]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/sd.c
Merge branch 'async-scsi-resume' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <asm/uaccess.h>
55 #include <asm/unaligned.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_dbg.h>
60 #include <scsi/scsi_device.h>
61 #include <scsi/scsi_driver.h>
62 #include <scsi/scsi_eh.h>
63 #include <scsi/scsi_host.h>
64 #include <scsi/scsi_ioctl.h>
65 #include <scsi/scsicam.h>
66
67 #include "sd.h"
68 #include "scsi_priv.h"
69 #include "scsi_logging.h"
70
71 MODULE_AUTHOR("Eric Youngdale");
72 MODULE_DESCRIPTION("SCSI disk (sd) driver");
73 MODULE_LICENSE("GPL");
74
75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
94
95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
96 #define SD_MINORS 16
97 #else
98 #define SD_MINORS 0
99 #endif
100
101 static void sd_config_discard(struct scsi_disk *, unsigned int);
102 static void sd_config_write_same(struct scsi_disk *);
103 static int sd_revalidate_disk(struct gendisk *);
104 static void sd_unlock_native_capacity(struct gendisk *disk);
105 static int sd_probe(struct device *);
106 static int sd_remove(struct device *);
107 static void sd_shutdown(struct device *);
108 static int sd_suspend_system(struct device *);
109 static int sd_suspend_runtime(struct device *);
110 static int sd_resume(struct device *);
111 static void sd_rescan(struct device *);
112 static int sd_done(struct scsi_cmnd *);
113 static int sd_eh_action(struct scsi_cmnd *, int);
114 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
115 static void scsi_disk_release(struct device *cdev);
116 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
117 static void sd_print_result(struct scsi_disk *, int);
118
119 static DEFINE_SPINLOCK(sd_index_lock);
120 static DEFINE_IDA(sd_index_ida);
121
122 /* This semaphore is used to mediate the 0->1 reference get in the
123 * face of object destruction (i.e. we can't allow a get on an
124 * object after last put) */
125 static DEFINE_MUTEX(sd_ref_mutex);
126
127 static struct kmem_cache *sd_cdb_cache;
128 static mempool_t *sd_cdb_pool;
129
130 static const char *sd_cache_types[] = {
131 "write through", "none", "write back",
132 "write back, no read (daft)"
133 };
134
135 static ssize_t
136 cache_type_store(struct device *dev, struct device_attribute *attr,
137 const char *buf, size_t count)
138 {
139 int i, ct = -1, rcd, wce, sp;
140 struct scsi_disk *sdkp = to_scsi_disk(dev);
141 struct scsi_device *sdp = sdkp->device;
142 char buffer[64];
143 char *buffer_data;
144 struct scsi_mode_data data;
145 struct scsi_sense_hdr sshdr;
146 static const char temp[] = "temporary ";
147 int len;
148
149 if (sdp->type != TYPE_DISK)
150 /* no cache control on RBC devices; theoretically they
151 * can do it, but there's probably so many exceptions
152 * it's not worth the risk */
153 return -EINVAL;
154
155 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
156 buf += sizeof(temp) - 1;
157 sdkp->cache_override = 1;
158 } else {
159 sdkp->cache_override = 0;
160 }
161
162 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
163 len = strlen(sd_cache_types[i]);
164 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
165 buf[len] == '\n') {
166 ct = i;
167 break;
168 }
169 }
170 if (ct < 0)
171 return -EINVAL;
172 rcd = ct & 0x01 ? 1 : 0;
173 wce = ct & 0x02 ? 1 : 0;
174
175 if (sdkp->cache_override) {
176 sdkp->WCE = wce;
177 sdkp->RCD = rcd;
178 return count;
179 }
180
181 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
182 SD_MAX_RETRIES, &data, NULL))
183 return -EINVAL;
184 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
185 data.block_descriptor_length);
186 buffer_data = buffer + data.header_length +
187 data.block_descriptor_length;
188 buffer_data[2] &= ~0x05;
189 buffer_data[2] |= wce << 2 | rcd;
190 sp = buffer_data[0] & 0x80 ? 1 : 0;
191
192 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
193 SD_MAX_RETRIES, &data, &sshdr)) {
194 if (scsi_sense_valid(&sshdr))
195 sd_print_sense_hdr(sdkp, &sshdr);
196 return -EINVAL;
197 }
198 revalidate_disk(sdkp->disk);
199 return count;
200 }
201
202 static ssize_t
203 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
204 char *buf)
205 {
206 struct scsi_disk *sdkp = to_scsi_disk(dev);
207 struct scsi_device *sdp = sdkp->device;
208
209 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
210 }
211
212 static ssize_t
213 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
214 const char *buf, size_t count)
215 {
216 struct scsi_disk *sdkp = to_scsi_disk(dev);
217 struct scsi_device *sdp = sdkp->device;
218
219 if (!capable(CAP_SYS_ADMIN))
220 return -EACCES;
221
222 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
223
224 return count;
225 }
226 static DEVICE_ATTR_RW(manage_start_stop);
227
228 static ssize_t
229 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
230 {
231 struct scsi_disk *sdkp = to_scsi_disk(dev);
232
233 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
234 }
235
236 static ssize_t
237 allow_restart_store(struct device *dev, struct device_attribute *attr,
238 const char *buf, size_t count)
239 {
240 struct scsi_disk *sdkp = to_scsi_disk(dev);
241 struct scsi_device *sdp = sdkp->device;
242
243 if (!capable(CAP_SYS_ADMIN))
244 return -EACCES;
245
246 if (sdp->type != TYPE_DISK)
247 return -EINVAL;
248
249 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
250
251 return count;
252 }
253 static DEVICE_ATTR_RW(allow_restart);
254
255 static ssize_t
256 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
257 {
258 struct scsi_disk *sdkp = to_scsi_disk(dev);
259 int ct = sdkp->RCD + 2*sdkp->WCE;
260
261 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
262 }
263 static DEVICE_ATTR_RW(cache_type);
264
265 static ssize_t
266 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
267 {
268 struct scsi_disk *sdkp = to_scsi_disk(dev);
269
270 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
271 }
272 static DEVICE_ATTR_RO(FUA);
273
274 static ssize_t
275 protection_type_show(struct device *dev, struct device_attribute *attr,
276 char *buf)
277 {
278 struct scsi_disk *sdkp = to_scsi_disk(dev);
279
280 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
281 }
282
283 static ssize_t
284 protection_type_store(struct device *dev, struct device_attribute *attr,
285 const char *buf, size_t count)
286 {
287 struct scsi_disk *sdkp = to_scsi_disk(dev);
288 unsigned int val;
289 int err;
290
291 if (!capable(CAP_SYS_ADMIN))
292 return -EACCES;
293
294 err = kstrtouint(buf, 10, &val);
295
296 if (err)
297 return err;
298
299 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
300 sdkp->protection_type = val;
301
302 return count;
303 }
304 static DEVICE_ATTR_RW(protection_type);
305
306 static ssize_t
307 protection_mode_show(struct device *dev, struct device_attribute *attr,
308 char *buf)
309 {
310 struct scsi_disk *sdkp = to_scsi_disk(dev);
311 struct scsi_device *sdp = sdkp->device;
312 unsigned int dif, dix;
313
314 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
315 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
316
317 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
318 dif = 0;
319 dix = 1;
320 }
321
322 if (!dif && !dix)
323 return snprintf(buf, 20, "none\n");
324
325 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
326 }
327 static DEVICE_ATTR_RO(protection_mode);
328
329 static ssize_t
330 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
331 {
332 struct scsi_disk *sdkp = to_scsi_disk(dev);
333
334 return snprintf(buf, 20, "%u\n", sdkp->ATO);
335 }
336 static DEVICE_ATTR_RO(app_tag_own);
337
338 static ssize_t
339 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
340 char *buf)
341 {
342 struct scsi_disk *sdkp = to_scsi_disk(dev);
343
344 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
345 }
346 static DEVICE_ATTR_RO(thin_provisioning);
347
348 static const char *lbp_mode[] = {
349 [SD_LBP_FULL] = "full",
350 [SD_LBP_UNMAP] = "unmap",
351 [SD_LBP_WS16] = "writesame_16",
352 [SD_LBP_WS10] = "writesame_10",
353 [SD_LBP_ZERO] = "writesame_zero",
354 [SD_LBP_DISABLE] = "disabled",
355 };
356
357 static ssize_t
358 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
359 char *buf)
360 {
361 struct scsi_disk *sdkp = to_scsi_disk(dev);
362
363 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
364 }
365
366 static ssize_t
367 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
368 const char *buf, size_t count)
369 {
370 struct scsi_disk *sdkp = to_scsi_disk(dev);
371 struct scsi_device *sdp = sdkp->device;
372
373 if (!capable(CAP_SYS_ADMIN))
374 return -EACCES;
375
376 if (sdp->type != TYPE_DISK)
377 return -EINVAL;
378
379 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
380 sd_config_discard(sdkp, SD_LBP_UNMAP);
381 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
382 sd_config_discard(sdkp, SD_LBP_WS16);
383 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
384 sd_config_discard(sdkp, SD_LBP_WS10);
385 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
386 sd_config_discard(sdkp, SD_LBP_ZERO);
387 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
388 sd_config_discard(sdkp, SD_LBP_DISABLE);
389 else
390 return -EINVAL;
391
392 return count;
393 }
394 static DEVICE_ATTR_RW(provisioning_mode);
395
396 static ssize_t
397 max_medium_access_timeouts_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct scsi_disk *sdkp = to_scsi_disk(dev);
401
402 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
403 }
404
405 static ssize_t
406 max_medium_access_timeouts_store(struct device *dev,
407 struct device_attribute *attr, const char *buf,
408 size_t count)
409 {
410 struct scsi_disk *sdkp = to_scsi_disk(dev);
411 int err;
412
413 if (!capable(CAP_SYS_ADMIN))
414 return -EACCES;
415
416 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
417
418 return err ? err : count;
419 }
420 static DEVICE_ATTR_RW(max_medium_access_timeouts);
421
422 static ssize_t
423 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
424 char *buf)
425 {
426 struct scsi_disk *sdkp = to_scsi_disk(dev);
427
428 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
429 }
430
431 static ssize_t
432 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
433 const char *buf, size_t count)
434 {
435 struct scsi_disk *sdkp = to_scsi_disk(dev);
436 struct scsi_device *sdp = sdkp->device;
437 unsigned long max;
438 int err;
439
440 if (!capable(CAP_SYS_ADMIN))
441 return -EACCES;
442
443 if (sdp->type != TYPE_DISK)
444 return -EINVAL;
445
446 err = kstrtoul(buf, 10, &max);
447
448 if (err)
449 return err;
450
451 if (max == 0)
452 sdp->no_write_same = 1;
453 else if (max <= SD_MAX_WS16_BLOCKS) {
454 sdp->no_write_same = 0;
455 sdkp->max_ws_blocks = max;
456 }
457
458 sd_config_write_same(sdkp);
459
460 return count;
461 }
462 static DEVICE_ATTR_RW(max_write_same_blocks);
463
464 static struct attribute *sd_disk_attrs[] = {
465 &dev_attr_cache_type.attr,
466 &dev_attr_FUA.attr,
467 &dev_attr_allow_restart.attr,
468 &dev_attr_manage_start_stop.attr,
469 &dev_attr_protection_type.attr,
470 &dev_attr_protection_mode.attr,
471 &dev_attr_app_tag_own.attr,
472 &dev_attr_thin_provisioning.attr,
473 &dev_attr_provisioning_mode.attr,
474 &dev_attr_max_write_same_blocks.attr,
475 &dev_attr_max_medium_access_timeouts.attr,
476 NULL,
477 };
478 ATTRIBUTE_GROUPS(sd_disk);
479
480 static struct class sd_disk_class = {
481 .name = "scsi_disk",
482 .owner = THIS_MODULE,
483 .dev_release = scsi_disk_release,
484 .dev_groups = sd_disk_groups,
485 };
486
487 static const struct dev_pm_ops sd_pm_ops = {
488 .suspend = sd_suspend_system,
489 .resume = sd_resume,
490 .poweroff = sd_suspend_system,
491 .restore = sd_resume,
492 .runtime_suspend = sd_suspend_runtime,
493 .runtime_resume = sd_resume,
494 };
495
496 static struct scsi_driver sd_template = {
497 .owner = THIS_MODULE,
498 .gendrv = {
499 .name = "sd",
500 .probe = sd_probe,
501 .remove = sd_remove,
502 .shutdown = sd_shutdown,
503 .pm = &sd_pm_ops,
504 },
505 .rescan = sd_rescan,
506 .done = sd_done,
507 .eh_action = sd_eh_action,
508 };
509
510 /*
511 * Dummy kobj_map->probe function.
