this drive failed
1202 * 10byte rw command with ILLEGAL_REQUEST
1203 * during operation and thus turned off
1204 * use_10_for_rw.
1205 */
1206 scmd_printk(KERN_ERR, SCpnt,
1207 "FUA write on READ/WRITE(6) drive\n");
1208 goto out;
1209 }
1210
1211 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1212 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1213 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1214 SCpnt->cmnd[4] = (unsigned char) this_count;
1215 SCpnt->cmnd[5] = 0;
1216 }
1217 SCpnt->sdb.length = this_count * sdp->sector_size;
1218
1219 /*
1220 * We shouldn't disconnect in the middle of a sector, so with a dumb
1221 * host adapter, it's safe to assume that we can at least transfer
1222 * this many bytes between each connect / disconnect.
1223 */
1224 SCpnt->transfersize = sdp->sector_size;
1225 SCpnt->underflow = this_count << 9;
1226 SCpnt->allowed = SD_MAX_RETRIES;
1227
1228 /*
1229 * This indicates that the command is ready from our end to be
1230 * queued.
1231 */
1232 ret = BLKPREP_OK;
1233 out:
1234 if (zoned_write && ret != BLKPREP_OK)
1235 sd_zbc_write_unlock_zone(SCpnt);
1236
1237 return ret;
1238 }
1239
1240 static int sd_init_command(struct scsi_cmnd *cmd)
1241 {
1242 struct request *rq = cmd->request;
1243
1244 switch (req_op(rq)) {
1245 case REQ_OP_DISCARD:
1246 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1247 case SD_LBP_UNMAP:
1248 return sd_setup_unmap_cmnd(cmd);
1249 case SD_LBP_WS16:
1250 return sd_setup_write_same16_cmnd(cmd, true);
1251 case SD_LBP_WS10:
1252 return sd_setup_write_same10_cmnd(cmd, true);
1253 case SD_LBP_ZERO:
1254 return sd_setup_write_same10_cmnd(cmd, false);
1255 default:
1256 return BLKPREP_INVALID;
1257 }
1258 case REQ_OP_WRITE_ZEROES:
1259 return sd_setup_write_zeroes_cmnd(cmd);
1260 case REQ_OP_WRITE_SAME:
1261 return sd_setup_write_same_cmnd(cmd);
1262 case REQ_OP_FLUSH:
1263 return sd_setup_flush_cmnd(cmd);
1264 case REQ_OP_READ:
1265 case REQ_OP_WRITE:
1266 return sd_setup_read_write_cmnd(cmd);
1267 case REQ_OP_ZONE_REPORT:
1268 return sd_zbc_setup_report_cmnd(cmd);
1269 case REQ_OP_ZONE_RESET:
1270 return sd_zbc_setup_reset_cmnd(cmd);
1271 default:
1272 BUG();
1273 }
1274 }
1275
1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1277 {
1278 struct request *rq = SCpnt->request;
1279
1280 if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1281 sd_zbc_write_unlock_zone(SCpnt);
1282
1283 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1284 __free_page(rq->special_vec.bv_page);
1285
1286 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1287 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1288 SCpnt->cmnd = NULL;
1289 SCpnt->cmd_len = 0;
1290 }
1291 }
1292
1293 /**
1294 * sd_open - open a scsi disk device
1295 * @bdev: Block device of the scsi disk to open
1296 * @mode: FMODE_* mask
1297 *
1298 * Returns 0 if successful. Returns a negated errno value in case
1299 * of error.
1300 *
1301 * Note: This can be called from a user context (e.g. fsck(1) )
1302 * or from within the kernel (e.g. as a result of a mount(1) ).
1303 * In the latter case @inode and @filp carry an abridged amount
1304 * of information as noted above.
1305 *
1306 * Locking: called with bdev->bd_mutex held.
1307 **/
1308 static int sd_open(struct block_device *bdev, fmode_t mode)
1309 {
1310 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1311 struct scsi_device *sdev;
1312 int retval;
1313
1314 if (!sdkp)
1315 return -ENXIO;
1316
1317 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1318
1319 sdev = sdkp->device;
1320
1321 /*
1322 * If the device is in error recovery, wait until it is done.
1323 * If the device is offline, then disallow any access to it.
1324 */
1325 retval = -ENXIO;
1326 if (!scsi_block_when_processing_errors(sdev))
1327 goto error_out;
1328
1329 if (sdev->removable || sdkp->write_prot)
1330 check_disk_change(bdev);
1331
1332 /*
1333 * If the drive is empty, just let the open fail.
1334 */
1335 retval = -ENOMEDIUM;
1336 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1337 goto error_out;
1338
1339 /*
1340 * If the device has the write protect tab set, have the open fail
1341 * if the user expects to be able to write to the thing.
1342 */
1343 retval = -EROFS;
1344 if (sdkp->write_prot && (mode & FMODE_WRITE))
1345 goto error_out;
1346
1347 /*
1348 * It is possible that the disk changing stuff resulted in
1349 * the device being taken offline. If this is the case,
1350 * report this to the user, and don't pretend that the
1351 * open actually succeeded.
1352 */
1353 retval = -ENXIO;
1354 if (!scsi_device_online(sdev))
1355 goto error_out;
1356
1357 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1358 if (scsi_block_when_processing_errors(sdev))
1359 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1360 }
1361
1362 return 0;
1363
1364 error_out:
1365 scsi_disk_put(sdkp);
1366 return retval;
1367 }
1368
1369 /**
1370 * sd_release - invoked when the (last) close(2) is called on this
1371 * scsi disk.
1372 * @disk: disk to release
1373 * @mode: FMODE_* mask
1374 *
1375 * Returns 0.
1376 *
1377 * Note: may block (uninterruptible) if error recovery is underway
1378 * on this disk.
1379 *
1380 * Locking: called with bdev->bd_mutex held.
1381 **/
1382 static void sd_release(struct gendisk *disk, fmode_t mode)
1383 {
1384 struct scsi_disk *sdkp = scsi_disk(disk);
1385 struct scsi_device *sdev = sdkp->device;
1386
1387 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1388
1389 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1390 if (scsi_block_when_processing_errors(sdev))
1391 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1392 }
1393
1394 /*
1395 * XXX and what if there are packets in flight and this close()
1396 * XXX is followed by a "rmmod sd_mod"?
1397 */
1398
1399 scsi_disk_put(sdkp);
1400 }
1401
1402 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1403 {
1404 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1405 struct scsi_device *sdp = sdkp->device;
1406 struct Scsi_Host *host = sdp->host;
1407 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1408 int diskinfo[4];
1409
1410 /* default to most commonly used values */
1411 diskinfo[0] = 0x40; /* 1 << 6 */
1412 diskinfo[1] = 0x20; /* 1 << 5 */
1413 diskinfo[2] = capacity >> 11;
1414
1415 /* override with calculated, extended default, or driver values */
1416 if (host->hostt->bios_param)
1417 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1418 else
1419 scsicam_bios_param(bdev, capacity, diskinfo);
1420
1421 geo->heads = diskinfo[0];
1422 geo->sectors = diskinfo[1];
1423 geo->cylinders = diskinfo[2];
1424 return 0;
1425 }
1426
1427 /**
1428 * sd_ioctl - process an ioctl
1429 * @bdev: target block device
1430 * @mode: FMODE_* mask
1431 * @cmd: ioctl command number
1432 * @arg: this is third argument given to ioctl(2) system call.
1433 * Often contains a pointer.
1434 *
1435 * Returns 0 if successful (some ioctls return positive numbers on
1436 * success as well). Returns a negated errno value in case of error.
1437 *
1438 * Note: most ioctls are forward onto the block subsystem or further
1439 * down in the scsi subsystem.
1440 **/
1441 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1442 unsigned int cmd, unsigned long arg)
1443 {
1444 struct gendisk *disk = bdev->bd_disk;
1445 struct scsi_disk *sdkp = scsi_disk(disk);
1446 struct scsi_device *sdp = sdkp->device;
1447 void __user *p = (void __user *)arg;
1448 int error;
1449
1450 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1451 "cmd=0x%x\n", disk->disk_name, cmd));
1452
1453 error = scsi_verify_blk_ioctl(bdev, cmd);
1454 if (error < 0)
1455 return error;
1456
1457 /*
1458 * If we are in the middle of error recovery, don't let anyone
1459 * else try and use this device. Also, if error recovery fails, it
1460 * may try and take the device offline, in which case all further
1461 * access to the device is prohibited.
1462 */
1463 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1464 (mode & FMODE_NDELAY) != 0);
1465 if (error)
1466 goto out;
1467
1468 if (is_sed_ioctl(cmd))
1469 return sed_ioctl(sdkp->opal_dev, cmd, p);
1470
1471 /*
1472 * Send SCSI addressing ioctls directly to mid level, send other
1473 * ioctls to block level and then onto mid level if they can't be
1474 * resolved.
