]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/sd.c
scsi: sd: use mempool for discard special page
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS 16
101 #else
102 #define SD_MINORS 0
103 #endif
104
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int sd_probe(struct device *);
110 static int sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137
138 static const char *sd_cache_types[] = {
139 "write through", "none", "write back",
140 "write back, no read (daft)"
141 };
142
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 bool wc = false, fua = false;
146
147 if (sdkp->WCE) {
148 wc = true;
149 if (sdkp->DPOFUA)
150 fua = true;
151 }
152
153 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 const char *buf, size_t count)
159 {
160 int ct, rcd, wce, sp;
161 struct scsi_disk *sdkp = to_scsi_disk(dev);
162 struct scsi_device *sdp = sdkp->device;
163 char buffer[64];
164 char *buffer_data;
165 struct scsi_mode_data data;
166 struct scsi_sense_hdr sshdr;
167 static const char temp[] = "temporary ";
168 int len;
169
170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 /* no cache control on RBC devices; theoretically they
172 * can do it, but there's probably so many exceptions
173 * it's not worth the risk */
174 return -EINVAL;
175
176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 buf += sizeof(temp) - 1;
178 sdkp->cache_override = 1;
179 } else {
180 sdkp->cache_override = 0;
181 }
182
183 ct = sysfs_match_string(sd_cache_types, buf);
184 if (ct < 0)
185 return -EINVAL;
186
187 rcd = ct & 0x01 ? 1 : 0;
188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189
190 if (sdkp->cache_override) {
191 sdkp->WCE = wce;
192 sdkp->RCD = rcd;
193 sd_set_flush_flag(sdkp);
194 return count;
195 }
196
197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 SD_MAX_RETRIES, &data, NULL))
199 return -EINVAL;
200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 data.block_descriptor_length);
202 buffer_data = buffer + data.header_length +
203 data.block_descriptor_length;
204 buffer_data[2] &= ~0x05;
205 buffer_data[2] |= wce << 2 | rcd;
206 sp = buffer_data[0] & 0x80 ? 1 : 0;
207 buffer_data[0] &= ~0x80;
208
209 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
210 SD_MAX_RETRIES, &data, &sshdr)) {
211 if (scsi_sense_valid(&sshdr))
212 sd_print_sense_hdr(sdkp, &sshdr);
213 return -EINVAL;
214 }
215 revalidate_disk(sdkp->disk);
216 return count;
217 }
218
219 static ssize_t
220 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
221 char *buf)
222 {
223 struct scsi_disk *sdkp = to_scsi_disk(dev);
224 struct scsi_device *sdp = sdkp->device;
225
226 return sprintf(buf, "%u\n", sdp->manage_start_stop);
227 }
228
229 static ssize_t
230 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
231 const char *buf, size_t count)
232 {
233 struct scsi_disk *sdkp = to_scsi_disk(dev);
234 struct scsi_device *sdp = sdkp->device;
235 bool v;
236
237 if (!capable(CAP_SYS_ADMIN))
238 return -EACCES;
239
240 if (kstrtobool(buf, &v))
241 return -EINVAL;
242
243 sdp->manage_start_stop = v;
244
245 return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 struct scsi_disk *sdkp = to_scsi_disk(dev);
253
254 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
255 }
256
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 const char *buf, size_t count)
260 {
261 bool v;
262 struct scsi_disk *sdkp = to_scsi_disk(dev);
263 struct scsi_device *sdp = sdkp->device;
264
265 if (!capable(CAP_SYS_ADMIN))
266 return -EACCES;
267
268 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
269 return -EINVAL;
270
271 if (kstrtobool(buf, &v))
272 return -EINVAL;
273
274 sdp->allow_restart = v;
275
276 return count;
277 }
278 static DEVICE_ATTR_RW(allow_restart);
279
280 static ssize_t
281 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
282 {
283 struct scsi_disk *sdkp = to_scsi_disk(dev);
284 int ct = sdkp->RCD + 2*sdkp->WCE;
285
286 return sprintf(buf, "%s\n", sd_cache_types[ct]);
287 }
288 static DEVICE_ATTR_RW(cache_type);
289
290 static ssize_t
291 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
292 {
293 struct scsi_disk *sdkp = to_scsi_disk(dev);
294
295 return sprintf(buf, "%u\n", sdkp->DPOFUA);
296 }
297 static DEVICE_ATTR_RO(FUA);
298
299 static ssize_t
300 protection_type_show(struct device *dev, struct device_attribute *attr,
301 char *buf)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304
305 return sprintf(buf, "%u\n", sdkp->protection_type);
306 }
307
308 static ssize_t
309 protection_type_store(struct device *dev, struct device_attribute *attr,
310 const char *buf, size_t count)
311 {
312 struct scsi_disk *sdkp = to_scsi_disk(dev);
313 unsigned int val;
314 int err;
315
316 if (!capable(CAP_SYS_ADMIN))
317 return -EACCES;
318
319 err = kstrtouint(buf, 10, &val);
320
321 if (err)
322 return err;
323
324 if (val <= T10_PI_TYPE3_PROTECTION)
325 sdkp->protection_type = val;
326
327 return count;
328 }
329 static DEVICE_ATTR_RW(protection_type);
330
331 static ssize_t
332 protection_mode_show(struct device *dev, struct device_attribute *attr,
333 char *buf)
334 {
335 struct scsi_disk *sdkp = to_scsi_disk(dev);
336 struct scsi_device *sdp = sdkp->device;
337 unsigned int dif, dix;
338
339 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
340 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
341
342 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
343 dif = 0;
344 dix = 1;
345 }
346
347 if (!dif && !dix)
348 return sprintf(buf, "none\n");
349
350 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
351 }
352 static DEVICE_ATTR_RO(protection_mode);
353
354 static ssize_t
355 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
356 {
357 struct scsi_disk *sdkp = to_scsi_disk(dev);
358
359 return sprintf(buf, "%u\n", sdkp->ATO);
360 }
361 static DEVICE_ATTR_RO(app_tag_own);
362
363 static ssize_t
364 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
365 char *buf)
366 {
367 struct scsi_disk *sdkp = to_scsi_disk(dev);
368
369 return sprintf(buf, "%u\n", sdkp->lbpme);
370 }
371 static DEVICE_ATTR_RO(thin_provisioning);
372
373 /* sysfs_match_string() requires dense arrays */
374 static const char *lbp_mode[] = {
375 [SD_LBP_FULL] = "full",
376 [SD_LBP_UNMAP] = "unmap",
377 [SD_LBP_WS16] = "writesame_16",
378 [SD_LBP_WS10] = "writesame_10",
379 [SD_LBP_ZERO] = "writesame_zero",
380 [SD_LBP_DISABLE] = "disabled",
381 };
382
383 static ssize_t
384 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
385 char *buf)
386 {
387 struct scsi_disk *sdkp = to_scsi_disk(dev);
388
389 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
390 }
391
392 static ssize_t
393 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
394 const char *buf, size_t count)
395 {
396 struct scsi_disk *sdkp = to_scsi_disk(dev);
397 struct scsi_device *sdp = sdkp->device;
398 int mode;
399
400 if (!capable(CAP_SYS_ADMIN))
401 return -EACCES;
402
403 if (sd_is_zoned(sdkp)) {
404 sd_config_discard(sdkp, SD_LBP_DISABLE);
405 return count;
406 }
407
408 if (sdp->type != TYPE_DISK)
409 return -EINVAL;
410
411 mode = sysfs_match_string(lbp_mode, buf);
412 if (mode < 0)
413 return -EINVAL;
414
415 sd_config_discard(sdkp, mode);
416
417 return count;
418 }
419 static DEVICE_ATTR_RW(provisioning_mode);
420
421 /* sysfs_match_string() requires dense arrays */
422 static const char *zeroing_mode[] = {
423 [SD_ZERO_WRITE] = "write",
424 [SD_ZERO_WS] = "writesame",
425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
427 };
428
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 char *buf)
432 {
433 struct scsi_disk *sdkp = to_scsi_disk(dev);
434
435 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 const char *buf, size_t count)
441 {
442 struct scsi_disk *sdkp = to_scsi_disk(dev);
443 int mode;
444
445 if (!capable(CAP_SYS_ADMIN))
446 return -EACCES;
447
448 mode = sysfs_match_string(zeroing_mode, buf);
449 if (mode < 0)
450 return -EINVAL;
451
452 sdkp->zeroing_mode = mode;
453
454 return count;
455 }
456 static DEVICE_ATTR_RW(zeroing_mode);
457
458 static ssize_t
459 max_medium_access_timeouts_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461 {
462 struct scsi_disk *sdkp = to_scsi_disk(dev);
463
464 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
465 }
466
467 static ssize_t
468 max_medium_access_timeouts_store(struct device *dev,
469 struct device_attribute *attr, const char *buf,
470 size_t count)
471 {
472 struct scsi_disk *sdkp = to_scsi_disk(dev);
473 int err;
474
475 if (!capable(CAP_SYS_ADMIN))
476 return -EACCES;
477
478 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
479
480 return err ? err : count;
481 }
482 static DEVICE_ATTR_RW(max_medium_access_timeouts);
483
484 static ssize_t
485 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
486 char *buf)
487 {
488 struct scsi_disk *sdkp = to_scsi_disk(dev);
489
490 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
491 }
492
493 static ssize_t
494 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
495 const char *buf, size_t count)
496 {
497 struct scsi_disk *sdkp = to_scsi_disk(dev);
498 struct scsi_device *sdp = sdkp->device;
499 unsigned long max;
500 int err;
501
502 if (!capable(CAP_SYS_ADMIN))
503 return -EACCES;
504
505 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
506 return -EINVAL;
507
508 err = kstrtoul(buf, 10, &max);
509
510 if (err)
511 return err;
512
513 if (max == 0)
514 sdp->no_write_same = 1;
515 else if (max <= SD_MAX_WS16_BLOCKS) {
516 sdp->no_write_same = 0;
517 sdkp->max_ws_blocks = max;
518 }
519
520 sd_config_write_same(sdkp);
521
522 return count;
523 }
524 static DEVICE_ATTR_RW(max_write_same_blocks);
525
526 static struct attribute *sd_disk_attrs[] = {
527 &dev_attr_cache_type.attr,
528 &dev_attr_FUA.attr,
529 &dev_attr_allow_restart.attr,
530 &dev_attr_manage_start_stop.attr,
531 &dev_attr_protection_type.attr,
532 &dev_attr_protection_mode.attr,
533 &dev_attr_app_tag_own.attr,
534 &dev_attr_thin_provisioning.attr,
535 &dev_attr_provisioning_mode.attr,
536 &dev_attr_zeroing_mode.attr,
537 &dev_attr_max_write_same_blocks.attr,
538 &dev_attr_max_medium_access_timeouts.attr,
539 NULL,
540 };
541 ATTRIBUTE_GROUPS(sd_disk);
542
543 static struct class sd_disk_class = {
544 .name = "scsi_disk",
545 .owner = THIS_MODULE,
546 .dev_release = scsi_disk_release,
547 .dev_groups = sd_disk_groups,
548 };
549
550 static const struct dev_pm_ops sd_pm_ops = {
551 .suspend = sd_suspend_system,
552 .resume = sd_resume,
553 .poweroff = sd_suspend_system,
554 .restore = sd_resume,
555 .runtime_suspend = sd_suspend_runtime,
556 .runtime_resume = sd_resume,
557 };
558
559 static struct scsi_driver sd_template = {
560 .gendrv = {
561 .name = "sd",
562 .owner = THIS_MODULE,
563 .probe = sd_probe,
564 .remove = sd_remove,
565 .shutdown = sd_shutdown,
566 .pm = &sd_pm_ops,
567 },
568 .rescan = sd_rescan,
569 .init_command = sd_init_command,
570 .uninit_command = sd_uninit_command,
571 .done = sd_done,
572 .eh_action = sd_eh_action,
573 .eh_reset = sd_eh_reset,
574 };
575
576 /*
577 * Dummy kobj_map->probe function.
