]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/sd.c
Merge tag 'kbuild-misc-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/masahi...
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <linux/t10-pi.h>
56 #include <linux/uaccess.h>
57 #include <asm/unaligned.h>
58
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_dbg.h>
62 #include <scsi/scsi_device.h>
63 #include <scsi/scsi_driver.h>
64 #include <scsi/scsi_eh.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsicam.h>
68
69 #include "sd.h"
70 #include "scsi_priv.h"
71 #include "scsi_logging.h"
72
73 MODULE_AUTHOR("Eric Youngdale");
74 MODULE_DESCRIPTION("SCSI disk (sd) driver");
75 MODULE_LICENSE("GPL");
76
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
97
98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
99 #define SD_MINORS 16
100 #else
101 #define SD_MINORS 0
102 #endif
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int sd_probe(struct device *);
109 static int sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static void sd_rescan(struct device *);
115 static int sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
123 static void sd_print_result(const struct scsi_disk *, const char *, int);
124
125 static DEFINE_SPINLOCK(sd_index_lock);
126 static DEFINE_IDA(sd_index_ida);
127
128 /* This semaphore is used to mediate the 0->1 reference get in the
129 * face of object destruction (i.e. we can't allow a get on an
130 * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135
136 static const char *sd_cache_types[] = {
137 "write through", "none", "write back",
138 "write back, no read (daft)"
139 };
140
141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143 bool wc = false, fua = false;
144
145 if (sdkp->WCE) {
146 wc = true;
147 if (sdkp->DPOFUA)
148 fua = true;
149 }
150
151 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153
154 static ssize_t
155 cache_type_store(struct device *dev, struct device_attribute *attr,
156 const char *buf, size_t count)
157 {
158 int i, ct = -1, rcd, wce, sp;
159 struct scsi_disk *sdkp = to_scsi_disk(dev);
160 struct scsi_device *sdp = sdkp->device;
161 char buffer[64];
162 char *buffer_data;
163 struct scsi_mode_data data;
164 struct scsi_sense_hdr sshdr;
165 static const char temp[] = "temporary ";
166 int len;
167
168 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169 /* no cache control on RBC devices; theoretically they
170 * can do it, but there's probably so many exceptions
171 * it's not worth the risk */
172 return -EINVAL;
173
174 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175 buf += sizeof(temp) - 1;
176 sdkp->cache_override = 1;
177 } else {
178 sdkp->cache_override = 0;
179 }
180
181 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
182 len = strlen(sd_cache_types[i]);
183 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
184 buf[len] == '\n') {
185 ct = i;
186 break;
187 }
188 }
189 if (ct < 0)
190 return -EINVAL;
191 rcd = ct & 0x01 ? 1 : 0;
192 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
193
194 if (sdkp->cache_override) {
195 sdkp->WCE = wce;
196 sdkp->RCD = rcd;
197 sd_set_flush_flag(sdkp);
198 return count;
199 }
200
201 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
202 SD_MAX_RETRIES, &data, NULL))
203 return -EINVAL;
204 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
205 data.block_descriptor_length);
206 buffer_data = buffer + data.header_length +
207 data.block_descriptor_length;
208 buffer_data[2] &= ~0x05;
209 buffer_data[2] |= wce << 2 | rcd;
210 sp = buffer_data[0] & 0x80 ? 1 : 0;
211 buffer_data[0] &= ~0x80;
212
213 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214 SD_MAX_RETRIES, &data, &sshdr)) {
215 if (scsi_sense_valid(&sshdr))
216 sd_print_sense_hdr(sdkp, &sshdr);
217 return -EINVAL;
218 }
219 revalidate_disk(sdkp->disk);
220 return count;
221 }
222
223 static ssize_t
224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225 char *buf)
226 {
227 struct scsi_disk *sdkp = to_scsi_disk(dev);
228 struct scsi_device *sdp = sdkp->device;
229
230 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
231 }
232
233 static ssize_t
234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235 const char *buf, size_t count)
236 {
237 struct scsi_disk *sdkp = to_scsi_disk(dev);
238 struct scsi_device *sdp = sdkp->device;
239
240 if (!capable(CAP_SYS_ADMIN))
241 return -EACCES;
242
243 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
244
245 return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 struct scsi_disk *sdkp = to_scsi_disk(dev);
253
254 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
255 }
256
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 const char *buf, size_t count)
260 {
261 struct scsi_disk *sdkp = to_scsi_disk(dev);
262 struct scsi_device *sdp = sdkp->device;
263
264 if (!capable(CAP_SYS_ADMIN))
265 return -EACCES;
266
267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 return -EINVAL;
269
270 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
271
272 return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279 struct scsi_disk *sdkp = to_scsi_disk(dev);
280 int ct = sdkp->RCD + 2*sdkp->WCE;
281
282 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 struct scsi_disk *sdkp = to_scsi_disk(dev);
290
291 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297 char *buf)
298 {
299 struct scsi_disk *sdkp = to_scsi_disk(dev);
300
301 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
302 }
303
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306 const char *buf, size_t count)
307 {
308 struct scsi_disk *sdkp = to_scsi_disk(dev);
309 unsigned int val;
310 int err;
311
312 if (!capable(CAP_SYS_ADMIN))
313 return -EACCES;
314
315 err = kstrtouint(buf, 10, &val);
316
317 if (err)
318 return err;
319
320 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
321 sdkp->protection_type = val;
322
323 return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329 char *buf)
330 {
331 struct scsi_disk *sdkp = to_scsi_disk(dev);
332 struct scsi_device *sdp = sdkp->device;
333 unsigned int dif, dix;
334
335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337
338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339 dif = 0;
340 dix = 1;
341 }
342
343 if (!dif && !dix)
344 return snprintf(buf, 20, "none\n");
345
346 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355 return snprintf(buf, 20, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361 char *buf)
362 {
363 struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368
369 static const char *lbp_mode[] = {
370 [SD_LBP_FULL] = "full",
371 [SD_LBP_UNMAP] = "unmap",
372 [SD_LBP_WS16] = "writesame_16",
373 [SD_LBP_WS10] = "writesame_10",
374 [SD_LBP_ZERO] = "writesame_zero",
375 [SD_LBP_DISABLE] = "disabled",
376 };
377
378 static ssize_t
379 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
380 char *buf)
381 {
382 struct scsi_disk *sdkp = to_scsi_disk(dev);
383
384 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
385 }
386
387 static ssize_t
388 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
389 const char *buf, size_t count)
390 {
391 struct scsi_disk *sdkp = to_scsi_disk(dev);
392 struct scsi_device *sdp = sdkp->device;
393
394 if (!capable(CAP_SYS_ADMIN))
395 return -EACCES;
396
397 if (sd_is_zoned(sdkp)) {
398 sd_config_discard(sdkp, SD_LBP_DISABLE);
399 return count;
400 }
401
402 if (sdp->type != TYPE_DISK)
403 return -EINVAL;
404
405 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
406 sd_config_discard(sdkp, SD_LBP_UNMAP);
407 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
408 sd_config_discard(sdkp, SD_LBP_WS16);
409 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
410 sd_config_discard(sdkp, SD_LBP_WS10);
411 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
412 sd_config_discard(sdkp, SD_LBP_ZERO);
413 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
414 sd_config_discard(sdkp, SD_LBP_DISABLE);
415 else
416 return -EINVAL;
417
418 return count;
419 }
420 static DEVICE_ATTR_RW(provisioning_mode);
421
422 static const char *zeroing_mode[] = {
423 [SD_ZERO_WRITE] = "write",
424 [SD_ZERO_WS] = "writesame",
425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
427 };
428
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 char *buf)
432 {
433 struct scsi_disk *sdkp = to_scsi_disk(dev);
434
435 return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 const char *buf, size_t count)
441 {
442 struct scsi_disk *sdkp = to_scsi_disk(dev);
443
444 if (!capable(CAP_SYS_ADMIN))
445 return -EACCES;
446
447 if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20))
448 sdkp->zeroing_mode = SD_ZERO_WRITE;
449 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20))
450 sdkp->zeroing_mode = SD_ZERO_WS;
451 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20))
452 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
453 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20))
454 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
455 else
456 return -EINVAL;
457
458 return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461
462 static ssize_t
463 max_medium_access_timeouts_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct scsi_disk *sdkp = to_scsi_disk(dev);
467
468 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470
471 static ssize_t
472 max_medium_access_timeouts_store(struct device *dev,
473 struct device_attribute *attr, const char *buf,
474 size_t count)
475 {
476 struct scsi_disk *sdkp = to_scsi_disk(dev);
477 int err;
478
479 if (!capable(CAP_SYS_ADMIN))
480 return -EACCES;
481
482 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483
484 return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487
488 static ssize_t
489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
495 }
496
497 static ssize_t
498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t count)
500 {
501 struct scsi_disk *sdkp = to_scsi_disk(dev);
502 struct scsi_device *sdp = sdkp->device;
503 unsigned long max;
504 int err;
505
506 if (!capable(CAP_SYS_ADMIN))
507 return -EACCES;
508
509 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510 return -EINVAL;
511
512 err = kstrtoul(buf, 10, &max);
513
514 if (err)
515 return err;
516
517 if (max == 0)
518 sdp->no_write_same = 1;
519 else if (max <= SD_MAX_WS16_BLOCKS) {
520 sdp->no_write_same = 0;
521 sdkp->max_ws_blocks = max;
522 }
523
524 sd_config_write_same(sdkp);
525
526 return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529
530 static struct attribute *sd_disk_attrs[] = {
531 &dev_attr_cache_type.attr,
532 &dev_attr_FUA.attr,
533 &dev_attr_allow_restart.attr,
534 &dev_attr_manage_start_stop.attr,
535 &dev_attr_protection_type.attr,
536 &dev_attr_protection_mode.attr,
537 &dev_attr_app_tag_own.attr,
538 &dev_attr_thin_provisioning.attr,
539 &dev_attr_provisioning_mode.attr,
540 &dev_attr_zeroing_mode.attr,
541 &dev_attr_max_write_same_blocks.attr,
542 &dev_attr_max_medium_access_timeouts.attr,
543 NULL,
544 };
545 ATTRIBUTE_GROUPS(sd_disk);
546
547 static struct class sd_disk_class = {
548 .name = "scsi_disk",
549 .owner = THIS_MODULE,
550 .dev_release = scsi_disk_release,
551 .dev_groups = sd_disk_groups,
552 };
553
554 static const struct dev_pm_ops sd_pm_ops = {
555 .suspend = sd_suspend_system,
556 .resume = sd_resume,
557 .poweroff = sd_suspend_system,
558 .restore = sd_resume,
559 .runtime_suspend = sd_suspend_runtime,
560 .runtime_resume = sd_resume,
561 };
562
563 static struct scsi_driver sd_template = {
564 .gendrv = {
565 .name = "sd",
566 .owner = THIS_MODULE,
567 .probe = sd_probe,
568 .remove = sd_remove,
569 .shutdown = sd_shutdown,
570 .pm = &sd_pm_ops,
571 },
572 .rescan = sd_rescan,
573 .init_command = sd_init_command,
574 .uninit_command = sd_uninit_command,
575 .done = sd_done,
576 .eh_action = sd_eh_action,
577 .eh_reset = sd_eh_reset,
578 };
579
580 /*
581 * Dummy kobj_map->probe function.
582 * The default ->probe function will call modprobe, which is
583 * pointless as this module is already loaded.
584 */
585 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
586 {
587 return NULL;
588 }
589
590 /*
591 * Device no to disk mapping:
592 *
593 * major disc2 disc p1
594 * |............|.............|....|....| <- dev_t
595 * 31 20 19 8 7 4 3 0
596 *
597 * Inside a major, we have 16k disks, however mapped non-
598 * contiguously. The first 16 disks are for major0, the next
599 * ones with major1, ... Disk 256 is for major0 again, disk 272
600 * for major1, ...
601 * As we stay compatible with our numbering scheme, we can reuse
602 * the well-know SCSI majors 8, 65--71, 136--143.