512 * The default ->probe function will call modprobe, which is
513 * pointless as this module is already loaded.
514 */
515 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
516 {
517 return NULL;
518 }
519
520 /*
521 * Device no to disk mapping:
522 *
523 * major disc2 disc p1
524 * |............|.............|....|....| <- dev_t
525 * 31 20 19 8 7 4 3 0
526 *
527 * Inside a major, we have 16k disks, however mapped non-
528 * contiguously. The first 16 disks are for major0, the next
529 * ones with major1, ... Disk 256 is for major0 again, disk 272
530 * for major1, ...
531 * As we stay compatible with our numbering scheme, we can reuse
532 * the well-know SCSI majors 8, 65--71, 136--143.
533 */
534 static int sd_major(int major_idx)
535 {
536 switch (major_idx) {
537 case 0:
538 return SCSI_DISK0_MAJOR;
539 case 1 ... 7:
540 return SCSI_DISK1_MAJOR + major_idx - 1;
541 case 8 ... 15:
542 return SCSI_DISK8_MAJOR + major_idx - 8;
543 default:
544 BUG();
545 return 0; /* shut up gcc */
546 }
547 }
548
549 static struct scsi_disk *__scsi_disk_get(struct gendisk *disk)
550 {
551 struct scsi_disk *sdkp = NULL;
552
553 if (disk->private_data) {
554 sdkp = scsi_disk(disk);
555 if (scsi_device_get(sdkp->device) == 0)
556 get_device(&sdkp->dev);
557 else
558 sdkp = NULL;
559 }
560 return sdkp;
561 }
562
563 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
564 {
565 struct scsi_disk *sdkp;
566
567 mutex_lock(&sd_ref_mutex);
568 sdkp = __scsi_disk_get(disk);
569 mutex_unlock(&sd_ref_mutex);
570 return sdkp;
571 }
572
573 static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev)
574 {
575 struct scsi_disk *sdkp;
576
577 mutex_lock(&sd_ref_mutex);
578 sdkp = dev_get_drvdata(dev);
579 if (sdkp)
580 sdkp = __scsi_disk_get(sdkp->disk);
581 mutex_unlock(&sd_ref_mutex);
582 return sdkp;
583 }
584
585 static void scsi_disk_put(struct scsi_disk *sdkp)
586 {
587 struct scsi_device *sdev = sdkp->device;
588
589 mutex_lock(&sd_ref_mutex);
590 put_device(&sdkp->dev);
591 scsi_device_put(sdev);
592 mutex_unlock(&sd_ref_mutex);
593 }
594
595 static void sd_prot_op(struct scsi_cmnd *scmd, unsigned int dif)
596 {
597 unsigned int prot_op = SCSI_PROT_NORMAL;
598 unsigned int dix = scsi_prot_sg_count(scmd);
599
600 if (scmd->sc_data_direction == DMA_FROM_DEVICE) {
601 if (dif && dix)
602 prot_op = SCSI_PROT_READ_PASS;
603 else if (dif && !dix)
604 prot_op = SCSI_PROT_READ_STRIP;
605 else if (!dif && dix)
606 prot_op = SCSI_PROT_READ_INSERT;
607 } else {
608 if (dif && dix)
609 prot_op = SCSI_PROT_WRITE_PASS;
610 else if (dif && !dix)
611 prot_op = SCSI_PROT_WRITE_INSERT;
612 else if (!dif && dix)
613 prot_op = SCSI_PROT_WRITE_STRIP;
614 }
615
616 scsi_set_prot_op(scmd, prot_op);
617 scsi_set_prot_type(scmd, dif);
618 }
619
620 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
621 {
622 struct request_queue *q = sdkp->disk->queue;
623 unsigned int logical_block_size = sdkp->device->sector_size;
624 unsigned int max_blocks = 0;
625
626 q->limits.discard_zeroes_data = sdkp->lbprz;
627 q->limits.discard_alignment = sdkp->unmap_alignment *
628 logical_block_size;
629 q->limits.discard_granularity =
630 max(sdkp->physical_block_size,
631 sdkp->unmap_granularity * logical_block_size);
632
633 sdkp->provisioning_mode = mode;
634
635 switch (mode) {
636
637 case SD_LBP_DISABLE:
638 q->limits.max_discard_sectors = 0;
639 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
640 return;
641
642 case SD_LBP_UNMAP:
643 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
644 (u32)SD_MAX_WS16_BLOCKS);
645 break;
646
647 case SD_LBP_WS16:
648 max_blocks = min_not_zero(sdkp->max_ws_blocks,
649 (u32)SD_MAX_WS16_BLOCKS);
650 break;
651
652 case SD_LBP_WS10:
653 max_blocks = min_not_zero(sdkp->max_ws_blocks,
654 (u32)SD_MAX_WS10_BLOCKS);
655 break;
656
657 case SD_LBP_ZERO:
658 max_blocks = min_not_zero(sdkp->max_ws_blocks,
659 (u32)SD_MAX_WS10_BLOCKS);
660 q->limits.discard_zeroes_data = 1;
661 break;
662 }
663
664 q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9);
665 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
666 }
667
668 /**
669 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
670 * @sdp: scsi device to operate one
671 * @rq: Request to prepare
672 *
673 * Will issue either UNMAP or WRITE SAME(16) depending on preference
674 * indicated by target device.
675 **/
676 static int sd_setup_discard_cmnd(struct scsi_device *sdp, struct request *rq)
677 {
678 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
679 sector_t sector = blk_rq_pos(rq);
680 unsigned int nr_sectors = blk_rq_sectors(rq);
681 unsigned int nr_bytes = blk_rq_bytes(rq);
682 unsigned int len;
683 int ret;
684 char *buf;
685 struct page *page;
686
687 sector >>= ilog2(sdp->sector_size) - 9;
688 nr_sectors >>= ilog2(sdp->sector_size) - 9;
689 rq->timeout = SD_TIMEOUT;
690
691 memset(rq->cmd, 0, rq->cmd_len);
692
693 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
694 if (!page)
695 return BLKPREP_DEFER;
696
697 switch (sdkp->provisioning_mode) {
698 case SD_LBP_UNMAP:
699 buf = page_address(page);
700
701 rq->cmd_len = 10;
702 rq->cmd[0] = UNMAP;
703 rq->cmd[8] = 24;
704
705 put_unaligned_be16(6 + 16, &buf[0]);
706 put_unaligned_be16(16, &buf[2]);
707 put_unaligned_be64(sector, &buf[8]);
708 put_unaligned_be32(nr_sectors, &buf[16]);
709
710 len = 24;
711 break;
712
713 case SD_LBP_WS16:
714 rq->cmd_len = 16;
715 rq->cmd[0] = WRITE_SAME_16;
716 rq->cmd[1] = 0x8; /* UNMAP */
717 put_unaligned_be64(sector, &rq->cmd[2]);
718 put_unaligned_be32(nr_sectors, &rq->cmd[10]);
719
720 len = sdkp->device->sector_size;
721 break;
722
723 case SD_LBP_WS10:
724 case SD_LBP_ZERO:
725 rq->cmd_len = 10;
726 rq->cmd[0] = WRITE_SAME;
727 if (sdkp->provisioning_mode == SD_LBP_WS10)
728 rq->cmd[1] = 0x8; /* UNMAP */
729 put_unaligned_be32(sector, &rq->cmd[2]);
730 put_unaligned_be16(nr_sectors, &rq->cmd[7]);
731
732 len = sdkp->device->sector_size;
733 break;
734
735 default:
736 ret = BLKPREP_KILL;
737 goto out;
738 }
739
740 blk_add_request_payload(rq, page, len);
741 ret = scsi_setup_blk_pc_cmnd(sdp, rq);
742 rq->buffer = page_address(page);
743 rq->__data_len = nr_bytes;
744
745 out:
746 if (ret != BLKPREP_OK) {
747 __free_page(page);
748 rq->buffer = NULL;
749 }
750 return ret;
751 }
752
753 static void sd_config_write_same(struct scsi_disk *sdkp)
754 {
755 struct request_queue *q = sdkp->disk->queue;
756 unsigned int logical_block_size = sdkp->device->sector_size;
757
758 if (sdkp->device->no_write_same) {
759 sdkp->max_ws_blocks = 0;
760 goto out;
761 }
762
763 /* Some devices can not handle block counts above 0xffff despite
764 * supporting WRITE SAME(16). Consequently we default to 64k
765 * blocks per I/O unless the device explicitly advertises a
766 * bigger limit.
767 */
768 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
769 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
770 (u32)SD_MAX_WS16_BLOCKS);
771 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
772 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
773 (u32)SD_MAX_WS10_BLOCKS);
774 else {
775 sdkp->device->no_write_same = 1;
776 sdkp->max_ws_blocks = 0;
777 }
778
779 out:
780 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
781 (logical_block_size >> 9));
782 }
783
784 /**
785 * sd_setup_write_same_cmnd - write the same data to multiple blocks
786 * @sdp: scsi device to operate one
787 * @rq: Request to prepare
788 *
789 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
790 * preference indicated by target device.
791 **/
792 static int sd_setup_write_same_cmnd(struct scsi_device *sdp, struct request *rq)
793 {
794 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
795 struct bio *bio = rq->bio;
796 sector_t sector = blk_rq_pos(rq);
797 unsigned int nr_sectors = blk_rq_sectors(rq);
798 unsigned int nr_bytes = blk_rq_bytes(rq);
799 int ret;
800
801 if (sdkp->device->no_write_same)
802 return BLKPREP_KILL;
803
804 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
805
806 sector >>= ilog2(sdp->sector_size) - 9;
807 nr_sectors >>= ilog2(sdp->sector_size) - 9;
808
809 rq->__data_len = sdp->sector_size;
810 rq->timeout = SD_WRITE_SAME_TIMEOUT;
811 memset(rq->cmd, 0, rq->cmd_len);
812
813 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
814 rq->cmd_len = 16;
815 rq->cmd[0] = WRITE_SAME_16;
816 put_unaligned_be64(sector, &rq->cmd[2]);
817 put_unaligned_be32(nr_sectors, &rq->cmd[10]);
818 } else {
819 rq->cmd_len = 10;
820 rq->cmd[0] = WRITE_SAME;
821 put_unaligned_be32(sector, &rq->cmd[2]);
822 put_unaligned_be16(nr_sectors, &rq->cmd[7]);
823 }
824
825 ret = scsi_setup_blk_pc_cmnd(sdp, rq);
826 rq->__data_len = nr_bytes;
827
828 return ret;
829 }
830
831 static int scsi_setup_flush_cmnd(struct scsi_device *sdp, struct request *rq)
832 {
833 rq->timeout *= SD_FLUSH_TIMEOUT_MULTIPLIER;
834 rq->retries = SD_MAX_RETRIES;
835 rq->cmd[0] = SYNCHRONIZE_CACHE;
836 rq->cmd_len = 10;
837
838 return scsi_setup_blk_pc_cmnd(sdp, rq);
839 }
840
841 static void sd_unprep_fn(struct request_queue *q, struct request *rq)
842 {
843 struct scsi_cmnd *SCpnt = rq->special;
844
845 if (rq->cmd_flags & REQ_DISCARD) {
846 free_page((unsigned long)rq->buffer);
847 rq->buffer = NULL;
848 }
849 if (SCpnt->cmnd != rq->cmd) {
850 mempool_free(SCpnt->cmnd, sd_cdb_pool);
851 SCpnt->cmnd = NULL;
852 SCpnt->cmd_len = 0;
853 }
854 }
855
856 /**
857 * sd_prep_fn - build a scsi (read or write) command from
858 * information in the request structure.
859 * @SCpnt: pointer to mid-level's per scsi command structure that
860 * contains request and into which the scsi command is written
861 *
862 * Returns 1 if successful and 0 if error (or cannot be done now).