578 * The default ->probe function will call modprobe, which is
579 * pointless as this module is already loaded.
580 */
581 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
582 {
583 return NULL;
584 }
585
586 /*
587 * Device no to disk mapping:
588 *
589 * major disc2 disc p1
590 * |............|.............|....|....| <- dev_t
591 * 31 20 19 8 7 4 3 0
592 *
593 * Inside a major, we have 16k disks, however mapped non-
594 * contiguously. The first 16 disks are for major0, the next
595 * ones with major1, ... Disk 256 is for major0 again, disk 272
596 * for major1, ...
597 * As we stay compatible with our numbering scheme, we can reuse
598 * the well-know SCSI majors 8, 65--71, 136--143.
599 */
600 static int sd_major(int major_idx)
601 {
602 switch (major_idx) {
603 case 0:
604 return SCSI_DISK0_MAJOR;
605 case 1 ... 7:
606 return SCSI_DISK1_MAJOR + major_idx - 1;
607 case 8 ... 15:
608 return SCSI_DISK8_MAJOR + major_idx - 8;
609 default:
610 BUG();
611 return 0; /* shut up gcc */
612 }
613 }
614
615 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
616 {
617 struct scsi_disk *sdkp = NULL;
618
619 mutex_lock(&sd_ref_mutex);
620
621 if (disk->private_data) {
622 sdkp = scsi_disk(disk);
623 if (scsi_device_get(sdkp->device) == 0)
624 get_device(&sdkp->dev);
625 else
626 sdkp = NULL;
627 }
628 mutex_unlock(&sd_ref_mutex);
629 return sdkp;
630 }
631
632 static void scsi_disk_put(struct scsi_disk *sdkp)
633 {
634 struct scsi_device *sdev = sdkp->device;
635
636 mutex_lock(&sd_ref_mutex);
637 put_device(&sdkp->dev);
638 scsi_device_put(sdev);
639 mutex_unlock(&sd_ref_mutex);
640 }
641
642 #ifdef CONFIG_BLK_SED_OPAL
643 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
644 size_t len, bool send)
645 {
646 struct scsi_device *sdev = data;
647 u8 cdb[12] = { 0, };
648 int ret;
649
650 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
651 cdb[1] = secp;
652 put_unaligned_be16(spsp, &cdb[2]);
653 put_unaligned_be32(len, &cdb[6]);
654
655 ret = scsi_execute_req(sdev, cdb,
656 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
657 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
658 return ret <= 0 ? ret : -EIO;
659 }
660 #endif /* CONFIG_BLK_SED_OPAL */
661
662 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
663 unsigned int dix, unsigned int dif)
664 {
665 struct bio *bio = scmd->request->bio;
666 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
667 unsigned int protect = 0;
668
669 if (dix) { /* DIX Type 0, 1, 2, 3 */
670 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
671 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
672
673 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
674 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
675 }
676
677 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
678 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
679
680 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
681 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
682 }
683
684 if (dif) { /* DIX/DIF Type 1, 2, 3 */
685 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
686
687 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
688 protect = 3 << 5; /* Disable target PI checking */
689 else
690 protect = 1 << 5; /* Enable target PI checking */
691 }
692
693 scsi_set_prot_op(scmd, prot_op);
694 scsi_set_prot_type(scmd, dif);
695 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
696
697 return protect;
698 }
699
700 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
701 {
702 struct request_queue *q = sdkp->disk->queue;
703 unsigned int logical_block_size = sdkp->device->sector_size;
704 unsigned int max_blocks = 0;
705
706 q->limits.discard_alignment =
707 sdkp->unmap_alignment * logical_block_size;
708 q->limits.discard_granularity =
709 max(sdkp->physical_block_size,
710 sdkp->unmap_granularity * logical_block_size);
711 sdkp->provisioning_mode = mode;
712
713 switch (mode) {
714
715 case SD_LBP_FULL:
716 case SD_LBP_DISABLE:
717 blk_queue_max_discard_sectors(q, 0);
718 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
719 return;
720
721 case SD_LBP_UNMAP:
722 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
723 (u32)SD_MAX_WS16_BLOCKS);
724 break;
725
726 case SD_LBP_WS16:
727 if (sdkp->device->unmap_limit_for_ws)
728 max_blocks = sdkp->max_unmap_blocks;
729 else
730 max_blocks = sdkp->max_ws_blocks;
731
732 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
733 break;
734
735 case SD_LBP_WS10:
736 if (sdkp->device->unmap_limit_for_ws)
737 max_blocks = sdkp->max_unmap_blocks;
738 else
739 max_blocks = sdkp->max_ws_blocks;
740
741 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
742 break;
743
744 case SD_LBP_ZERO:
745 max_blocks = min_not_zero(sdkp->max_ws_blocks,
746 (u32)SD_MAX_WS10_BLOCKS);
747 break;
748 }
749
750 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
751 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
752 }
753
754 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
755 {
756 struct scsi_device *sdp = cmd->device;
757 struct request *rq = cmd->request;
758 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
759 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
760 unsigned int data_len = 24;
761 char *buf;
762
763 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
764 if (!rq->special_vec.bv_page)
765 return BLKPREP_DEFER;
766 clear_highpage(rq->special_vec.bv_page);
767 rq->special_vec.bv_offset = 0;
768 rq->special_vec.bv_len = data_len;
769 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
770
771 cmd->cmd_len = 10;
772 cmd->cmnd[0] = UNMAP;
773 cmd->cmnd[8] = 24;
774
775 buf = page_address(rq->special_vec.bv_page);
776 put_unaligned_be16(6 + 16, &buf[0]);
777 put_unaligned_be16(16, &buf[2]);
778 put_unaligned_be64(sector, &buf[8]);
779 put_unaligned_be32(nr_sectors, &buf[16]);
780
781 cmd->allowed = SD_MAX_RETRIES;
782 cmd->transfersize = data_len;
783 rq->timeout = SD_TIMEOUT;
784 scsi_req(rq)->resid_len = data_len;
785
786 return scsi_init_io(cmd);
787 }
788
789 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
790 {
791 struct scsi_device *sdp = cmd->device;
792 struct request *rq = cmd->request;
793 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
794 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
795 u32 data_len = sdp->sector_size;
796
797 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
798 if (!rq->special_vec.bv_page)
799 return BLKPREP_DEFER;
800 clear_highpage(rq->special_vec.bv_page);
801 rq->special_vec.bv_offset = 0;
802 rq->special_vec.bv_len = data_len;
803 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
804
805 cmd->cmd_len = 16;
806 cmd->cmnd[0] = WRITE_SAME_16;
807 if (unmap)
808 cmd->cmnd[1] = 0x8; /* UNMAP */
809 put_unaligned_be64(sector, &cmd->cmnd[2]);
810 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
811
812 cmd->allowed = SD_MAX_RETRIES;
813 cmd->transfersize = data_len;
814 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
815 scsi_req(rq)->resid_len = data_len;
816
817 return scsi_init_io(cmd);
818 }
819
820 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
821 {
822 struct scsi_device *sdp = cmd->device;
823 struct request *rq = cmd->request;
824 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
825 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
826 u32 data_len = sdp->sector_size;
827
828 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
829 if (!rq->special_vec.bv_page)
830 return BLKPREP_DEFER;
831 clear_highpage(rq->special_vec.bv_page);
832 rq->special_vec.bv_offset = 0;
833 rq->special_vec.bv_len = data_len;
834 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
835
836 cmd->cmd_len = 10;
837 cmd->cmnd[0] = WRITE_SAME;
838 if (unmap)
839 cmd->cmnd[1] = 0x8; /* UNMAP */
840 put_unaligned_be32(sector, &cmd->cmnd[2]);
841 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
842
843 cmd->allowed = SD_MAX_RETRIES;
844 cmd->transfersize = data_len;
845 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
846 scsi_req(rq)->resid_len = data_len;
847
848 return scsi_init_io(cmd);
849 }
850
851 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
852 {
853 struct request *rq = cmd->request;
854 struct scsi_device *sdp = cmd->device;
855 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
856 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
857 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
858 int ret;
859
860 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
861 switch (sdkp->zeroing_mode) {
862 case SD_ZERO_WS16_UNMAP:
863 ret = sd_setup_write_same16_cmnd(cmd, true);
864 goto out;
865 case SD_ZERO_WS10_UNMAP:
866 ret = sd_setup_write_same10_cmnd(cmd, true);
867 goto out;
868 }
869 }
870
871 if (sdp->no_write_same)
872 return BLKPREP_INVALID;
873
874 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
875 ret = sd_setup_write_same16_cmnd(cmd, false);
876 else
877 ret = sd_setup_write_same10_cmnd(cmd, false);
878
879 out:
880 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
881 return sd_zbc_write_lock_zone(cmd);
882
883 return ret;
884 }
885
886 static void sd_config_write_same(struct scsi_disk *sdkp)
887 {
888 struct request_queue *q = sdkp->disk->queue;
889 unsigned int logical_block_size = sdkp->device->sector_size;
890
891 if (sdkp->device->no_write_same) {
892 sdkp->max_ws_blocks = 0;
893 goto out;
894 }
895
896 /* Some devices can not handle block counts above 0xffff despite
897 * supporting WRITE SAME(16). Consequently we default to 64k
898 * blocks per I/O unless the device explicitly advertises a
899 * bigger limit.