603 */
604 static int sd_major(int major_idx)
605 {
606 switch (major_idx) {
607 case 0:
608 return SCSI_DISK0_MAJOR;
609 case 1 ... 7:
610 return SCSI_DISK1_MAJOR + major_idx - 1;
611 case 8 ... 15:
612 return SCSI_DISK8_MAJOR + major_idx - 8;
613 default:
614 BUG();
615 return 0; /* shut up gcc */
616 }
617 }
618
619 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
620 {
621 struct scsi_disk *sdkp = NULL;
622
623 mutex_lock(&sd_ref_mutex);
624
625 if (disk->private_data) {
626 sdkp = scsi_disk(disk);
627 if (scsi_device_get(sdkp->device) == 0)
628 get_device(&sdkp->dev);
629 else
630 sdkp = NULL;
631 }
632 mutex_unlock(&sd_ref_mutex);
633 return sdkp;
634 }
635
636 static void scsi_disk_put(struct scsi_disk *sdkp)
637 {
638 struct scsi_device *sdev = sdkp->device;
639
640 mutex_lock(&sd_ref_mutex);
641 put_device(&sdkp->dev);
642 scsi_device_put(sdev);
643 mutex_unlock(&sd_ref_mutex);
644 }
645
646 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
647 unsigned int dix, unsigned int dif)
648 {
649 struct bio *bio = scmd->request->bio;
650 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
651 unsigned int protect = 0;
652
653 if (dix) { /* DIX Type 0, 1, 2, 3 */
654 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
655 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
656
657 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
658 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
659 }
660
661 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
662 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
663
664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
666 }
667
668 if (dif) { /* DIX/DIF Type 1, 2, 3 */
669 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
670
671 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
672 protect = 3 << 5; /* Disable target PI checking */
673 else
674 protect = 1 << 5; /* Enable target PI checking */
675 }
676
677 scsi_set_prot_op(scmd, prot_op);
678 scsi_set_prot_type(scmd, dif);
679 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
680
681 return protect;
682 }
683
684 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
685 {
686 struct request_queue *q = sdkp->disk->queue;
687 unsigned int logical_block_size = sdkp->device->sector_size;
688 unsigned int max_blocks = 0;
689
690 q->limits.discard_alignment =
691 sdkp->unmap_alignment * logical_block_size;
692 q->limits.discard_granularity =
693 max(sdkp->physical_block_size,
694 sdkp->unmap_granularity * logical_block_size);
695 sdkp->provisioning_mode = mode;
696
697 switch (mode) {
698
699 case SD_LBP_DISABLE:
700 blk_queue_max_discard_sectors(q, 0);
701 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
702 return;
703
704 case SD_LBP_UNMAP:
705 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
706 (u32)SD_MAX_WS16_BLOCKS);
707 break;
708
709 case SD_LBP_WS16:
710 max_blocks = min_not_zero(sdkp->max_ws_blocks,
711 (u32)SD_MAX_WS16_BLOCKS);
712 break;
713
714 case SD_LBP_WS10:
715 max_blocks = min_not_zero(sdkp->max_ws_blocks,
716 (u32)SD_MAX_WS10_BLOCKS);
717 break;
718
719 case SD_LBP_ZERO:
720 max_blocks = min_not_zero(sdkp->max_ws_blocks,
721 (u32)SD_MAX_WS10_BLOCKS);
722 break;
723 }
724
725 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
726 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
727 }
728
729 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
730 {
731 struct scsi_device *sdp = cmd->device;
732 struct request *rq = cmd->request;
733 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
734 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
735 unsigned int data_len = 24;
736 char *buf;
737
738 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
739 if (!rq->special_vec.bv_page)
740 return BLKPREP_DEFER;
741 rq->special_vec.bv_offset = 0;
742 rq->special_vec.bv_len = data_len;
743 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
744
745 cmd->cmd_len = 10;
746 cmd->cmnd[0] = UNMAP;
747 cmd->cmnd[8] = 24;
748
749 buf = page_address(rq->special_vec.bv_page);
750 put_unaligned_be16(6 + 16, &buf[0]);
751 put_unaligned_be16(16, &buf[2]);
752 put_unaligned_be64(sector, &buf[8]);
753 put_unaligned_be32(nr_sectors, &buf[16]);
754
755 cmd->allowed = SD_MAX_RETRIES;
756 cmd->transfersize = data_len;
757 rq->timeout = SD_TIMEOUT;
758 scsi_req(rq)->resid_len = data_len;
759
760 return scsi_init_io(cmd);
761 }
762
763 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
764 {
765 struct scsi_device *sdp = cmd->device;
766 struct request *rq = cmd->request;
767 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
768 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
769 u32 data_len = sdp->sector_size;
770
771 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
772 if (!rq->special_vec.bv_page)
773 return BLKPREP_DEFER;
774 rq->special_vec.bv_offset = 0;
775 rq->special_vec.bv_len = data_len;
776 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
777
778 cmd->cmd_len = 16;
779 cmd->cmnd[0] = WRITE_SAME_16;
780 if (unmap)
781 cmd->cmnd[1] = 0x8; /* UNMAP */
782 put_unaligned_be64(sector, &cmd->cmnd[2]);
783 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
784
785 cmd->allowed = SD_MAX_RETRIES;
786 cmd->transfersize = data_len;
787 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
788 scsi_req(rq)->resid_len = data_len;
789
790 return scsi_init_io(cmd);
791 }
792
793 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
794 {
795 struct scsi_device *sdp = cmd->device;
796 struct request *rq = cmd->request;
797 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
798 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
799 u32 data_len = sdp->sector_size;
800
801 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
802 if (!rq->special_vec.bv_page)
803 return BLKPREP_DEFER;
804 rq->special_vec.bv_offset = 0;
805 rq->special_vec.bv_len = data_len;
806 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
807
808 cmd->cmd_len = 10;
809 cmd->cmnd[0] = WRITE_SAME;
810 if (unmap)
811 cmd->cmnd[1] = 0x8; /* UNMAP */
812 put_unaligned_be32(sector, &cmd->cmnd[2]);
813 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
814
815 cmd->allowed = SD_MAX_RETRIES;
816 cmd->transfersize = data_len;
817 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
818 scsi_req(rq)->resid_len = data_len;
819
820 return scsi_init_io(cmd);
821 }
822
823 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
824 {
825 struct request *rq = cmd->request;
826 struct scsi_device *sdp = cmd->device;
827 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
828 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
829 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
830
831 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
832 switch (sdkp->zeroing_mode) {
833 case SD_ZERO_WS16_UNMAP:
834 return sd_setup_write_same16_cmnd(cmd, true);
835 case SD_ZERO_WS10_UNMAP:
836 return sd_setup_write_same10_cmnd(cmd, true);
837 }
838 }
839
840 if (sdp->no_write_same)
841 return BLKPREP_INVALID;
842 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
843 return sd_setup_write_same16_cmnd(cmd, false);
844 return sd_setup_write_same10_cmnd(cmd, false);
845 }
846
847 static void sd_config_write_same(struct scsi_disk *sdkp)
848 {
849 struct request_queue *q = sdkp->disk->queue;
850 unsigned int logical_block_size = sdkp->device->sector_size;
851
852 if (sdkp->device->no_write_same) {
853 sdkp->max_ws_blocks = 0;
854 goto out;
855 }
856
857 /* Some devices can not handle block counts above 0xffff despite
858 * supporting WRITE SAME(16). Consequently we default to 64k
859 * blocks per I/O unless the device explicitly advertises a
860 * bigger limit.
861 */
862 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
863 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
864 (u32)SD_MAX_WS16_BLOCKS);
865 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
866 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
867 (u32)SD_MAX_WS10_BLOCKS);
868 else {
869 sdkp->device->no_write_same = 1;
870 sdkp->max_ws_blocks = 0;
871 }
872
873 if (sdkp->lbprz && sdkp->lbpws)
874 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
875 else if (sdkp->lbprz && sdkp->lbpws10)
876 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
877 else if (sdkp->max_ws_blocks)
878 sdkp->zeroing_mode = SD_ZERO_WS;
879 else
880 sdkp->zeroing_mode = SD_ZERO_WRITE;
881
882 out:
883 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
884 (logical_block_size >> 9));
885 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
886 (logical_block_size >> 9));
887 }
888
889 /**
890 * sd_setup_write_same_cmnd - write the same data to multiple blocks
891 * @cmd: command to prepare
892 *
893 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
894 * the preference indicated by the target device.
895 **/
896 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
897 {
898 struct request *rq = cmd->request;
899 struct scsi_device *sdp = cmd->device;
900 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
901 struct bio *bio = rq->bio;
902 sector_t sector = blk_rq_pos(rq);
903 unsigned int nr_sectors = blk_rq_sectors(rq);
904 unsigned int nr_bytes = blk_rq_bytes(rq);
905 int ret;
906
907 if (sdkp->device->no_write_same)
908 return BLKPREP_INVALID;
909
910 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
911
912 if (sd_is_zoned(sdkp)) {
913 ret = sd_zbc_write_lock_zone(cmd);
914 if (ret != BLKPREP_OK)
915 return ret;
916 }
917
918 sector >>= ilog2(sdp->sector_size) - 9;
919 nr_sectors >>= ilog2(sdp->sector_size) - 9;
920
921 rq->timeout = SD_WRITE_SAME_TIMEOUT;
922
923 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
924 cmd->cmd_len = 16;
925 cmd->cmnd[0] = WRITE_SAME_16;
926 put_unaligned_be64(sector, &cmd->cmnd[2]);
927 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
928 } else {
929 cmd->cmd_len = 10;
930 cmd->cmnd[0] = WRITE_SAME;
931 put_unaligned_be32(sector, &cmd->cmnd[2]);
932 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
933 }
934
935 cmd->transfersize = sdp->sector_size;
936 cmd->allowed = SD_MAX_RETRIES;
937
938 /*
939 * For WRITE SAME the data transferred via the DATA OUT buffer is
940 * different from the amount of data actually written to the target.
941 *
942 * We set up __data_len to the amount of data transferred via the
943 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
944 * to transfer a single sector of data first, but then reset it to
945 * the amount of data to be written right after so that the I/O path
946 * knows how much to actually write.
947 */
948 rq->__data_len = sdp->sector_size;
949 ret = scsi_init_io(cmd);
950 rq->__data_len = nr_bytes;
951 return ret;
952 }
953
954 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
955 {
956 struct request *rq = cmd->request;
957
958 /* flush requests don't perform I/O, zero the S/G table */
959 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
960
961 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
962 cmd->cmd_len = 10;
963 cmd->transfersize = 0;
964 cmd->allowed = SD_MAX_RETRIES;
965
966 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
967 return BLKPREP_OK;
968 }
969
970 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
971 {
972 struct request *rq = SCpnt->request;
973 struct scsi_device *sdp = SCpnt->device;
974 struct gendisk *disk = rq->rq_disk;
975 struct scsi_disk *sdkp = scsi_disk(disk);
976 sector_t block = blk_rq_pos(rq);
977 sector_t threshold;
978 unsigned int this_count = blk_rq_sectors(rq);
979 unsigned int dif, dix;
980 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
981 int ret;
982 unsigned char protect;
983
984 if (zoned_write) {
985 ret = sd_zbc_write_lock_zone(SCpnt);
986 if (ret != BLKPREP_OK)
987 return ret;
988 }
989
990 ret = scsi_init_io(SCpnt);
991 if (ret != BLKPREP_OK)
992 goto out;
993 SCpnt = rq->special;
994
995 /* from here on until we're complete, any goto out
996 * is used for a killable error condition */
997 ret = BLKPREP_KILL;
998
999 SCSI_LOG_HLQUEUE(1,
1000 scmd_printk(KERN_INFO, SCpnt,
1001 "%s: block=%llu, count=%d\n",
1002 __func__, (unsigned long long)block, this_count));
1003
1004 if (!sdp || !scsi_device_online(sdp) ||
1005 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1006 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1007 "Finishing %u sectors\n",
1008 blk_rq_sectors(rq)));
1009 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1010 "Retry with 0x%p\n", SCpnt));
1011 goto out;
1012 }
1013
1014 if (sdp->changed) {
1015 /*
1016 * quietly refuse to do anything to a changed disc until
1017 * the changed bit has been reset
1018 */
1019 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1020 goto out;
1021 }
1022
1023 /*
1024 * Some SD card readers can't handle multi-sector accesses which touch
1025 * the last one or two hardware sectors. Split accesses as needed.
1026 */
1027 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1028 (sdp->sector_size / 512);
1029
1030 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1031 if (block < threshold) {
1032 /* Access up to the threshold but not beyond */
1033 this_count = threshold - block;
1034 } else {
1035 /* Access only a single hardware sector */
1036 this_count = sdp->sector_size / 512;
1037 }
1038 }
1039
1040 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1041 (unsigned long long)block));
1042
1043 /*
1044 * If we have a 1K hardware sectorsize, prevent access to single
1045 * 512 byte sectors. In theory we could handle this - in fact
1046 * the scsi cdrom driver must be able to handle this because
1047 * we typically use 1K blocksizes, and cdroms typically have
1048 * 2K hardware sectorsizes. Of course, things are simpler
1049 * with the cdrom, since it is read-only. For performance
1050 * reasons, the filesystems should be able to handle this
1051 * and not force the scsi disk driver to use bounce buffers
1052 * for this.