863 **/
864 static int sd_prep_fn(struct request_queue *q, struct request *rq)
865 {
866 struct scsi_cmnd *SCpnt;
867 struct scsi_device *sdp = q->queuedata;
868 struct gendisk *disk = rq->rq_disk;
869 struct scsi_disk *sdkp;
870 sector_t block = blk_rq_pos(rq);
871 sector_t threshold;
872 unsigned int this_count = blk_rq_sectors(rq);
873 int ret, host_dif;
874 unsigned char protect;
875
876 /*
877 * Discard request come in as REQ_TYPE_FS but we turn them into
878 * block PC requests to make life easier.
879 */
880 if (rq->cmd_flags & REQ_DISCARD) {
881 ret = sd_setup_discard_cmnd(sdp, rq);
882 goto out;
883 } else if (rq->cmd_flags & REQ_WRITE_SAME) {
884 ret = sd_setup_write_same_cmnd(sdp, rq);
885 goto out;
886 } else if (rq->cmd_flags & REQ_FLUSH) {
887 ret = scsi_setup_flush_cmnd(sdp, rq);
888 goto out;
889 } else if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
890 ret = scsi_setup_blk_pc_cmnd(sdp, rq);
891 goto out;
892 } else if (rq->cmd_type != REQ_TYPE_FS) {
893 ret = BLKPREP_KILL;
894 goto out;
895 }
896 ret = scsi_setup_fs_cmnd(sdp, rq);
897 if (ret != BLKPREP_OK)
898 goto out;
899 SCpnt = rq->special;
900 sdkp = scsi_disk(disk);
901
902 /* from here on until we're complete, any goto out
903 * is used for a killable error condition */
904 ret = BLKPREP_KILL;
905
906 SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, SCpnt,
907 "sd_prep_fn: block=%llu, "
908 "count=%d\n",
909 (unsigned long long)block,
910 this_count));
911
912 if (!sdp || !scsi_device_online(sdp) ||
913 block + blk_rq_sectors(rq) > get_capacity(disk)) {
914 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
915 "Finishing %u sectors\n",
916 blk_rq_sectors(rq)));
917 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
918 "Retry with 0x%p\n", SCpnt));
919 goto out;
920 }
921
922 if (sdp->changed) {
923 /*
924 * quietly refuse to do anything to a changed disc until
925 * the changed bit has been reset
926 */
927 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
928 goto out;
929 }
930
931 /*
932 * Some SD card readers can't handle multi-sector accesses which touch
933 * the last one or two hardware sectors. Split accesses as needed.
934 */
935 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
936 (sdp->sector_size / 512);
937
938 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
939 if (block < threshold) {
940 /* Access up to the threshold but not beyond */
941 this_count = threshold - block;
942 } else {
943 /* Access only a single hardware sector */
944 this_count = sdp->sector_size / 512;
945 }
946 }
947
948 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
949 (unsigned long long)block));
950
951 /*
952 * If we have a 1K hardware sectorsize, prevent access to single
953 * 512 byte sectors. In theory we could handle this - in fact
954 * the scsi cdrom driver must be able to handle this because
955 * we typically use 1K blocksizes, and cdroms typically have
956 * 2K hardware sectorsizes. Of course, things are simpler
957 * with the cdrom, since it is read-only. For performance
958 * reasons, the filesystems should be able to handle this
959 * and not force the scsi disk driver to use bounce buffers
960 * for this.
961 */
962 if (sdp->sector_size == 1024) {
963 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
964 scmd_printk(KERN_ERR, SCpnt,
965 "Bad block number requested\n");
966 goto out;
967 } else {
968 block = block >> 1;
969 this_count = this_count >> 1;
970 }
971 }
972 if (sdp->sector_size == 2048) {
973 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
974 scmd_printk(KERN_ERR, SCpnt,
975 "Bad block number requested\n");
976 goto out;
977 } else {
978 block = block >> 2;
979 this_count = this_count >> 2;
980 }
981 }
982 if (sdp->sector_size == 4096) {
983 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
984 scmd_printk(KERN_ERR, SCpnt,
985 "Bad block number requested\n");
986 goto out;
987 } else {
988 block = block >> 3;
989 this_count = this_count >> 3;
990 }
991 }
992 if (rq_data_dir(rq) == WRITE) {
993 if (!sdp->writeable) {
994 goto out;
995 }
996 SCpnt->cmnd[0] = WRITE_6;
997 SCpnt->sc_data_direction = DMA_TO_DEVICE;
998
999 if (blk_integrity_rq(rq))
1000 sd_dif_prepare(rq, block, sdp->sector_size);
1001
1002 } else if (rq_data_dir(rq) == READ) {
1003 SCpnt->cmnd[0] = READ_6;
1004 SCpnt->sc_data_direction = DMA_FROM_DEVICE;
1005 } else {
1006 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1007 goto out;
1008 }
1009
1010 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1011 "%s %d/%u 512 byte blocks.\n",
1012 (rq_data_dir(rq) == WRITE) ?
1013 "writing" : "reading", this_count,
1014 blk_rq_sectors(rq)));
1015
1016 /* Set RDPROTECT/WRPROTECT if disk is formatted with DIF */
1017 host_dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
1018 if (host_dif)
1019 protect = 1 << 5;
1020 else
1021 protect = 0;
1022
1023 if (host_dif == SD_DIF_TYPE2_PROTECTION) {
1024 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1025
1026 if (unlikely(SCpnt->cmnd == NULL)) {
1027 ret = BLKPREP_DEFER;
1028 goto out;
1029 }
1030
1031 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1032 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1033 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1034 SCpnt->cmnd[7] = 0x18;
1035 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1036 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1037
1038 /* LBA */
1039 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1040 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1041 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1042 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1043 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1044 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1045 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1046 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1047
1048 /* Expected Indirect LBA */
1049 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1050 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1051 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1052 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1053
1054 /* Transfer length */
1055 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1056 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1057 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1058 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1059 } else if (sdp->use_16_for_rw) {
1060 SCpnt->cmnd[0] += READ_16 - READ_6;
1061 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1062 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1063 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1064 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1065 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1066 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1067 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1068 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1069 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1070 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1071 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1072 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1073 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1074 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1075 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1076 scsi_device_protection(SCpnt->device) ||
1077 SCpnt->device->use_10_for_rw) {
1078 if (this_count > 0xffff)
1079 this_count = 0xffff;
1080
1081 SCpnt->cmnd[0] += READ_10 - READ_6;
1082 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1083 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1084 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1085 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1086 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1087 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1088 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1089 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1090 } else {
1091 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1092 /*
1093 * This happens only if this drive failed
1094 * 10byte rw command with ILLEGAL_REQUEST
1095 * during operation and thus turned off
1096 * use_10_for_rw.
1097 */
1098 scmd_printk(KERN_ERR, SCpnt,
1099 "FUA write on READ/WRITE(6) drive\n");
1100 goto out;
1101 }
1102
1103 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1104 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1105 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1106 SCpnt->cmnd[4] = (unsigned char) this_count;
1107 SCpnt->cmnd[5] = 0;
1108 }
1109 SCpnt->sdb.length = this_count * sdp->sector_size;
1110
1111 /* If DIF or DIX is enabled, tell HBA how to handle request */
1112 if (host_dif || scsi_prot_sg_count(SCpnt))
1113 sd_prot_op(SCpnt, host_dif);
1114
1115 /*
1116 * We shouldn't disconnect in the middle of a sector, so with a dumb
1117 * host adapter, it's safe to assume that we can at least transfer
1118 * this many bytes between each connect / disconnect.
1119 */
1120 SCpnt->transfersize = sdp->sector_size;
1121 SCpnt->underflow = this_count << 9;
1122 SCpnt->allowed = SD_MAX_RETRIES;
1123
1124 /*
1125 * This indicates that the command is ready from our end to be
1126 * queued.
1127 */
1128 ret = BLKPREP_OK;
1129 out:
1130 return scsi_prep_return(q, rq, ret);
1131 }
1132
1133 /**
1134 * sd_open - open a scsi disk device
1135 * @inode: only i_rdev member may be used
1136 * @filp: only f_mode and f_flags may be used
1137 *
1138 * Returns 0 if successful. Returns a negated errno value in case
1139 * of error.
1140 *
1141 * Note: This can be called from a user context (e.g. fsck(1) )
1142 * or from within the kernel (e.g. as a result of a mount(1) ).
1143 * In the latter case @inode and @filp carry an abridged amount
1144 * of information as noted above.
1145 *
1146 * Locking: called with bdev->bd_mutex held.
1147 **/
1148 static int sd_open(struct block_device *bdev, fmode_t mode)
1149 {
1150 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1151 struct scsi_device *sdev;
1152 int retval;
1153
1154 if (!sdkp)
1155 return -ENXIO;
1156
1157 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1158
1159 sdev = sdkp->device;
1160
1161 /*
1162 * If the device is in error recovery, wait until it is done.
1163 * If the device is offline, then disallow any access to it.
1164 */
1165 retval = -ENXIO;
1166 if (!scsi_block_when_processing_errors(sdev))
1167 goto error_out;
1168
1169 if (sdev->removable || sdkp->write_prot)
1170 check_disk_change(bdev);
1171
1172 /*
1173 * If the drive is empty, just let the open fail.
1174 */
1175 retval = -ENOMEDIUM;
1176 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1177 goto error_out;
1178
1179 /*
1180 * If the device has the write protect tab set, have the open fail
1181 * if the user expects to be able to write to the thing.
1182 */
1183 retval = -EROFS;
1184 if (sdkp->write_prot && (mode & FMODE_WRITE))
1185 goto error_out;
1186
1187 /*
1188 * It is possible that the disk changing stuff resulted in
1189 * the device being taken offline. If this is the case,
1190 * report this to the user, and don't pretend that the
1191 * open actually succeeded.
1192 */
1193 retval = -ENXIO;
1194 if (!scsi_device_online(sdev))
1195 goto error_out;
1196
1197 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1198 if (scsi_block_when_processing_errors(sdev))
1199 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1200 }
1201
1202 return 0;
1203
1204 error_out:
1205 scsi_disk_put(sdkp);
1206 return retval;
1207 }
1208
1209 /**
1210 * sd_release - invoked when the (last) close(2) is called on this
1211 * scsi disk.
1212 * @inode: only i_rdev member may be used
1213 * @filp: only f_mode and f_flags may be used
1214 *
1215 * Returns 0.
1216 *
1217 * Note: may block (uninterruptible) if error recovery is underway
1218 * on this disk.
1219 *
1220 * Locking: called with bdev->bd_mutex held.
1221 **/
1222 static void sd_release(struct gendisk *disk, fmode_t mode)
1223 {
1224 struct scsi_disk *sdkp = scsi_disk(disk);
1225 struct scsi_device *sdev = sdkp->device;
1226
1227 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1228
1229 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1230 if (scsi_block_when_processing_errors(sdev))
1231 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1232 }
1233
1234 /*
1235 * XXX and what if there are packets in flight and this close()
1236 * XXX is followed by a "rmmod sd_mod"?
1237 */
1238
1239 scsi_disk_put(sdkp);
1240 }
1241
1242 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1243 {
1244 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1245 struct scsi_device *sdp = sdkp->device;
1246 struct Scsi_Host *host = sdp->host;
1247 int diskinfo[4];
1248
1249 /* default to most commonly used values */
1250 diskinfo[0] = 0x40; /* 1 << 6 */
1251 diskinfo[1] = 0x20; /* 1 << 5 */
1252 diskinfo[2] = sdkp->capacity >> 11;
1253
1254 /* override with calculated, extended default, or driver values */
1255 if (host->hostt->bios_param)
1256 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo);
1257 else
1258 scsicam_bios_param(bdev, sdkp->capacity, diskinfo);
1259
1260 geo->heads = diskinfo[0];
1261 geo->sectors = diskinfo[1];
1262 geo->cylinders = diskinfo[2];
1263 return 0;
1264 }
1265
1266 /**
1267 * sd_ioctl - process an ioctl
1268 * @inode: only i_rdev/i_bdev members may be used
1269 * @filp: only f_mode and f_flags may be used
1270 * @cmd: ioctl command number
1271 * @arg: this is third argument given to ioctl(2) system call.
1272 * Often contains a pointer.
1273 *
1274 * Returns 0 if successful (some ioctls return positive numbers on
1275 * success as well). Returns a negated errno value in case of error.
1276 *
1277 * Note: most ioctls are forward onto the block subsystem or further
1278 * down in the scsi subsystem.