1475 */
1476 switch (cmd) {
1477 case SCSI_IOCTL_GET_IDLUN:
1478 case SCSI_IOCTL_GET_BUS_NUMBER:
1479 error = scsi_ioctl(sdp, cmd, p);
1480 break;
1481 default:
1482 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1483 if (error != -ENOTTY)
1484 break;
1485 error = scsi_ioctl(sdp, cmd, p);
1486 break;
1487 }
1488 out:
1489 return error;
1490 }
1491
1492 static void set_media_not_present(struct scsi_disk *sdkp)
1493 {
1494 if (sdkp->media_present)
1495 sdkp->device->changed = 1;
1496
1497 if (sdkp->device->removable) {
1498 sdkp->media_present = 0;
1499 sdkp->capacity = 0;
1500 }
1501 }
1502
1503 static int media_not_present(struct scsi_disk *sdkp,
1504 struct scsi_sense_hdr *sshdr)
1505 {
1506 if (!scsi_sense_valid(sshdr))
1507 return 0;
1508
1509 /* not invoked for commands that could return deferred errors */
1510 switch (sshdr->sense_key) {
1511 case UNIT_ATTENTION:
1512 case NOT_READY:
1513 /* medium not present */
1514 if (sshdr->asc == 0x3A) {
1515 set_media_not_present(sdkp);
1516 return 1;
1517 }
1518 }
1519 return 0;
1520 }
1521
1522 /**
1523 * sd_check_events - check media events
1524 * @disk: kernel device descriptor
1525 * @clearing: disk events currently being cleared
1526 *
1527 * Returns mask of DISK_EVENT_*.
1528 *
1529 * Note: this function is invoked from the block subsystem.
1530 **/
1531 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1532 {
1533 struct scsi_disk *sdkp = scsi_disk_get(disk);
1534 struct scsi_device *sdp;
1535 int retval;
1536
1537 if (!sdkp)
1538 return 0;
1539
1540 sdp = sdkp->device;
1541 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1542
1543 /*
1544 * If the device is offline, don't send any commands - just pretend as
1545 * if the command failed. If the device ever comes back online, we
1546 * can deal with it then. It is only because of unrecoverable errors
1547 * that we would ever take a device offline in the first place.
1548 */
1549 if (!scsi_device_online(sdp)) {
1550 set_media_not_present(sdkp);
1551 goto out;
1552 }
1553
1554 /*
1555 * Using TEST_UNIT_READY enables differentiation between drive with
1556 * no cartridge loaded - NOT READY, drive with changed cartridge -
1557 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1558 *
1559 * Drives that auto spin down. eg iomega jaz 1G, will be started
1560 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1561 * sd_revalidate() is called.
1562 */
1563 if (scsi_block_when_processing_errors(sdp)) {
1564 struct scsi_sense_hdr sshdr = { 0, };
1565
1566 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1567 &sshdr);
1568
1569 /* failed to execute TUR, assume media not present */
1570 if (host_byte(retval)) {
1571 set_media_not_present(sdkp);
1572 goto out;
1573 }
1574
1575 if (media_not_present(sdkp, &sshdr))
1576 goto out;
1577 }
1578
1579 /*
1580 * For removable scsi disk we have to recognise the presence
1581 * of a disk in the drive.
1582 */
1583 if (!sdkp->media_present)
1584 sdp->changed = 1;
1585 sdkp->media_present = 1;
1586 out:
1587 /*
1588 * sdp->changed is set under the following conditions:
1589 *
1590 * Medium present state has changed in either direction.
1591 * Device has indicated UNIT_ATTENTION.
1592 */
1593 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1594 sdp->changed = 0;
1595 scsi_disk_put(sdkp);
1596 return retval;
1597 }
1598
1599 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1600 {
1601 int retries, res;
1602 struct scsi_device *sdp = sdkp->device;
1603 const int timeout = sdp->request_queue->rq_timeout
1604 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1605 struct scsi_sense_hdr my_sshdr;
1606
1607 if (!scsi_device_online(sdp))
1608 return -ENODEV;
1609
1610 /* caller might not be interested in sense, but we need it */
1611 if (!sshdr)
1612 sshdr = &my_sshdr;
1613
1614 for (retries = 3; retries > 0; --retries) {
1615 unsigned char cmd[10] = { 0 };
1616
1617 cmd[0] = SYNCHRONIZE_CACHE;
1618 /*
1619 * Leave the rest of the command zero to indicate
1620 * flush everything.
1621 */
1622 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1623 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1624 if (res == 0)
1625 break;
1626 }
1627
1628 if (res) {
1629 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1630
1631 if (driver_byte(res) & DRIVER_SENSE)
1632 sd_print_sense_hdr(sdkp, sshdr);
1633
1634 /* we need to evaluate the error return */
1635 if (scsi_sense_valid(sshdr) &&
1636 (sshdr->asc == 0x3a || /* medium not present */
1637 sshdr->asc == 0x20)) /* invalid command */
1638 /* this is no error here */
1639 return 0;
1640
1641 switch (host_byte(res)) {
1642 /* ignore errors due to racing a disconnection */
1643 case DID_BAD_TARGET:
1644 case DID_NO_CONNECT:
1645 return 0;
1646 /* signal the upper layer it might try again */
1647 case DID_BUS_BUSY:
1648 case DID_IMM_RETRY:
1649 case DID_REQUEUE:
1650 case DID_SOFT_ERROR:
1651 return -EBUSY;
1652 default:
1653 return -EIO;
1654 }
1655 }
1656 return 0;
1657 }
1658
1659 static void sd_rescan(struct device *dev)
1660 {
1661 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1662
1663 revalidate_disk(sdkp->disk);
1664 }
1665
1666
1667 #ifdef CONFIG_COMPAT
1668 /*
1669 * This gets directly called from VFS. When the ioctl
1670 * is not recognized we go back to the other translation paths.
1671 */
1672 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1673 unsigned int cmd, unsigned long arg)
1674 {
1675 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1676 int error;
1677
1678 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1679 (mode & FMODE_NDELAY) != 0);
1680 if (error)
1681 return error;
1682
1683 /*
1684 * Let the static ioctl translation table take care of it.
1685 */
1686 if (!sdev->host->hostt->compat_ioctl)
1687 return -ENOIOCTLCMD;
1688 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1689 }
1690 #endif
1691
1692 static char sd_pr_type(enum pr_type type)
1693 {
1694 switch (type) {
1695 case PR_WRITE_EXCLUSIVE:
1696 return 0x01;
1697 case PR_EXCLUSIVE_ACCESS:
1698 return 0x03;
1699 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1700 return 0x05;
1701 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1702 return 0x06;
1703 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1704 return 0x07;
1705 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1706 return 0x08;
1707 default:
1708 return 0;
1709 }
1710 };
1711
1712 static int sd_pr_command(struct block_device *bdev, u8 sa,
1713 u64 key, u64 sa_key, u8 type, u8 flags)
1714 {
1715 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1716 struct scsi_sense_hdr sshdr;
1717 int result;
1718 u8 cmd[16] = { 0, };
1719 u8 data[24] = { 0, };
1720
1721 cmd[0] = PERSISTENT_RESERVE_OUT;
1722 cmd[1] = sa;
1723 cmd[2] = type;
1724 put_unaligned_be32(sizeof(data), &cmd[5]);
1725
1726 put_unaligned_be64(key, &data[0]);
1727 put_unaligned_be64(sa_key, &data[8]);
1728 data[20] = flags;
1729
1730 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1731 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1732
1733 if ((driver_byte(result) & DRIVER_SENSE) &&
1734 (scsi_sense_valid(&sshdr))) {
1735 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1736 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1737 }
1738
1739 return result;
1740 }
1741
1742 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1743 u32 flags)
1744 {
1745 if (flags & ~PR_FL_IGNORE_KEY)
1746 return -EOPNOTSUPP;
1747 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1748 old_key, new_key, 0,
1749 (1 << 0) /* APTPL */);
1750 }
1751
1752 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1753 u32 flags)
1754 {
1755 if (flags)
1756 return -EOPNOTSUPP;
1757 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1758 }
1759
1760 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1761 {
1762 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1763 }
1764
1765 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1766 enum pr_type type, bool abort)
1767 {
1768 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1769 sd_pr_type(type), 0);
1770 }
1771
1772 static int sd_pr_clear(struct block_device *bdev, u64 key)
1773 {
1774 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1775 }
1776
1777 static const struct pr_ops sd_pr_ops = {
1778 .pr_register = sd_pr_register,
1779 .pr_reserve = sd_pr_reserve,
1780 .pr_release = sd_pr_release,
1781 .pr_preempt = sd_pr_preempt,
1782 .pr_clear = sd_pr_clear,
1783 };
1784
1785 static const struct block_device_operations sd_fops = {
1786 .owner = THIS_MODULE,
1787 .open = sd_open,
1788 .release = sd_release,
1789 .ioctl = sd_ioctl,
1790 .getgeo = sd_getgeo,
1791 #ifdef CONFIG_COMPAT
1792 .compat_ioctl = sd_compat_ioctl,
1793 #endif
1794 .check_events = sd_check_events,
1795 .revalidate_disk = sd_revalidate_disk,
1796 .unlock_native_capacity = sd_unlock_native_capacity,
1797 .pr_ops = &sd_pr_ops,
1798 };
1799
1800 /**
1801 * sd_eh_reset - reset error handling callback
1802 * @scmd: sd-issued command that has failed
1803 *
1804 * This function is called by the SCSI midlayer before starting
1805 * SCSI EH. When counting medium access failures we have to be
1806 * careful to register it only only once per device and SCSI EH run;
1807 * there might be several timed out commands which will cause the
1808 * 'max_medium_access_timeouts' counter to trigger after the first
1809 * SCSI EH run already and set the device to offline.
1810 * So this function resets the internal counter before starting SCSI EH.