900 */
901 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
902 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
903 (u32)SD_MAX_WS16_BLOCKS);
904 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
905 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
906 (u32)SD_MAX_WS10_BLOCKS);
907 else {
908 sdkp->device->no_write_same = 1;
909 sdkp->max_ws_blocks = 0;
910 }
911
912 if (sdkp->lbprz && sdkp->lbpws)
913 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
914 else if (sdkp->lbprz && sdkp->lbpws10)
915 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
916 else if (sdkp->max_ws_blocks)
917 sdkp->zeroing_mode = SD_ZERO_WS;
918 else
919 sdkp->zeroing_mode = SD_ZERO_WRITE;
920
921 if (sdkp->max_ws_blocks &&
922 sdkp->physical_block_size > logical_block_size) {
923 /*
924 * Reporting a maximum number of blocks that is not aligned
925 * on the device physical size would cause a large write same
926 * request to be split into physically unaligned chunks by
927 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
928 * even if the caller of these functions took care to align the
929 * large request. So make sure the maximum reported is aligned
930 * to the device physical block size. This is only an optional
931 * optimization for regular disks, but this is mandatory to
932 * avoid failure of large write same requests directed at
933 * sequential write required zones of host-managed ZBC disks.
934 */
935 sdkp->max_ws_blocks =
936 round_down(sdkp->max_ws_blocks,
937 bytes_to_logical(sdkp->device,
938 sdkp->physical_block_size));
939 }
940
941 out:
942 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
943 (logical_block_size >> 9));
944 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
945 (logical_block_size >> 9));
946 }
947
948 /**
949 * sd_setup_write_same_cmnd - write the same data to multiple blocks
950 * @cmd: command to prepare
951 *
952 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
953 * the preference indicated by the target device.
954 **/
955 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
956 {
957 struct request *rq = cmd->request;
958 struct scsi_device *sdp = cmd->device;
959 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
960 struct bio *bio = rq->bio;
961 sector_t sector = blk_rq_pos(rq);
962 unsigned int nr_sectors = blk_rq_sectors(rq);
963 unsigned int nr_bytes = blk_rq_bytes(rq);
964 int ret;
965
966 if (sdkp->device->no_write_same)
967 return BLKPREP_INVALID;
968
969 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
970
971 if (sd_is_zoned(sdkp)) {
972 ret = sd_zbc_write_lock_zone(cmd);
973 if (ret != BLKPREP_OK)
974 return ret;
975 }
976
977 sector >>= ilog2(sdp->sector_size) - 9;
978 nr_sectors >>= ilog2(sdp->sector_size) - 9;
979
980 rq->timeout = SD_WRITE_SAME_TIMEOUT;
981
982 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
983 cmd->cmd_len = 16;
984 cmd->cmnd[0] = WRITE_SAME_16;
985 put_unaligned_be64(sector, &cmd->cmnd[2]);
986 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
987 } else {
988 cmd->cmd_len = 10;
989 cmd->cmnd[0] = WRITE_SAME;
990 put_unaligned_be32(sector, &cmd->cmnd[2]);
991 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
992 }
993
994 cmd->transfersize = sdp->sector_size;
995 cmd->allowed = SD_MAX_RETRIES;
996
997 /*
998 * For WRITE SAME the data transferred via the DATA OUT buffer is
999 * different from the amount of data actually written to the target.
1000 *
1001 * We set up __data_len to the amount of data transferred via the
1002 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1003 * to transfer a single sector of data first, but then reset it to
1004 * the amount of data to be written right after so that the I/O path
1005 * knows how much to actually write.
1006 */
1007 rq->__data_len = sdp->sector_size;
1008 ret = scsi_init_io(cmd);
1009 rq->__data_len = nr_bytes;
1010
1011 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
1012 sd_zbc_write_unlock_zone(cmd);
1013
1014 return ret;
1015 }
1016
1017 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1018 {
1019 struct request *rq = cmd->request;
1020
1021 /* flush requests don't perform I/O, zero the S/G table */
1022 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1023
1024 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1025 cmd->cmd_len = 10;
1026 cmd->transfersize = 0;
1027 cmd->allowed = SD_MAX_RETRIES;
1028
1029 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1030 return BLKPREP_OK;
1031 }
1032
1033 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1034 {
1035 struct request *rq = SCpnt->request;
1036 struct scsi_device *sdp = SCpnt->device;
1037 struct gendisk *disk = rq->rq_disk;
1038 struct scsi_disk *sdkp = scsi_disk(disk);
1039 sector_t block = blk_rq_pos(rq);
1040 sector_t threshold;
1041 unsigned int this_count = blk_rq_sectors(rq);
1042 unsigned int dif, dix;
1043 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1044 int ret;
1045 unsigned char protect;
1046
1047 if (zoned_write) {
1048 ret = sd_zbc_write_lock_zone(SCpnt);
1049 if (ret != BLKPREP_OK)
1050 return ret;
1051 }
1052
1053 ret = scsi_init_io(SCpnt);
1054 if (ret != BLKPREP_OK)
1055 goto out;
1056 WARN_ON_ONCE(SCpnt != rq->special);
1057
1058 /* from here on until we're complete, any goto out
1059 * is used for a killable error condition */
1060 ret = BLKPREP_KILL;
1061
1062 SCSI_LOG_HLQUEUE(1,
1063 scmd_printk(KERN_INFO, SCpnt,
1064 "%s: block=%llu, count=%d\n",
1065 __func__, (unsigned long long)block, this_count));
1066
1067 if (!sdp || !scsi_device_online(sdp) ||
1068 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1069 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1070 "Finishing %u sectors\n",
1071 blk_rq_sectors(rq)));
1072 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1073 "Retry with 0x%p\n", SCpnt));
1074 goto out;
1075 }
1076
1077 if (sdp->changed) {
1078 /*
1079 * quietly refuse to do anything to a changed disc until
1080 * the changed bit has been reset
1081 */
1082 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1083 goto out;
1084 }
1085
1086 /*
1087 * Some SD card readers can't handle multi-sector accesses which touch
1088 * the last one or two hardware sectors. Split accesses as needed.
1089 */
1090 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1091 (sdp->sector_size / 512);
1092
1093 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1094 if (block < threshold) {
1095 /* Access up to the threshold but not beyond */
1096 this_count = threshold - block;
1097 } else {
1098 /* Access only a single hardware sector */
1099 this_count = sdp->sector_size / 512;
1100 }
1101 }
1102
1103 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1104 (unsigned long long)block));
1105
1106 /*
1107 * If we have a 1K hardware sectorsize, prevent access to single
1108 * 512 byte sectors. In theory we could handle this - in fact
1109 * the scsi cdrom driver must be able to handle this because
1110 * we typically use 1K blocksizes, and cdroms typically have
1111 * 2K hardware sectorsizes. Of course, things are simpler
1112 * with the cdrom, since it is read-only. For performance
1113 * reasons, the filesystems should be able to handle this
1114 * and not force the scsi disk driver to use bounce buffers
1115 * for this.