1279 **/
1280 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1281 unsigned int cmd, unsigned long arg)
1282 {
1283 struct gendisk *disk = bdev->bd_disk;
1284 struct scsi_disk *sdkp = scsi_disk(disk);
1285 struct scsi_device *sdp = sdkp->device;
1286 void __user *p = (void __user *)arg;
1287 int error;
1288
1289 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1290 "cmd=0x%x\n", disk->disk_name, cmd));
1291
1292 error = scsi_verify_blk_ioctl(bdev, cmd);
1293 if (error < 0)
1294 return error;
1295
1296 /*
1297 * If we are in the middle of error recovery, don't let anyone
1298 * else try and use this device. Also, if error recovery fails, it
1299 * may try and take the device offline, in which case all further
1300 * access to the device is prohibited.
1301 */
1302 error = scsi_nonblockable_ioctl(sdp, cmd, p,
1303 (mode & FMODE_NDELAY) != 0);
1304 if (!scsi_block_when_processing_errors(sdp) || !error)
1305 goto out;
1306
1307 /*
1308 * Send SCSI addressing ioctls directly to mid level, send other
1309 * ioctls to block level and then onto mid level if they can't be
1310 * resolved.
1311 */
1312 switch (cmd) {
1313 case SCSI_IOCTL_GET_IDLUN:
1314 case SCSI_IOCTL_GET_BUS_NUMBER:
1315 error = scsi_ioctl(sdp, cmd, p);
1316 break;
1317 default:
1318 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1319 if (error != -ENOTTY)
1320 break;
1321 error = scsi_ioctl(sdp, cmd, p);
1322 break;
1323 }
1324 out:
1325 return error;
1326 }
1327
1328 static void set_media_not_present(struct scsi_disk *sdkp)
1329 {
1330 if (sdkp->media_present)
1331 sdkp->device->changed = 1;
1332
1333 if (sdkp->device->removable) {
1334 sdkp->media_present = 0;
1335 sdkp->capacity = 0;
1336 }
1337 }
1338
1339 static int media_not_present(struct scsi_disk *sdkp,
1340 struct scsi_sense_hdr *sshdr)
1341 {
1342 if (!scsi_sense_valid(sshdr))
1343 return 0;
1344
1345 /* not invoked for commands that could return deferred errors */
1346 switch (sshdr->sense_key) {
1347 case UNIT_ATTENTION:
1348 case NOT_READY:
1349 /* medium not present */
1350 if (sshdr->asc == 0x3A) {
1351 set_media_not_present(sdkp);
1352 return 1;
1353 }
1354 }
1355 return 0;
1356 }
1357
1358 /**
1359 * sd_check_events - check media events
1360 * @disk: kernel device descriptor
1361 * @clearing: disk events currently being cleared
1362 *
1363 * Returns mask of DISK_EVENT_*.
1364 *
1365 * Note: this function is invoked from the block subsystem.
1366 **/
1367 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1368 {
1369 struct scsi_disk *sdkp = scsi_disk(disk);
1370 struct scsi_device *sdp = sdkp->device;
1371 struct scsi_sense_hdr *sshdr = NULL;
1372 int retval;
1373
1374 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1375
1376 /*
1377 * If the device is offline, don't send any commands - just pretend as
1378 * if the command failed. If the device ever comes back online, we
1379 * can deal with it then. It is only because of unrecoverable errors
1380 * that we would ever take a device offline in the first place.
1381 */
1382 if (!scsi_device_online(sdp)) {
1383 set_media_not_present(sdkp);
1384 goto out;
1385 }
1386
1387 /*
1388 * Using TEST_UNIT_READY enables differentiation between drive with
1389 * no cartridge loaded - NOT READY, drive with changed cartridge -
1390 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1391 *
1392 * Drives that auto spin down. eg iomega jaz 1G, will be started
1393 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1394 * sd_revalidate() is called.
1395 */
1396 retval = -ENODEV;
1397
1398 if (scsi_block_when_processing_errors(sdp)) {
1399 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1400 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1401 sshdr);
1402 }
1403
1404 /* failed to execute TUR, assume media not present */
1405 if (host_byte(retval)) {
1406 set_media_not_present(sdkp);
1407 goto out;
1408 }
1409
1410 if (media_not_present(sdkp, sshdr))
1411 goto out;
1412
1413 /*
1414 * For removable scsi disk we have to recognise the presence
1415 * of a disk in the drive.
1416 */
1417 if (!sdkp->media_present)
1418 sdp->changed = 1;
1419 sdkp->media_present = 1;
1420 out:
1421 /*
1422 * sdp->changed is set under the following conditions:
1423 *
1424 * Medium present state has changed in either direction.
1425 * Device has indicated UNIT_ATTENTION.
1426 */
1427 kfree(sshdr);
1428 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1429 sdp->changed = 0;
1430 return retval;
1431 }
1432
1433 static int sd_sync_cache(struct scsi_disk *sdkp)
1434 {
1435 int retries, res;
1436 struct scsi_device *sdp = sdkp->device;
1437 const int timeout = sdp->request_queue->rq_timeout
1438 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1439 struct scsi_sense_hdr sshdr;
1440
1441 if (!scsi_device_online(sdp))
1442 return -ENODEV;
1443
1444 for (retries = 3; retries > 0; --retries) {
1445 unsigned char cmd[10] = { 0 };
1446
1447 cmd[0] = SYNCHRONIZE_CACHE;
1448 /*
1449 * Leave the rest of the command zero to indicate
1450 * flush everything.
1451 */
1452 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1453 &sshdr, timeout, SD_MAX_RETRIES,
1454 NULL, REQ_PM);
1455 if (res == 0)
1456 break;
1457 }
1458
1459 if (res) {
1460 sd_print_result(sdkp, res);
1461
1462 if (driver_byte(res) & DRIVER_SENSE)
1463 sd_print_sense_hdr(sdkp, &sshdr);
1464 /* we need to evaluate the error return */
1465 if (scsi_sense_valid(&sshdr) &&
1466 (sshdr.asc == 0x3a || /* medium not present */
1467 sshdr.asc == 0x20)) /* invalid command */
1468 /* this is no error here */
1469 return 0;
1470
1471 switch (host_byte(res)) {
1472 /* ignore errors due to racing a disconnection */
1473 case DID_BAD_TARGET:
1474 case DID_NO_CONNECT:
1475 return 0;
1476 /* signal the upper layer it might try again */
1477 case DID_BUS_BUSY:
1478 case DID_IMM_RETRY:
1479 case DID_REQUEUE:
1480 case DID_SOFT_ERROR:
1481 return -EBUSY;
1482 default:
1483 return -EIO;
1484 }
1485 }
1486 return 0;
1487 }
1488
1489 static void sd_rescan(struct device *dev)
1490 {
1491 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
1492
1493 if (sdkp) {
1494 revalidate_disk(sdkp->disk);
1495 scsi_disk_put(sdkp);
1496 }
1497 }
1498
1499
1500 #ifdef CONFIG_COMPAT
1501 /*
1502 * This gets directly called from VFS. When the ioctl
1503 * is not recognized we go back to the other translation paths.
1504 */
1505 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1506 unsigned int cmd, unsigned long arg)
1507 {
1508 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1509 int ret;
1510
1511 ret = scsi_verify_blk_ioctl(bdev, cmd);
1512 if (ret < 0)
1513 return ret;
1514
1515 /*
1516 * If we are in the middle of error recovery, don't let anyone
1517 * else try and use this device. Also, if error recovery fails, it
1518 * may try and take the device offline, in which case all further
1519 * access to the device is prohibited.
1520 */
1521 if (!scsi_block_when_processing_errors(sdev))
1522 return -ENODEV;
1523
1524 if (sdev->host->hostt->compat_ioctl) {
1525 ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1526
1527 return ret;
1528 }
1529
1530 /*
1531 * Let the static ioctl translation table take care of it.
1532 */
1533 return -ENOIOCTLCMD;
1534 }
1535 #endif
1536
1537 static const struct block_device_operations sd_fops = {
1538 .owner = THIS_MODULE,
1539 .open = sd_open,
1540 .release = sd_release,
1541 .ioctl = sd_ioctl,
1542 .getgeo = sd_getgeo,
1543 #ifdef CONFIG_COMPAT
1544 .compat_ioctl = sd_compat_ioctl,
1545 #endif
1546 .check_events = sd_check_events,
1547 .revalidate_disk = sd_revalidate_disk,
1548 .unlock_native_capacity = sd_unlock_native_capacity,
1549 };
1550
1551 /**
1552 * sd_eh_action - error handling callback
1553 * @scmd: sd-issued command that has failed
1554 * @eh_disp: The recovery disposition suggested by the midlayer
1555 *
1556 * This function is called by the SCSI midlayer upon completion of an
1557 * error test command (currently TEST UNIT READY). The result of sending
1558 * the eh command is passed in eh_disp. We're looking for devices that
1559 * fail medium access commands but are OK with non access commands like
1560 * test unit ready (so wrongly see the device as having a successful
1561 * recovery)
1562 **/
1563 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1564 {
1565 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1566
1567 if (!scsi_device_online(scmd->device) ||
1568 !scsi_medium_access_command(scmd) ||
1569 host_byte(scmd->result) != DID_TIME_OUT ||
1570 eh_disp != SUCCESS)
1571 return eh_disp;
1572
1573 /*
1574 * The device has timed out executing a medium access command.
1575 * However, the TEST UNIT READY command sent during error
1576 * handling completed successfully. Either the device is in the
1577 * process of recovering or has it suffered an internal failure
1578 * that prevents access to the storage medium.
1579 */
1580 sdkp->medium_access_timed_out++;
1581
1582 /*
1583 * If the device keeps failing read/write commands but TEST UNIT
1584 * READY always completes successfully we assume that medium
1585 * access is no longer possible and take the device offline.
1586 */
1587 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1588 scmd_printk(KERN_ERR, scmd,
1589 "Medium access timeout failure. Offlining disk!\n");
1590 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1591
1592 return FAILED;
1593 }
1594
1595 return eh_disp;
1596 }
1597
1598 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1599 {
1600 u64 start_lba = blk_rq_pos(scmd->request);
1601 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1602 u64 bad_lba;
1603 int info_valid;
1604 /*
1605 * resid is optional but mostly filled in. When it's unused,
1606 * its value is zero, so we assume the whole buffer transferred
1607 */
1608 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1609 unsigned int good_bytes;
1610
1611 if (scmd->request->cmd_type != REQ_TYPE_FS)
1612 return 0;
1613
1614 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1615 SCSI_SENSE_BUFFERSIZE,
1616 &bad_lba);
1617 if (!info_valid)
1618 return 0;
1619
1620 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1621 return 0;
1622
1623 if (scmd->device->sector_size < 512) {
1624 /* only legitimate sector_size here is 256 */
1625 start_lba <<= 1;
1626 end_lba <<= 1;
1627 } else {
1628 /* be careful ... don't want any overflows */
1629 unsigned int factor = scmd->device->sector_size / 512;
1630 do_div(start_lba, factor);
1631 do_div(end_lba, factor);
1632 }
1633
1634 /* The bad lba was reported incorrectly, we have no idea where
1635 * the error is.
1636 */
1637 if (bad_lba < start_lba || bad_lba >= end_lba)
1638 return 0;
1639
1640 /* This computation should always be done in terms of
1641 * the resolution of the device's medium.
1642 */
1643 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1644 return min(good_bytes, transferred);
1645 }
1646
1647 /**
1648 * sd_done - bottom half handler: called when the lower level
1649 * driver has completed (successfully or otherwise) a scsi command.
1650 * @SCpnt: mid-level's per command structure.
1651 *
1652 * Note: potentially run from within an ISR. Must not block.