1811 **/
1812 static void sd_eh_reset(struct scsi_cmnd *scmd)
1813 {
1814 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1815
1816 /* New SCSI EH run, reset gate variable */
1817 sdkp->ignore_medium_access_errors = false;
1818 }
1819
1820 /**
1821 * sd_eh_action - error handling callback
1822 * @scmd: sd-issued command that has failed
1823 * @eh_disp: The recovery disposition suggested by the midlayer
1824 *
1825 * This function is called by the SCSI midlayer upon completion of an
1826 * error test command (currently TEST UNIT READY). The result of sending
1827 * the eh command is passed in eh_disp. We're looking for devices that
1828 * fail medium access commands but are OK with non access commands like
1829 * test unit ready (so wrongly see the device as having a successful
1830 * recovery)
1831 **/
1832 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1833 {
1834 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1835 struct scsi_device *sdev = scmd->device;
1836
1837 if (!scsi_device_online(sdev) ||
1838 !scsi_medium_access_command(scmd) ||
1839 host_byte(scmd->result) != DID_TIME_OUT ||
1840 eh_disp != SUCCESS)
1841 return eh_disp;
1842
1843 /*
1844 * The device has timed out executing a medium access command.
1845 * However, the TEST UNIT READY command sent during error
1846 * handling completed successfully. Either the device is in the
1847 * process of recovering or has it suffered an internal failure
1848 * that prevents access to the storage medium.
1849 */
1850 if (!sdkp->ignore_medium_access_errors) {
1851 sdkp->medium_access_timed_out++;
1852 sdkp->ignore_medium_access_errors = true;
1853 }
1854
1855 /*
1856 * If the device keeps failing read/write commands but TEST UNIT
1857 * READY always completes successfully we assume that medium
1858 * access is no longer possible and take the device offline.
1859 */
1860 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1861 scmd_printk(KERN_ERR, scmd,
1862 "Medium access timeout failure. Offlining disk!\n");
1863 mutex_lock(&sdev->state_mutex);
1864 scsi_device_set_state(sdev, SDEV_OFFLINE);
1865 mutex_unlock(&sdev->state_mutex);
1866
1867 return SUCCESS;
1868 }
1869
1870 return eh_disp;
1871 }
1872
1873 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1874 {
1875 struct request *req = scmd->request;
1876 struct scsi_device *sdev = scmd->device;
1877 unsigned int transferred, good_bytes;
1878 u64 start_lba, end_lba, bad_lba;
1879
1880 /*
1881 * Some commands have a payload smaller than the device logical
1882 * block size (e.g. INQUIRY on a 4K disk).
1883 */
1884 if (scsi_bufflen(scmd) <= sdev->sector_size)
1885 return 0;
1886
1887 /* Check if we have a 'bad_lba' information */
1888 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1889 SCSI_SENSE_BUFFERSIZE,
1890 &bad_lba))
1891 return 0;
1892
1893 /*
1894 * If the bad lba was reported incorrectly, we have no idea where
1895 * the error is.
1896 */
1897 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1898 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1899 if (bad_lba < start_lba || bad_lba >= end_lba)
1900 return 0;
1901
1902 /*
1903 * resid is optional but mostly filled in. When it's unused,
1904 * its value is zero, so we assume the whole buffer transferred
1905 */
1906 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1907
1908 /* This computation should always be done in terms of the
1909 * resolution of the device's medium.
1910 */
1911 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1912
1913 return min(good_bytes, transferred);
1914 }
1915
1916 /**
1917 * sd_done - bottom half handler: called when the lower level
1918 * driver has completed (successfully or otherwise) a scsi command.
1919 * @SCpnt: mid-level's per command structure.
1920 *
1921 * Note: potentially run from within an ISR. Must not block.
1922 **/
1923 static int sd_done(struct scsi_cmnd *SCpnt)
1924 {
1925 int result = SCpnt->result;
1926 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1927 unsigned int sector_size = SCpnt->device->sector_size;
1928 unsigned int resid;
1929 struct scsi_sense_hdr sshdr;
1930 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1931 struct request *req = SCpnt->request;
1932 int sense_valid = 0;
1933 int sense_deferred = 0;
1934
1935 switch (req_op(req)) {
1936 case REQ_OP_DISCARD:
1937 case REQ_OP_WRITE_ZEROES:
1938 case REQ_OP_WRITE_SAME:
1939 case REQ_OP_ZONE_RESET:
1940 if (!result) {
1941 good_bytes = blk_rq_bytes(req);
1942 scsi_set_resid(SCpnt, 0);
1943 } else {
1944 good_bytes = 0;
1945 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1946 }
1947 break;
1948 case REQ_OP_ZONE_REPORT:
1949 if (!result) {
1950 good_bytes = scsi_bufflen(SCpnt)
1951 - scsi_get_resid(SCpnt);
1952 scsi_set_resid(SCpnt, 0);
1953 } else {
1954 good_bytes = 0;
1955 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1956 }
1957 break;
1958 default:
1959 /*
1960 * In case of bogus fw or device, we could end up having
1961 * an unaligned partial completion. Check this here and force
1962 * alignment.
1963 */
1964 resid = scsi_get_resid(SCpnt);
1965 if (resid & (sector_size - 1)) {
1966 sd_printk(KERN_INFO, sdkp,
1967 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1968 resid, sector_size);
1969 resid = min(scsi_bufflen(SCpnt),
1970 round_up(resid, sector_size));
1971 scsi_set_resid(SCpnt, resid);
1972 }
1973 }
1974
1975 if (result) {
1976 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1977 if (sense_valid)
1978 sense_deferred = scsi_sense_is_deferred(&sshdr);
1979 }
1980 sdkp->medium_access_timed_out = 0;
1981
1982 if (driver_byte(result) != DRIVER_SENSE &&
1983 (!sense_valid || sense_deferred))
1984 goto out;
1985
1986 switch (sshdr.sense_key) {
1987 case HARDWARE_ERROR:
1988 case MEDIUM_ERROR:
1989 good_bytes = sd_completed_bytes(SCpnt);
1990 break;
1991 case RECOVERED_ERROR:
1992 good_bytes = scsi_bufflen(SCpnt);
1993 break;
1994 case NO_SENSE:
1995 /* This indicates a false check condition, so ignore it. An
1996 * unknown amount of data was transferred so treat it as an
1997 * error.
1998 */
1999 SCpnt->result = 0;
2000 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2001 break;
2002 case ABORTED_COMMAND:
2003 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2004 good_bytes = sd_completed_bytes(SCpnt);
2005 break;
2006 case ILLEGAL_REQUEST:
2007 switch (sshdr.asc) {
2008 case 0x10: /* DIX: Host detected corruption */
2009 good_bytes = sd_completed_bytes(SCpnt);
2010 break;
2011 case 0x20: /* INVALID COMMAND OPCODE */
2012 case 0x24: /* INVALID FIELD IN CDB */
2013 switch (SCpnt->cmnd[0]) {
2014 case UNMAP:
2015 sd_config_discard(sdkp, SD_LBP_DISABLE);
2016 break;
2017 case WRITE_SAME_16:
2018 case WRITE_SAME:
2019 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2020 sd_config_discard(sdkp, SD_LBP_DISABLE);
2021 } else {
2022 sdkp->device->no_write_same = 1;
2023 sd_config_write_same(sdkp);
2024 req->__data_len = blk_rq_bytes(req);
2025 req->rq_flags |= RQF_QUIET;
2026 }
2027 break;
2028 }
2029 }
2030 break;
2031 default:
2032 break;
2033 }
2034
2035 out:
2036 if (sd_is_zoned(sdkp))
2037 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2038
2039 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2040 "sd_done: completed %d of %d bytes\n",
2041 good_bytes, scsi_bufflen(SCpnt)));
2042
2043 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2044 sd_dif_complete(SCpnt, good_bytes);
2045
2046 return good_bytes;
2047 }
2048
2049 /*
2050 * spinup disk - called only in sd_revalidate_disk()
2051 */
2052 static void
2053 sd_spinup_disk(struct scsi_disk *sdkp)
2054 {
2055 unsigned char cmd[10];
2056 unsigned long spintime_expire = 0;
2057 int retries, spintime;
2058 unsigned int the_result;
2059 struct scsi_sense_hdr sshdr;
2060 int sense_valid = 0;
2061
2062 spintime = 0;
2063
2064 /* Spin up drives, as required. Only do this at boot time */
2065 /* Spinup needs to be done for module loads too. */
2066 do {
2067 retries = 0;
2068
2069 do {
2070 cmd[0] = TEST_UNIT_READY;
2071 memset((void *) &cmd[1], 0, 9);
2072
2073 the_result = scsi_execute_req(sdkp->device, cmd,
2074 DMA_NONE, NULL, 0,
2075 &sshdr, SD_TIMEOUT,
2076 SD_MAX_RETRIES, NULL);
2077
2078 /*
2079 * If the drive has indicated to us that it
2080 * doesn't have any media in it, don't bother
2081 * with any more polling.
2082 */
2083 if (media_not_present(sdkp, &sshdr))
2084 return;
2085
2086 if (the_result)
2087 sense_valid = scsi_sense_valid(&sshdr);
2088 retries++;
2089 } while (retries < 3 &&
2090 (!scsi_status_is_good(the_result) ||
2091 ((driver_byte(the_result) & DRIVER_SENSE) &&
2092 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2093
2094 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2095 /* no sense, TUR either succeeded or failed
2096 * with a status error */
2097 if(!spintime && !scsi_status_is_good(the_result)) {
2098 sd_print_result(sdkp, "Test Unit Ready failed",
2099 the_result);
2100 }
2101 break;
2102 }
2103
2104 /*
2105 * The device does not want the automatic start to be issued.