1116 */
1117 if (sdp->sector_size == 1024) {
1118 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1119 scmd_printk(KERN_ERR, SCpnt,
1120 "Bad block number requested\n");
1121 goto out;
1122 } else {
1123 block = block >> 1;
1124 this_count = this_count >> 1;
1125 }
1126 }
1127 if (sdp->sector_size == 2048) {
1128 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1129 scmd_printk(KERN_ERR, SCpnt,
1130 "Bad block number requested\n");
1131 goto out;
1132 } else {
1133 block = block >> 2;
1134 this_count = this_count >> 2;
1135 }
1136 }
1137 if (sdp->sector_size == 4096) {
1138 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1139 scmd_printk(KERN_ERR, SCpnt,
1140 "Bad block number requested\n");
1141 goto out;
1142 } else {
1143 block = block >> 3;
1144 this_count = this_count >> 3;
1145 }
1146 }
1147 if (rq_data_dir(rq) == WRITE) {
1148 SCpnt->cmnd[0] = WRITE_6;
1149
1150 if (blk_integrity_rq(rq))
1151 sd_dif_prepare(SCpnt);
1152
1153 } else if (rq_data_dir(rq) == READ) {
1154 SCpnt->cmnd[0] = READ_6;
1155 } else {
1156 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1157 goto out;
1158 }
1159
1160 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1161 "%s %d/%u 512 byte blocks.\n",
1162 (rq_data_dir(rq) == WRITE) ?
1163 "writing" : "reading", this_count,
1164 blk_rq_sectors(rq)));
1165
1166 dix = scsi_prot_sg_count(SCpnt);
1167 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1168
1169 if (dif || dix)
1170 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1171 else
1172 protect = 0;
1173
1174 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1175 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1176
1177 if (unlikely(SCpnt->cmnd == NULL)) {
1178 ret = BLKPREP_DEFER;
1179 goto out;
1180 }
1181
1182 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1183 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1184 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1185 SCpnt->cmnd[7] = 0x18;
1186 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1187 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1188
1189 /* LBA */
1190 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1191 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1192 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1193 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1194 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1195 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1196 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1197 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1198
1199 /* Expected Indirect LBA */
1200 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1201 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1202 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1203 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1204
1205 /* Transfer length */
1206 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1207 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1208 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1209 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1210 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1211 SCpnt->cmnd[0] += READ_16 - READ_6;
1212 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1213 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1214 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1215 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1216 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1217 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1218 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1219 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1220 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1221 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1222 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1223 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1224 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1225 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1226 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1227 scsi_device_protection(SCpnt->device) ||
1228 SCpnt->device->use_10_for_rw) {
1229 SCpnt->cmnd[0] += READ_10 - READ_6;
1230 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1231 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1232 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1233 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1234 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1235 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1236 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1237 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1238 } else {
1239 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1240 /*
1241 * This happens only if this drive failed
1242 * 10byte rw command with ILLEGAL_REQUEST
1243 * during operation and thus turned off
1244 * use_10_for_rw.
1245 */
1246 scmd_printk(KERN_ERR, SCpnt,
1247 "FUA write on READ/WRITE(6) drive\n");
1248 goto out;
1249 }
1250
1251 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1252 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1253 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1254 SCpnt->cmnd[4] = (unsigned char) this_count;
1255 SCpnt->cmnd[5] = 0;
1256 }
1257 SCpnt->sdb.length = this_count * sdp->sector_size;
1258
1259 /*
1260 * We shouldn't disconnect in the middle of a sector, so with a dumb
1261 * host adapter, it's safe to assume that we can at least transfer
1262 * this many bytes between each connect / disconnect.
1263 */
1264 SCpnt->transfersize = sdp->sector_size;
1265 SCpnt->underflow = this_count << 9;
1266 SCpnt->allowed = SD_MAX_RETRIES;
1267
1268 /*
1269 * This indicates that the command is ready from our end to be
1270 * queued.
1271 */
1272 ret = BLKPREP_OK;
1273 out:
1274 if (zoned_write && ret != BLKPREP_OK)
1275 sd_zbc_write_unlock_zone(SCpnt);
1276
1277 return ret;
1278 }
1279
1280 static int sd_init_command(struct scsi_cmnd *cmd)
1281 {
1282 struct request *rq = cmd->request;
1283
1284 switch (req_op(rq)) {
1285 case REQ_OP_DISCARD:
1286 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1287 case SD_LBP_UNMAP:
1288 return sd_setup_unmap_cmnd(cmd);
1289 case SD_LBP_WS16:
1290 return sd_setup_write_same16_cmnd(cmd, true);
1291 case SD_LBP_WS10:
1292 return sd_setup_write_same10_cmnd(cmd, true);
1293 case SD_LBP_ZERO:
1294 return sd_setup_write_same10_cmnd(cmd, false);
1295 default:
1296 return BLKPREP_INVALID;
1297 }
1298 case REQ_OP_WRITE_ZEROES:
1299 return sd_setup_write_zeroes_cmnd(cmd);
1300 case REQ_OP_WRITE_SAME:
1301 return sd_setup_write_same_cmnd(cmd);
1302 case REQ_OP_FLUSH:
1303 return sd_setup_flush_cmnd(cmd);
1304 case REQ_OP_READ:
1305 case REQ_OP_WRITE:
1306 return sd_setup_read_write_cmnd(cmd);
1307 case REQ_OP_ZONE_REPORT:
1308 return sd_zbc_setup_report_cmnd(cmd);
1309 case REQ_OP_ZONE_RESET:
1310 return sd_zbc_setup_reset_cmnd(cmd);
1311 default:
1312 WARN_ON_ONCE(1);
1313 return BLKPREP_KILL;
1314 }
1315 }
1316
1317 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1318 {
1319 struct request *rq = SCpnt->request;
1320 u8 *cmnd;
1321
1322 if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1323 sd_zbc_write_unlock_zone(SCpnt);
1324
1325 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1326 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1327
1328 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1329 cmnd = SCpnt->cmnd;
1330 SCpnt->cmnd = NULL;
1331 SCpnt->cmd_len = 0;
1332 mempool_free(cmnd, sd_cdb_pool);
1333 }
1334 }
1335
1336 /**
1337 * sd_open - open a scsi disk device
1338 * @bdev: Block device of the scsi disk to open
1339 * @mode: FMODE_* mask
1340 *
1341 * Returns 0 if successful. Returns a negated errno value in case
1342 * of error.
1343 *
1344 * Note: This can be called from a user context (e.g. fsck(1) )
1345 * or from within the kernel (e.g. as a result of a mount(1) ).
1346 * In the latter case @inode and @filp carry an abridged amount
1347 * of information as noted above.
1348 *
1349 * Locking: called with bdev->bd_mutex held.
1350 **/
1351 static int sd_open(struct block_device *bdev, fmode_t mode)
1352 {
1353 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1354 struct scsi_device *sdev;
1355 int retval;
1356
1357 if (!sdkp)
1358 return -ENXIO;
1359
1360 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1361
1362 sdev = sdkp->device;
1363
1364 /*
1365 * If the device is in error recovery, wait until it is done.
1366 * If the device is offline, then disallow any access to it.
1367 */
1368 retval = -ENXIO;
1369 if (!scsi_block_when_processing_errors(sdev))
1370 goto error_out;
1371
1372 if (sdev->removable || sdkp->write_prot)
1373 check_disk_change(bdev);
1374
1375 /*
1376 * If the drive is empty, just let the open fail.
1377 */
1378 retval = -ENOMEDIUM;
1379 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1380 goto error_out;
1381
1382 /*
1383 * If the device has the write protect tab set, have the open fail
1384 * if the user expects to be able to write to the thing.
1385 */
1386 retval = -EROFS;
1387 if (sdkp->write_prot && (mode & FMODE_WRITE))
1388 goto error_out;
1389
1390 /*
1391 * It is possible that the disk changing stuff resulted in
1392 * the device being taken offline. If this is the case,
1393 * report this to the user, and don't pretend that the
1394 * open actually succeeded.
1395 */
1396 retval = -ENXIO;
1397 if (!scsi_device_online(sdev))
1398 goto error_out;
1399
1400 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1401 if (scsi_block_when_processing_errors(sdev))
1402 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1403 }
1404
1405 return 0;
1406
1407 error_out:
1408 scsi_disk_put(sdkp);
1409 return retval;
1410 }
1411
1412 /**
1413 * sd_release - invoked when the (last) close(2) is called on this
1414 * scsi disk.
1415 * @disk: disk to release
1416 * @mode: FMODE_* mask
1417 *
1418 * Returns 0.
1419 *
1420 * Note: may block (uninterruptible) if error recovery is underway
1421 * on this disk.
1422 *
1423 * Locking: called with bdev->bd_mutex held.
1424 **/
1425 static void sd_release(struct gendisk *disk, fmode_t mode)
1426 {
1427 struct scsi_disk *sdkp = scsi_disk(disk);
1428 struct scsi_device *sdev = sdkp->device;
1429
1430 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1431
1432 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1433 if (scsi_block_when_processing_errors(sdev))
1434 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1435 }
1436
1437 /*
1438 * XXX and what if there are packets in flight and this close()
1439 * XXX is followed by a "rmmod sd_mod"?
1440 */
1441
1442 scsi_disk_put(sdkp);
1443 }
1444
1445 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1446 {
1447 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1448 struct scsi_device *sdp = sdkp->device;
1449 struct Scsi_Host *host = sdp->host;
1450 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1451 int diskinfo[4];
1452
1453 /* default to most commonly used values */
1454 diskinfo[0] = 0x40; /* 1 << 6 */
1455 diskinfo[1] = 0x20; /* 1 << 5 */
1456 diskinfo[2] = capacity >> 11;
1457
1458 /* override with calculated, extended default, or driver values */
1459 if (host->hostt->bios_param)
1460 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1461 else
1462 scsicam_bios_param(bdev, capacity, diskinfo);
1463
1464 geo->heads = diskinfo[0];
1465 geo->sectors = diskinfo[1];
1466 geo->cylinders = diskinfo[2];
1467 return 0;
1468 }
1469
1470 /**
1471 * sd_ioctl - process an ioctl
1472 * @bdev: target block device
1473 * @mode: FMODE_* mask
1474 * @cmd: ioctl command number
1475 * @arg: this is third argument given to ioctl(2) system call.