1053 */
1054 if (sdp->sector_size == 1024) {
1055 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1056 scmd_printk(KERN_ERR, SCpnt,
1057 "Bad block number requested\n");
1058 goto out;
1059 } else {
1060 block = block >> 1;
1061 this_count = this_count >> 1;
1062 }
1063 }
1064 if (sdp->sector_size == 2048) {
1065 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1066 scmd_printk(KERN_ERR, SCpnt,
1067 "Bad block number requested\n");
1068 goto out;
1069 } else {
1070 block = block >> 2;
1071 this_count = this_count >> 2;
1072 }
1073 }
1074 if (sdp->sector_size == 4096) {
1075 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1076 scmd_printk(KERN_ERR, SCpnt,
1077 "Bad block number requested\n");
1078 goto out;
1079 } else {
1080 block = block >> 3;
1081 this_count = this_count >> 3;
1082 }
1083 }
1084 if (rq_data_dir(rq) == WRITE) {
1085 SCpnt->cmnd[0] = WRITE_6;
1086
1087 if (blk_integrity_rq(rq))
1088 sd_dif_prepare(SCpnt);
1089
1090 } else if (rq_data_dir(rq) == READ) {
1091 SCpnt->cmnd[0] = READ_6;
1092 } else {
1093 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1094 goto out;
1095 }
1096
1097 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1098 "%s %d/%u 512 byte blocks.\n",
1099 (rq_data_dir(rq) == WRITE) ?
1100 "writing" : "reading", this_count,
1101 blk_rq_sectors(rq)));
1102
1103 dix = scsi_prot_sg_count(SCpnt);
1104 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1105
1106 if (dif || dix)
1107 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1108 else
1109 protect = 0;
1110
1111 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1112 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1113
1114 if (unlikely(SCpnt->cmnd == NULL)) {
1115 ret = BLKPREP_DEFER;
1116 goto out;
1117 }
1118
1119 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1120 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1121 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1122 SCpnt->cmnd[7] = 0x18;
1123 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1124 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1125
1126 /* LBA */
1127 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1128 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1129 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1130 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1131 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1132 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1133 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1134 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1135
1136 /* Expected Indirect LBA */
1137 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1138 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1139 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1140 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1141
1142 /* Transfer length */
1143 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1144 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1145 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1146 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1147 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1148 SCpnt->cmnd[0] += READ_16 - READ_6;
1149 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1150 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1151 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1152 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1153 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1154 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1155 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1156 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1157 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1158 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1159 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1160 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1161 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1162 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1163 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1164 scsi_device_protection(SCpnt->device) ||
1165 SCpnt->device->use_10_for_rw) {
1166 SCpnt->cmnd[0] += READ_10 - READ_6;
1167 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1168 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1169 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1170 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1171 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1172 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1173 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1174 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1175 } else {
1176 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1177 /*
1178 * This happens only if this drive failed
1179 * 10byte rw command with ILLEGAL_REQUEST
1180 * during operation and thus turned off
1181 * use_10_for_rw.
1182 */
1183 scmd_printk(KERN_ERR, SCpnt,
1184 "FUA write on READ/WRITE(6) drive\n");
1185 goto out;
1186 }
1187
1188 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1189 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1190 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1191 SCpnt->cmnd[4] = (unsigned char) this_count;
1192 SCpnt->cmnd[5] = 0;
1193 }
1194 SCpnt->sdb.length = this_count * sdp->sector_size;
1195
1196 /*
1197 * We shouldn't disconnect in the middle of a sector, so with a dumb
1198 * host adapter, it's safe to assume that we can at least transfer
1199 * this many bytes between each connect / disconnect.
1200 */
1201 SCpnt->transfersize = sdp->sector_size;
1202 SCpnt->underflow = this_count << 9;
1203 SCpnt->allowed = SD_MAX_RETRIES;
1204
1205 /*
1206 * This indicates that the command is ready from our end to be
1207 * queued.
1208 */
1209 ret = BLKPREP_OK;
1210 out:
1211 if (zoned_write && ret != BLKPREP_OK)
1212 sd_zbc_write_unlock_zone(SCpnt);
1213
1214 return ret;
1215 }
1216
1217 static int sd_init_command(struct scsi_cmnd *cmd)
1218 {
1219 struct request *rq = cmd->request;
1220
1221 switch (req_op(rq)) {
1222 case REQ_OP_DISCARD:
1223 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1224 case SD_LBP_UNMAP:
1225 return sd_setup_unmap_cmnd(cmd);
1226 case SD_LBP_WS16:
1227 return sd_setup_write_same16_cmnd(cmd, true);
1228 case SD_LBP_WS10:
1229 return sd_setup_write_same10_cmnd(cmd, true);
1230 case SD_LBP_ZERO:
1231 return sd_setup_write_same10_cmnd(cmd, false);
1232 default:
1233 return BLKPREP_INVALID;
1234 }
1235 case REQ_OP_WRITE_ZEROES:
1236 return sd_setup_write_zeroes_cmnd(cmd);
1237 case REQ_OP_WRITE_SAME:
1238 return sd_setup_write_same_cmnd(cmd);
1239 case REQ_OP_FLUSH:
1240 return sd_setup_flush_cmnd(cmd);
1241 case REQ_OP_READ:
1242 case REQ_OP_WRITE:
1243 return sd_setup_read_write_cmnd(cmd);
1244 case REQ_OP_ZONE_REPORT:
1245 return sd_zbc_setup_report_cmnd(cmd);
1246 case REQ_OP_ZONE_RESET:
1247 return sd_zbc_setup_reset_cmnd(cmd);
1248 default:
1249 BUG();
1250 }
1251 }
1252
1253 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1254 {
1255 struct request *rq = SCpnt->request;
1256
1257 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1258 __free_page(rq->special_vec.bv_page);
1259
1260 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1261 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1262 SCpnt->cmnd = NULL;
1263 SCpnt->cmd_len = 0;
1264 }
1265 }
1266
1267 /**
1268 * sd_open - open a scsi disk device
1269 * @bdev: Block device of the scsi disk to open
1270 * @mode: FMODE_* mask
1271 *
1272 * Returns 0 if successful. Returns a negated errno value in case
1273 * of error.
1274 *
1275 * Note: This can be called from a user context (e.g. fsck(1) )
1276 * or from within the kernel (e.g. as a result of a mount(1) ).
1277 * In the latter case @inode and @filp carry an abridged amount
1278 * of information as noted above.
1279 *
1280 * Locking: called with bdev->bd_mutex held.
1281 **/
1282 static int sd_open(struct block_device *bdev, fmode_t mode)
1283 {
1284 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1285 struct scsi_device *sdev;
1286 int retval;
1287
1288 if (!sdkp)
1289 return -ENXIO;
1290
1291 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1292
1293 sdev = sdkp->device;
1294
1295 /*
1296 * If the device is in error recovery, wait until it is done.
1297 * If the device is offline, then disallow any access to it.
1298 */
1299 retval = -ENXIO;
1300 if (!scsi_block_when_processing_errors(sdev))
1301 goto error_out;
1302
1303 if (sdev->removable || sdkp->write_prot)
1304 check_disk_change(bdev);
1305
1306 /*
1307 * If the drive is empty, just let the open fail.
1308 */
1309 retval = -ENOMEDIUM;
1310 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1311 goto error_out;
1312
1313 /*
1314 * If the device has the write protect tab set, have the open fail
1315 * if the user expects to be able to write to the thing.
1316 */
1317 retval = -EROFS;
1318 if (sdkp->write_prot && (mode & FMODE_WRITE))
1319 goto error_out;
1320
1321 /*
1322 * It is possible that the disk changing stuff resulted in
1323 * the device being taken offline. If this is the case,
1324 * report this to the user, and don't pretend that the
1325 * open actually succeeded.
1326 */
1327 retval = -ENXIO;
1328 if (!scsi_device_online(sdev))
1329 goto error_out;
1330
1331 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1332 if (scsi_block_when_processing_errors(sdev))
1333 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1334 }
1335
1336 return 0;
1337
1338 error_out:
1339 scsi_disk_put(sdkp);
1340 return retval;
1341 }
1342
1343 /**
1344 * sd_release - invoked when the (last) close(2) is called on this
1345 * scsi disk.
1346 * @disk: disk to release
1347 * @mode: FMODE_* mask
1348 *
1349 * Returns 0.
1350 *
1351 * Note: may block (uninterruptible) if error recovery is underway
1352 * on this disk.
1353 *
1354 * Locking: called with bdev->bd_mutex held.
1355 **/
1356 static void sd_release(struct gendisk *disk, fmode_t mode)
1357 {
1358 struct scsi_disk *sdkp = scsi_disk(disk);
1359 struct scsi_device *sdev = sdkp->device;
1360
1361 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1362
1363 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1364 if (scsi_block_when_processing_errors(sdev))
1365 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1366 }
1367
1368 /*
1369 * XXX and what if there are packets in flight and this close()
1370 * XXX is followed by a "rmmod sd_mod"?
1371 */
1372
1373 scsi_disk_put(sdkp);
1374 }
1375
1376 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1377 {
1378 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1379 struct scsi_device *sdp = sdkp->device;
1380 struct Scsi_Host *host = sdp->host;
1381 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1382 int diskinfo[4];
1383
1384 /* default to most commonly used values */
1385 diskinfo[0] = 0x40; /* 1 << 6 */
1386 diskinfo[1] = 0x20; /* 1 << 5 */
1387 diskinfo[2] = capacity >> 11;
1388
1389 /* override with calculated, extended default, or driver values */
1390 if (host->hostt->bios_param)
1391 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1392 else
1393 scsicam_bios_param(bdev, capacity, diskinfo);
1394
1395 geo->heads = diskinfo[0];
1396 geo->sectors = diskinfo[1];
1397 geo->cylinders = diskinfo[2];
1398 return 0;
1399 }
1400
1401 /**
1402 * sd_ioctl - process an ioctl
1403 * @bdev: target block device
1404 * @mode: FMODE_* mask
1405 * @cmd: ioctl command number
1406 * @arg: this is third argument given to ioctl(2) system call.
1407 * Often contains a pointer.
1408 *
1409 * Returns 0 if successful (some ioctls return positive numbers on
1410 * success as well). Returns a negated errno value in case of error.
1411 *
1412 * Note: most ioctls are forward onto the block subsystem or further
1413 * down in the scsi subsystem.
1414 **/
1415 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1416 unsigned int cmd, unsigned long arg)
1417 {
1418 struct gendisk *disk = bdev->bd_disk;
1419 struct scsi_disk *sdkp = scsi_disk(disk);
1420 struct scsi_device *sdp = sdkp->device;
1421 void __user *p = (void __user *)arg;
1422 int error;
1423
1424 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1425 "cmd=0x%x\n", disk->disk_name, cmd));
1426
1427 error = scsi_verify_blk_ioctl(bdev, cmd);
1428 if (error < 0)
1429 return error;
1430
1431 /*
1432 * If we are in the middle of error recovery, don't let anyone
1433 * else try and use this device. Also, if error recovery fails, it
1434 * may try and take the device offline, in which case all further
1435 * access to the device is prohibited.
1436 */
1437 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1438 (mode & FMODE_NDELAY) != 0);
1439 if (error)
1440 goto out;
1441
1442 /*
1443 * Send SCSI addressing ioctls directly to mid level, send other
1444 * ioctls to block level and then onto mid level if they can't be
1445 * resolved.
1446 */
1447 switch (cmd) {
1448 case SCSI_IOCTL_GET_IDLUN:
1449 case SCSI_IOCTL_GET_BUS_NUMBER:
1450 error = scsi_ioctl(sdp, cmd, p);
1451 break;
1452 default:
1453 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1454 if (error != -ENOTTY)
1455 break;
1456 error = scsi_ioctl(sdp, cmd, p);
1457 break;
1458 }
1459 out:
1460 return error;
1461 }
1462
1463 static void set_media_not_present(struct scsi_disk *sdkp)
1464 {
1465 if (sdkp->media_present)
1466 sdkp->device->changed = 1;
1467
1468 if (sdkp->device->removable) {
1469 sdkp->media_present = 0;
1470 sdkp->capacity = 0;
1471 }
1472 }
1473
1474 static int media_not_present(struct scsi_disk *sdkp,
1475 struct scsi_sense_hdr *sshdr)
1476 {
1477 if (!scsi_sense_valid(sshdr))
1478 return 0;
1479
1480 /* not invoked for commands that could return deferred errors */
1481 switch (sshdr->sense_key) {
1482 case UNIT_ATTENTION:
1483 case NOT_READY:
1484 /* medium not present */
1485 if (sshdr->asc == 0x3A) {
1486 set_media_not_present(sdkp);
1487 return 1;
1488 }
1489 }
1490 return 0;
1491 }
1492
1493 /**
1494 * sd_check_events - check media events
1495 * @disk: kernel device descriptor
1496 * @clearing: disk events currently being cleared
1497 *
1498 * Returns mask of DISK_EVENT_*.