2106 */
2107 if (sdkp->device->no_start_on_add)
2108 break;
2109
2110 if (sense_valid && sshdr.sense_key == NOT_READY) {
2111 if (sshdr.asc == 4 && sshdr.ascq == 3)
2112 break; /* manual intervention required */
2113 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2114 break; /* standby */
2115 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2116 break; /* unavailable */
2117 /*
2118 * Issue command to spin up drive when not ready
2119 */
2120 if (!spintime) {
2121 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2122 cmd[0] = START_STOP;
2123 cmd[1] = 1; /* Return immediately */
2124 memset((void *) &cmd[2], 0, 8);
2125 cmd[4] = 1; /* Start spin cycle */
2126 if (sdkp->device->start_stop_pwr_cond)
2127 cmd[4] |= 1 << 4;
2128 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2129 NULL, 0, &sshdr,
2130 SD_TIMEOUT, SD_MAX_RETRIES,
2131 NULL);
2132 spintime_expire = jiffies + 100 * HZ;
2133 spintime = 1;
2134 }
2135 /* Wait 1 second for next try */
2136 msleep(1000);
2137 printk(".");
2138
2139 /*
2140 * Wait for USB flash devices with slow firmware.
2141 * Yes, this sense key/ASC combination shouldn't
2142 * occur here. It's characteristic of these devices.
2143 */
2144 } else if (sense_valid &&
2145 sshdr.sense_key == UNIT_ATTENTION &&
2146 sshdr.asc == 0x28) {
2147 if (!spintime) {
2148 spintime_expire = jiffies + 5 * HZ;
2149 spintime = 1;
2150 }
2151 /* Wait 1 second for next try */
2152 msleep(1000);
2153 } else {
2154 /* we don't understand the sense code, so it's
2155 * probably pointless to loop */
2156 if(!spintime) {
2157 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2158 sd_print_sense_hdr(sdkp, &sshdr);
2159 }
2160 break;
2161 }
2162
2163 } while (spintime && time_before_eq(jiffies, spintime_expire));
2164
2165 if (spintime) {
2166 if (scsi_status_is_good(the_result))
2167 printk("ready\n");
2168 else
2169 printk("not responding...\n");
2170 }
2171 }
2172
2173 /*
2174 * Determine whether disk supports Data Integrity Field.
2175 */
2176 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2177 {
2178 struct scsi_device *sdp = sdkp->device;
2179 u8 type;
2180 int ret = 0;
2181
2182 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2183 return ret;
2184
2185 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2186
2187 if (type > T10_PI_TYPE3_PROTECTION)
2188 ret = -ENODEV;
2189 else if (scsi_host_dif_capable(sdp->host, type))
2190 ret = 1;
2191
2192 if (sdkp->first_scan || type != sdkp->protection_type)
2193 switch (ret) {
2194 case -ENODEV:
2195 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2196 " protection type %u. Disabling disk!\n",
2197 type);
2198 break;
2199 case 1:
2200 sd_printk(KERN_NOTICE, sdkp,
2201 "Enabling DIF Type %u protection\n", type);
2202 break;
2203 case 0:
2204 sd_printk(KERN_NOTICE, sdkp,
2205 "Disabling DIF Type %u protection\n", type);
2206 break;
2207 }
2208
2209 sdkp->protection_type = type;
2210
2211 return ret;
2212 }
2213
2214 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2215 struct scsi_sense_hdr *sshdr, int sense_valid,
2216 int the_result)
2217 {
2218 if (driver_byte(the_result) & DRIVER_SENSE)
2219 sd_print_sense_hdr(sdkp, sshdr);
2220 else
2221 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2222
2223 /*
2224 * Set dirty bit for removable devices if not ready -
2225 * sometimes drives will not report this properly.
2226 */
2227 if (sdp->removable &&
2228 sense_valid && sshdr->sense_key == NOT_READY)
2229 set_media_not_present(sdkp);
2230
2231 /*
2232 * We used to set media_present to 0 here to indicate no media
2233 * in the drive, but some drives fail read capacity even with
2234 * media present, so we can't do that.
2235 */
2236 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2237 }
2238
2239 #define RC16_LEN 32
2240 #if RC16_LEN > SD_BUF_SIZE
2241 #error RC16_LEN must not be more than SD_BUF_SIZE
2242 #endif
2243
2244 #define READ_CAPACITY_RETRIES_ON_RESET 10
2245
2246 /*
2247 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2248 * and the reported logical block size is bigger than 512 bytes. Note
2249 * that last_sector is a u64 and therefore logical_to_sectors() is not
2250 * applicable.
2251 */
2252 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2253 {
2254 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2255
2256 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2257 return false;
2258
2259 return true;
2260 }
2261
2262 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2263 unsigned char *buffer)
2264 {
2265 unsigned char cmd[16];
2266 struct scsi_sense_hdr sshdr;
2267 int sense_valid = 0;
2268 int the_result;
2269 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2270 unsigned int alignment;
2271 unsigned long long lba;
2272 unsigned sector_size;
2273
2274 if (sdp->no_read_capacity_16)
2275 return -EINVAL;
2276
2277 do {
2278 memset(cmd, 0, 16);
2279 cmd[0] = SERVICE_ACTION_IN_16;
2280 cmd[1] = SAI_READ_CAPACITY_16;
2281 cmd[13] = RC16_LEN;
2282 memset(buffer, 0, RC16_LEN);
2283
2284 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2285 buffer, RC16_LEN, &sshdr,
2286 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2287
2288 if (media_not_present(sdkp, &sshdr))
2289 return -ENODEV;
2290
2291 if (the_result) {
2292 sense_valid = scsi_sense_valid(&sshdr);
2293 if (sense_valid &&
2294 sshdr.sense_key == ILLEGAL_REQUEST &&
2295 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2296 sshdr.ascq == 0x00)
2297 /* Invalid Command Operation Code or
2298 * Invalid Field in CDB, just retry
2299 * silently with RC10 */
2300 return -EINVAL;
2301 if (sense_valid &&
2302 sshdr.sense_key == UNIT_ATTENTION &&
2303 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2304 /* Device reset might occur several times,
2305 * give it one more chance */
2306 if (--reset_retries > 0)
2307 continue;
2308 }
2309 retries--;
2310
2311 } while (the_result && retries);
2312
2313 if (the_result) {
2314 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2315 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2316 return -EINVAL;
2317 }
2318
2319 sector_size = get_unaligned_be32(&buffer[8]);
2320 lba = get_unaligned_be64(&buffer[0]);
2321
2322 if (sd_read_protection_type(sdkp, buffer) < 0) {
2323 sdkp->capacity = 0;
2324 return -ENODEV;
2325 }
2326
2327 if (!sd_addressable_capacity(lba, sector_size)) {
2328 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2329 "kernel compiled with support for large block "
2330 "devices.\n");
2331 sdkp->capacity = 0;
2332 return -EOVERFLOW;
2333 }
2334
2335 /* Logical blocks per physical block exponent */
2336 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2337
2338 /* RC basis */
2339 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2340
2341 /* Lowest aligned logical block */
2342 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2343 blk_queue_alignment_offset(sdp->request_queue, alignment);
2344 if (alignment && sdkp->first_scan)
2345 sd_printk(KERN_NOTICE, sdkp,
2346 "physical block alignment offset: %u\n", alignment);
2347
2348 if (buffer[14] & 0x80) { /* LBPME */
2349 sdkp->lbpme = 1;
2350
2351 if (buffer[14] & 0x40) /* LBPRZ */
2352 sdkp->lbprz = 1;
2353
2354 sd_config_discard(sdkp, SD_LBP_WS16);
2355 }
2356
2357 sdkp->capacity = lba + 1;
2358 return sector_size;
2359 }
2360
2361 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2362 unsigned char *buffer)
2363 {
2364 unsigned char cmd[16];
2365 struct scsi_sense_hdr sshdr;
2366 int sense_valid = 0;
2367 int the_result;
2368 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2369 sector_t lba;
2370 unsigned sector_size;
2371
2372 do {
2373 cmd[0] = READ_CAPACITY;
2374 memset(&cmd[1], 0, 9);
2375 memset(buffer, 0, 8);
2376
2377 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2378 buffer, 8, &sshdr,
2379 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2380
2381 if (media_not_present(sdkp, &sshdr))
2382 return -ENODEV;
2383
2384 if (the_result) {
2385 sense_valid = scsi_sense_valid(&sshdr);
2386 if (sense_valid &&
2387 sshdr.sense_key == UNIT_ATTENTION &&
2388 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2389 /* Device reset might occur several times,
2390 * give it one more chance */
2391 if (--reset_retries > 0)
2392 continue;
2393 }
2394 retries--;
2395
2396 } while (the_result && retries);
2397
2398 if (the_result) {
2399 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2400 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2401 return -EINVAL;
2402 }
2403
2404 sector_size = get_unaligned_be32(&buffer[4]);
2405 lba = get_unaligned_be32(&buffer[0]);
2406
2407 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2408 /* Some buggy (usb cardreader) devices return an lba of
2409 0xffffffff when the want to report a size of 0 (with
2410 which they really mean no media is present) */
2411 sdkp->capacity = 0;
2412 sdkp->physical_block_size = sector_size;
2413 return sector_size;
2414 }
2415
2416 if (!sd_addressable_capacity(lba, sector_size)) {
2417 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2418 "kernel compiled with support for large block "
2419 "devices.\n");
2420 sdkp->capacity = 0;
2421 return -EOVERFLOW;
2422 }
2423
2424 sdkp->capacity = lba + 1;
2425 sdkp->physical_block_size = sector_size;
2426 return sector_size;
2427 }
2428
2429 static int sd_try_rc16_first(struct scsi_device *sdp)
2430 {
2431 if (sdp->host->max_cmd_len < 16)
2432 return 0;
2433 if (sdp->try_rc_10_first)
2434 return 0;
2435 if (sdp->scsi_level > SCSI_SPC_2)
2436 return 1;
2437 if (scsi_device_protection(sdp))
2438 return 1;
2439 return 0;
2440 }
2441
2442 /*
2443 * read disk capacity
2444 */
2445 static void
2446 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2447 {
2448 int sector_size;
2449 struct scsi_device *sdp = sdkp->device;
2450
2451 if (sd_try_rc16_first(sdp)) {
2452 sector_size = read_capacity_16(sdkp, sdp, buffer);
2453 if (sector_size == -EOVERFLOW)
2454 goto got_data;
2455 if (sector_size == -ENODEV)
2456 return;
2457 if (sector_size < 0)
2458 sector_size = read_capacity_10(sdkp, sdp, buffer);
2459 if (sector_size < 0)
2460 return;
2461 } else {
2462 sector_size = read_capacity_10(sdkp, sdp, buffer);
2463 if (sector_size == -EOVERFLOW)
2464 goto got_data;
2465 if (sector_size < 0)
2466 return;
2467 if ((sizeof(sdkp->capacity) > 4) &&
2468 (sdkp->capacity > 0xffffffffULL)) {
2469 int old_sector_size = sector_size;
2470 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2471 "Trying to use READ CAPACITY(16).\n");
2472 sector_size = read_capacity_16(sdkp, sdp, buffer);
2473 if (sector_size < 0) {
2474 sd_printk(KERN_NOTICE, sdkp,
2475 "Using 0xffffffff as device size\n");
2476 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2477 sector_size = old_sector_size;
2478 goto got_data;
2479 }
2480 }
2481 }
2482
2483 /* Some devices are known to return the total number of blocks,
2484 * not the highest block number. Some devices have versions
2485 * which do this and others which do not. Some devices we might
2486 * suspect of doing this but we don't know for certain.