1476 * Often contains a pointer.
1477 *
1478 * Returns 0 if successful (some ioctls return positive numbers on
1479 * success as well). Returns a negated errno value in case of error.
1480 *
1481 * Note: most ioctls are forward onto the block subsystem or further
1482 * down in the scsi subsystem.
1483 **/
1484 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1485 unsigned int cmd, unsigned long arg)
1486 {
1487 struct gendisk *disk = bdev->bd_disk;
1488 struct scsi_disk *sdkp = scsi_disk(disk);
1489 struct scsi_device *sdp = sdkp->device;
1490 void __user *p = (void __user *)arg;
1491 int error;
1492
1493 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1494 "cmd=0x%x\n", disk->disk_name, cmd));
1495
1496 error = scsi_verify_blk_ioctl(bdev, cmd);
1497 if (error < 0)
1498 return error;
1499
1500 /*
1501 * If we are in the middle of error recovery, don't let anyone
1502 * else try and use this device. Also, if error recovery fails, it
1503 * may try and take the device offline, in which case all further
1504 * access to the device is prohibited.
1505 */
1506 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1507 (mode & FMODE_NDELAY) != 0);
1508 if (error)
1509 goto out;
1510
1511 if (is_sed_ioctl(cmd))
1512 return sed_ioctl(sdkp->opal_dev, cmd, p);
1513
1514 /*
1515 * Send SCSI addressing ioctls directly to mid level, send other
1516 * ioctls to block level and then onto mid level if they can't be
1517 * resolved.
1518 */
1519 switch (cmd) {
1520 case SCSI_IOCTL_GET_IDLUN:
1521 case SCSI_IOCTL_GET_BUS_NUMBER:
1522 error = scsi_ioctl(sdp, cmd, p);
1523 break;
1524 default:
1525 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1526 if (error != -ENOTTY)
1527 break;
1528 error = scsi_ioctl(sdp, cmd, p);
1529 break;
1530 }
1531 out:
1532 return error;
1533 }
1534
1535 static void set_media_not_present(struct scsi_disk *sdkp)
1536 {
1537 if (sdkp->media_present)
1538 sdkp->device->changed = 1;
1539
1540 if (sdkp->device->removable) {
1541 sdkp->media_present = 0;
1542 sdkp->capacity = 0;
1543 }
1544 }
1545
1546 static int media_not_present(struct scsi_disk *sdkp,
1547 struct scsi_sense_hdr *sshdr)
1548 {
1549 if (!scsi_sense_valid(sshdr))
1550 return 0;
1551
1552 /* not invoked for commands that could return deferred errors */
1553 switch (sshdr->sense_key) {
1554 case UNIT_ATTENTION:
1555 case NOT_READY:
1556 /* medium not present */
1557 if (sshdr->asc == 0x3A) {
1558 set_media_not_present(sdkp);
1559 return 1;
1560 }
1561 }
1562 return 0;
1563 }
1564
1565 /**
1566 * sd_check_events - check media events
1567 * @disk: kernel device descriptor
1568 * @clearing: disk events currently being cleared
1569 *
1570 * Returns mask of DISK_EVENT_*.
1571 *
1572 * Note: this function is invoked from the block subsystem.
1573 **/
1574 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1575 {
1576 struct scsi_disk *sdkp = scsi_disk_get(disk);
1577 struct scsi_device *sdp;
1578 int retval;
1579
1580 if (!sdkp)
1581 return 0;
1582
1583 sdp = sdkp->device;
1584 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1585
1586 /*
1587 * If the device is offline, don't send any commands - just pretend as
1588 * if the command failed. If the device ever comes back online, we
1589 * can deal with it then. It is only because of unrecoverable errors
1590 * that we would ever take a device offline in the first place.
1591 */
1592 if (!scsi_device_online(sdp)) {
1593 set_media_not_present(sdkp);
1594 goto out;
1595 }
1596
1597 /*
1598 * Using TEST_UNIT_READY enables differentiation between drive with
1599 * no cartridge loaded - NOT READY, drive with changed cartridge -
1600 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1601 *
1602 * Drives that auto spin down. eg iomega jaz 1G, will be started
1603 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1604 * sd_revalidate() is called.
1605 */
1606 if (scsi_block_when_processing_errors(sdp)) {
1607 struct scsi_sense_hdr sshdr = { 0, };
1608
1609 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1610 &sshdr);
1611
1612 /* failed to execute TUR, assume media not present */
1613 if (host_byte(retval)) {
1614 set_media_not_present(sdkp);
1615 goto out;
1616 }
1617
1618 if (media_not_present(sdkp, &sshdr))
1619 goto out;
1620 }
1621
1622 /*
1623 * For removable scsi disk we have to recognise the presence
1624 * of a disk in the drive.
1625 */
1626 if (!sdkp->media_present)
1627 sdp->changed = 1;
1628 sdkp->media_present = 1;
1629 out:
1630 /*
1631 * sdp->changed is set under the following conditions:
1632 *
1633 * Medium present state has changed in either direction.
1634 * Device has indicated UNIT_ATTENTION.
1635 */
1636 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1637 sdp->changed = 0;
1638 scsi_disk_put(sdkp);
1639 return retval;
1640 }
1641
1642 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1643 {
1644 int retries, res;
1645 struct scsi_device *sdp = sdkp->device;
1646 const int timeout = sdp->request_queue->rq_timeout
1647 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1648 struct scsi_sense_hdr my_sshdr;
1649
1650 if (!scsi_device_online(sdp))
1651 return -ENODEV;
1652
1653 /* caller might not be interested in sense, but we need it */
1654 if (!sshdr)
1655 sshdr = &my_sshdr;
1656
1657 for (retries = 3; retries > 0; --retries) {
1658 unsigned char cmd[10] = { 0 };
1659
1660 cmd[0] = SYNCHRONIZE_CACHE;
1661 /*
1662 * Leave the rest of the command zero to indicate
1663 * flush everything.
1664 */
1665 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1666 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1667 if (res == 0)
1668 break;
1669 }
1670
1671 if (res) {
1672 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1673
1674 if (driver_byte(res) & DRIVER_SENSE)
1675 sd_print_sense_hdr(sdkp, sshdr);
1676
1677 /* we need to evaluate the error return */
1678 if (scsi_sense_valid(sshdr) &&
1679 (sshdr->asc == 0x3a || /* medium not present */
1680 sshdr->asc == 0x20)) /* invalid command */
1681 /* this is no error here */
1682 return 0;
1683
1684 switch (host_byte(res)) {
1685 /* ignore errors due to racing a disconnection */
1686 case DID_BAD_TARGET:
1687 case DID_NO_CONNECT:
1688 return 0;
1689 /* signal the upper layer it might try again */
1690 case DID_BUS_BUSY:
1691 case DID_IMM_RETRY:
1692 case DID_REQUEUE:
1693 case DID_SOFT_ERROR:
1694 return -EBUSY;
1695 default:
1696 return -EIO;
1697 }
1698 }
1699 return 0;
1700 }
1701
1702 static void sd_rescan(struct device *dev)
1703 {
1704 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1705
1706 revalidate_disk(sdkp->disk);
1707 }
1708
1709
1710 #ifdef CONFIG_COMPAT
1711 /*
1712 * This gets directly called from VFS. When the ioctl
1713 * is not recognized we go back to the other translation paths.
1714 */
1715 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1716 unsigned int cmd, unsigned long arg)
1717 {
1718 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1719 int error;
1720
1721 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1722 (mode & FMODE_NDELAY) != 0);
1723 if (error)
1724 return error;
1725
1726 /*
1727 * Let the static ioctl translation table take care of it.