1499 *
1500 * Note: this function is invoked from the block subsystem.
1501 **/
1502 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1503 {
1504 struct scsi_disk *sdkp = scsi_disk_get(disk);
1505 struct scsi_device *sdp;
1506 int retval;
1507
1508 if (!sdkp)
1509 return 0;
1510
1511 sdp = sdkp->device;
1512 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1513
1514 /*
1515 * If the device is offline, don't send any commands - just pretend as
1516 * if the command failed. If the device ever comes back online, we
1517 * can deal with it then. It is only because of unrecoverable errors
1518 * that we would ever take a device offline in the first place.
1519 */
1520 if (!scsi_device_online(sdp)) {
1521 set_media_not_present(sdkp);
1522 goto out;
1523 }
1524
1525 /*
1526 * Using TEST_UNIT_READY enables differentiation between drive with
1527 * no cartridge loaded - NOT READY, drive with changed cartridge -
1528 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1529 *
1530 * Drives that auto spin down. eg iomega jaz 1G, will be started
1531 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1532 * sd_revalidate() is called.
1533 */
1534 if (scsi_block_when_processing_errors(sdp)) {
1535 struct scsi_sense_hdr sshdr = { 0, };
1536
1537 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1538 &sshdr);
1539
1540 /* failed to execute TUR, assume media not present */
1541 if (host_byte(retval)) {
1542 set_media_not_present(sdkp);
1543 goto out;
1544 }
1545
1546 if (media_not_present(sdkp, &sshdr))
1547 goto out;
1548 }
1549
1550 /*
1551 * For removable scsi disk we have to recognise the presence
1552 * of a disk in the drive.
1553 */
1554 if (!sdkp->media_present)
1555 sdp->changed = 1;
1556 sdkp->media_present = 1;
1557 out:
1558 /*
1559 * sdp->changed is set under the following conditions:
1560 *
1561 * Medium present state has changed in either direction.
1562 * Device has indicated UNIT_ATTENTION.
1563 */
1564 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1565 sdp->changed = 0;
1566 scsi_disk_put(sdkp);
1567 return retval;
1568 }
1569
1570 static int sd_sync_cache(struct scsi_disk *sdkp)
1571 {
1572 int retries, res;
1573 struct scsi_device *sdp = sdkp->device;
1574 const int timeout = sdp->request_queue->rq_timeout
1575 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1576 struct scsi_sense_hdr sshdr;
1577
1578 if (!scsi_device_online(sdp))
1579 return -ENODEV;
1580
1581 for (retries = 3; retries > 0; --retries) {
1582 unsigned char cmd[10] = { 0 };
1583
1584 cmd[0] = SYNCHRONIZE_CACHE;
1585 /*
1586 * Leave the rest of the command zero to indicate
1587 * flush everything.
1588 */
1589 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
1590 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1591 if (res == 0)
1592 break;
1593 }
1594
1595 if (res) {
1596 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1597
1598 if (driver_byte(res) & DRIVER_SENSE)
1599 sd_print_sense_hdr(sdkp, &sshdr);
1600 /* we need to evaluate the error return */
1601 if (scsi_sense_valid(&sshdr) &&
1602 (sshdr.asc == 0x3a || /* medium not present */
1603 sshdr.asc == 0x20)) /* invalid command */
1604 /* this is no error here */
1605 return 0;
1606
1607 switch (host_byte(res)) {
1608 /* ignore errors due to racing a disconnection */
1609 case DID_BAD_TARGET:
1610 case DID_NO_CONNECT:
1611 return 0;
1612 /* signal the upper layer it might try again */
1613 case DID_BUS_BUSY:
1614 case DID_IMM_RETRY:
1615 case DID_REQUEUE:
1616 case DID_SOFT_ERROR:
1617 return -EBUSY;
1618 default:
1619 return -EIO;
1620 }
1621 }
1622 return 0;
1623 }
1624
1625 static void sd_rescan(struct device *dev)
1626 {
1627 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1628
1629 revalidate_disk(sdkp->disk);
1630 }
1631
1632
1633 #ifdef CONFIG_COMPAT
1634 /*
1635 * This gets directly called from VFS. When the ioctl
1636 * is not recognized we go back to the other translation paths.
1637 */
1638 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1639 unsigned int cmd, unsigned long arg)
1640 {
1641 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1642 int error;
1643
1644 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1645 (mode & FMODE_NDELAY) != 0);
1646 if (error)
1647 return error;
1648
1649 /*
1650 * Let the static ioctl translation table take care of it.
1651 */
1652 if (!sdev->host->hostt->compat_ioctl)
1653 return -ENOIOCTLCMD;
1654 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1655 }
1656 #endif
1657
1658 static char sd_pr_type(enum pr_type type)
1659 {
1660 switch (type) {
1661 case PR_WRITE_EXCLUSIVE:
1662 return 0x01;
1663 case PR_EXCLUSIVE_ACCESS:
1664 return 0x03;
1665 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1666 return 0x05;
1667 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1668 return 0x06;
1669 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1670 return 0x07;
1671 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1672 return 0x08;
1673 default:
1674 return 0;
1675 }
1676 };
1677
1678 static int sd_pr_command(struct block_device *bdev, u8 sa,
1679 u64 key, u64 sa_key, u8 type, u8 flags)
1680 {
1681 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1682 struct scsi_sense_hdr sshdr;
1683 int result;
1684 u8 cmd[16] = { 0, };
1685 u8 data[24] = { 0, };
1686
1687 cmd[0] = PERSISTENT_RESERVE_OUT;
1688 cmd[1] = sa;
1689 cmd[2] = type;
1690 put_unaligned_be32(sizeof(data), &cmd[5]);
1691
1692 put_unaligned_be64(key, &data[0]);
1693 put_unaligned_be64(sa_key, &data[8]);
1694 data[20] = flags;
1695
1696 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1697 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1698
1699 if ((driver_byte(result) & DRIVER_SENSE) &&
1700 (scsi_sense_valid(&sshdr))) {
1701 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1702 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1703 }
1704
1705 return result;
1706 }
1707
1708 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1709 u32 flags)
1710 {
1711 if (flags & ~PR_FL_IGNORE_KEY)
1712 return -EOPNOTSUPP;
1713 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1714 old_key, new_key, 0,
1715 (1 << 0) /* APTPL */);
1716 }
1717
1718 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1719 u32 flags)
1720 {
1721 if (flags)
1722 return -EOPNOTSUPP;
1723 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1724 }
1725
1726 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1727 {
1728 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1729 }
1730
1731 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1732 enum pr_type type, bool abort)
1733 {
1734 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1735 sd_pr_type(type), 0);
1736 }
1737
1738 static int sd_pr_clear(struct block_device *bdev, u64 key)
1739 {
1740 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1741 }
1742
1743 static const struct pr_ops sd_pr_ops = {
1744 .pr_register = sd_pr_register,
1745 .pr_reserve = sd_pr_reserve,
1746 .pr_release = sd_pr_release,
1747 .pr_preempt = sd_pr_preempt,
1748 .pr_clear = sd_pr_clear,
1749 };
1750
1751 static const struct block_device_operations sd_fops = {
1752 .owner = THIS_MODULE,
1753 .open = sd_open,
1754 .release = sd_release,
1755 .ioctl = sd_ioctl,
1756 .getgeo = sd_getgeo,
1757 #ifdef CONFIG_COMPAT
1758 .compat_ioctl = sd_compat_ioctl,
1759 #endif
1760 .check_events = sd_check_events,
1761 .revalidate_disk = sd_revalidate_disk,
1762 .unlock_native_capacity = sd_unlock_native_capacity,
1763 .pr_ops = &sd_pr_ops,
1764 };
1765
1766 /**
1767 * sd_eh_reset - reset error handling callback
1768 * @scmd: sd-issued command that has failed
1769 *
1770 * This function is called by the SCSI midlayer before starting
1771 * SCSI EH. When counting medium access failures we have to be
1772 * careful to register it only only once per device and SCSI EH run;
1773 * there might be several timed out commands which will cause the
1774 * 'max_medium_access_timeouts' counter to trigger after the first
1775 * SCSI EH run already and set the device to offline.
1776 * So this function resets the internal counter before starting SCSI EH.
1777 **/
1778 static void sd_eh_reset(struct scsi_cmnd *scmd)
1779 {
1780 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1781
1782 /* New SCSI EH run, reset gate variable */
1783 sdkp->ignore_medium_access_errors = false;
1784 }
1785
1786 /**
1787 * sd_eh_action - error handling callback
1788 * @scmd: sd-issued command that has failed
1789 * @eh_disp: The recovery disposition suggested by the midlayer
1790 *
1791 * This function is called by the SCSI midlayer upon completion of an
1792 * error test command (currently TEST UNIT READY). The result of sending
1793 * the eh command is passed in eh_disp. We're looking for devices that
1794 * fail medium access commands but are OK with non access commands like
1795 * test unit ready (so wrongly see the device as having a successful
1796 * recovery)
1797 **/
1798 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1799 {
1800 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1801
1802 if (!scsi_device_online(scmd->device) ||
1803 !scsi_medium_access_command(scmd) ||
1804 host_byte(scmd->result) != DID_TIME_OUT ||
1805 eh_disp != SUCCESS)
1806 return eh_disp;
1807
1808 /*
1809 * The device has timed out executing a medium access command.
1810 * However, the TEST UNIT READY command sent during error
1811 * handling completed successfully. Either the device is in the
1812 * process of recovering or has it suffered an internal failure
1813 * that prevents access to the storage medium.
1814 */
1815 if (!sdkp->ignore_medium_access_errors) {
1816 sdkp->medium_access_timed_out++;
1817 sdkp->ignore_medium_access_errors = true;
1818 }
1819
1820 /*
1821 * If the device keeps failing read/write commands but TEST UNIT
1822 * READY always completes successfully we assume that medium
1823 * access is no longer possible and take the device offline.
1824 */
1825 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1826 scmd_printk(KERN_ERR, scmd,
1827 "Medium access timeout failure. Offlining disk!\n");
1828 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1829
1830 return SUCCESS;
1831 }
1832
1833 return eh_disp;
1834 }
1835
1836 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1837 {
1838 struct request *req = scmd->request;
1839 struct scsi_device *sdev = scmd->device;
1840 unsigned int transferred, good_bytes;
1841 u64 start_lba, end_lba, bad_lba;
1842
1843 /*
1844 * Some commands have a payload smaller than the device logical
1845 * block size (e.g. INQUIRY on a 4K disk).
1846 */
1847 if (scsi_bufflen(scmd) <= sdev->sector_size)
1848 return 0;
1849
1850 /* Check if we have a 'bad_lba' information */
1851 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1852 SCSI_SENSE_BUFFERSIZE,
1853 &bad_lba))
1854 return 0;
1855
1856 /*
1857 * If the bad lba was reported incorrectly, we have no idea where
1858 * the error is.
1859 */
1860 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1861 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1862 if (bad_lba < start_lba || bad_lba >= end_lba)
1863 return 0;
1864
1865 /*
1866 * resid is optional but mostly filled in. When it's unused,
1867 * its value is zero, so we assume the whole buffer transferred
1868 */
1869 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1870
1871 /* This computation should always be done in terms of the
1872 * resolution of the device's medium.
1873 */
1874 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1875
1876 return min(good_bytes, transferred);
1877 }
1878
1879 /**
1880 * sd_done - bottom half handler: called when the lower level
1881 * driver has completed (successfully or otherwise) a scsi command.
1882 * @SCpnt: mid-level's per command structure.
1883 *
1884 * Note: potentially run from within an ISR. Must not block.
1885 **/
1886 static int sd_done(struct scsi_cmnd *SCpnt)
1887 {
1888 int result = SCpnt->result;
1889 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1890 unsigned int sector_size = SCpnt->device->sector_size;
1891 unsigned int resid;
1892 struct scsi_sense_hdr sshdr;
1893 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1894 struct request *req = SCpnt->request;
1895 int sense_valid = 0;
1896 int sense_deferred = 0;
1897
1898 switch (req_op(req)) {
1899 case REQ_OP_DISCARD:
1900 case REQ_OP_WRITE_ZEROES:
1901 case REQ_OP_WRITE_SAME:
1902 case REQ_OP_ZONE_RESET:
1903 if (!result) {
1904 good_bytes = blk_rq_bytes(req);
1905 scsi_set_resid(SCpnt, 0);
1906 } else {
1907 good_bytes = 0;
1908 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1909 }
1910 break;
1911 case REQ_OP_ZONE_REPORT:
1912 if (!result) {
1913 good_bytes = scsi_bufflen(SCpnt)
1914 - scsi_get_resid(SCpnt);
1915 scsi_set_resid(SCpnt, 0);
1916 } else {
1917 good_bytes = 0;
1918 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1919 }
1920 break;
1921 default:
1922 /*
1923 * In case of bogus fw or device, we could end up having
1924 * an unaligned partial completion. Check this here and force
1925 * alignment.