1653 **/
1654 static int sd_done(struct scsi_cmnd *SCpnt)
1655 {
1656 int result = SCpnt->result;
1657 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1658 struct scsi_sense_hdr sshdr;
1659 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1660 struct request *req = SCpnt->request;
1661 int sense_valid = 0;
1662 int sense_deferred = 0;
1663 unsigned char op = SCpnt->cmnd[0];
1664 unsigned char unmap = SCpnt->cmnd[1] & 8;
1665
1666 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
1667 if (!result) {
1668 good_bytes = blk_rq_bytes(req);
1669 scsi_set_resid(SCpnt, 0);
1670 } else {
1671 good_bytes = 0;
1672 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1673 }
1674 }
1675
1676 if (result) {
1677 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1678 if (sense_valid)
1679 sense_deferred = scsi_sense_is_deferred(&sshdr);
1680 }
1681 #ifdef CONFIG_SCSI_LOGGING
1682 SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt));
1683 if (sense_valid) {
1684 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1685 "sd_done: sb[respc,sk,asc,"
1686 "ascq]=%x,%x,%x,%x\n",
1687 sshdr.response_code,
1688 sshdr.sense_key, sshdr.asc,
1689 sshdr.ascq));
1690 }
1691 #endif
1692 if (driver_byte(result) != DRIVER_SENSE &&
1693 (!sense_valid || sense_deferred))
1694 goto out;
1695
1696 sdkp->medium_access_timed_out = 0;
1697
1698 switch (sshdr.sense_key) {
1699 case HARDWARE_ERROR:
1700 case MEDIUM_ERROR:
1701 good_bytes = sd_completed_bytes(SCpnt);
1702 break;
1703 case RECOVERED_ERROR:
1704 good_bytes = scsi_bufflen(SCpnt);
1705 break;
1706 case NO_SENSE:
1707 /* This indicates a false check condition, so ignore it. An
1708 * unknown amount of data was transferred so treat it as an
1709 * error.
1710 */
1711 scsi_print_sense("sd", SCpnt);
1712 SCpnt->result = 0;
1713 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1714 break;
1715 case ABORTED_COMMAND:
1716 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1717 good_bytes = sd_completed_bytes(SCpnt);
1718 break;
1719 case ILLEGAL_REQUEST:
1720 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1721 good_bytes = sd_completed_bytes(SCpnt);
1722 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1723 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1724 switch (op) {
1725 case UNMAP:
1726 sd_config_discard(sdkp, SD_LBP_DISABLE);
1727 break;
1728 case WRITE_SAME_16:
1729 case WRITE_SAME:
1730 if (unmap)
1731 sd_config_discard(sdkp, SD_LBP_DISABLE);
1732 else {
1733 sdkp->device->no_write_same = 1;
1734 sd_config_write_same(sdkp);
1735
1736 good_bytes = 0;
1737 req->__data_len = blk_rq_bytes(req);
1738 req->cmd_flags |= REQ_QUIET;
1739 }
1740 }
1741 }
1742 break;
1743 default:
1744 break;
1745 }
1746 out:
1747 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1748 sd_dif_complete(SCpnt, good_bytes);
1749
1750 return good_bytes;
1751 }
1752
1753 /*
1754 * spinup disk - called only in sd_revalidate_disk()
1755 */
1756 static void
1757 sd_spinup_disk(struct scsi_disk *sdkp)
1758 {
1759 unsigned char cmd[10];
1760 unsigned long spintime_expire = 0;
1761 int retries, spintime;
1762 unsigned int the_result;
1763 struct scsi_sense_hdr sshdr;
1764 int sense_valid = 0;
1765
1766 spintime = 0;
1767
1768 /* Spin up drives, as required. Only do this at boot time */
1769 /* Spinup needs to be done for module loads too. */
1770 do {
1771 retries = 0;
1772
1773 do {
1774 cmd[0] = TEST_UNIT_READY;
1775 memset((void *) &cmd[1], 0, 9);
1776
1777 the_result = scsi_execute_req(sdkp->device, cmd,
1778 DMA_NONE, NULL, 0,
1779 &sshdr, SD_TIMEOUT,
1780 SD_MAX_RETRIES, NULL);
1781
1782 /*
1783 * If the drive has indicated to us that it
1784 * doesn't have any media in it, don't bother
1785 * with any more polling.
1786 */
1787 if (media_not_present(sdkp, &sshdr))
1788 return;
1789
1790 if (the_result)
1791 sense_valid = scsi_sense_valid(&sshdr);
1792 retries++;
1793 } while (retries < 3 &&
1794 (!scsi_status_is_good(the_result) ||
1795 ((driver_byte(the_result) & DRIVER_SENSE) &&
1796 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1797
1798 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1799 /* no sense, TUR either succeeded or failed
1800 * with a status error */
1801 if(!spintime && !scsi_status_is_good(the_result)) {
1802 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1803 sd_print_result(sdkp, the_result);
1804 }
1805 break;
1806 }
1807
1808 /*
1809 * The device does not want the automatic start to be issued.
1810 */
1811 if (sdkp->device->no_start_on_add)
1812 break;
1813
1814 if (sense_valid && sshdr.sense_key == NOT_READY) {
1815 if (sshdr.asc == 4 && sshdr.ascq == 3)
1816 break; /* manual intervention required */
1817 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1818 break; /* standby */
1819 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1820 break; /* unavailable */
1821 /*
1822 * Issue command to spin up drive when not ready
1823 */
1824 if (!spintime) {
1825 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1826 cmd[0] = START_STOP;
1827 cmd[1] = 1; /* Return immediately */
1828 memset((void *) &cmd[2], 0, 8);
1829 cmd[4] = 1; /* Start spin cycle */
1830 if (sdkp->device->start_stop_pwr_cond)
1831 cmd[4] |= 1 << 4;
1832 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1833 NULL, 0, &sshdr,
1834 SD_TIMEOUT, SD_MAX_RETRIES,
1835 NULL);
1836 spintime_expire = jiffies + 100 * HZ;
1837 spintime = 1;
1838 }
1839 /* Wait 1 second for next try */
1840 msleep(1000);
1841 printk(".");
1842
1843 /*
1844 * Wait for USB flash devices with slow firmware.
1845 * Yes, this sense key/ASC combination shouldn't
1846 * occur here. It's characteristic of these devices.
1847 */
1848 } else if (sense_valid &&
1849 sshdr.sense_key == UNIT_ATTENTION &&
1850 sshdr.asc == 0x28) {
1851 if (!spintime) {
1852 spintime_expire = jiffies + 5 * HZ;
1853 spintime = 1;
1854 }
1855 /* Wait 1 second for next try */
1856 msleep(1000);
1857 } else {
1858 /* we don't understand the sense code, so it's
1859 * probably pointless to loop */
1860 if(!spintime) {
1861 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1862 sd_print_sense_hdr(sdkp, &sshdr);
1863 }
1864 break;
1865 }
1866
1867 } while (spintime && time_before_eq(jiffies, spintime_expire));
1868
1869 if (spintime) {
1870 if (scsi_status_is_good(the_result))
1871 printk("ready\n");
1872 else
1873 printk("not responding...\n");
1874 }
1875 }
1876
1877
1878 /*
1879 * Determine whether disk supports Data Integrity Field.
1880 */
1881 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1882 {
1883 struct scsi_device *sdp = sdkp->device;
1884 u8 type;
1885 int ret = 0;
1886
1887 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1888 return ret;
1889
1890 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1891
1892 if (type > SD_DIF_TYPE3_PROTECTION)
1893 ret = -ENODEV;
1894 else if (scsi_host_dif_capable(sdp->host, type))
1895 ret = 1;
1896
1897 if (sdkp->first_scan || type != sdkp->protection_type)
1898 switch (ret) {
1899 case -ENODEV:
1900 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1901 " protection type %u. Disabling disk!\n",
1902 type);
1903 break;
1904 case 1:
1905 sd_printk(KERN_NOTICE, sdkp,
1906 "Enabling DIF Type %u protection\n", type);
1907 break;
1908 case 0:
1909 sd_printk(KERN_NOTICE, sdkp,
1910 "Disabling DIF Type %u protection\n", type);
1911 break;
1912 }
1913
1914 sdkp->protection_type = type;
1915
1916 return ret;
1917 }
1918
1919 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
1920 struct scsi_sense_hdr *sshdr, int sense_valid,
1921 int the_result)
1922 {
1923 sd_print_result(sdkp, the_result);
1924 if (driver_byte(the_result) & DRIVER_SENSE)
1925 sd_print_sense_hdr(sdkp, sshdr);
1926 else
1927 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
1928
1929 /*
1930 * Set dirty bit for removable devices if not ready -
1931 * sometimes drives will not report this properly.
1932 */
1933 if (sdp->removable &&
1934 sense_valid && sshdr->sense_key == NOT_READY)
1935 set_media_not_present(sdkp);
1936
1937 /*
1938 * We used to set media_present to 0 here to indicate no media
1939 * in the drive, but some drives fail read capacity even with
1940 * media present, so we can't do that.
1941 */
1942 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
1943 }
1944
1945 #define RC16_LEN 32
1946 #if RC16_LEN > SD_BUF_SIZE
1947 #error RC16_LEN must not be more than SD_BUF_SIZE
1948 #endif
1949
1950 #define READ_CAPACITY_RETRIES_ON_RESET 10
1951
1952 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
1953 unsigned char *buffer)
1954 {
1955 unsigned char cmd[16];
1956 struct scsi_sense_hdr sshdr;
1957 int sense_valid = 0;
1958 int the_result;
1959 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
1960 unsigned int alignment;
1961 unsigned long long lba;
1962 unsigned sector_size;
1963
1964 if (sdp->no_read_capacity_16)
1965 return -EINVAL;
1966
1967 do {
1968 memset(cmd, 0, 16);
1969 cmd[0] = SERVICE_ACTION_IN;
1970 cmd[1] = SAI_READ_CAPACITY_16;
1971 cmd[13] = RC16_LEN;
1972 memset(buffer, 0, RC16_LEN);
1973
1974 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
1975 buffer, RC16_LEN, &sshdr,
1976 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1977
1978 if (media_not_present(sdkp, &sshdr))
1979 return -ENODEV;
1980
1981 if (the_result) {
1982 sense_valid = scsi_sense_valid(&sshdr);
1983 if (sense_valid &&
1984 sshdr.sense_key == ILLEGAL_REQUEST &&
1985 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
1986 sshdr.ascq == 0x00)
1987 /* Invalid Command Operation Code or
1988 * Invalid Field in CDB, just retry
1989 * silently with RC10 */
1990 return -EINVAL;
1991 if (sense_valid &&
1992 sshdr.sense_key == UNIT_ATTENTION &&
1993 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
1994 /* Device reset might occur several times,
1995 * give it one more chance */
1996 if (--reset_retries > 0)
1997 continue;
1998 }
1999 retries--;
2000
2001 } while (the_result && retries);
2002
2003 if (the_result) {
2004 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n");
2005 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2006 return -EINVAL;
2007 }
2008
2009 sector_size = get_unaligned_be32(&buffer[8]);
2010 lba = get_unaligned_be64(&buffer[0]);
2011
2012 if (sd_read_protection_type(sdkp, buffer) < 0) {
2013 sdkp->capacity = 0;
2014 return -ENODEV;
2015 }
2016
2017 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2018 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2019 "kernel compiled with support for large block "
2020 "devices.\n");
2021 sdkp->capacity = 0;
2022 return -EOVERFLOW;
2023 }
2024
2025 /* Logical blocks per physical block exponent */
2026 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2027
2028 /* Lowest aligned logical block */
2029 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2030 blk_queue_alignment_offset(sdp->request_queue, alignment);
2031 if (alignment && sdkp->first_scan)
2032 sd_printk(KERN_NOTICE, sdkp,
2033 "physical block alignment offset: %u\n", alignment);
2034
2035 if (buffer[14] & 0x80) { /* LBPME */
2036 sdkp->lbpme = 1;
2037
2038 if (buffer[14] & 0x40) /* LBPRZ */
2039 sdkp->lbprz = 1;
2040
2041 sd_config_discard(sdkp, SD_LBP_WS16);
2042 }
2043
2044 sdkp->capacity = lba + 1;
2045 return sector_size;
2046 }
2047
2048 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2049 unsigned char *buffer)
2050 {
2051 unsigned char cmd[16];
2052 struct scsi_sense_hdr sshdr;
2053 int sense_valid = 0;
2054 int the_result;
2055 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2056 sector_t lba;
2057 unsigned sector_size;
2058
2059 do {
2060 cmd[0] = READ_CAPACITY;
2061 memset(&cmd[1], 0, 9);
2062 memset(buffer, 0, 8);
2063
2064 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2065 buffer, 8, &sshdr,
2066 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2067
2068 if (media_not_present(sdkp, &sshdr))
2069 return -ENODEV;
2070
2071 if (the_result) {
2072 sense_valid = scsi_sense_valid(&sshdr);
2073 if (sense_valid &&
2074 sshdr.sense_key == UNIT_ATTENTION &&
2075 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2076 /* Device reset might occur several times,
2077 * give it one more chance */
2078 if (--reset_retries > 0)
2079 continue;
2080 }
2081 retries--;
2082
2083 } while (the_result && retries);
2084
2085 if (the_result) {
2086 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n");
2087 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2088 return -EINVAL;
2089 }
2090
2091 sector_size = get_unaligned_be32(&buffer[4]);
2092 lba = get_unaligned_be32(&buffer[0]);
2093
2094 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2095 /* Some buggy (usb cardreader) devices return an lba of
2096 0xffffffff when the want to report a size of 0 (with
2097 which they really mean no media is present) */
2098 sdkp->capacity = 0;
2099 sdkp->physical_block_size = sector_size;
2100 return sector_size;
2101 }
2102
2103 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2104 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2105 "kernel compiled with support for large block "
2106 "devices.\n");
2107 sdkp->capacity = 0;
2108 return -EOVERFLOW;
2109 }
2110
2111 sdkp->capacity = lba + 1;
2112 sdkp->physical_block_size = sector_size;
2113 return sector_size;
2114 }
2115
2116 static int sd_try_rc16_first(struct scsi_device *sdp)
2117 {
2118 if (sdp->host->max_cmd_len < 16)
2119 return 0;
2120 if (sdp->try_rc_10_first)
2121 return 0;
2122 if (sdp->scsi_level > SCSI_SPC_2)
2123 return 1;
2124 if (scsi_device_protection(sdp))
2125 return 1;
2126 return 0;
2127 }
2128
2129 /*
2130 * read disk capacity
2131 */
2132 static void
2133 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2134 {
2135 int sector_size;
2136 struct scsi_device *sdp = sdkp->device;
2137 sector_t old_capacity = sdkp->capacity;
2138
2139 if (sd_try_rc16_first(sdp)) {
2140 sector_size = read_capacity_16(sdkp, sdp, buffer);
2141 if (sector_size == -EOVERFLOW)
2142 goto got_data;
2143 if (sector_size == -ENODEV)
2144 return;
2145 if (sector_size < 0)
2146 sector_size = read_capacity_10(sdkp, sdp, buffer);
2147 if (sector_size < 0)
2148 return;
2149 } else {
2150 sector_size = read_capacity_10(sdkp, sdp, buffer);
2151 if (sector_size == -EOVERFLOW)
2152 goto got_data;
2153 if (sector_size < 0)
2154 return;
2155 if ((sizeof(sdkp->capacity) > 4) &&
2156 (sdkp->capacity > 0xffffffffULL)) {
2157 int old_sector_size = sector_size;
2158 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2159 "Trying to use READ CAPACITY(16).\n");
2160 sector_size = read_capacity_16(sdkp, sdp, buffer);
2161 if (sector_size < 0) {
2162 sd_printk(KERN_NOTICE, sdkp,
2163 "Using 0xffffffff as device size\n");
2164 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2165 sector_size = old_sector_size;
2166 goto got_data;
2167 }
2168 }
2169 }
2170
2171 /* Some devices are known to return the total number of blocks,
2172 * not the highest block number. Some devices have versions
2173 * which do this and others which do not. Some devices we might
2174 * suspect of doing this but we don't know for certain.