2487 *
2488 * If we know the reported capacity is wrong, decrement it. If
2489 * we can only guess, then assume the number of blocks is even
2490 * (usually true but not always) and err on the side of lowering
2491 * the capacity.
2492 */
2493 if (sdp->fix_capacity ||
2494 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2495 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2496 "from its reported value: %llu\n",
2497 (unsigned long long) sdkp->capacity);
2498 --sdkp->capacity;
2499 }
2500
2501 got_data:
2502 if (sector_size == 0) {
2503 sector_size = 512;
2504 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2505 "assuming 512.\n");
2506 }
2507
2508 if (sector_size != 512 &&
2509 sector_size != 1024 &&
2510 sector_size != 2048 &&
2511 sector_size != 4096) {
2512 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2513 sector_size);
2514 /*
2515 * The user might want to re-format the drive with
2516 * a supported sectorsize. Once this happens, it
2517 * would be relatively trivial to set the thing up.
2518 * For this reason, we leave the thing in the table.
2519 */
2520 sdkp->capacity = 0;
2521 /*
2522 * set a bogus sector size so the normal read/write
2523 * logic in the block layer will eventually refuse any
2524 * request on this device without tripping over power
2525 * of two sector size assumptions
2526 */
2527 sector_size = 512;
2528 }
2529 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2530 blk_queue_physical_block_size(sdp->request_queue,
2531 sdkp->physical_block_size);
2532 sdkp->device->sector_size = sector_size;
2533
2534 if (sdkp->capacity > 0xffffffff)
2535 sdp->use_16_for_rw = 1;
2536
2537 }
2538
2539 /*
2540 * Print disk capacity
2541 */
2542 static void
2543 sd_print_capacity(struct scsi_disk *sdkp,
2544 sector_t old_capacity)
2545 {
2546 int sector_size = sdkp->device->sector_size;
2547 char cap_str_2[10], cap_str_10[10];
2548
2549 string_get_size(sdkp->capacity, sector_size,
2550 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2551 string_get_size(sdkp->capacity, sector_size,
2552 STRING_UNITS_10, cap_str_10,
2553 sizeof(cap_str_10));
2554
2555 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2556 sd_printk(KERN_NOTICE, sdkp,
2557 "%llu %d-byte logical blocks: (%s/%s)\n",
2558 (unsigned long long)sdkp->capacity,
2559 sector_size, cap_str_10, cap_str_2);
2560
2561 if (sdkp->physical_block_size != sector_size)
2562 sd_printk(KERN_NOTICE, sdkp,
2563 "%u-byte physical blocks\n",
2564 sdkp->physical_block_size);
2565
2566 sd_zbc_print_zones(sdkp);
2567 }
2568 }
2569
2570 /* called with buffer of length 512 */
2571 static inline int
2572 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2573 unsigned char *buffer, int len, struct scsi_mode_data *data,
2574 struct scsi_sense_hdr *sshdr)
2575 {
2576 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2577 SD_TIMEOUT, SD_MAX_RETRIES, data,
2578 sshdr);
2579 }
2580
2581 /*
2582 * read write protect setting, if possible - called only in sd_revalidate_disk()
2583 * called with buffer of length SD_BUF_SIZE
2584 */
2585 static void
2586 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2587 {
2588 int res;
2589 struct scsi_device *sdp = sdkp->device;
2590 struct scsi_mode_data data;
2591 int old_wp = sdkp->write_prot;
2592
2593 set_disk_ro(sdkp->disk, 0);
2594 if (sdp->skip_ms_page_3f) {
2595 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2596 return;
2597 }
2598
2599 if (sdp->use_192_bytes_for_3f) {
2600 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2601 } else {
2602 /*
2603 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2604 * We have to start carefully: some devices hang if we ask
2605 * for more than is available.
2606 */
2607 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2608
2609 /*
2610 * Second attempt: ask for page 0 When only page 0 is
2611 * implemented, a request for page 3F may return Sense Key
2612 * 5: Illegal Request, Sense Code 24: Invalid field in
2613 * CDB.
2614 */
2615 if (!scsi_status_is_good(res))
2616 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2617
2618 /*
2619 * Third attempt: ask 255 bytes, as we did earlier.
2620 */
2621 if (!scsi_status_is_good(res))
2622 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2623 &data, NULL);
2624 }
2625
2626 if (!scsi_status_is_good(res)) {
2627 sd_first_printk(KERN_WARNING, sdkp,
2628 "Test WP failed, assume Write Enabled\n");
2629 } else {
2630 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2631 set_disk_ro(sdkp->disk, sdkp->write_prot);
2632 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2633 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2634 sdkp->write_prot ? "on" : "off");
2635 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2636 }
2637 }
2638 }
2639
2640 /*
2641 * sd_read_cache_type - called only from sd_revalidate_disk()
2642 * called with buffer of length SD_BUF_SIZE
2643 */
2644 static void
2645 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2646 {
2647 int len = 0, res;
2648 struct scsi_device *sdp = sdkp->device;
2649
2650 int dbd;
2651 int modepage;
2652 int first_len;
2653 struct scsi_mode_data data;
2654 struct scsi_sense_hdr sshdr;
2655 int old_wce = sdkp->WCE;
2656 int old_rcd = sdkp->RCD;
2657 int old_dpofua = sdkp->DPOFUA;
2658
2659
2660 if (sdkp->cache_override)
2661 return;
2662
2663 first_len = 4;
2664 if (sdp->skip_ms_page_8) {
2665 if (sdp->type == TYPE_RBC)
2666 goto defaults;
2667 else {
2668 if (sdp->skip_ms_page_3f)
2669 goto defaults;
2670 modepage = 0x3F;
2671 if (sdp->use_192_bytes_for_3f)
2672 first_len = 192;
2673 dbd = 0;
2674 }
2675 } else if (sdp->type == TYPE_RBC) {
2676 modepage = 6;
2677 dbd = 8;
2678 } else {
2679 modepage = 8;
2680 dbd = 0;
2681 }
2682
2683 /* cautiously ask */
2684 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2685 &data, &sshdr);
2686
2687 if (!scsi_status_is_good(res))
2688 goto bad_sense;
2689
2690 if (!data.header_length) {
2691 modepage = 6;
2692 first_len = 0;
2693 sd_first_printk(KERN_ERR, sdkp,
2694 "Missing header in MODE_SENSE response\n");
2695 }
2696
2697 /* that went OK, now ask for the proper length */
2698 len = data.length;
2699
2700 /*
2701 * We're only interested in the first three bytes, actually.
2702 * But the data cache page is defined for the first 20.
2703 */
2704 if (len < 3)
2705 goto bad_sense;
2706 else if (len > SD_BUF_SIZE) {
2707 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2708 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2709 len = SD_BUF_SIZE;
2710 }
2711 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2712 len = 192;
2713
2714 /* Get the data */
2715 if (len > first_len)
2716 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2717 &data, &sshdr);
2718
2719 if (scsi_status_is_good(res)) {
2720 int offset = data.header_length + data.block_descriptor_length;
2721
2722 while (offset < len) {
2723 u8 page_code = buffer[offset] & 0x3F;
2724 u8 spf = buffer[offset] & 0x40;
2725
2726 if (page_code == 8 || page_code == 6) {
2727 /* We're interested only in the first 3 bytes.