1926 */
1927 resid = scsi_get_resid(SCpnt);
1928 if (resid & (sector_size - 1)) {
1929 sd_printk(KERN_INFO, sdkp,
1930 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1931 resid, sector_size);
1932 resid = min(scsi_bufflen(SCpnt),
1933 round_up(resid, sector_size));
1934 scsi_set_resid(SCpnt, resid);
1935 }
1936 }
1937
1938 if (result) {
1939 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1940 if (sense_valid)
1941 sense_deferred = scsi_sense_is_deferred(&sshdr);
1942 }
1943 sdkp->medium_access_timed_out = 0;
1944
1945 if (driver_byte(result) != DRIVER_SENSE &&
1946 (!sense_valid || sense_deferred))
1947 goto out;
1948
1949 switch (sshdr.sense_key) {
1950 case HARDWARE_ERROR:
1951 case MEDIUM_ERROR:
1952 good_bytes = sd_completed_bytes(SCpnt);
1953 break;
1954 case RECOVERED_ERROR:
1955 good_bytes = scsi_bufflen(SCpnt);
1956 break;
1957 case NO_SENSE:
1958 /* This indicates a false check condition, so ignore it. An
1959 * unknown amount of data was transferred so treat it as an
1960 * error.
1961 */
1962 SCpnt->result = 0;
1963 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1964 break;
1965 case ABORTED_COMMAND:
1966 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1967 good_bytes = sd_completed_bytes(SCpnt);
1968 break;
1969 case ILLEGAL_REQUEST:
1970 switch (sshdr.asc) {
1971 case 0x10: /* DIX: Host detected corruption */
1972 good_bytes = sd_completed_bytes(SCpnt);
1973 break;
1974 case 0x20: /* INVALID COMMAND OPCODE */
1975 case 0x24: /* INVALID FIELD IN CDB */
1976 switch (SCpnt->cmnd[0]) {
1977 case UNMAP:
1978 sd_config_discard(sdkp, SD_LBP_DISABLE);
1979 break;
1980 case WRITE_SAME_16:
1981 case WRITE_SAME:
1982 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
1983 sd_config_discard(sdkp, SD_LBP_DISABLE);
1984 } else {
1985 sdkp->device->no_write_same = 1;
1986 sd_config_write_same(sdkp);
1987 req->__data_len = blk_rq_bytes(req);
1988 req->rq_flags |= RQF_QUIET;
1989 }
1990 break;
1991 }
1992 }
1993 break;
1994 default:
1995 break;
1996 }
1997
1998 out:
1999 if (sd_is_zoned(sdkp))
2000 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2001
2002 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2003 "sd_done: completed %d of %d bytes\n",
2004 good_bytes, scsi_bufflen(SCpnt)));
2005
2006 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2007 sd_dif_complete(SCpnt, good_bytes);
2008
2009 return good_bytes;
2010 }
2011
2012 /*
2013 * spinup disk - called only in sd_revalidate_disk()
2014 */
2015 static void
2016 sd_spinup_disk(struct scsi_disk *sdkp)
2017 {
2018 unsigned char cmd[10];
2019 unsigned long spintime_expire = 0;
2020 int retries, spintime;
2021 unsigned int the_result;
2022 struct scsi_sense_hdr sshdr;
2023 int sense_valid = 0;
2024
2025 spintime = 0;
2026
2027 /* Spin up drives, as required. Only do this at boot time */
2028 /* Spinup needs to be done for module loads too. */
2029 do {
2030 retries = 0;
2031
2032 do {
2033 cmd[0] = TEST_UNIT_READY;
2034 memset((void *) &cmd[1], 0, 9);
2035
2036 the_result = scsi_execute_req(sdkp->device, cmd,
2037 DMA_NONE, NULL, 0,
2038 &sshdr, SD_TIMEOUT,
2039 SD_MAX_RETRIES, NULL);
2040
2041 /*
2042 * If the drive has indicated to us that it
2043 * doesn't have any media in it, don't bother
2044 * with any more polling.
2045 */
2046 if (media_not_present(sdkp, &sshdr))
2047 return;
2048
2049 if (the_result)
2050 sense_valid = scsi_sense_valid(&sshdr);
2051 retries++;
2052 } while (retries < 3 &&
2053 (!scsi_status_is_good(the_result) ||
2054 ((driver_byte(the_result) & DRIVER_SENSE) &&
2055 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2056
2057 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2058 /* no sense, TUR either succeeded or failed
2059 * with a status error */
2060 if(!spintime && !scsi_status_is_good(the_result)) {
2061 sd_print_result(sdkp, "Test Unit Ready failed",
2062 the_result);
2063 }
2064 break;
2065 }
2066
2067 /*
2068 * The device does not want the automatic start to be issued.
2069 */
2070 if (sdkp->device->no_start_on_add)
2071 break;
2072
2073 if (sense_valid && sshdr.sense_key == NOT_READY) {
2074 if (sshdr.asc == 4 && sshdr.ascq == 3)
2075 break; /* manual intervention required */
2076 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2077 break; /* standby */
2078 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2079 break; /* unavailable */
2080 /*
2081 * Issue command to spin up drive when not ready
2082 */
2083 if (!spintime) {
2084 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2085 cmd[0] = START_STOP;
2086 cmd[1] = 1; /* Return immediately */
2087 memset((void *) &cmd[2], 0, 8);
2088 cmd[4] = 1; /* Start spin cycle */
2089 if (sdkp->device->start_stop_pwr_cond)
2090 cmd[4] |= 1 << 4;
2091 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2092 NULL, 0, &sshdr,
2093 SD_TIMEOUT, SD_MAX_RETRIES,
2094 NULL);
2095 spintime_expire = jiffies + 100 * HZ;
2096 spintime = 1;
2097 }
2098 /* Wait 1 second for next try */
2099 msleep(1000);
2100 printk(".");
2101
2102 /*
2103 * Wait for USB flash devices with slow firmware.
2104 * Yes, this sense key/ASC combination shouldn't
2105 * occur here. It's characteristic of these devices.
2106 */
2107 } else if (sense_valid &&
2108 sshdr.sense_key == UNIT_ATTENTION &&
2109 sshdr.asc == 0x28) {
2110 if (!spintime) {
2111 spintime_expire = jiffies + 5 * HZ;
2112 spintime = 1;
2113 }
2114 /* Wait 1 second for next try */
2115 msleep(1000);
2116 } else {
2117 /* we don't understand the sense code, so it's
2118 * probably pointless to loop */
2119 if(!spintime) {
2120 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2121 sd_print_sense_hdr(sdkp, &sshdr);
2122 }
2123 break;
2124 }
2125
2126 } while (spintime && time_before_eq(jiffies, spintime_expire));
2127
2128 if (spintime) {
2129 if (scsi_status_is_good(the_result))
2130 printk("ready\n");
2131 else
2132 printk("not responding...\n");
2133 }
2134 }
2135
2136 /*
2137 * Determine whether disk supports Data Integrity Field.
2138 */
2139 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2140 {
2141 struct scsi_device *sdp = sdkp->device;
2142 u8 type;
2143 int ret = 0;
2144
2145 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2146 return ret;
2147
2148 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2149
2150 if (type > T10_PI_TYPE3_PROTECTION)
2151 ret = -ENODEV;
2152 else if (scsi_host_dif_capable(sdp->host, type))
2153 ret = 1;
2154
2155 if (sdkp->first_scan || type != sdkp->protection_type)
2156 switch (ret) {
2157 case -ENODEV:
2158 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2159 " protection type %u. Disabling disk!\n",
2160 type);
2161 break;
2162 case 1:
2163 sd_printk(KERN_NOTICE, sdkp,
2164 "Enabling DIF Type %u protection\n", type);
2165 break;
2166 case 0:
2167 sd_printk(KERN_NOTICE, sdkp,
2168 "Disabling DIF Type %u protection\n", type);
2169 break;
2170 }
2171
2172 sdkp->protection_type = type;
2173
2174 return ret;
2175 }
2176
2177 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2178 struct scsi_sense_hdr *sshdr, int sense_valid,
2179 int the_result)
2180 {
2181 if (driver_byte(the_result) & DRIVER_SENSE)
2182 sd_print_sense_hdr(sdkp, sshdr);
2183 else
2184 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2185
2186 /*
2187 * Set dirty bit for removable devices if not ready -
2188 * sometimes drives will not report this properly.
2189 */
2190 if (sdp->removable &&
2191 sense_valid && sshdr->sense_key == NOT_READY)
2192 set_media_not_present(sdkp);
2193
2194 /*
2195 * We used to set media_present to 0 here to indicate no media
2196 * in the drive, but some drives fail read capacity even with
2197 * media present, so we can't do that.
2198 */
2199 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2200 }
2201
2202 #define RC16_LEN 32
2203 #if RC16_LEN > SD_BUF_SIZE
2204 #error RC16_LEN must not be more than SD_BUF_SIZE
2205 #endif
2206
2207 #define READ_CAPACITY_RETRIES_ON_RESET 10
2208
2209 /*
2210 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2211 * and the reported logical block size is bigger than 512 bytes. Note
2212 * that last_sector is a u64 and therefore logical_to_sectors() is not
2213 * applicable.