2175 *
2176 * If we know the reported capacity is wrong, decrement it. If
2177 * we can only guess, then assume the number of blocks is even
2178 * (usually true but not always) and err on the side of lowering
2179 * the capacity.
2180 */
2181 if (sdp->fix_capacity ||
2182 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2183 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2184 "from its reported value: %llu\n",
2185 (unsigned long long) sdkp->capacity);
2186 --sdkp->capacity;
2187 }
2188
2189 got_data:
2190 if (sector_size == 0) {
2191 sector_size = 512;
2192 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2193 "assuming 512.\n");
2194 }
2195
2196 if (sector_size != 512 &&
2197 sector_size != 1024 &&
2198 sector_size != 2048 &&
2199 sector_size != 4096 &&
2200 sector_size != 256) {
2201 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2202 sector_size);
2203 /*
2204 * The user might want to re-format the drive with
2205 * a supported sectorsize. Once this happens, it
2206 * would be relatively trivial to set the thing up.
2207 * For this reason, we leave the thing in the table.
2208 */
2209 sdkp->capacity = 0;
2210 /*
2211 * set a bogus sector size so the normal read/write
2212 * logic in the block layer will eventually refuse any
2213 * request on this device without tripping over power
2214 * of two sector size assumptions
2215 */
2216 sector_size = 512;
2217 }
2218 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2219
2220 {
2221 char cap_str_2[10], cap_str_10[10];
2222 u64 sz = (u64)sdkp->capacity << ilog2(sector_size);
2223
2224 string_get_size(sz, STRING_UNITS_2, cap_str_2,
2225 sizeof(cap_str_2));
2226 string_get_size(sz, STRING_UNITS_10, cap_str_10,
2227 sizeof(cap_str_10));
2228
2229 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2230 sd_printk(KERN_NOTICE, sdkp,
2231 "%llu %d-byte logical blocks: (%s/%s)\n",
2232 (unsigned long long)sdkp->capacity,
2233 sector_size, cap_str_10, cap_str_2);
2234
2235 if (sdkp->physical_block_size != sector_size)
2236 sd_printk(KERN_NOTICE, sdkp,
2237 "%u-byte physical blocks\n",
2238 sdkp->physical_block_size);
2239 }
2240 }
2241
2242 sdp->use_16_for_rw = (sdkp->capacity > 0xffffffff);
2243
2244 /* Rescale capacity to 512-byte units */
2245 if (sector_size == 4096)
2246 sdkp->capacity <<= 3;
2247 else if (sector_size == 2048)
2248 sdkp->capacity <<= 2;
2249 else if (sector_size == 1024)
2250 sdkp->capacity <<= 1;
2251 else if (sector_size == 256)
2252 sdkp->capacity >>= 1;
2253
2254 blk_queue_physical_block_size(sdp->request_queue,
2255 sdkp->physical_block_size);
2256 sdkp->device->sector_size = sector_size;
2257 }
2258
2259 /* called with buffer of length 512 */
2260 static inline int
2261 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2262 unsigned char *buffer, int len, struct scsi_mode_data *data,
2263 struct scsi_sense_hdr *sshdr)
2264 {
2265 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2266 SD_TIMEOUT, SD_MAX_RETRIES, data,
2267 sshdr);
2268 }
2269
2270 /*
2271 * read write protect setting, if possible - called only in sd_revalidate_disk()
2272 * called with buffer of length SD_BUF_SIZE
2273 */
2274 static void
2275 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2276 {
2277 int res;
2278 struct scsi_device *sdp = sdkp->device;
2279 struct scsi_mode_data data;
2280 int old_wp = sdkp->write_prot;
2281
2282 set_disk_ro(sdkp->disk, 0);
2283 if (sdp->skip_ms_page_3f) {
2284 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2285 return;
2286 }
2287
2288 if (sdp->use_192_bytes_for_3f) {
2289 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2290 } else {
2291 /*
2292 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2293 * We have to start carefully: some devices hang if we ask
2294 * for more than is available.
2295 */
2296 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2297
2298 /*
2299 * Second attempt: ask for page 0 When only page 0 is
2300 * implemented, a request for page 3F may return Sense Key
2301 * 5: Illegal Request, Sense Code 24: Invalid field in
2302 * CDB.
2303 */
2304 if (!scsi_status_is_good(res))
2305 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2306
2307 /*
2308 * Third attempt: ask 255 bytes, as we did earlier.
2309 */
2310 if (!scsi_status_is_good(res))
2311 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2312 &data, NULL);
2313 }
2314
2315 if (!scsi_status_is_good(res)) {
2316 sd_first_printk(KERN_WARNING, sdkp,
2317 "Test WP failed, assume Write Enabled\n");
2318 } else {
2319 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2320 set_disk_ro(sdkp->disk, sdkp->write_prot);
2321 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2322 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2323 sdkp->write_prot ? "on" : "off");
2324 sd_printk(KERN_DEBUG, sdkp,
2325 "Mode Sense: %02x %02x %02x %02x\n",
2326 buffer[0], buffer[1], buffer[2], buffer[3]);
2327 }
2328 }
2329 }
2330
2331 /*
2332 * sd_read_cache_type - called only from sd_revalidate_disk()
2333 * called with buffer of length SD_BUF_SIZE
2334 */
2335 static void
2336 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2337 {
2338 int len = 0, res;
2339 struct scsi_device *sdp = sdkp->device;
2340
2341 int dbd;
2342 int modepage;
2343 int first_len;
2344 struct scsi_mode_data data;
2345 struct scsi_sense_hdr sshdr;
2346 int old_wce = sdkp->WCE;
2347 int old_rcd = sdkp->RCD;
2348 int old_dpofua = sdkp->DPOFUA;
2349
2350
2351 if (sdkp->cache_override)
2352 return;
2353
2354 first_len = 4;
2355 if (sdp->skip_ms_page_8) {
2356 if (sdp->type == TYPE_RBC)
2357 goto defaults;
2358 else {
2359 if (sdp->skip_ms_page_3f)
2360 goto defaults;
2361 modepage = 0x3F;
2362 if (sdp->use_192_bytes_for_3f)
2363 first_len = 192;
2364 dbd = 0;
2365 }
2366 } else if (sdp->type == TYPE_RBC) {
2367 modepage = 6;
2368 dbd = 8;
2369 } else {
2370 modepage = 8;
2371 dbd = 0;
2372 }
2373
2374 /* cautiously ask */
2375 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2376 &data, &sshdr);
2377
2378 if (!scsi_status_is_good(res))
2379 goto bad_sense;
2380
2381 if (!data.header_length) {
2382 modepage = 6;
2383 first_len = 0;
2384 sd_first_printk(KERN_ERR, sdkp,
2385 "Missing header in MODE_SENSE response\n");
2386 }
2387
2388 /* that went OK, now ask for the proper length */
2389 len = data.length;
2390
2391 /*
2392 * We're only interested in the first three bytes, actually.
2393 * But the data cache page is defined for the first 20.
2394 */
2395 if (len < 3)
2396 goto bad_sense;
2397 else if (len > SD_BUF_SIZE) {
2398 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2399 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2400 len = SD_BUF_SIZE;
2401 }
2402 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2403 len = 192;
2404
2405 /* Get the data */
2406 if (len > first_len)
2407 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2408 &data, &sshdr);
2409
2410 if (scsi_status_is_good(res)) {
2411 int offset = data.header_length + data.block_descriptor_length;
2412
2413 while (offset < len) {
2414 u8 page_code = buffer[offset] & 0x3F;
2415 u8 spf = buffer[offset] & 0x40;
2416
2417 if (page_code == 8 || page_code == 6) {
2418 /* We're interested only in the first 3 bytes.
2419 */
2420 if (len - offset <= 2) {
2421 sd_first_printk(KERN_ERR, sdkp,
2422 "Incomplete mode parameter "
2423 "data\n");
2424 goto defaults;
2425 } else {
2426 modepage = page_code;
2427 goto Page_found;
2428 }
2429 } else {
2430 /* Go to the next page */
2431 if (spf && len - offset > 3)
2432 offset += 4 + (buffer[offset+2] << 8) +
2433 buffer[offset+3];
2434 else if (!spf && len - offset > 1)
2435 offset += 2 + buffer[offset+1];
2436 else {
2437 sd_first_printk(KERN_ERR, sdkp,
2438 "Incomplete mode "
2439 "parameter data\n");
2440 goto defaults;
2441 }
2442 }
2443 }
2444
2445 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2446 goto defaults;
2447
2448 Page_found:
2449 if (modepage == 8) {
2450 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2451 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2452 } else {
2453 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2454 sdkp->RCD = 0;
2455 }
2456
2457 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2458 if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2459 sd_first_printk(KERN_NOTICE, sdkp,
2460 "Uses READ/WRITE(6), disabling FUA\n");
2461 sdkp->DPOFUA = 0;
2462 }
2463
2464 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2465 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2466 sd_printk(KERN_NOTICE, sdkp,
2467 "Write cache: %s, read cache: %s, %s\n",
2468 sdkp->WCE ? "enabled" : "disabled",
2469 sdkp->RCD ? "disabled" : "enabled",
2470 sdkp->DPOFUA ? "supports DPO and FUA"
2471 : "doesn't support DPO or FUA");
2472
2473 return;
2474 }
2475
2476 bad_sense:
2477 if (scsi_sense_valid(&sshdr) &&
2478 sshdr.sense_key == ILLEGAL_REQUEST &&
2479 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2480 /* Invalid field in CDB */
2481 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2482 else
2483 sd_first_printk(KERN_ERR, sdkp,
2484 "Asking for cache data failed\n");
2485
2486 defaults:
2487 if (sdp->wce_default_on) {
2488 sd_first_printk(KERN_NOTICE, sdkp,
2489 "Assuming drive cache: write back\n");
2490 sdkp->WCE = 1;
2491 } else {
2492 sd_first_printk(KERN_ERR, sdkp,
2493 "Assuming drive cache: write through\n");
2494 sdkp->WCE = 0;
2495 }
2496 sdkp->RCD = 0;
2497 sdkp->DPOFUA = 0;
2498 }
2499
2500 /*
2501 * The ATO bit indicates whether the DIF application tag is available
2502 * for use by the operating system.