1728 */
1729 if (!sdev->host->hostt->compat_ioctl)
1730 return -ENOIOCTLCMD;
1731 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1732 }
1733 #endif
1734
1735 static char sd_pr_type(enum pr_type type)
1736 {
1737 switch (type) {
1738 case PR_WRITE_EXCLUSIVE:
1739 return 0x01;
1740 case PR_EXCLUSIVE_ACCESS:
1741 return 0x03;
1742 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1743 return 0x05;
1744 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1745 return 0x06;
1746 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1747 return 0x07;
1748 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1749 return 0x08;
1750 default:
1751 return 0;
1752 }
1753 };
1754
1755 static int sd_pr_command(struct block_device *bdev, u8 sa,
1756 u64 key, u64 sa_key, u8 type, u8 flags)
1757 {
1758 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1759 struct scsi_sense_hdr sshdr;
1760 int result;
1761 u8 cmd[16] = { 0, };
1762 u8 data[24] = { 0, };
1763
1764 cmd[0] = PERSISTENT_RESERVE_OUT;
1765 cmd[1] = sa;
1766 cmd[2] = type;
1767 put_unaligned_be32(sizeof(data), &cmd[5]);
1768
1769 put_unaligned_be64(key, &data[0]);
1770 put_unaligned_be64(sa_key, &data[8]);
1771 data[20] = flags;
1772
1773 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1774 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1775
1776 if ((driver_byte(result) & DRIVER_SENSE) &&
1777 (scsi_sense_valid(&sshdr))) {
1778 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1779 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1780 }
1781
1782 return result;
1783 }
1784
1785 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1786 u32 flags)
1787 {
1788 if (flags & ~PR_FL_IGNORE_KEY)
1789 return -EOPNOTSUPP;
1790 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1791 old_key, new_key, 0,
1792 (1 << 0) /* APTPL */);
1793 }
1794
1795 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1796 u32 flags)
1797 {
1798 if (flags)
1799 return -EOPNOTSUPP;
1800 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1801 }
1802
1803 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1804 {
1805 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1806 }
1807
1808 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1809 enum pr_type type, bool abort)
1810 {
1811 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1812 sd_pr_type(type), 0);
1813 }
1814
1815 static int sd_pr_clear(struct block_device *bdev, u64 key)
1816 {
1817 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1818 }
1819
1820 static const struct pr_ops sd_pr_ops = {
1821 .pr_register = sd_pr_register,
1822 .pr_reserve = sd_pr_reserve,
1823 .pr_release = sd_pr_release,
1824 .pr_preempt = sd_pr_preempt,
1825 .pr_clear = sd_pr_clear,
1826 };
1827
1828 static const struct block_device_operations sd_fops = {
1829 .owner = THIS_MODULE,
1830 .open = sd_open,
1831 .release = sd_release,
1832 .ioctl = sd_ioctl,
1833 .getgeo = sd_getgeo,
1834 #ifdef CONFIG_COMPAT
1835 .compat_ioctl = sd_compat_ioctl,
1836 #endif
1837 .check_events = sd_check_events,
1838 .revalidate_disk = sd_revalidate_disk,
1839 .unlock_native_capacity = sd_unlock_native_capacity,
1840 .pr_ops = &sd_pr_ops,
1841 };
1842
1843 /**
1844 * sd_eh_reset - reset error handling callback
1845 * @scmd: sd-issued command that has failed
1846 *
1847 * This function is called by the SCSI midlayer before starting
1848 * SCSI EH. When counting medium access failures we have to be
1849 * careful to register it only only once per device and SCSI EH run;
1850 * there might be several timed out commands which will cause the
1851 * 'max_medium_access_timeouts' counter to trigger after the first
1852 * SCSI EH run already and set the device to offline.
1853 * So this function resets the internal counter before starting SCSI EH.
1854 **/
1855 static void sd_eh_reset(struct scsi_cmnd *scmd)
1856 {
1857 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1858
1859 /* New SCSI EH run, reset gate variable */
1860 sdkp->ignore_medium_access_errors = false;
1861 }
1862
1863 /**
1864 * sd_eh_action - error handling callback
1865 * @scmd: sd-issued command that has failed
1866 * @eh_disp: The recovery disposition suggested by the midlayer
1867 *
1868 * This function is called by the SCSI midlayer upon completion of an
1869 * error test command (currently TEST UNIT READY). The result of sending
1870 * the eh command is passed in eh_disp. We're looking for devices that
1871 * fail medium access commands but are OK with non access commands like
1872 * test unit ready (so wrongly see the device as having a successful
1873 * recovery)
1874 **/
1875 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1876 {
1877 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1878 struct scsi_device *sdev = scmd->device;
1879
1880 if (!scsi_device_online(sdev) ||
1881 !scsi_medium_access_command(scmd) ||
1882 host_byte(scmd->result) != DID_TIME_OUT ||
1883 eh_disp != SUCCESS)
1884 return eh_disp;
1885
1886 /*
1887 * The device has timed out executing a medium access command.
1888 * However, the TEST UNIT READY command sent during error
1889 * handling completed successfully. Either the device is in the
1890 * process of recovering or has it suffered an internal failure
1891 * that prevents access to the storage medium.
1892 */
1893 if (!sdkp->ignore_medium_access_errors) {
1894 sdkp->medium_access_timed_out++;
1895 sdkp->ignore_medium_access_errors = true;
1896 }
1897
1898 /*
1899 * If the device keeps failing read/write commands but TEST UNIT
1900 * READY always completes successfully we assume that medium
1901 * access is no longer possible and take the device offline.
1902 */
1903 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1904 scmd_printk(KERN_ERR, scmd,
1905 "Medium access timeout failure. Offlining disk!\n");
1906 mutex_lock(&sdev->state_mutex);
1907 scsi_device_set_state(sdev, SDEV_OFFLINE);
1908 mutex_unlock(&sdev->state_mutex);
1909
1910 return SUCCESS;
1911 }
1912
1913 return eh_disp;
1914 }
1915
1916 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1917 {
1918 struct request *req = scmd->request;
1919 struct scsi_device *sdev = scmd->device;
1920 unsigned int transferred, good_bytes;
1921 u64 start_lba, end_lba, bad_lba;
1922
1923 /*
1924 * Some commands have a payload smaller than the device logical
1925 * block size (e.g. INQUIRY on a 4K disk).
1926 */
1927 if (scsi_bufflen(scmd) <= sdev->sector_size)
1928 return 0;
1929
1930 /* Check if we have a 'bad_lba' information */
1931 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1932 SCSI_SENSE_BUFFERSIZE,
1933 &bad_lba))
1934 return 0;
1935
1936 /*
1937 * If the bad lba was reported incorrectly, we have no idea where
1938 * the error is.
1939 */
1940 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1941 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1942 if (bad_lba < start_lba || bad_lba >= end_lba)
1943 return 0;
1944
1945 /*
1946 * resid is optional but mostly filled in. When it's unused,
1947 * its value is zero, so we assume the whole buffer transferred
1948 */
1949 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1950
1951 /* This computation should always be done in terms of the
1952 * resolution of the device's medium.
1953 */
1954 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1955
1956 return min(good_bytes, transferred);
1957 }
1958
1959 /**
1960 * sd_done - bottom half handler: called when the lower level
1961 * driver has completed (successfully or otherwise) a scsi command.
1962 * @SCpnt: mid-level's per command structure.
1963 *
1964 * Note: potentially run from within an ISR. Must not block.
1965 **/
1966 static int sd_done(struct scsi_cmnd *SCpnt)
1967 {
1968 int result = SCpnt->result;
1969 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1970 unsigned int sector_size = SCpnt->device->sector_size;
1971 unsigned int resid;
1972 struct scsi_sense_hdr sshdr;
1973 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1974 struct request *req = SCpnt->request;
1975 int sense_valid = 0;
1976 int sense_deferred = 0;
1977
1978 switch (req_op(req)) {
1979 case REQ_OP_DISCARD:
1980 case REQ_OP_WRITE_ZEROES:
1981 case REQ_OP_WRITE_SAME:
1982 case REQ_OP_ZONE_RESET:
1983 if (!result) {
1984 good_bytes = blk_rq_bytes(req);
1985 scsi_set_resid(SCpnt, 0);
1986 } else {
1987 good_bytes = 0;
1988 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1989 }
1990 break;
1991 case REQ_OP_ZONE_REPORT:
1992 if (!result) {
1993 good_bytes = scsi_bufflen(SCpnt)
1994 - scsi_get_resid(SCpnt);
1995 scsi_set_resid(SCpnt, 0);
1996 } else {
1997 good_bytes = 0;
1998 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1999 }
2000 break;
2001 default:
2002 /*
2003 * In case of bogus fw or device, we could end up having
2004 * an unaligned partial completion. Check this here and force
2005 * alignment.
2006 */
2007 resid = scsi_get_resid(SCpnt);
2008 if (resid & (sector_size - 1)) {
2009 sd_printk(KERN_INFO, sdkp,
2010 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2011 resid, sector_size);
2012 resid = min(scsi_bufflen(SCpnt),
2013 round_up(resid, sector_size));
2014 scsi_set_resid(SCpnt, resid);
2015 }
2016 }
2017
2018 if (result) {
2019 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2020 if (sense_valid)
2021 sense_deferred = scsi_sense_is_deferred(&sshdr);
2022 }
2023 sdkp->medium_access_timed_out = 0;
2024
2025 if (driver_byte(result) != DRIVER_SENSE &&
2026 (!sense_valid || sense_deferred))
2027 goto out;
2028
2029 switch (sshdr.sense_key) {
2030 case HARDWARE_ERROR:
2031 case MEDIUM_ERROR:
2032 good_bytes = sd_completed_bytes(SCpnt);
2033 break;
2034 case RECOVERED_ERROR:
2035 good_bytes = scsi_bufflen(SCpnt);
2036 break;
2037 case NO_SENSE:
2038 /* This indicates a false check condition, so ignore it. An
2039 * unknown amount of data was transferred so treat it as an
2040 * error.