2214 */
2215 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2216 {
2217 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2218
2219 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2220 return false;
2221
2222 return true;
2223 }
2224
2225 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2226 unsigned char *buffer)
2227 {
2228 unsigned char cmd[16];
2229 struct scsi_sense_hdr sshdr;
2230 int sense_valid = 0;
2231 int the_result;
2232 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2233 unsigned int alignment;
2234 unsigned long long lba;
2235 unsigned sector_size;
2236
2237 if (sdp->no_read_capacity_16)
2238 return -EINVAL;
2239
2240 do {
2241 memset(cmd, 0, 16);
2242 cmd[0] = SERVICE_ACTION_IN_16;
2243 cmd[1] = SAI_READ_CAPACITY_16;
2244 cmd[13] = RC16_LEN;
2245 memset(buffer, 0, RC16_LEN);
2246
2247 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2248 buffer, RC16_LEN, &sshdr,
2249 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2250
2251 if (media_not_present(sdkp, &sshdr))
2252 return -ENODEV;
2253
2254 if (the_result) {
2255 sense_valid = scsi_sense_valid(&sshdr);
2256 if (sense_valid &&
2257 sshdr.sense_key == ILLEGAL_REQUEST &&
2258 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2259 sshdr.ascq == 0x00)
2260 /* Invalid Command Operation Code or
2261 * Invalid Field in CDB, just retry
2262 * silently with RC10 */
2263 return -EINVAL;
2264 if (sense_valid &&
2265 sshdr.sense_key == UNIT_ATTENTION &&
2266 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2267 /* Device reset might occur several times,
2268 * give it one more chance */
2269 if (--reset_retries > 0)
2270 continue;
2271 }
2272 retries--;
2273
2274 } while (the_result && retries);
2275
2276 if (the_result) {
2277 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2278 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2279 return -EINVAL;
2280 }
2281
2282 sector_size = get_unaligned_be32(&buffer[8]);
2283 lba = get_unaligned_be64(&buffer[0]);
2284
2285 if (sd_read_protection_type(sdkp, buffer) < 0) {
2286 sdkp->capacity = 0;
2287 return -ENODEV;
2288 }
2289
2290 if (!sd_addressable_capacity(lba, sector_size)) {
2291 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2292 "kernel compiled with support for large block "
2293 "devices.\n");
2294 sdkp->capacity = 0;
2295 return -EOVERFLOW;
2296 }
2297
2298 /* Logical blocks per physical block exponent */
2299 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2300
2301 /* RC basis */
2302 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2303
2304 /* Lowest aligned logical block */
2305 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2306 blk_queue_alignment_offset(sdp->request_queue, alignment);
2307 if (alignment && sdkp->first_scan)
2308 sd_printk(KERN_NOTICE, sdkp,
2309 "physical block alignment offset: %u\n", alignment);
2310
2311 if (buffer[14] & 0x80) { /* LBPME */
2312 sdkp->lbpme = 1;
2313
2314 if (buffer[14] & 0x40) /* LBPRZ */
2315 sdkp->lbprz = 1;
2316
2317 sd_config_discard(sdkp, SD_LBP_WS16);
2318 }
2319
2320 sdkp->capacity = lba + 1;
2321 return sector_size;
2322 }
2323
2324 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2325 unsigned char *buffer)
2326 {
2327 unsigned char cmd[16];
2328 struct scsi_sense_hdr sshdr;
2329 int sense_valid = 0;
2330 int the_result;
2331 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2332 sector_t lba;
2333 unsigned sector_size;
2334
2335 do {
2336 cmd[0] = READ_CAPACITY;
2337 memset(&cmd[1], 0, 9);
2338 memset(buffer, 0, 8);
2339
2340 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2341 buffer, 8, &sshdr,
2342 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2343
2344 if (media_not_present(sdkp, &sshdr))
2345 return -ENODEV;
2346
2347 if (the_result) {
2348 sense_valid = scsi_sense_valid(&sshdr);
2349 if (sense_valid &&
2350 sshdr.sense_key == UNIT_ATTENTION &&
2351 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2352 /* Device reset might occur several times,
2353 * give it one more chance */
2354 if (--reset_retries > 0)
2355 continue;
2356 }
2357 retries--;
2358
2359 } while (the_result && retries);
2360
2361 if (the_result) {
2362 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2363 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2364 return -EINVAL;
2365 }
2366
2367 sector_size = get_unaligned_be32(&buffer[4]);
2368 lba = get_unaligned_be32(&buffer[0]);
2369
2370 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2371 /* Some buggy (usb cardreader) devices return an lba of
2372 0xffffffff when the want to report a size of 0 (with
2373 which they really mean no media is present) */
2374 sdkp->capacity = 0;
2375 sdkp->physical_block_size = sector_size;
2376 return sector_size;
2377 }
2378
2379 if (!sd_addressable_capacity(lba, sector_size)) {
2380 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2381 "kernel compiled with support for large block "
2382 "devices.\n");
2383 sdkp->capacity = 0;
2384 return -EOVERFLOW;
2385 }
2386
2387 sdkp->capacity = lba + 1;
2388 sdkp->physical_block_size = sector_size;
2389 return sector_size;
2390 }
2391
2392 static int sd_try_rc16_first(struct scsi_device *sdp)
2393 {
2394 if (sdp->host->max_cmd_len < 16)
2395 return 0;
2396 if (sdp->try_rc_10_first)
2397 return 0;
2398 if (sdp->scsi_level > SCSI_SPC_2)
2399 return 1;
2400 if (scsi_device_protection(sdp))
2401 return 1;
2402 return 0;
2403 }
2404
2405 /*
2406 * read disk capacity
2407 */
2408 static void
2409 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2410 {
2411 int sector_size;
2412 struct scsi_device *sdp = sdkp->device;
2413
2414 if (sd_try_rc16_first(sdp)) {
2415 sector_size = read_capacity_16(sdkp, sdp, buffer);
2416 if (sector_size == -EOVERFLOW)
2417 goto got_data;
2418 if (sector_size == -ENODEV)
2419 return;
2420 if (sector_size < 0)
2421 sector_size = read_capacity_10(sdkp, sdp, buffer);
2422 if (sector_size < 0)
2423 return;
2424 } else {
2425 sector_size = read_capacity_10(sdkp, sdp, buffer);
2426 if (sector_size == -EOVERFLOW)
2427 goto got_data;
2428 if (sector_size < 0)
2429 return;
2430 if ((sizeof(sdkp->capacity) > 4) &&
2431 (sdkp->capacity > 0xffffffffULL)) {
2432 int old_sector_size = sector_size;
2433 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2434 "Trying to use READ CAPACITY(16).\n");
2435 sector_size = read_capacity_16(sdkp, sdp, buffer);
2436 if (sector_size < 0) {
2437 sd_printk(KERN_NOTICE, sdkp,
2438 "Using 0xffffffff as device size\n");
2439 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2440 sector_size = old_sector_size;
2441 goto got_data;
2442 }
2443 }
2444 }
2445
2446 /* Some devices are known to return the total number of blocks,
2447 * not the highest block number. Some devices have versions
2448 * which do this and others which do not. Some devices we might
2449 * suspect of doing this but we don't know for certain.
2450 *
2451 * If we know the reported capacity is wrong, decrement it. If
2452 * we can only guess, then assume the number of blocks is even
2453 * (usually true but not always) and err on the side of lowering
2454 * the capacity.
2455 */
2456 if (sdp->fix_capacity ||
2457 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2458 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2459 "from its reported value: %llu\n",
2460 (unsigned long long) sdkp->capacity);
2461 --sdkp->capacity;
2462 }
2463
2464 got_data:
2465 if (sector_size == 0) {
2466 sector_size = 512;
2467 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2468 "assuming 512.\n");
2469 }
2470
2471 if (sector_size != 512 &&
2472 sector_size != 1024 &&
2473 sector_size != 2048 &&
2474 sector_size != 4096) {
2475 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2476 sector_size);
2477 /*
2478 * The user might want to re-format the drive with
2479 * a supported sectorsize. Once this happens, it
2480 * would be relatively trivial to set the thing up.
2481 * For this reason, we leave the thing in the table.
2482 */
2483 sdkp->capacity = 0;
2484 /*
2485 * set a bogus sector size so the normal read/write
2486 * logic in the block layer will eventually refuse any
2487 * request on this device without tripping over power
2488 * of two sector size assumptions
2489 */
2490 sector_size = 512;
2491 }
2492 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2493 blk_queue_physical_block_size(sdp->request_queue,
2494 sdkp->physical_block_size);
2495 sdkp->device->sector_size = sector_size;
2496
2497 if (sdkp->capacity > 0xffffffff)
2498 sdp->use_16_for_rw = 1;
2499
2500 }
2501
2502 /*
2503 * Print disk capacity
2504 */
2505 static void
2506 sd_print_capacity(struct scsi_disk *sdkp,
2507 sector_t old_capacity)
2508 {
2509 int sector_size = sdkp->device->sector_size;
2510 char cap_str_2[10], cap_str_10[10];
2511
2512 string_get_size(sdkp->capacity, sector_size,
2513 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2514 string_get_size(sdkp->capacity, sector_size,
2515 STRING_UNITS_10, cap_str_10,
2516 sizeof(cap_str_10));
2517
2518 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2519 sd_printk(KERN_NOTICE, sdkp,
2520 "%llu %d-byte logical blocks: (%s/%s)\n",
2521 (unsigned long long)sdkp->capacity,
2522 sector_size, cap_str_10, cap_str_2);
2523
2524 if (sdkp->physical_block_size != sector_size)
2525 sd_printk(KERN_NOTICE, sdkp,
2526 "%u-byte physical blocks\n",
2527 sdkp->physical_block_size);
2528
2529 sd_zbc_print_zones(sdkp);
2530 }
2531 }
2532
2533 /* called with buffer of length 512 */
2534 static inline int
2535 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2536 unsigned char *buffer, int len, struct scsi_mode_data *data,
2537 struct scsi_sense_hdr *sshdr)
2538 {
2539 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2540 SD_TIMEOUT, SD_MAX_RETRIES, data,
2541 sshdr);
2542 }
2543
2544 /*
2545 * read write protect setting, if possible - called only in sd_revalidate_disk()
2546 * called with buffer of length SD_BUF_SIZE
2547 */
2548 static void
2549 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2550 {
2551 int res;
2552 struct scsi_device *sdp = sdkp->device;
2553 struct scsi_mode_data data;
2554 int old_wp = sdkp->write_prot;
2555
2556 set_disk_ro(sdkp->disk, 0);
2557 if (sdp->skip_ms_page_3f) {
2558 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2559 return;
2560 }
2561
2562 if (sdp->use_192_bytes_for_3f) {
2563 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2564 } else {
2565 /*
2566 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2567 * We have to start carefully: some devices hang if we ask
2568 * for more than is available.
2569 */
2570 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2571
2572 /*
2573 * Second attempt: ask for page 0 When only page 0 is
2574 * implemented, a request for page 3F may return Sense Key
2575 * 5: Illegal Request, Sense Code 24: Invalid field in
2576 * CDB.
2577 */
2578 if (!scsi_status_is_good(res))
2579 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2580
2581 /*
2582 * Third attempt: ask 255 bytes, as we did earlier.
2583 */
2584 if (!scsi_status_is_good(res))
2585 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2586 &data, NULL);
2587 }
2588
2589 if (!scsi_status_is_good(res)) {
2590 sd_first_printk(KERN_WARNING, sdkp,
2591 "Test WP failed, assume Write Enabled\n");
2592 } else {
2593 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2594 set_disk_ro(sdkp->disk, sdkp->write_prot);
2595 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2596 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2597 sdkp->write_prot ? "on" : "off");
2598 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2599 }
2600 }
2601 }
2602
2603 /*
2604 * sd_read_cache_type - called only from sd_revalidate_disk()
2605 * called with buffer of length SD_BUF_SIZE
2606 */
2607 static void
2608 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2609 {
2610 int len = 0, res;
2611 struct scsi_device *sdp = sdkp->device;
2612
2613 int dbd;
2614 int modepage;
2615 int first_len;
2616 struct scsi_mode_data data;
2617 struct scsi_sense_hdr sshdr;
2618 int old_wce = sdkp->WCE;
2619 int old_rcd = sdkp->RCD;
2620 int old_dpofua = sdkp->DPOFUA;
2621
2622
2623 if (sdkp->cache_override)
2624 return;
2625
2626 first_len = 4;
2627 if (sdp->skip_ms_page_8) {
2628 if (sdp->type == TYPE_RBC)
2629 goto defaults;
2630 else {
2631 if (sdp->skip_ms_page_3f)
2632 goto defaults;
2633 modepage = 0x3F;
2634 if (sdp->use_192_bytes_for_3f)
2635 first_len = 192;
2636 dbd = 0;
2637 }
2638 } else if (sdp->type == TYPE_RBC) {
2639 modepage = 6;
2640 dbd = 8;
2641 } else {
2642 modepage = 8;
2643 dbd = 0;
2644 }
2645
2646 /* cautiously ask */
2647 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2648 &data, &sshdr);
2649
2650 if (!scsi_status_is_good(res))
2651 goto bad_sense;
2652
2653 if (!data.header_length) {
2654 modepage = 6;
2655 first_len = 0;
2656 sd_first_printk(KERN_ERR, sdkp,
2657 "Missing header in MODE_SENSE response\n");
2658 }
2659
2660 /* that went OK, now ask for the proper length */
2661 len = data.length;
2662
2663 /*
2664 * We're only interested in the first three bytes, actually.
2665 * But the data cache page is defined for the first 20.
2666 */
2667 if (len < 3)
2668 goto bad_sense;
2669 else if (len > SD_BUF_SIZE) {
2670 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2671 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2672 len = SD_BUF_SIZE;
2673 }
2674 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2675 len = 192;
2676
2677 /* Get the data */
2678 if (len > first_len)
2679 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2680 &data, &sshdr);
2681
2682 if (scsi_status_is_good(res)) {
2683 int offset = data.header_length + data.block_descriptor_length;
2684
2685 while (offset < len) {
2686 u8 page_code = buffer[offset] & 0x3F;
2687 u8 spf = buffer[offset] & 0x40;
2688
2689 if (page_code == 8 || page_code == 6) {
2690 /* We're interested only in the first 3 bytes.
2691 */
2692 if (len - offset <= 2) {
2693 sd_first_printk(KERN_ERR, sdkp,
2694 "Incomplete mode parameter "
2695 "data\n");
2696 goto defaults;
2697 } else {
2698 modepage = page_code;
2699 goto Page_found;
2700 }
2701 } else {
2702 /* Go to the next page */
2703 if (spf && len - offset > 3)
2704 offset += 4 + (buffer[offset+2] << 8) +
2705 buffer[offset+3];
2706 else if (!spf && len - offset > 1)
2707 offset += 2 + buffer[offset+1];
2708 else {
2709 sd_first_printk(KERN_ERR, sdkp,
2710 "Incomplete mode "
2711 "parameter data\n");
2712 goto defaults;
2713 }
2714 }
2715 }
2716
2717 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2718 goto defaults;
2719
2720 Page_found:
2721 if (modepage == 8) {
2722 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2723 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2724 } else {
2725 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2726 sdkp->RCD = 0;
2727 }
2728
2729 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2730 if (sdp->broken_fua) {
2731 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2732 sdkp->DPOFUA = 0;
2733 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2734 !sdkp->device->use_16_for_rw) {
2735 sd_first_printk(KERN_NOTICE, sdkp,
2736 "Uses READ/WRITE(6), disabling FUA\n");
2737 sdkp->DPOFUA = 0;
2738 }
2739
2740 /* No cache flush allowed for write protected devices */
2741 if (sdkp->WCE && sdkp->write_prot)
2742 sdkp->WCE = 0;
2743
2744 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2745 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2746 sd_printk(KERN_NOTICE, sdkp,
2747 "Write cache: %s, read cache: %s, %s\n",
2748 sdkp->WCE ? "enabled" : "disabled",
2749 sdkp->RCD ? "disabled" : "enabled",
2750 sdkp->DPOFUA ? "supports DPO and FUA"
2751 : "doesn't support DPO or FUA");
2752
2753 return;
2754 }
2755
2756 bad_sense:
2757 if (scsi_sense_valid(&sshdr) &&
2758 sshdr.sense_key == ILLEGAL_REQUEST &&
2759 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2760 /* Invalid field in CDB */
2761 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2762 else
2763 sd_first_printk(KERN_ERR, sdkp,
2764 "Asking for cache data failed\n");
2765
2766 defaults:
2767 if (sdp->wce_default_on) {
2768 sd_first_printk(KERN_NOTICE, sdkp,
2769 "Assuming drive cache: write back\n");
2770 sdkp->WCE = 1;
2771 } else {
2772 sd_first_printk(KERN_ERR, sdkp,
2773 "Assuming drive cache: write through\n");
2774 sdkp->WCE = 0;
2775 }
2776 sdkp->RCD = 0;
2777 sdkp->DPOFUA = 0;
2778 }
2779
2780 /*
2781 * The ATO bit indicates whether the DIF application tag is available
2782 * for use by the operating system.