2503 */
2504 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2505 {
2506 int res, offset;
2507 struct scsi_device *sdp = sdkp->device;
2508 struct scsi_mode_data data;
2509 struct scsi_sense_hdr sshdr;
2510
2511 if (sdp->type != TYPE_DISK)
2512 return;
2513
2514 if (sdkp->protection_type == 0)
2515 return;
2516
2517 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2518 SD_MAX_RETRIES, &data, &sshdr);
2519
2520 if (!scsi_status_is_good(res) || !data.header_length ||
2521 data.length < 6) {
2522 sd_first_printk(KERN_WARNING, sdkp,
2523 "getting Control mode page failed, assume no ATO\n");
2524
2525 if (scsi_sense_valid(&sshdr))
2526 sd_print_sense_hdr(sdkp, &sshdr);
2527
2528 return;
2529 }
2530
2531 offset = data.header_length + data.block_descriptor_length;
2532
2533 if ((buffer[offset] & 0x3f) != 0x0a) {
2534 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2535 return;
2536 }
2537
2538 if ((buffer[offset + 5] & 0x80) == 0)
2539 return;
2540
2541 sdkp->ATO = 1;
2542
2543 return;
2544 }
2545
2546 /**
2547 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2548 * @disk: disk to query
2549 */
2550 static void sd_read_block_limits(struct scsi_disk *sdkp)
2551 {
2552 unsigned int sector_sz = sdkp->device->sector_size;
2553 const int vpd_len = 64;
2554 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2555
2556 if (!buffer ||
2557 /* Block Limits VPD */
2558 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2559 goto out;
2560
2561 blk_queue_io_min(sdkp->disk->queue,
2562 get_unaligned_be16(&buffer[6]) * sector_sz);
2563 blk_queue_io_opt(sdkp->disk->queue,
2564 get_unaligned_be32(&buffer[12]) * sector_sz);
2565
2566 if (buffer[3] == 0x3c) {
2567 unsigned int lba_count, desc_count;
2568
2569 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2570
2571 if (!sdkp->lbpme)
2572 goto out;
2573
2574 lba_count = get_unaligned_be32(&buffer[20]);
2575 desc_count = get_unaligned_be32(&buffer[24]);
2576
2577 if (lba_count && desc_count)
2578 sdkp->max_unmap_blocks = lba_count;
2579
2580 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2581
2582 if (buffer[32] & 0x80)
2583 sdkp->unmap_alignment =
2584 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2585
2586 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2587
2588 if (sdkp->max_unmap_blocks)
2589 sd_config_discard(sdkp, SD_LBP_UNMAP);
2590 else
2591 sd_config_discard(sdkp, SD_LBP_WS16);
2592
2593 } else { /* LBP VPD page tells us what to use */
2594
2595 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2596 sd_config_discard(sdkp, SD_LBP_UNMAP);
2597 else if (sdkp->lbpws)
2598 sd_config_discard(sdkp, SD_LBP_WS16);
2599 else if (sdkp->lbpws10)
2600 sd_config_discard(sdkp, SD_LBP_WS10);
2601 else
2602 sd_config_discard(sdkp, SD_LBP_DISABLE);
2603 }
2604 }
2605
2606 out:
2607 kfree(buffer);
2608 }
2609
2610 /**
2611 * sd_read_block_characteristics - Query block dev. characteristics
2612 * @disk: disk to query
2613 */
2614 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2615 {
2616 unsigned char *buffer;
2617 u16 rot;
2618 const int vpd_len = 64;
2619
2620 buffer = kmalloc(vpd_len, GFP_KERNEL);
2621
2622 if (!buffer ||
2623 /* Block Device Characteristics VPD */
2624 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2625 goto out;
2626
2627 rot = get_unaligned_be16(&buffer[4]);
2628
2629 if (rot == 1)
2630 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2631
2632 out:
2633 kfree(buffer);
2634 }
2635
2636 /**
2637 * sd_read_block_provisioning - Query provisioning VPD page
2638 * @disk: disk to query
2639 */
2640 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2641 {
2642 unsigned char *buffer;
2643 const int vpd_len = 8;
2644
2645 if (sdkp->lbpme == 0)
2646 return;
2647
2648 buffer = kmalloc(vpd_len, GFP_KERNEL);
2649
2650 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2651 goto out;
2652
2653 sdkp->lbpvpd = 1;
2654 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2655 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2656 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2657
2658 out:
2659 kfree(buffer);
2660 }
2661
2662 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2663 {
2664 struct scsi_device *sdev = sdkp->device;
2665
2666 if (sdev->host->no_write_same) {
2667 sdev->no_write_same = 1;
2668
2669 return;
2670 }
2671
2672 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2673 /* too large values might cause issues with arcmsr */
2674 int vpd_buf_len = 64;
2675
2676 sdev->no_report_opcodes = 1;
2677
2678 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2679 * CODES is unsupported and the device has an ATA
2680 * Information VPD page (SAT).
2681 */
2682 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2683 sdev->no_write_same = 1;
2684 }
2685
2686 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2687 sdkp->ws16 = 1;
2688
2689 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2690 sdkp->ws10 = 1;
2691 }
2692
2693 static int sd_try_extended_inquiry(struct scsi_device *sdp)
2694 {
2695 /*
2696 * Although VPD inquiries can go to SCSI-2 type devices,
2697 * some USB ones crash on receiving them, and the pages
2698 * we currently ask for are for SPC-3 and beyond
2699 */
2700 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2701 return 1;
2702 return 0;
2703 }
2704
2705 /**
2706 * sd_revalidate_disk - called the first time a new disk is seen,
2707 * performs disk spin up, read_capacity, etc.
2708 * @disk: struct gendisk we care about
2709 **/
2710 static int sd_revalidate_disk(struct gendisk *disk)
2711 {
2712 struct scsi_disk *sdkp = scsi_disk(disk);
2713 struct scsi_device *sdp = sdkp->device;
2714 unsigned char *buffer;
2715 unsigned flush = 0;
2716
2717 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2718 "sd_revalidate_disk\n"));
2719
2720 /*
2721 * If the device is offline, don't try and read capacity or any
2722 * of the other niceties.
2723 */
2724 if (!scsi_device_online(sdp))
2725 goto out;
2726
2727 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2728 if (!buffer) {
2729 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2730 "allocation failure.\n");
2731 goto out;
2732 }
2733
2734 sd_spinup_disk(sdkp);
2735
2736 /*
2737 * Without media there is no reason to ask; moreover, some devices
2738 * react badly if we do.
2739 */
2740 if (sdkp->media_present) {
2741 sd_read_capacity(sdkp, buffer);
2742
2743 if (sd_try_extended_inquiry(sdp)) {
2744 sd_read_block_provisioning(sdkp);
2745 sd_read_block_limits(sdkp);
2746 sd_read_block_characteristics(sdkp);
2747 }
2748
2749 sd_read_write_protect_flag(sdkp, buffer);
2750 sd_read_cache_type(sdkp, buffer);
2751 sd_read_app_tag_own(sdkp, buffer);
2752 sd_read_write_same(sdkp, buffer);
2753 }
2754
2755 sdkp->first_scan = 0;
2756
2757 /*
2758 * We now have all cache related info, determine how we deal
2759 * with flush requests.
2760 */
2761 if (sdkp->WCE) {
2762 flush |= REQ_FLUSH;
2763 if (sdkp->DPOFUA)
2764 flush |= REQ_FUA;
2765 }
2766
2767 blk_queue_flush(sdkp->disk->queue, flush);
2768
2769 set_capacity(disk, sdkp->capacity);
2770 sd_config_write_same(sdkp);
2771 kfree(buffer);
2772
2773 out:
2774 return 0;
2775 }
2776
2777 /**
2778 * sd_unlock_native_capacity - unlock native capacity
2779 * @disk: struct gendisk to set capacity for
2780 *
2781 * Block layer calls this function if it detects that partitions
2782 * on @disk reach beyond the end of the device. If the SCSI host
2783 * implements ->unlock_native_capacity() method, it's invoked to
2784 * give it a chance to adjust the device capacity.
2785 *
2786 * CONTEXT:
2787 * Defined by block layer. Might sleep.
2788 */
2789 static void sd_unlock_native_capacity(struct gendisk *disk)
2790 {
2791 struct scsi_device *sdev = scsi_disk(disk)->device;
2792
2793 if (sdev->host->hostt->unlock_native_capacity)
2794 sdev->host->hostt->unlock_native_capacity(sdev);
2795 }
2796
2797 /**
2798 * sd_format_disk_name - format disk name
2799 * @prefix: name prefix - ie. "sd" for SCSI disks
2800 * @index: index of the disk to format name for
2801 * @buf: output buffer
2802 * @buflen: length of the output buffer
2803 *
2804 * SCSI disk names starts at sda. The 26th device is sdz and the
2805 * 27th is sdaa. The last one for two lettered suffix is sdzz
2806 * which is followed by sdaaa.
2807 *
2808 * This is basically 26 base counting with one extra 'nil' entry
2809 * at the beginning from the second digit on and can be
2810 * determined using similar method as 26 base conversion with the
2811 * index shifted -1 after each digit is computed.
2812 *
2813 * CONTEXT:
2814 * Don't care.
2815 *
2816 * RETURNS:
2817 * 0 on success, -errno on failure.
2818 */
2819 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2820 {
2821 const int base = 'z' - 'a' + 1;
2822 char *begin = buf + strlen(prefix);
2823 char *end = buf + buflen;
2824 char *p;
2825 int unit;
2826
2827 p = end - 1;
2828 *p = '\0';
2829 unit = base;
2830 do {
2831 if (p == begin)
2832 return -EINVAL;
2833 *--p = 'a' + (index % unit);
2834 index = (index / unit) - 1;
2835 } while (index >= 0);
2836
2837 memmove(begin, p, end - p);
2838 memcpy(buf, prefix, strlen(prefix));
2839
2840 return 0;
2841 }
2842
2843 /*
2844 * The asynchronous part of sd_probe
2845 */
2846 static void sd_probe_async(void *data, async_cookie_t cookie)
2847 {
2848 struct scsi_disk *sdkp = data;
2849 struct scsi_device *sdp;
2850 struct gendisk *gd;
2851 u32 index;
2852 struct device *dev;
2853
2854 sdp = sdkp->device;
2855 gd = sdkp->disk;
2856 index = sdkp->index;
2857 dev = &sdp->sdev_gendev;
2858
2859 gd->major = sd_major((index & 0xf0) >> 4);
2860 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2861 gd->minors = SD_MINORS;
2862
2863 gd->fops = &sd_fops;
2864 gd->private_data = &sdkp->driver;
2865 gd->queue = sdkp->device->request_queue;
2866
2867 /* defaults, until the device tells us otherwise */
2868 sdp->sector_size = 512;
2869 sdkp->capacity = 0;
2870 sdkp->media_present = 1;
2871 sdkp->write_prot = 0;
2872 sdkp->cache_override = 0;
2873 sdkp->WCE = 0;
2874 sdkp->RCD = 0;
2875 sdkp->ATO = 0;
2876 sdkp->first_scan = 1;
2877 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2878
2879 sd_revalidate_disk(gd);
2880
2881 blk_queue_prep_rq(sdp->request_queue, sd_prep_fn);
2882 blk_queue_unprep_rq(sdp->request_queue, sd_unprep_fn);
2883
2884 gd->driverfs_dev = &sdp->sdev_gendev;
2885 gd->flags = GENHD_FL_EXT_DEVT;
2886 if (sdp->removable) {
2887 gd->flags |= GENHD_FL_REMOVABLE;
2888 gd->events |= DISK_EVENT_MEDIA_CHANGE;
2889 }
2890
2891 blk_pm_runtime_init(sdp->request_queue, dev);
2892 add_disk(gd);
2893 if (sdkp->capacity)
2894 sd_dif_config_host(sdkp);
2895
2896 sd_revalidate_disk(gd);
2897
2898 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
2899 sdp->removable ? "removable " : "");
2900 scsi_autopm_put_device(sdp);
2901 put_device(&sdkp->dev);
2902 }
2903
2904 /**
2905 * sd_probe - called during driver initialization and whenever a
2906 * new scsi device is attached to the system. It is called once
2907 * for each scsi device (not just disks) present.