2728 */
2729 if (len - offset <= 2) {
2730 sd_first_printk(KERN_ERR, sdkp,
2731 "Incomplete mode parameter "
2732 "data\n");
2733 goto defaults;
2734 } else {
2735 modepage = page_code;
2736 goto Page_found;
2737 }
2738 } else {
2739 /* Go to the next page */
2740 if (spf && len - offset > 3)
2741 offset += 4 + (buffer[offset+2] << 8) +
2742 buffer[offset+3];
2743 else if (!spf && len - offset > 1)
2744 offset += 2 + buffer[offset+1];
2745 else {
2746 sd_first_printk(KERN_ERR, sdkp,
2747 "Incomplete mode "
2748 "parameter data\n");
2749 goto defaults;
2750 }
2751 }
2752 }
2753
2754 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2755 goto defaults;
2756
2757 Page_found:
2758 if (modepage == 8) {
2759 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2760 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2761 } else {
2762 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2763 sdkp->RCD = 0;
2764 }
2765
2766 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2767 if (sdp->broken_fua) {
2768 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2769 sdkp->DPOFUA = 0;
2770 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2771 !sdkp->device->use_16_for_rw) {
2772 sd_first_printk(KERN_NOTICE, sdkp,
2773 "Uses READ/WRITE(6), disabling FUA\n");
2774 sdkp->DPOFUA = 0;
2775 }
2776
2777 /* No cache flush allowed for write protected devices */
2778 if (sdkp->WCE && sdkp->write_prot)
2779 sdkp->WCE = 0;
2780
2781 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2782 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2783 sd_printk(KERN_NOTICE, sdkp,
2784 "Write cache: %s, read cache: %s, %s\n",
2785 sdkp->WCE ? "enabled" : "disabled",
2786 sdkp->RCD ? "disabled" : "enabled",
2787 sdkp->DPOFUA ? "supports DPO and FUA"
2788 : "doesn't support DPO or FUA");
2789
2790 return;
2791 }
2792
2793 bad_sense:
2794 if (scsi_sense_valid(&sshdr) &&
2795 sshdr.sense_key == ILLEGAL_REQUEST &&
2796 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2797 /* Invalid field in CDB */
2798 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2799 else
2800 sd_first_printk(KERN_ERR, sdkp,
2801 "Asking for cache data failed\n");
2802
2803 defaults:
2804 if (sdp->wce_default_on) {
2805 sd_first_printk(KERN_NOTICE, sdkp,
2806 "Assuming drive cache: write back\n");
2807 sdkp->WCE = 1;
2808 } else {
2809 sd_first_printk(KERN_ERR, sdkp,
2810 "Assuming drive cache: write through\n");
2811 sdkp->WCE = 0;
2812 }
2813 sdkp->RCD = 0;
2814 sdkp->DPOFUA = 0;
2815 }
2816
2817 /*
2818 * The ATO bit indicates whether the DIF application tag is available
2819 * for use by the operating system.
2820 */
2821 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2822 {
2823 int res, offset;
2824 struct scsi_device *sdp = sdkp->device;
2825 struct scsi_mode_data data;
2826 struct scsi_sense_hdr sshdr;
2827
2828 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2829 return;
2830
2831 if (sdkp->protection_type == 0)
2832 return;
2833
2834 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2835 SD_MAX_RETRIES, &data, &sshdr);
2836
2837 if (!scsi_status_is_good(res) || !data.header_length ||
2838 data.length < 6) {
2839 sd_first_printk(KERN_WARNING, sdkp,
2840 "getting Control mode page failed, assume no ATO\n");
2841
2842 if (scsi_sense_valid(&sshdr))
2843 sd_print_sense_hdr(sdkp, &sshdr);
2844
2845 return;
2846 }
2847
2848 offset = data.header_length + data.block_descriptor_length;
2849
2850 if ((buffer[offset] & 0x3f) != 0x0a) {
2851 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2852 return;
2853 }
2854
2855 if ((buffer[offset + 5] & 0x80) == 0)
2856 return;
2857
2858 sdkp->ATO = 1;
2859
2860 return;
2861 }
2862
2863 /**
2864 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2865 * @sdkp: disk to query
2866 */
2867 static void sd_read_block_limits(struct scsi_disk *sdkp)
2868 {
2869 unsigned int sector_sz = sdkp->device->sector_size;
2870 const int vpd_len = 64;
2871 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2872
2873 if (!buffer ||
2874 /* Block Limits VPD */
2875 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2876 goto out;
2877
2878 blk_queue_io_min(sdkp->disk->queue,
2879 get_unaligned_be16(&buffer[6]) * sector_sz);
2880
2881 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2882 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2883
2884 if (buffer[3] == 0x3c) {
2885 unsigned int lba_count, desc_count;
2886
2887 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2888
2889 if (!sdkp->lbpme)
2890 goto out;
2891
2892 lba_count = get_unaligned_be32(&buffer[20]);
2893 desc_count = get_unaligned_be32(&buffer[24]);
2894
2895 if (lba_count && desc_count)
2896 sdkp->max_unmap_blocks = lba_count;
2897
2898 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2899
2900 if (buffer[32] & 0x80)
2901 sdkp->unmap_alignment =
2902 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2903
2904 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2905
2906 if (sdkp->max_unmap_blocks)
2907 sd_config_discard(sdkp, SD_LBP_UNMAP);
2908 else
2909 sd_config_discard(sdkp, SD_LBP_WS16);
2910
2911 } else { /* LBP VPD page tells us what to use */
2912 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2913 sd_config_discard(sdkp, SD_LBP_UNMAP);
2914 else if (sdkp->lbpws)
2915 sd_config_discard(sdkp, SD_LBP_WS16);
2916 else if (sdkp->lbpws10)
2917 sd_config_discard(sdkp, SD_LBP_WS10);
2918 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2919 sd_config_discard(sdkp, SD_LBP_UNMAP);
2920 else
2921 sd_config_discard(sdkp, SD_LBP_DISABLE);
2922 }
2923 }
2924
2925 out:
2926 kfree(buffer);
2927 }
2928
2929 /**
2930 * sd_read_block_characteristics - Query block dev. characteristics
2931 * @sdkp: disk to query
2932 */
2933 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2934 {
2935 struct request_queue *q = sdkp->disk->queue;
2936 unsigned char *buffer;
2937 u16 rot;
2938 const int vpd_len = 64;
2939
2940 buffer = kmalloc(vpd_len, GFP_KERNEL);
2941
2942 if (!buffer ||
2943 /* Block Device Characteristics VPD */
2944 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2945 goto out;
2946
2947 rot = get_unaligned_be16(&buffer[4]);
2948
2949 if (rot == 1) {
2950 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2951 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2952 }
2953
2954 if (sdkp->device->type == TYPE_ZBC) {
2955 /* Host-managed */
2956 q->limits.zoned = BLK_ZONED_HM;
2957 } else {
2958 sdkp->zoned = (buffer[8] >> 4) & 3;
2959 if (sdkp->zoned == 1)
2960 /* Host-aware */
2961 q->limits.zoned = BLK_ZONED_HA;
2962 else
2963 /*
2964 * Treat drive-managed devices as
2965 * regular block devices.
2966 */
2967 q->limits.zoned = BLK_ZONED_NONE;
2968 }
2969 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2970 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2971 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2972
2973 out:
2974 kfree(buffer);
2975 }
2976
2977 /**
2978 * sd_read_block_provisioning - Query provisioning VPD page
2979 * @sdkp: disk to query
2980 */
2981 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2982 {
2983 unsigned char *buffer;
2984 const int vpd_len = 8;
2985
2986 if (sdkp->lbpme == 0)
2987 return;
2988
2989 buffer = kmalloc(vpd_len, GFP_KERNEL);
2990
2991 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2992 goto out;
2993
2994 sdkp->lbpvpd = 1;
2995 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2996 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2997 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2998
2999 out:
3000 kfree(buffer);
3001 }
3002
3003 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3004 {
3005 struct scsi_device *sdev = sdkp->device;
3006
3007 if (sdev->host->no_write_same) {
3008 sdev->no_write_same = 1;
3009
3010 return;
3011 }
3012
3013 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3014 /* too large values might cause issues with arcmsr */
3015 int vpd_buf_len = 64;
3016
3017 sdev->no_report_opcodes = 1;
3018
3019 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3020 * CODES is unsupported and the device has an ATA
3021 * Information VPD page (SAT).
3022 */
3023 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3024 sdev->no_write_same = 1;
3025 }
3026
3027 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3028 sdkp->ws16 = 1;
3029
3030 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3031 sdkp->ws10 = 1;
3032 }
3033
3034 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3035 {
3036 struct scsi_device *sdev = sdkp->device;
3037
3038 if (!sdev->security_supported)
3039 return;
3040
3041 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3042 SECURITY_PROTOCOL_IN) == 1 &&
3043 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3044 SECURITY_PROTOCOL_OUT) == 1)
3045 sdkp->security = 1;
3046 }
3047
3048 /**
3049 * sd_revalidate_disk - called the first time a new disk is seen,
3050 * performs disk spin up, read_capacity, etc.
3051 * @disk: struct gendisk we care about
3052 **/
3053 static int sd_revalidate_disk(struct gendisk *disk)
3054 {
3055 struct scsi_disk *sdkp = scsi_disk(disk);
3056 struct scsi_device *sdp = sdkp->device;
3057 struct request_queue *q = sdkp->disk->queue;
3058 sector_t old_capacity = sdkp->capacity;
3059 unsigned char *buffer;
3060 unsigned int dev_max, rw_max;
3061
3062 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3063 "sd_revalidate_disk\n"));
3064
3065 /*
3066 * If the device is offline, don't try and read capacity or any
3067 * of the other niceties.