2041 */
2042 SCpnt->result = 0;
2043 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2044 break;
2045 case ABORTED_COMMAND:
2046 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2047 good_bytes = sd_completed_bytes(SCpnt);
2048 break;
2049 case ILLEGAL_REQUEST:
2050 switch (sshdr.asc) {
2051 case 0x10: /* DIX: Host detected corruption */
2052 good_bytes = sd_completed_bytes(SCpnt);
2053 break;
2054 case 0x20: /* INVALID COMMAND OPCODE */
2055 case 0x24: /* INVALID FIELD IN CDB */
2056 switch (SCpnt->cmnd[0]) {
2057 case UNMAP:
2058 sd_config_discard(sdkp, SD_LBP_DISABLE);
2059 break;
2060 case WRITE_SAME_16:
2061 case WRITE_SAME:
2062 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2063 sd_config_discard(sdkp, SD_LBP_DISABLE);
2064 } else {
2065 sdkp->device->no_write_same = 1;
2066 sd_config_write_same(sdkp);
2067 req->__data_len = blk_rq_bytes(req);
2068 req->rq_flags |= RQF_QUIET;
2069 }
2070 break;
2071 }
2072 }
2073 break;
2074 default:
2075 break;
2076 }
2077
2078 out:
2079 if (sd_is_zoned(sdkp))
2080 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2081
2082 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2083 "sd_done: completed %d of %d bytes\n",
2084 good_bytes, scsi_bufflen(SCpnt)));
2085
2086 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2087 sd_dif_complete(SCpnt, good_bytes);
2088
2089 return good_bytes;
2090 }
2091
2092 /*
2093 * spinup disk - called only in sd_revalidate_disk()
2094 */
2095 static void
2096 sd_spinup_disk(struct scsi_disk *sdkp)
2097 {
2098 unsigned char cmd[10];
2099 unsigned long spintime_expire = 0;
2100 int retries, spintime;
2101 unsigned int the_result;
2102 struct scsi_sense_hdr sshdr;
2103 int sense_valid = 0;
2104
2105 spintime = 0;
2106
2107 /* Spin up drives, as required. Only do this at boot time */
2108 /* Spinup needs to be done for module loads too. */
2109 do {
2110 retries = 0;
2111
2112 do {
2113 cmd[0] = TEST_UNIT_READY;
2114 memset((void *) &cmd[1], 0, 9);
2115
2116 the_result = scsi_execute_req(sdkp->device, cmd,
2117 DMA_NONE, NULL, 0,
2118 &sshdr, SD_TIMEOUT,
2119 SD_MAX_RETRIES, NULL);
2120
2121 /*
2122 * If the drive has indicated to us that it
2123 * doesn't have any media in it, don't bother
2124 * with any more polling.
2125 */
2126 if (media_not_present(sdkp, &sshdr))
2127 return;
2128
2129 if (the_result)
2130 sense_valid = scsi_sense_valid(&sshdr);
2131 retries++;
2132 } while (retries < 3 &&
2133 (!scsi_status_is_good(the_result) ||
2134 ((driver_byte(the_result) & DRIVER_SENSE) &&
2135 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2136
2137 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2138 /* no sense, TUR either succeeded or failed
2139 * with a status error */
2140 if(!spintime && !scsi_status_is_good(the_result)) {
2141 sd_print_result(sdkp, "Test Unit Ready failed",
2142 the_result);
2143 }
2144 break;
2145 }
2146
2147 /*
2148 * The device does not want the automatic start to be issued.
2149 */
2150 if (sdkp->device->no_start_on_add)
2151 break;
2152
2153 if (sense_valid && sshdr.sense_key == NOT_READY) {
2154 if (sshdr.asc == 4 && sshdr.ascq == 3)
2155 break; /* manual intervention required */
2156 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2157 break; /* standby */
2158 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2159 break; /* unavailable */
2160 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2161 break; /* sanitize in progress */
2162 /*
2163 * Issue command to spin up drive when not ready
2164 */
2165 if (!spintime) {
2166 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2167 cmd[0] = START_STOP;
2168 cmd[1] = 1; /* Return immediately */
2169 memset((void *) &cmd[2], 0, 8);
2170 cmd[4] = 1; /* Start spin cycle */
2171 if (sdkp->device->start_stop_pwr_cond)
2172 cmd[4] |= 1 << 4;
2173 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2174 NULL, 0, &sshdr,
2175 SD_TIMEOUT, SD_MAX_RETRIES,
2176 NULL);
2177 spintime_expire = jiffies + 100 * HZ;
2178 spintime = 1;
2179 }
2180 /* Wait 1 second for next try */
2181 msleep(1000);
2182 printk(".");
2183
2184 /*
2185 * Wait for USB flash devices with slow firmware.
2186 * Yes, this sense key/ASC combination shouldn't
2187 * occur here. It's characteristic of these devices.
2188 */
2189 } else if (sense_valid &&
2190 sshdr.sense_key == UNIT_ATTENTION &&
2191 sshdr.asc == 0x28) {
2192 if (!spintime) {
2193 spintime_expire = jiffies + 5 * HZ;
2194 spintime = 1;
2195 }
2196 /* Wait 1 second for next try */
2197 msleep(1000);
2198 } else {
2199 /* we don't understand the sense code, so it's
2200 * probably pointless to loop */
2201 if(!spintime) {
2202 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2203 sd_print_sense_hdr(sdkp, &sshdr);
2204 }
2205 break;
2206 }
2207
2208 } while (spintime && time_before_eq(jiffies, spintime_expire));
2209
2210 if (spintime) {
2211 if (scsi_status_is_good(the_result))
2212 printk("ready\n");
2213 else
2214 printk("not responding...\n");
2215 }
2216 }
2217
2218 /*
2219 * Determine whether disk supports Data Integrity Field.
2220 */
2221 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2222 {
2223 struct scsi_device *sdp = sdkp->device;
2224 u8 type;
2225 int ret = 0;
2226
2227 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2228 return ret;
2229
2230 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2231
2232 if (type > T10_PI_TYPE3_PROTECTION)
2233 ret = -ENODEV;
2234 else if (scsi_host_dif_capable(sdp->host, type))
2235 ret = 1;
2236
2237 if (sdkp->first_scan || type != sdkp->protection_type)
2238 switch (ret) {
2239 case -ENODEV:
2240 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2241 " protection type %u. Disabling disk!\n",
2242 type);
2243 break;
2244 case 1:
2245 sd_printk(KERN_NOTICE, sdkp,
2246 "Enabling DIF Type %u protection\n", type);
2247 break;
2248 case 0:
2249 sd_printk(KERN_NOTICE, sdkp,
2250 "Disabling DIF Type %u protection\n", type);
2251 break;
2252 }
2253
2254 sdkp->protection_type = type;
2255
2256 return ret;
2257 }
2258
2259 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260 struct scsi_sense_hdr *sshdr, int sense_valid,
2261 int the_result)
2262 {
2263 if (driver_byte(the_result) & DRIVER_SENSE)
2264 sd_print_sense_hdr(sdkp, sshdr);
2265 else
2266 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2267
2268 /*
2269 * Set dirty bit for removable devices if not ready -
2270 * sometimes drives will not report this properly.
2271 */
2272 if (sdp->removable &&
2273 sense_valid && sshdr->sense_key == NOT_READY)
2274 set_media_not_present(sdkp);
2275
2276 /*
2277 * We used to set media_present to 0 here to indicate no media
2278 * in the drive, but some drives fail read capacity even with
2279 * media present, so we can't do that.
2280 */
2281 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2282 }
2283
2284 #define RC16_LEN 32
2285 #if RC16_LEN > SD_BUF_SIZE
2286 #error RC16_LEN must not be more than SD_BUF_SIZE
2287 #endif
2288
2289 #define READ_CAPACITY_RETRIES_ON_RESET 10
2290
2291 /*
2292 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2293 * and the reported logical block size is bigger than 512 bytes. Note
2294 * that last_sector is a u64 and therefore logical_to_sectors() is not
2295 * applicable.
2296 */
2297 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2298 {
2299 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2300
2301 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2302 return false;
2303
2304 return true;
2305 }
2306
2307 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2308 unsigned char *buffer)
2309 {
2310 unsigned char cmd[16];
2311 struct scsi_sense_hdr sshdr;
2312 int sense_valid = 0;
2313 int the_result;
2314 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2315 unsigned int alignment;
2316 unsigned long long lba;
2317 unsigned sector_size;
2318
2319 if (sdp->no_read_capacity_16)
2320 return -EINVAL;
2321
2322 do {
2323 memset(cmd, 0, 16);
2324 cmd[0] = SERVICE_ACTION_IN_16;
2325 cmd[1] = SAI_READ_CAPACITY_16;
2326 cmd[13] = RC16_LEN;
2327 memset(buffer, 0, RC16_LEN);
2328
2329 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2330 buffer, RC16_LEN, &sshdr,
2331 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2332
2333 if (media_not_present(sdkp, &sshdr))
2334 return -ENODEV;
2335
2336 if (the_result) {
2337 sense_valid = scsi_sense_valid(&sshdr);
2338 if (sense_valid &&
2339 sshdr.sense_key == ILLEGAL_REQUEST &&
2340 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2341 sshdr.ascq == 0x00)
2342 /* Invalid Command Operation Code or
2343 * Invalid Field in CDB, just retry
2344 * silently with RC10 */
2345 return -EINVAL;
2346 if (sense_valid &&
2347 sshdr.sense_key == UNIT_ATTENTION &&
2348 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2349 /* Device reset might occur several times,
2350 * give it one more chance */
2351 if (--reset_retries > 0)
2352 continue;
2353 }
2354 retries--;
2355
2356 } while (the_result && retries);
2357
2358 if (the_result) {
2359 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2360 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2361 return -EINVAL;
2362 }
2363
2364 sector_size = get_unaligned_be32(&buffer[8]);
2365 lba = get_unaligned_be64(&buffer[0]);
2366
2367 if (sd_read_protection_type(sdkp, buffer) < 0) {
2368 sdkp->capacity = 0;
2369 return -ENODEV;
2370 }
2371
2372 if (!sd_addressable_capacity(lba, sector_size)) {
2373 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2374 "kernel compiled with support for large block "
2375 "devices.\n");
2376 sdkp->capacity = 0;
2377 return -EOVERFLOW;
2378 }
2379
2380 /* Logical blocks per physical block exponent */
2381 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2382
2383 /* RC basis */