2908 * @dev: pointer to device object
2909 *
2910 * Returns 0 if successful (or not interested in this scsi device
2911 * (e.g. scanner)); 1 when there is an error.
2912 *
2913 * Note: this function is invoked from the scsi mid-level.
2914 * This function sets up the mapping between a given
2915 * <host,channel,id,lun> (found in sdp) and new device name
2916 * (e.g. /dev/sda). More precisely it is the block device major
2917 * and minor number that is chosen here.
2918 *
2919 * Assume sd_probe is not re-entrant (for time being)
2920 * Also think about sd_probe() and sd_remove() running coincidentally.
2921 **/
2922 static int sd_probe(struct device *dev)
2923 {
2924 struct scsi_device *sdp = to_scsi_device(dev);
2925 struct scsi_disk *sdkp;
2926 struct gendisk *gd;
2927 int index;
2928 int error;
2929
2930 error = -ENODEV;
2931 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
2932 goto out;
2933
2934 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
2935 "sd_probe\n"));
2936
2937 error = -ENOMEM;
2938 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
2939 if (!sdkp)
2940 goto out;
2941
2942 gd = alloc_disk(SD_MINORS);
2943 if (!gd)
2944 goto out_free;
2945
2946 do {
2947 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
2948 goto out_put;
2949
2950 spin_lock(&sd_index_lock);
2951 error = ida_get_new(&sd_index_ida, &index);
2952 spin_unlock(&sd_index_lock);
2953 } while (error == -EAGAIN);
2954
2955 if (error) {
2956 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
2957 goto out_put;
2958 }
2959
2960 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
2961 if (error) {
2962 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
2963 goto out_free_index;
2964 }
2965
2966 sdkp->device = sdp;
2967 sdkp->driver = &sd_template;
2968 sdkp->disk = gd;
2969 sdkp->index = index;
2970 atomic_set(&sdkp->openers, 0);
2971 atomic_set(&sdkp->device->ioerr_cnt, 0);
2972
2973 if (!sdp->request_queue->rq_timeout) {
2974 if (sdp->type != TYPE_MOD)
2975 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
2976 else
2977 blk_queue_rq_timeout(sdp->request_queue,
2978 SD_MOD_TIMEOUT);
2979 }
2980
2981 device_initialize(&sdkp->dev);
2982 sdkp->dev.parent = dev;
2983 sdkp->dev.class = &sd_disk_class;
2984 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
2985
2986 if (device_add(&sdkp->dev))
2987 goto out_free_index;
2988
2989 get_device(dev);
2990 dev_set_drvdata(dev, sdkp);
2991
2992 get_device(&sdkp->dev); /* prevent release before async_schedule */
2993 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
2994
2995 return 0;
2996
2997 out_free_index:
2998 spin_lock(&sd_index_lock);
2999 ida_remove(&sd_index_ida, index);
3000 spin_unlock(&sd_index_lock);
3001 out_put:
3002 put_disk(gd);
3003 out_free:
3004 kfree(sdkp);
3005 out:
3006 return error;
3007 }
3008
3009 /**
3010 * sd_remove - called whenever a scsi disk (previously recognized by
3011 * sd_probe) is detached from the system. It is called (potentially
3012 * multiple times) during sd module unload.
3013 * @sdp: pointer to mid level scsi device object
3014 *
3015 * Note: this function is invoked from the scsi mid-level.
3016 * This function potentially frees up a device name (e.g. /dev/sdc)
3017 * that could be re-used by a subsequent sd_probe().
3018 * This function is not called when the built-in sd driver is "exit-ed".
3019 **/
3020 static int sd_remove(struct device *dev)
3021 {
3022 struct scsi_disk *sdkp;
3023 dev_t devt;
3024
3025 sdkp = dev_get_drvdata(dev);
3026 devt = disk_devt(sdkp->disk);
3027 scsi_autopm_get_device(sdkp->device);
3028
3029 async_synchronize_full_domain(&scsi_sd_pm_domain);
3030 async_synchronize_full_domain(&scsi_sd_probe_domain);
3031 blk_queue_prep_rq(sdkp->device->request_queue, scsi_prep_fn);
3032 blk_queue_unprep_rq(sdkp->device->request_queue, NULL);
3033 device_del(&sdkp->dev);
3034 del_gendisk(sdkp->disk);
3035 sd_shutdown(dev);
3036
3037 blk_register_region(devt, SD_MINORS, NULL,
3038 sd_default_probe, NULL, NULL);
3039
3040 mutex_lock(&sd_ref_mutex);
3041 dev_set_drvdata(dev, NULL);
3042 put_device(&sdkp->dev);
3043 mutex_unlock(&sd_ref_mutex);
3044
3045 return 0;
3046 }
3047
3048 /**
3049 * scsi_disk_release - Called to free the scsi_disk structure
3050 * @dev: pointer to embedded class device
3051 *
3052 * sd_ref_mutex must be held entering this routine. Because it is
3053 * called on last put, you should always use the scsi_disk_get()
3054 * scsi_disk_put() helpers which manipulate the semaphore directly
3055 * and never do a direct put_device.
3056 **/
3057 static void scsi_disk_release(struct device *dev)
3058 {
3059 struct scsi_disk *sdkp = to_scsi_disk(dev);
3060 struct gendisk *disk = sdkp->disk;
3061
3062 spin_lock(&sd_index_lock);
3063 ida_remove(&sd_index_ida, sdkp->index);
3064 spin_unlock(&sd_index_lock);
3065
3066 disk->private_data = NULL;
3067 put_disk(disk);
3068 put_device(&sdkp->device->sdev_gendev);
3069
3070 kfree(sdkp);
3071 }
3072
3073 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3074 {
3075 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3076 struct scsi_sense_hdr sshdr;
3077 struct scsi_device *sdp = sdkp->device;
3078 int res;
3079
3080 if (start)
3081 cmd[4] |= 1; /* START */
3082
3083 if (sdp->start_stop_pwr_cond)
3084 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3085
3086 if (!scsi_device_online(sdp))
3087 return -ENODEV;
3088
3089 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3090 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3091 if (res) {
3092 sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n");
3093 sd_print_result(sdkp, res);
3094 if (driver_byte(res) & DRIVER_SENSE)
3095 sd_print_sense_hdr(sdkp, &sshdr);
3096 if (scsi_sense_valid(&sshdr) &&
3097 /* 0x3a is medium not present */
3098 sshdr.asc == 0x3a)
3099 res = 0;
3100 }
3101
3102 /* SCSI error codes must not go to the generic layer */
3103 if (res)
3104 return -EIO;
3105
3106 return 0;
3107 }
3108
3109 /*
3110 * Send a SYNCHRONIZE CACHE instruction down to the device through
3111 * the normal SCSI command structure. Wait for the command to
3112 * complete.
3113 */
3114 static void sd_shutdown(struct device *dev)
3115 {
3116 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3117
3118 if (!sdkp)
3119 return; /* this can happen */
3120
3121 if (pm_runtime_suspended(dev))
3122 goto exit;
3123
3124 if (sdkp->WCE && sdkp->media_present) {
3125 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3126 sd_sync_cache(sdkp);
3127 }
3128
3129 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3130 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3131 sd_start_stop_device(sdkp, 0);
3132 }
3133
3134 exit:
3135 scsi_disk_put(sdkp);
3136 }
3137
3138 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3139 {
3140 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3141 int ret = 0;
3142
3143 if (!sdkp)
3144 return 0; /* this can happen */
3145
3146 if (sdkp->WCE && sdkp->media_present) {
3147 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3148 ret = sd_sync_cache(sdkp);
3149 if (ret) {
3150 /* ignore OFFLINE device */
3151 if (ret == -ENODEV)
3152 ret = 0;
3153 goto done;
3154 }
3155 }
3156
3157 if (sdkp->device->manage_start_stop) {
3158 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3159 /* an error is not worth aborting a system sleep */
3160 ret = sd_start_stop_device(sdkp, 0);
3161 if (ignore_stop_errors)
3162 ret = 0;
3163 }
3164
3165 done:
3166 scsi_disk_put(sdkp);
3167 return ret;
3168 }
3169
3170 static int sd_suspend_system(struct device *dev)
3171 {
3172 return sd_suspend_common(dev, true);
3173 }
3174
3175 static int sd_suspend_runtime(struct device *dev)
3176 {
3177 return sd_suspend_common(dev, false);
3178 }
3179
3180 static int sd_resume(struct device *dev)
3181 {
3182 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3183 int ret = 0;
3184
3185 if (!sdkp->device->manage_start_stop)
3186 goto done;
3187
3188 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3189 ret = sd_start_stop_device(sdkp, 1);
3190
3191 done:
3192 scsi_disk_put(sdkp);
3193 return ret;
3194 }
3195
3196 /**
3197 * init_sd - entry point for this driver (both when built in or when
3198 * a module).
3199 *
3200 * Note: this function registers this driver with the scsi mid-level.
3201 **/
3202 static int __init init_sd(void)
3203 {
3204 int majors = 0, i, err;
3205
3206 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3207
3208 for (i = 0; i < SD_MAJORS; i++) {
3209 if (register_blkdev(sd_major(i), "sd") != 0)
3210 continue;
3211 majors++;
3212 blk_register_region(sd_major(i), SD_MINORS, NULL,
3213 sd_default_probe, NULL, NULL);
3214 }
3215
3216 if (!majors)
3217 return -ENODEV;
3218
3219 err = class_register(&sd_disk_class);
3220 if (err)
3221 goto err_out;
3222
3223 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3224 0, 0, NULL);
3225 if (!sd_cdb_cache) {
3226 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3227 goto err_out_class;
3228 }
3229
3230 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3231 if (!sd_cdb_pool) {
3232 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3233 goto err_out_cache;
3234 }
3235
3236 err = scsi_register_driver(&sd_template.gendrv);
3237 if (err)
3238 goto err_out_driver;
3239
3240 return 0;
3241
3242 err_out_driver:
3243 mempool_destroy(sd_cdb_pool);
3244
3245 err_out_cache:
3246 kmem_cache_destroy(sd_cdb_cache);
3247
3248 err_out_class:
3249 class_unregister(&sd_disk_class);
3250 err_out:
3251 for (i = 0; i < SD_MAJORS; i++)
3252 unregister_blkdev(sd_major(i), "sd");
3253 return err;
3254 }
3255
3256 /**
3257 * exit_sd - exit point for this driver (when it is a module).
3258 *
3259 * Note: this function unregisters this driver from the scsi mid-level.
3260 **/
3261 static void __exit exit_sd(void)
3262 {
3263 int i;
3264
3265 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3266
3267 scsi_unregister_driver(&sd_template.gendrv);
3268 mempool_destroy(sd_cdb_pool);
3269 kmem_cache_destroy(sd_cdb_cache);
3270
3271 class_unregister(&sd_disk_class);
3272
3273 for (i = 0; i < SD_MAJORS; i++) {
3274 blk_unregister_region(sd_major(i), SD_MINORS);
3275 unregister_blkdev(sd_major(i), "sd");
3276 }
3277 }
3278
3279 module_init(init_sd);
3280 module_exit(exit_sd);
3281
3282 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3283 struct scsi_sense_hdr *sshdr)
3284 {
3285 sd_printk(KERN_INFO, sdkp, " ");
3286 scsi_show_sense_hdr(sshdr);
3287 sd_printk(KERN_INFO, sdkp, " ");
3288 scsi_show_extd_sense(sshdr->asc, sshdr->ascq);
3289 }
3290
3291 static void sd_print_result(struct scsi_disk *sdkp, int result)
3292 {
3293 sd_printk(KERN_INFO, sdkp, " ");
3294 scsi_show_result(result);
3295 }
3296