2783 */
2784 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2785 {
2786 int res, offset;
2787 struct scsi_device *sdp = sdkp->device;
2788 struct scsi_mode_data data;
2789 struct scsi_sense_hdr sshdr;
2790
2791 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2792 return;
2793
2794 if (sdkp->protection_type == 0)
2795 return;
2796
2797 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2798 SD_MAX_RETRIES, &data, &sshdr);
2799
2800 if (!scsi_status_is_good(res) || !data.header_length ||
2801 data.length < 6) {
2802 sd_first_printk(KERN_WARNING, sdkp,
2803 "getting Control mode page failed, assume no ATO\n");
2804
2805 if (scsi_sense_valid(&sshdr))
2806 sd_print_sense_hdr(sdkp, &sshdr);
2807
2808 return;
2809 }
2810
2811 offset = data.header_length + data.block_descriptor_length;
2812
2813 if ((buffer[offset] & 0x3f) != 0x0a) {
2814 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2815 return;
2816 }
2817
2818 if ((buffer[offset + 5] & 0x80) == 0)
2819 return;
2820
2821 sdkp->ATO = 1;
2822
2823 return;
2824 }
2825
2826 /**
2827 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2828 * @sdkp: disk to query
2829 */
2830 static void sd_read_block_limits(struct scsi_disk *sdkp)
2831 {
2832 unsigned int sector_sz = sdkp->device->sector_size;
2833 const int vpd_len = 64;
2834 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2835
2836 if (!buffer ||
2837 /* Block Limits VPD */
2838 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2839 goto out;
2840
2841 blk_queue_io_min(sdkp->disk->queue,
2842 get_unaligned_be16(&buffer[6]) * sector_sz);
2843
2844 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2845 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2846
2847 if (buffer[3] == 0x3c) {
2848 unsigned int lba_count, desc_count;
2849
2850 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2851
2852 if (!sdkp->lbpme)
2853 goto out;
2854
2855 lba_count = get_unaligned_be32(&buffer[20]);
2856 desc_count = get_unaligned_be32(&buffer[24]);
2857
2858 if (lba_count && desc_count)
2859 sdkp->max_unmap_blocks = lba_count;
2860
2861 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2862
2863 if (buffer[32] & 0x80)
2864 sdkp->unmap_alignment =
2865 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2866
2867 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2868
2869 if (sdkp->max_unmap_blocks)
2870 sd_config_discard(sdkp, SD_LBP_UNMAP);
2871 else
2872 sd_config_discard(sdkp, SD_LBP_WS16);
2873
2874 } else { /* LBP VPD page tells us what to use */
2875 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2876 sd_config_discard(sdkp, SD_LBP_UNMAP);
2877 else if (sdkp->lbpws)
2878 sd_config_discard(sdkp, SD_LBP_WS16);
2879 else if (sdkp->lbpws10)
2880 sd_config_discard(sdkp, SD_LBP_WS10);
2881 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2882 sd_config_discard(sdkp, SD_LBP_UNMAP);
2883 else
2884 sd_config_discard(sdkp, SD_LBP_DISABLE);
2885 }
2886 }
2887
2888 out:
2889 kfree(buffer);
2890 }
2891
2892 /**
2893 * sd_read_block_characteristics - Query block dev. characteristics
2894 * @sdkp: disk to query
2895 */
2896 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2897 {
2898 struct request_queue *q = sdkp->disk->queue;
2899 unsigned char *buffer;
2900 u16 rot;
2901 const int vpd_len = 64;
2902
2903 buffer = kmalloc(vpd_len, GFP_KERNEL);
2904
2905 if (!buffer ||
2906 /* Block Device Characteristics VPD */
2907 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2908 goto out;
2909
2910 rot = get_unaligned_be16(&buffer[4]);
2911
2912 if (rot == 1) {
2913 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2914 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2915 }
2916
2917 if (sdkp->device->type == TYPE_ZBC) {
2918 /* Host-managed */
2919 q->limits.zoned = BLK_ZONED_HM;
2920 } else {
2921 sdkp->zoned = (buffer[8] >> 4) & 3;
2922 if (sdkp->zoned == 1)
2923 /* Host-aware */
2924 q->limits.zoned = BLK_ZONED_HA;
2925 else
2926 /*
2927 * Treat drive-managed devices as
2928 * regular block devices.
2929 */
2930 q->limits.zoned = BLK_ZONED_NONE;
2931 }
2932 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2933 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2934 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2935
2936 out:
2937 kfree(buffer);
2938 }
2939
2940 /**
2941 * sd_read_block_provisioning - Query provisioning VPD page
2942 * @sdkp: disk to query
2943 */
2944 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2945 {
2946 unsigned char *buffer;
2947 const int vpd_len = 8;
2948
2949 if (sdkp->lbpme == 0)
2950 return;
2951
2952 buffer = kmalloc(vpd_len, GFP_KERNEL);
2953
2954 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2955 goto out;
2956
2957 sdkp->lbpvpd = 1;
2958 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2959 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2960 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2961
2962 out:
2963 kfree(buffer);
2964 }
2965
2966 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2967 {
2968 struct scsi_device *sdev = sdkp->device;
2969
2970 if (sdev->host->no_write_same) {
2971 sdev->no_write_same = 1;
2972
2973 return;
2974 }
2975
2976 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2977 /* too large values might cause issues with arcmsr */
2978 int vpd_buf_len = 64;
2979
2980 sdev->no_report_opcodes = 1;
2981
2982 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2983 * CODES is unsupported and the device has an ATA
2984 * Information VPD page (SAT).
2985 */
2986 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2987 sdev->no_write_same = 1;
2988 }
2989
2990 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2991 sdkp->ws16 = 1;
2992
2993 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2994 sdkp->ws10 = 1;
2995 }
2996
2997 /**
2998 * sd_revalidate_disk - called the first time a new disk is seen,
2999 * performs disk spin up, read_capacity, etc.
3000 * @disk: struct gendisk we care about
3001 **/
3002 static int sd_revalidate_disk(struct gendisk *disk)
3003 {
3004 struct scsi_disk *sdkp = scsi_disk(disk);
3005 struct scsi_device *sdp = sdkp->device;
3006 struct request_queue *q = sdkp->disk->queue;
3007 sector_t old_capacity = sdkp->capacity;
3008 unsigned char *buffer;
3009 unsigned int dev_max, rw_max;
3010
3011 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3012 "sd_revalidate_disk\n"));
3013
3014 /*
3015 * If the device is offline, don't try and read capacity or any
3016 * of the other niceties.
3017 */
3018 if (!scsi_device_online(sdp))
3019 goto out;
3020
3021 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3022 if (!buffer) {
3023 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3024 "allocation failure.\n");
3025 goto out;
3026 }
3027
3028 sd_spinup_disk(sdkp);
3029
3030 /*
3031 * Without media there is no reason to ask; moreover, some devices
3032 * react badly if we do.
3033 */
3034 if (sdkp->media_present) {
3035 sd_read_capacity(sdkp, buffer);
3036
3037 if (scsi_device_supports_vpd(sdp)) {
3038 sd_read_block_provisioning(sdkp);
3039 sd_read_block_limits(sdkp);
3040 sd_read_block_characteristics(sdkp);
3041 sd_zbc_read_zones(sdkp, buffer);
3042 }
3043
3044 sd_print_capacity(sdkp, old_capacity);
3045
3046 sd_read_write_protect_flag(sdkp, buffer);
3047 sd_read_cache_type(sdkp, buffer);
3048 sd_read_app_tag_own(sdkp, buffer);
3049 sd_read_write_same(sdkp, buffer);
3050 }
3051
3052 sdkp->first_scan = 0;
3053
3054 /*
3055 * We now have all cache related info, determine how we deal
3056 * with flush requests.
3057 */
3058 sd_set_flush_flag(sdkp);
3059
3060 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3061 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3062
3063 /* Some devices report a maximum block count for READ/WRITE requests. */
3064 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3065 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3066
3067 /*
3068 * Use the device's preferred I/O size for reads and writes
3069 * unless the reported value is unreasonably small, large, or
3070 * garbage.
3071 */
3072 if (sdkp->opt_xfer_blocks &&
3073 sdkp->opt_xfer_blocks <= dev_max &&
3074 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3075 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3076 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3077 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3078 } else
3079 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3080 (sector_t)BLK_DEF_MAX_SECTORS);
3081
3082 /* Combine with controller limits */
3083 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3084
3085 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3086 sd_config_write_same(sdkp);
3087 kfree(buffer);
3088
3089 out:
3090 return 0;
3091 }
3092
3093 /**
3094 * sd_unlock_native_capacity - unlock native capacity
3095 * @disk: struct gendisk to set capacity for
3096 *
3097 * Block layer calls this function if it detects that partitions
3098 * on @disk reach beyond the end of the device. If the SCSI host
3099 * implements ->unlock_native_capacity() method, it's invoked to
3100 * give it a chance to adjust the device capacity.
3101 *
3102 * CONTEXT:
3103 * Defined by block layer. Might sleep.
3104 */
3105 static void sd_unlock_native_capacity(struct gendisk *disk)
3106 {
3107 struct scsi_device *sdev = scsi_disk(disk)->device;
3108
3109 if (sdev->host->hostt->unlock_native_capacity)
3110 sdev->host->hostt->unlock_native_capacity(sdev);
3111 }
3112
3113 /**
3114 * sd_format_disk_name - format disk name
3115 * @prefix: name prefix - ie. "sd" for SCSI disks
3116 * @index: index of the disk to format name for
3117 * @buf: output buffer
3118 * @buflen: length of the output buffer
3119 *
3120 * SCSI disk names starts at sda. The 26th device is sdz and the
3121 * 27th is sdaa. The last one for two lettered suffix is sdzz
3122 * which is followed by sdaaa.
3123 *
3124 * This is basically 26 base counting with one extra 'nil' entry
3125 * at the beginning from the second digit on and can be
3126 * determined using similar method as 26 base conversion with the
3127 * index shifted -1 after each digit is computed.
3128 *
3129 * CONTEXT:
3130 * Don't care.
3131 *
3132 * RETURNS:
3133 * 0 on success, -errno on failure.
3134 */
3135 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3136 {
3137 const int base = 'z' - 'a' + 1;
3138 char *begin = buf + strlen(prefix);
3139 char *end = buf + buflen;
3140 char *p;
3141 int unit;
3142
3143 p = end - 1;
3144 *p = '\0';
3145 unit = base;
3146 do {
3147 if (p == begin)
3148 return -EINVAL;
3149 *--p = 'a' + (index % unit);
3150 index = (index / unit) - 1;
3151 } while (index >= 0);
3152
3153 memmove(begin, p, end - p);
3154 memcpy(buf, prefix, strlen(prefix));
3155
3156 return 0;
3157 }
3158
3159 /*
3160 * The asynchronous part of sd_probe
3161 */
3162 static void sd_probe_async(void *data, async_cookie_t cookie)
3163 {
3164 struct scsi_disk *sdkp = data;
3165 struct scsi_device *sdp;
3166 struct gendisk *gd;
3167 u32 index;
3168 struct device *dev;
3169
3170 sdp = sdkp->device;
3171 gd = sdkp->disk;
3172 index = sdkp->index;
3173 dev = &sdp->sdev_gendev;
3174
3175 gd->major = sd_major((index & 0xf0) >> 4);
3176 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3177 gd->minors = SD_MINORS;
3178
3179 gd->fops = &sd_fops;
3180 gd->private_data = &sdkp->driver;
3181 gd->queue = sdkp->device->request_queue;
3182
3183 /* defaults, until the device tells us otherwise */
3184 sdp->sector_size = 512;
3185 sdkp->capacity = 0;
3186 sdkp->media_present = 1;
3187 sdkp->write_prot = 0;
3188 sdkp->cache_override = 0;
3189 sdkp->WCE = 0;
3190 sdkp->RCD = 0;
3191 sdkp->ATO = 0;
3192 sdkp->first_scan = 1;
3193 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3194
3195 sd_revalidate_disk(gd);
3196
3197 gd->flags = GENHD_FL_EXT_DEVT;
3198 if (sdp->removable) {
3199 gd->flags |= GENHD_FL_REMOVABLE;
3200 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3201 }
3202
3203 blk_pm_runtime_init(sdp->request_queue, dev);
3204 device_add_disk(dev, gd);
3205 if (sdkp->capacity)
3206 sd_dif_config_host(sdkp);
3207
3208 sd_revalidate_disk(gd);
3209
3210 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3211 sdp->removable ? "removable " : "");
3212 scsi_autopm_put_device(sdp);
3213 put_device(&sdkp->dev);
3214 }
3215
3216 /**
3217 * sd_probe - called during driver initialization and whenever a
3218 * new scsi device is attached to the system. It is called once
3219 * for each scsi device (not just disks) present.