3068 */
3069 if (!scsi_device_online(sdp))
3070 goto out;
3071
3072 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3073 if (!buffer) {
3074 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3075 "allocation failure.\n");
3076 goto out;
3077 }
3078
3079 sd_spinup_disk(sdkp);
3080
3081 /*
3082 * Without media there is no reason to ask; moreover, some devices
3083 * react badly if we do.
3084 */
3085 if (sdkp->media_present) {
3086 sd_read_capacity(sdkp, buffer);
3087
3088 if (scsi_device_supports_vpd(sdp)) {
3089 sd_read_block_provisioning(sdkp);
3090 sd_read_block_limits(sdkp);
3091 sd_read_block_characteristics(sdkp);
3092 sd_zbc_read_zones(sdkp, buffer);
3093 }
3094
3095 sd_print_capacity(sdkp, old_capacity);
3096
3097 sd_read_write_protect_flag(sdkp, buffer);
3098 sd_read_cache_type(sdkp, buffer);
3099 sd_read_app_tag_own(sdkp, buffer);
3100 sd_read_write_same(sdkp, buffer);
3101 sd_read_security(sdkp, buffer);
3102 }
3103
3104 sdkp->first_scan = 0;
3105
3106 /*
3107 * We now have all cache related info, determine how we deal
3108 * with flush requests.
3109 */
3110 sd_set_flush_flag(sdkp);
3111
3112 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3113 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3114
3115 /* Some devices report a maximum block count for READ/WRITE requests. */
3116 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3117 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3118
3119 /*
3120 * Use the device's preferred I/O size for reads and writes
3121 * unless the reported value is unreasonably small, large, or
3122 * garbage.
3123 */
3124 if (sdkp->opt_xfer_blocks &&
3125 sdkp->opt_xfer_blocks <= dev_max &&
3126 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3127 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3128 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3129 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3130 } else
3131 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3132 (sector_t)BLK_DEF_MAX_SECTORS);
3133
3134 /* Combine with controller limits */
3135 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3136
3137 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3138 sd_config_write_same(sdkp);
3139 kfree(buffer);
3140
3141 out:
3142 return 0;
3143 }
3144
3145 /**
3146 * sd_unlock_native_capacity - unlock native capacity
3147 * @disk: struct gendisk to set capacity for
3148 *
3149 * Block layer calls this function if it detects that partitions
3150 * on @disk reach beyond the end of the device. If the SCSI host
3151 * implements ->unlock_native_capacity() method, it's invoked to
3152 * give it a chance to adjust the device capacity.
3153 *
3154 * CONTEXT:
3155 * Defined by block layer. Might sleep.
3156 */
3157 static void sd_unlock_native_capacity(struct gendisk *disk)
3158 {
3159 struct scsi_device *sdev = scsi_disk(disk)->device;
3160
3161 if (sdev->host->hostt->unlock_native_capacity)
3162 sdev->host->hostt->unlock_native_capacity(sdev);
3163 }
3164
3165 /**
3166 * sd_format_disk_name - format disk name
3167 * @prefix: name prefix - ie. "sd" for SCSI disks
3168 * @index: index of the disk to format name for
3169 * @buf: output buffer
3170 * @buflen: length of the output buffer
3171 *
3172 * SCSI disk names starts at sda. The 26th device is sdz and the
3173 * 27th is sdaa. The last one for two lettered suffix is sdzz
3174 * which is followed by sdaaa.
3175 *
3176 * This is basically 26 base counting with one extra 'nil' entry
3177 * at the beginning from the second digit on and can be
3178 * determined using similar method as 26 base conversion with the
3179 * index shifted -1 after each digit is computed.
3180 *
3181 * CONTEXT:
3182 * Don't care.
3183 *
3184 * RETURNS:
3185 * 0 on success, -errno on failure.
3186 */
3187 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3188 {
3189 const int base = 'z' - 'a' + 1;
3190 char *begin = buf + strlen(prefix);
3191 char *end = buf + buflen;
3192 char *p;
3193 int unit;
3194
3195 p = end - 1;
3196 *p = '\0';
3197 unit = base;
3198 do {
3199 if (p == begin)
3200 return -EINVAL;
3201 *--p = 'a' + (index % unit);
3202 index = (index / unit) - 1;
3203 } while (index >= 0);
3204
3205 memmove(begin, p, end - p);
3206 memcpy(buf, prefix, strlen(prefix));
3207
3208 return 0;
3209 }
3210
3211 /*
3212 * The asynchronous part of sd_probe
3213 */
3214 static void sd_probe_async(void *data, async_cookie_t cookie)
3215 {
3216 struct scsi_disk *sdkp = data;
3217 struct scsi_device *sdp;
3218 struct gendisk *gd;
3219 u32 index;
3220 struct device *dev;
3221
3222 sdp = sdkp->device;
3223 gd = sdkp->disk;
3224 index = sdkp->index;
3225 dev = &sdp->sdev_gendev;
3226
3227 gd->major = sd_major((index & 0xf0) >> 4);
3228 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3229 gd->minors = SD_MINORS;
3230
3231 gd->fops = &sd_fops;
3232 gd->private_data = &sdkp->driver;
3233 gd->queue = sdkp->device->request_queue;
3234
3235 /* defaults, until the device tells us otherwise */
3236 sdp->sector_size = 512;
3237 sdkp->capacity = 0;
3238 sdkp->media_present = 1;
3239 sdkp->write_prot = 0;
3240 sdkp->cache_override = 0;
3241 sdkp->WCE = 0;
3242 sdkp->RCD = 0;
3243 sdkp->ATO = 0;
3244 sdkp->first_scan = 1;
3245 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3246
3247 sd_revalidate_disk(gd);
3248
3249 gd->flags = GENHD_FL_EXT_DEVT;
3250 if (sdp->removable) {
3251 gd->flags |= GENHD_FL_REMOVABLE;
3252 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3253 }
3254
3255 blk_pm_runtime_init(sdp->request_queue, dev);
3256 device_add_disk(dev, gd);
3257 if (sdkp->capacity)
3258 sd_dif_config_host(sdkp);
3259
3260 sd_revalidate_disk(gd);
3261
3262 if (sdkp->security) {
3263 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3264 if (sdkp->opal_dev)
3265 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3266 }
3267
3268 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3269 sdp->removable ? "removable " : "");
3270 scsi_autopm_put_device(sdp);
3271 put_device(&sdkp->dev);
3272 }
3273
3274 /**
3275 * sd_probe - called during driver initialization and whenever a
3276 * new scsi device is attached to the system. It is called once
3277 * for each scsi device (not just disks) present.
3278 * @dev: pointer to device object
3279 *
3280 * Returns 0 if successful (or not interested in this scsi device
3281 * (e.g. scanner)); 1 when there is an error.
3282 *
3283 * Note: this function is invoked from the scsi mid-level.
3284 * This function sets up the mapping between a given
3285 * <host,channel,id,lun> (found in sdp) and new device name
3286 * (e.g. /dev/sda). More precisely it is the block device major
3287 * and minor number that is chosen here.
3288 *
3289 * Assume sd_probe is not re-entrant (for time being)
3290 * Also think about sd_probe() and sd_remove() running coincidentally.
3291 **/
3292 static int sd_probe(struct device *dev)
3293 {
3294 struct scsi_device *sdp = to_scsi_device(dev);
3295 struct scsi_disk *sdkp;
3296 struct gendisk *gd;
3297 int index;
3298 int error;
3299
3300 scsi_autopm_get_device(sdp);
3301 error = -ENODEV;
3302 if (sdp->type != TYPE_DISK &&
3303 sdp->type != TYPE_ZBC &&
3304 sdp->type != TYPE_MOD &&
3305 sdp->type != TYPE_RBC)
3306 goto out;
3307
3308 #ifndef CONFIG_BLK_DEV_ZONED
3309 if (sdp->type == TYPE_ZBC)
3310 goto out;
3311 #endif
3312 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3313 "sd_probe\n"));
3314
3315 error = -ENOMEM;
3316 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3317 if (!sdkp)
3318 goto out;
3319
3320 gd = alloc_disk(SD_MINORS);
3321 if (!gd)
3322 goto out_free;
3323
3324 do {
3325 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3326 goto out_put;
3327
3328 spin_lock(&sd_index_lock);
3329 error = ida_get_new(&sd_index_ida, &index);
3330 spin_unlock(&sd_index_lock);
3331 } while (error == -EAGAIN);
3332
3333 if (error) {
3334 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3335 goto out_put;
3336 }
3337
3338 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3339 if (error) {
3340 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3341 goto out_free_index;
3342 }
3343
3344 sdkp->device = sdp;
3345 sdkp->driver = &sd_template;
3346 sdkp->disk = gd;
3347 sdkp->index = index;
3348 atomic_set(&sdkp->openers, 0);
3349 atomic_set(&sdkp->device->ioerr_cnt, 0);
3350
3351 if (!sdp->request_queue->rq_timeout) {
3352 if (sdp->type != TYPE_MOD)
3353 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3354 else
3355 blk_queue_rq_timeout(sdp->request_queue,
3356 SD_MOD_TIMEOUT);
3357 }
3358
3359 device_initialize(&sdkp->dev);
3360 sdkp->dev.parent = dev;
3361 sdkp->dev.class = &sd_disk_class;
3362 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3363
3364 error = device_add(&sdkp->dev);
3365 if (error)
3366 goto out_free_index;
3367
3368 get_device(dev);
3369 dev_set_drvdata(dev, sdkp);
3370
3371 get_device(&sdkp->dev); /* prevent release before async_schedule */
3372 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3373
3374 return 0;
3375
3376 out_free_index:
3377 spin_lock(&sd_index_lock);
3378 ida_remove(&sd_index_ida, index);
3379 spin_unlock(&sd_index_lock);
3380 out_put:
3381 put_disk(gd);
3382 out_free:
3383 kfree(sdkp);
3384 out:
3385 scsi_autopm_put_device(sdp);
3386 return error;
3387 }
3388
3389 /**
3390 * sd_remove - called whenever a scsi disk (previously recognized by
3391 * sd_probe) is detached from the system. It is called (potentially
3392 * multiple times) during sd module unload.