3220 * @dev: pointer to device object
3221 *
3222 * Returns 0 if successful (or not interested in this scsi device
3223 * (e.g. scanner)); 1 when there is an error.
3224 *
3225 * Note: this function is invoked from the scsi mid-level.
3226 * This function sets up the mapping between a given
3227 * <host,channel,id,lun> (found in sdp) and new device name
3228 * (e.g. /dev/sda). More precisely it is the block device major
3229 * and minor number that is chosen here.
3230 *
3231 * Assume sd_probe is not re-entrant (for time being)
3232 * Also think about sd_probe() and sd_remove() running coincidentally.
3233 **/
3234 static int sd_probe(struct device *dev)
3235 {
3236 struct scsi_device *sdp = to_scsi_device(dev);
3237 struct scsi_disk *sdkp;
3238 struct gendisk *gd;
3239 int index;
3240 int error;
3241
3242 scsi_autopm_get_device(sdp);
3243 error = -ENODEV;
3244 if (sdp->type != TYPE_DISK &&
3245 sdp->type != TYPE_ZBC &&
3246 sdp->type != TYPE_MOD &&
3247 sdp->type != TYPE_RBC)
3248 goto out;
3249
3250 #ifndef CONFIG_BLK_DEV_ZONED
3251 if (sdp->type == TYPE_ZBC)
3252 goto out;
3253 #endif
3254 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3255 "sd_probe\n"));
3256
3257 error = -ENOMEM;
3258 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3259 if (!sdkp)
3260 goto out;
3261
3262 gd = alloc_disk(SD_MINORS);
3263 if (!gd)
3264 goto out_free;
3265
3266 do {
3267 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3268 goto out_put;
3269
3270 spin_lock(&sd_index_lock);
3271 error = ida_get_new(&sd_index_ida, &index);
3272 spin_unlock(&sd_index_lock);
3273 } while (error == -EAGAIN);
3274
3275 if (error) {
3276 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3277 goto out_put;
3278 }
3279
3280 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3281 if (error) {
3282 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3283 goto out_free_index;
3284 }
3285
3286 sdkp->device = sdp;
3287 sdkp->driver = &sd_template;
3288 sdkp->disk = gd;
3289 sdkp->index = index;
3290 atomic_set(&sdkp->openers, 0);
3291 atomic_set(&sdkp->device->ioerr_cnt, 0);
3292
3293 if (!sdp->request_queue->rq_timeout) {
3294 if (sdp->type != TYPE_MOD)
3295 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3296 else
3297 blk_queue_rq_timeout(sdp->request_queue,
3298 SD_MOD_TIMEOUT);
3299 }
3300
3301 device_initialize(&sdkp->dev);
3302 sdkp->dev.parent = dev;
3303 sdkp->dev.class = &sd_disk_class;
3304 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3305
3306 error = device_add(&sdkp->dev);
3307 if (error)
3308 goto out_free_index;
3309
3310 get_device(dev);
3311 dev_set_drvdata(dev, sdkp);
3312
3313 get_device(&sdkp->dev); /* prevent release before async_schedule */
3314 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3315
3316 return 0;
3317
3318 out_free_index:
3319 spin_lock(&sd_index_lock);
3320 ida_remove(&sd_index_ida, index);
3321 spin_unlock(&sd_index_lock);
3322 out_put:
3323 put_disk(gd);
3324 out_free:
3325 kfree(sdkp);
3326 out:
3327 scsi_autopm_put_device(sdp);
3328 return error;
3329 }
3330
3331 /**
3332 * sd_remove - called whenever a scsi disk (previously recognized by
3333 * sd_probe) is detached from the system. It is called (potentially
3334 * multiple times) during sd module unload.
3335 * @dev: pointer to device object
3336 *
3337 * Note: this function is invoked from the scsi mid-level.
3338 * This function potentially frees up a device name (e.g. /dev/sdc)
3339 * that could be re-used by a subsequent sd_probe().
3340 * This function is not called when the built-in sd driver is "exit-ed".
3341 **/
3342 static int sd_remove(struct device *dev)
3343 {
3344 struct scsi_disk *sdkp;
3345 dev_t devt;
3346
3347 sdkp = dev_get_drvdata(dev);
3348 devt = disk_devt(sdkp->disk);
3349 scsi_autopm_get_device(sdkp->device);
3350
3351 async_synchronize_full_domain(&scsi_sd_pm_domain);
3352 async_synchronize_full_domain(&scsi_sd_probe_domain);
3353 device_del(&sdkp->dev);
3354 del_gendisk(sdkp->disk);
3355 sd_shutdown(dev);
3356
3357 sd_zbc_remove(sdkp);
3358
3359 blk_register_region(devt, SD_MINORS, NULL,
3360 sd_default_probe, NULL, NULL);
3361
3362 mutex_lock(&sd_ref_mutex);
3363 dev_set_drvdata(dev, NULL);
3364 put_device(&sdkp->dev);
3365 mutex_unlock(&sd_ref_mutex);
3366
3367 return 0;
3368 }
3369
3370 /**
3371 * scsi_disk_release - Called to free the scsi_disk structure
3372 * @dev: pointer to embedded class device
3373 *
3374 * sd_ref_mutex must be held entering this routine. Because it is
3375 * called on last put, you should always use the scsi_disk_get()
3376 * scsi_disk_put() helpers which manipulate the semaphore directly
3377 * and never do a direct put_device.
3378 **/
3379 static void scsi_disk_release(struct device *dev)
3380 {
3381 struct scsi_disk *sdkp = to_scsi_disk(dev);
3382 struct gendisk *disk = sdkp->disk;
3383
3384 spin_lock(&sd_index_lock);
3385 ida_remove(&sd_index_ida, sdkp->index);
3386 spin_unlock(&sd_index_lock);
3387
3388 disk->private_data = NULL;
3389 put_disk(disk);
3390 put_device(&sdkp->device->sdev_gendev);
3391
3392 kfree(sdkp);
3393 }
3394
3395 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3396 {
3397 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3398 struct scsi_sense_hdr sshdr;
3399 struct scsi_device *sdp = sdkp->device;
3400 int res;
3401
3402 if (start)
3403 cmd[4] |= 1; /* START */
3404
3405 if (sdp->start_stop_pwr_cond)
3406 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3407
3408 if (!scsi_device_online(sdp))
3409 return -ENODEV;
3410
3411 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3412 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3413 if (res) {
3414 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3415 if (driver_byte(res) & DRIVER_SENSE)
3416 sd_print_sense_hdr(sdkp, &sshdr);
3417 if (scsi_sense_valid(&sshdr) &&
3418 /* 0x3a is medium not present */
3419 sshdr.asc == 0x3a)
3420 res = 0;
3421 }
3422
3423 /* SCSI error codes must not go to the generic layer */
3424 if (res)
3425 return -EIO;
3426
3427 return 0;
3428 }
3429
3430 /*
3431 * Send a SYNCHRONIZE CACHE instruction down to the device through
3432 * the normal SCSI command structure. Wait for the command to
3433 * complete.
3434 */
3435 static void sd_shutdown(struct device *dev)
3436 {
3437 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3438
3439 if (!sdkp)
3440 return; /* this can happen */
3441
3442 if (pm_runtime_suspended(dev))
3443 return;
3444
3445 if (sdkp->WCE && sdkp->media_present) {
3446 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3447 sd_sync_cache(sdkp);
3448 }
3449
3450 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3451 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3452 sd_start_stop_device(sdkp, 0);
3453 }
3454 }
3455
3456 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3457 {
3458 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3459 int ret = 0;
3460
3461 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3462 return 0;
3463
3464 if (sdkp->WCE && sdkp->media_present) {
3465 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3466 ret = sd_sync_cache(sdkp);
3467 if (ret) {
3468 /* ignore OFFLINE device */
3469 if (ret == -ENODEV)
3470 ret = 0;
3471 goto done;
3472 }
3473 }
3474
3475 if (sdkp->device->manage_start_stop) {
3476 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3477 /* an error is not worth aborting a system sleep */
3478 ret = sd_start_stop_device(sdkp, 0);
3479 if (ignore_stop_errors)
3480 ret = 0;
3481 }
3482
3483 done:
3484 return ret;
3485 }
3486
3487 static int sd_suspend_system(struct device *dev)
3488 {
3489 return sd_suspend_common(dev, true);
3490 }
3491
3492 static int sd_suspend_runtime(struct device *dev)
3493 {
3494 return sd_suspend_common(dev, false);
3495 }
3496
3497 static int sd_resume(struct device *dev)
3498 {
3499 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3500
3501 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3502 return 0;
3503
3504 if (!sdkp->device->manage_start_stop)
3505 return 0;
3506
3507 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3508 return sd_start_stop_device(sdkp, 1);
3509 }
3510
3511 /**
3512 * init_sd - entry point for this driver (both when built in or when
3513 * a module).
3514 *
3515 * Note: this function registers this driver with the scsi mid-level.
3516 **/
3517 static int __init init_sd(void)
3518 {
3519 int majors = 0, i, err;
3520
3521 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3522
3523 for (i = 0; i < SD_MAJORS; i++) {
3524 if (register_blkdev(sd_major(i), "sd") != 0)
3525 continue;
3526 majors++;
3527 blk_register_region(sd_major(i), SD_MINORS, NULL,
3528 sd_default_probe, NULL, NULL);
3529 }
3530
3531 if (!majors)
3532 return -ENODEV;
3533
3534 err = class_register(&sd_disk_class);
3535 if (err)
3536 goto err_out;
3537
3538 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3539 0, 0, NULL);
3540 if (!sd_cdb_cache) {
3541 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3542 err = -ENOMEM;
3543 goto err_out_class;
3544 }
3545
3546 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3547 if (!sd_cdb_pool) {
3548 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3549 err = -ENOMEM;
3550 goto err_out_cache;
3551 }
3552
3553 err = scsi_register_driver(&sd_template.gendrv);
3554 if (err)
3555 goto err_out_driver;
3556
3557 return 0;
3558
3559 err_out_driver:
3560 mempool_destroy(sd_cdb_pool);
3561
3562 err_out_cache:
3563 kmem_cache_destroy(sd_cdb_cache);
3564
3565 err_out_class:
3566 class_unregister(&sd_disk_class);
3567 err_out:
3568 for (i = 0; i < SD_MAJORS; i++)
3569 unregister_blkdev(sd_major(i), "sd");
3570 return err;
3571 }
3572
3573 /**
3574 * exit_sd - exit point for this driver (when it is a module).
3575 *
3576 * Note: this function unregisters this driver from the scsi mid-level.
3577 **/
3578 static void __exit exit_sd(void)
3579 {
3580 int i;
3581
3582 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3583
3584 scsi_unregister_driver(&sd_template.gendrv);
3585 mempool_destroy(sd_cdb_pool);
3586 kmem_cache_destroy(sd_cdb_cache);
3587
3588 class_unregister(&sd_disk_class);
3589
3590 for (i = 0; i < SD_MAJORS; i++) {
3591 blk_unregister_region(sd_major(i), SD_MINORS);
3592 unregister_blkdev(sd_major(i), "sd");
3593 }
3594 }
3595
3596 module_init(init_sd);
3597 module_exit(exit_sd);
3598
3599 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3600 struct scsi_sense_hdr *sshdr)
3601 {
3602 scsi_print_sense_hdr(sdkp->device,
3603 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3604 }
3605
3606 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3607 int result)
3608 {
3609 const char *hb_string = scsi_hostbyte_string(result);
3610 const char *db_string = scsi_driverbyte_string(result);
3611
3612 if (hb_string || db_string)
3613 sd_printk(KERN_INFO, sdkp,
3614 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3615 hb_string ? hb_string : "invalid",
3616 db_string ? db_string : "invalid");
3617 else
3618 sd_printk(KERN_INFO, sdkp,
3619 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3620 msg, host_byte(result), driver_byte(result));
3621 }
3622