3393 * @dev: pointer to device object
3394 *
3395 * Note: this function is invoked from the scsi mid-level.
3396 * This function potentially frees up a device name (e.g. /dev/sdc)
3397 * that could be re-used by a subsequent sd_probe().
3398 * This function is not called when the built-in sd driver is "exit-ed".
3399 **/
3400 static int sd_remove(struct device *dev)
3401 {
3402 struct scsi_disk *sdkp;
3403 dev_t devt;
3404
3405 sdkp = dev_get_drvdata(dev);
3406 devt = disk_devt(sdkp->disk);
3407 scsi_autopm_get_device(sdkp->device);
3408
3409 async_synchronize_full_domain(&scsi_sd_pm_domain);
3410 async_synchronize_full_domain(&scsi_sd_probe_domain);
3411 device_del(&sdkp->dev);
3412 del_gendisk(sdkp->disk);
3413 sd_shutdown(dev);
3414
3415 sd_zbc_remove(sdkp);
3416
3417 free_opal_dev(sdkp->opal_dev);
3418
3419 blk_register_region(devt, SD_MINORS, NULL,
3420 sd_default_probe, NULL, NULL);
3421
3422 mutex_lock(&sd_ref_mutex);
3423 dev_set_drvdata(dev, NULL);
3424 put_device(&sdkp->dev);
3425 mutex_unlock(&sd_ref_mutex);
3426
3427 return 0;
3428 }
3429
3430 /**
3431 * scsi_disk_release - Called to free the scsi_disk structure
3432 * @dev: pointer to embedded class device
3433 *
3434 * sd_ref_mutex must be held entering this routine. Because it is
3435 * called on last put, you should always use the scsi_disk_get()
3436 * scsi_disk_put() helpers which manipulate the semaphore directly
3437 * and never do a direct put_device.
3438 **/
3439 static void scsi_disk_release(struct device *dev)
3440 {
3441 struct scsi_disk *sdkp = to_scsi_disk(dev);
3442 struct gendisk *disk = sdkp->disk;
3443
3444 spin_lock(&sd_index_lock);
3445 ida_remove(&sd_index_ida, sdkp->index);
3446 spin_unlock(&sd_index_lock);
3447
3448 disk->private_data = NULL;
3449 put_disk(disk);
3450 put_device(&sdkp->device->sdev_gendev);
3451
3452 kfree(sdkp);
3453 }
3454
3455 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3456 {
3457 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3458 struct scsi_sense_hdr sshdr;
3459 struct scsi_device *sdp = sdkp->device;
3460 int res;
3461
3462 if (start)
3463 cmd[4] |= 1; /* START */
3464
3465 if (sdp->start_stop_pwr_cond)
3466 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3467
3468 if (!scsi_device_online(sdp))
3469 return -ENODEV;
3470
3471 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3472 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3473 if (res) {
3474 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3475 if (driver_byte(res) & DRIVER_SENSE)
3476 sd_print_sense_hdr(sdkp, &sshdr);
3477 if (scsi_sense_valid(&sshdr) &&
3478 /* 0x3a is medium not present */
3479 sshdr.asc == 0x3a)
3480 res = 0;
3481 }
3482
3483 /* SCSI error codes must not go to the generic layer */
3484 if (res)
3485 return -EIO;
3486
3487 return 0;
3488 }
3489
3490 /*
3491 * Send a SYNCHRONIZE CACHE instruction down to the device through
3492 * the normal SCSI command structure. Wait for the command to
3493 * complete.
3494 */
3495 static void sd_shutdown(struct device *dev)
3496 {
3497 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3498
3499 if (!sdkp)
3500 return; /* this can happen */
3501
3502 if (pm_runtime_suspended(dev))
3503 return;
3504
3505 if (sdkp->WCE && sdkp->media_present) {
3506 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3507 sd_sync_cache(sdkp, NULL);
3508 }
3509
3510 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3511 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3512 sd_start_stop_device(sdkp, 0);
3513 }
3514 }
3515
3516 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3517 {
3518 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3519 struct scsi_sense_hdr sshdr;
3520 int ret = 0;
3521
3522 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3523 return 0;
3524
3525 if (sdkp->WCE && sdkp->media_present) {
3526 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3527 ret = sd_sync_cache(sdkp, &sshdr);
3528
3529 if (ret) {
3530 /* ignore OFFLINE device */
3531 if (ret == -ENODEV)
3532 return 0;
3533
3534 if (!scsi_sense_valid(&sshdr) ||
3535 sshdr.sense_key != ILLEGAL_REQUEST)
3536 return ret;
3537
3538 /*
3539 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3540 * doesn't support sync. There's not much to do and
3541 * suspend shouldn't fail.
3542 */
3543 ret = 0;
3544 }
3545 }
3546
3547 if (sdkp->device->manage_start_stop) {
3548 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3549 /* an error is not worth aborting a system sleep */
3550 ret = sd_start_stop_device(sdkp, 0);
3551 if (ignore_stop_errors)
3552 ret = 0;
3553 }
3554
3555 return ret;
3556 }
3557
3558 static int sd_suspend_system(struct device *dev)
3559 {
3560 return sd_suspend_common(dev, true);
3561 }
3562
3563 static int sd_suspend_runtime(struct device *dev)
3564 {
3565 return sd_suspend_common(dev, false);
3566 }
3567
3568 static int sd_resume(struct device *dev)
3569 {
3570 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3571 int ret;
3572
3573 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3574 return 0;
3575
3576 if (!sdkp->device->manage_start_stop)
3577 return 0;
3578
3579 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3580 ret = sd_start_stop_device(sdkp, 1);
3581 if (!ret)
3582 opal_unlock_from_suspend(sdkp->opal_dev);
3583 return ret;
3584 }
3585
3586 /**
3587 * init_sd - entry point for this driver (both when built in or when
3588 * a module).
3589 *
3590 * Note: this function registers this driver with the scsi mid-level.
3591 **/
3592 static int __init init_sd(void)
3593 {
3594 int majors = 0, i, err;
3595
3596 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3597
3598 for (i = 0; i < SD_MAJORS; i++) {
3599 if (register_blkdev(sd_major(i), "sd") != 0)
3600 continue;
3601 majors++;
3602 blk_register_region(sd_major(i), SD_MINORS, NULL,
3603 sd_default_probe, NULL, NULL);
3604 }
3605
3606 if (!majors)
3607 return -ENODEV;
3608
3609 err = class_register(&sd_disk_class);
3610 if (err)
3611 goto err_out;
3612
3613 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3614 0, 0, NULL);
3615 if (!sd_cdb_cache) {
3616 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3617 err = -ENOMEM;
3618 goto err_out_class;
3619 }
3620
3621 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3622 if (!sd_cdb_pool) {
3623 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3624 err = -ENOMEM;
3625 goto err_out_cache;
3626 }
3627
3628 err = scsi_register_driver(&sd_template.gendrv);
3629 if (err)
3630 goto err_out_driver;
3631
3632 return 0;
3633
3634 err_out_driver:
3635 mempool_destroy(sd_cdb_pool);
3636
3637 err_out_cache:
3638 kmem_cache_destroy(sd_cdb_cache);
3639
3640 err_out_class:
3641 class_unregister(&sd_disk_class);
3642 err_out:
3643 for (i = 0; i < SD_MAJORS; i++)
3644 unregister_blkdev(sd_major(i), "sd");
3645 return err;
3646 }
3647
3648 /**
3649 * exit_sd - exit point for this driver (when it is a module).
3650 *
3651 * Note: this function unregisters this driver from the scsi mid-level.
3652 **/
3653 static void __exit exit_sd(void)
3654 {
3655 int i;
3656
3657 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3658
3659 scsi_unregister_driver(&sd_template.gendrv);
3660 mempool_destroy(sd_cdb_pool);
3661 kmem_cache_destroy(sd_cdb_cache);
3662
3663 class_unregister(&sd_disk_class);
3664
3665 for (i = 0; i < SD_MAJORS; i++) {
3666 blk_unregister_region(sd_major(i), SD_MINORS);
3667 unregister_blkdev(sd_major(i), "sd");
3668 }
3669 }
3670
3671 module_init(init_sd);
3672 module_exit(exit_sd);
3673
3674 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3675 struct scsi_sense_hdr *sshdr)
3676 {
3677 scsi_print_sense_hdr(sdkp->device,
3678 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3679 }
3680
3681 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3682 int result)
3683 {
3684 const char *hb_string = scsi_hostbyte_string(result);
3685 const char *db_string = scsi_driverbyte_string(result);
3686
3687 if (hb_string || db_string)
3688 sd_printk(KERN_INFO, sdkp,
3689 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3690 hb_string ? hb_string : "invalid",
3691 db_string ? db_string : "invalid");
3692 else
3693 sd_printk(KERN_INFO, sdkp,
3694 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3695 msg, host_byte(result), driver_byte(result));
3696 }
3697