2384 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2385
2386 /* Lowest aligned logical block */
2387 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2388 blk_queue_alignment_offset(sdp->request_queue, alignment);
2389 if (alignment && sdkp->first_scan)
2390 sd_printk(KERN_NOTICE, sdkp,
2391 "physical block alignment offset: %u\n", alignment);
2392
2393 if (buffer[14] & 0x80) { /* LBPME */
2394 sdkp->lbpme = 1;
2395
2396 if (buffer[14] & 0x40) /* LBPRZ */
2397 sdkp->lbprz = 1;
2398
2399 sd_config_discard(sdkp, SD_LBP_WS16);
2400 }
2401
2402 sdkp->capacity = lba + 1;
2403 return sector_size;
2404 }
2405
2406 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2407 unsigned char *buffer)
2408 {
2409 unsigned char cmd[16];
2410 struct scsi_sense_hdr sshdr;
2411 int sense_valid = 0;
2412 int the_result;
2413 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2414 sector_t lba;
2415 unsigned sector_size;
2416
2417 do {
2418 cmd[0] = READ_CAPACITY;
2419 memset(&cmd[1], 0, 9);
2420 memset(buffer, 0, 8);
2421
2422 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2423 buffer, 8, &sshdr,
2424 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2425
2426 if (media_not_present(sdkp, &sshdr))
2427 return -ENODEV;
2428
2429 if (the_result) {
2430 sense_valid = scsi_sense_valid(&sshdr);
2431 if (sense_valid &&
2432 sshdr.sense_key == UNIT_ATTENTION &&
2433 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2434 /* Device reset might occur several times,
2435 * give it one more chance */
2436 if (--reset_retries > 0)
2437 continue;
2438 }
2439 retries--;
2440
2441 } while (the_result && retries);
2442
2443 if (the_result) {
2444 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2445 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2446 return -EINVAL;
2447 }
2448
2449 sector_size = get_unaligned_be32(&buffer[4]);
2450 lba = get_unaligned_be32(&buffer[0]);
2451
2452 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2453 /* Some buggy (usb cardreader) devices return an lba of
2454 0xffffffff when the want to report a size of 0 (with
2455 which they really mean no media is present) */
2456 sdkp->capacity = 0;
2457 sdkp->physical_block_size = sector_size;
2458 return sector_size;
2459 }
2460
2461 if (!sd_addressable_capacity(lba, sector_size)) {
2462 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2463 "kernel compiled with support for large block "
2464 "devices.\n");
2465 sdkp->capacity = 0;
2466 return -EOVERFLOW;
2467 }
2468
2469 sdkp->capacity = lba + 1;
2470 sdkp->physical_block_size = sector_size;
2471 return sector_size;
2472 }
2473
2474 static int sd_try_rc16_first(struct scsi_device *sdp)
2475 {
2476 if (sdp->host->max_cmd_len < 16)
2477 return 0;
2478 if (sdp->try_rc_10_first)
2479 return 0;
2480 if (sdp->scsi_level > SCSI_SPC_2)
2481 return 1;
2482 if (scsi_device_protection(sdp))
2483 return 1;
2484 return 0;
2485 }
2486
2487 /*
2488 * read disk capacity
2489 */
2490 static void
2491 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2492 {
2493 int sector_size;
2494 struct scsi_device *sdp = sdkp->device;
2495
2496 if (sd_try_rc16_first(sdp)) {
2497 sector_size = read_capacity_16(sdkp, sdp, buffer);
2498 if (sector_size == -EOVERFLOW)
2499 goto got_data;
2500 if (sector_size == -ENODEV)
2501 return;
2502 if (sector_size < 0)
2503 sector_size = read_capacity_10(sdkp, sdp, buffer);
2504 if (sector_size < 0)
2505 return;
2506 } else {
2507 sector_size = read_capacity_10(sdkp, sdp, buffer);
2508 if (sector_size == -EOVERFLOW)
2509 goto got_data;
2510 if (sector_size < 0)
2511 return;
2512 if ((sizeof(sdkp->capacity) > 4) &&
2513 (sdkp->capacity > 0xffffffffULL)) {
2514 int old_sector_size = sector_size;
2515 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2516 "Trying to use READ CAPACITY(16).\n");
2517 sector_size = read_capacity_16(sdkp, sdp, buffer);
2518 if (sector_size < 0) {
2519 sd_printk(KERN_NOTICE, sdkp,
2520 "Using 0xffffffff as device size\n");
2521 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2522 sector_size = old_sector_size;
2523 goto got_data;
2524 }
2525 /* Remember that READ CAPACITY(16) succeeded */
2526 sdp->try_rc_10_first = 0;
2527 }
2528 }
2529
2530 /* Some devices are known to return the total number of blocks,
2531 * not the highest block number. Some devices have versions
2532 * which do this and others which do not. Some devices we might
2533 * suspect of doing this but we don't know for certain.
2534 *
2535 * If we know the reported capacity is wrong, decrement it. If
2536 * we can only guess, then assume the number of blocks is even
2537 * (usually true but not always) and err on the side of lowering
2538 * the capacity.
2539 */
2540 if (sdp->fix_capacity ||
2541 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2542 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2543 "from its reported value: %llu\n",
2544 (unsigned long long) sdkp->capacity);
2545 --sdkp->capacity;
2546 }
2547
2548 got_data:
2549 if (sector_size == 0) {
2550 sector_size = 512;
2551 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2552 "assuming 512.\n");
2553 }
2554
2555 if (sector_size != 512 &&
2556 sector_size != 1024 &&
2557 sector_size != 2048 &&
2558 sector_size != 4096) {
2559 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2560 sector_size);
2561 /*
2562 * The user might want to re-format the drive with
2563 * a supported sectorsize. Once this happens, it
2564 * would be relatively trivial to set the thing up.
2565 * For this reason, we leave the thing in the table.
2566 */
2567 sdkp->capacity = 0;
2568 /*
2569 * set a bogus sector size so the normal read/write
2570 * logic in the block layer will eventually refuse any
2571 * request on this device without tripping over power
2572 * of two sector size assumptions
2573 */
2574 sector_size = 512;
2575 }
2576 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2577 blk_queue_physical_block_size(sdp->request_queue,
2578 sdkp->physical_block_size);
2579 sdkp->device->sector_size = sector_size;
2580
2581 if (sdkp->capacity > 0xffffffff)
2582 sdp->use_16_for_rw = 1;
2583
2584 }
2585
2586 /*
2587 * Print disk capacity
2588 */
2589 static void
2590 sd_print_capacity(struct scsi_disk *sdkp,
2591 sector_t old_capacity)
2592 {
2593 int sector_size = sdkp->device->sector_size;
2594 char cap_str_2[10], cap_str_10[10];
2595
2596 string_get_size(sdkp->capacity, sector_size,
2597 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2598 string_get_size(sdkp->capacity, sector_size,
2599 STRING_UNITS_10, cap_str_10,
2600 sizeof(cap_str_10));
2601
2602 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2603 sd_printk(KERN_NOTICE, sdkp,
2604 "%llu %d-byte logical blocks: (%s/%s)\n",
2605 (unsigned long long)sdkp->capacity,
2606 sector_size, cap_str_10, cap_str_2);
2607
2608 if (sdkp->physical_block_size != sector_size)
2609 sd_printk(KERN_NOTICE, sdkp,
2610 "%u-byte physical blocks\n",
2611 sdkp->physical_block_size);
2612
2613 sd_zbc_print_zones(sdkp);
2614 }
2615 }
2616
2617 /* called with buffer of length 512 */
2618 static inline int
2619 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2620 unsigned char *buffer, int len, struct scsi_mode_data *data,
2621 struct scsi_sense_hdr *sshdr)
2622 {
2623 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2624 SD_TIMEOUT, SD_MAX_RETRIES, data,
2625 sshdr);
2626 }
2627
2628 /*
2629 * read write protect setting, if possible - called only in sd_revalidate_disk()
2630 * called with buffer of length SD_BUF_SIZE
2631 */
2632 static void
2633 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2634 {
2635 int res;
2636 struct scsi_device *sdp = sdkp->device;
2637 struct scsi_mode_data data;
2638 int disk_ro = get_disk_ro(sdkp->disk);
2639 int old_wp = sdkp->write_prot;
2640
2641 set_disk_ro(sdkp->disk, 0);
2642 if (sdp->skip_ms_page_3f) {
2643 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2644 return;
2645 }
2646
2647 if (sdp->use_192_bytes_for_3f) {
2648 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2649 } else {
2650 /*
2651 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2652 * We have to start carefully: some devices hang if we ask
2653 * for more than is available.
2654 */
2655 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2656
2657 /*
2658 * Second attempt: ask for page 0 When only page 0 is
2659 * implemented, a request for page 3F may return Sense Key
2660 * 5: Illegal Request, Sense Code 24: Invalid field in
2661 * CDB.
2662 */
2663 if (!scsi_status_is_good(res))
2664 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2665
2666 /*
2667 * Third attempt: ask 255 bytes, as we did earlier.
2668 */
2669 if (!scsi_status_is_good(res))
2670 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2671 &data, NULL);
2672 }
2673
2674 if (!scsi_status_is_good(res)) {
2675 sd_first_printk(KERN_WARNING, sdkp,
2676 "Test WP failed, assume Write Enabled\n");
2677 } else {
2678 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2679 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2680 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2681 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2682 sdkp->write_prot ? "on" : "off");
2683 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2684 }
2685 }
2686 }
2687
2688 /*
2689 * sd_read_cache_type - called only from sd_revalidate_disk()
2690 * called with buffer of length SD_BUF_SIZE
2691 */
2692 static void
2693 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2694 {
2695 int len = 0, res;
2696 struct scsi_device *sdp = sdkp->device;
2697
2698 int dbd;
2699 int modepage;
2700 int first_len;
2701 struct scsi_mode_data data;
2702 struct scsi_sense_hdr sshdr;
2703 int old_wce = sdkp->WCE;
2704 int old_rcd = sdkp->RCD;
2705 int old_dpofua = sdkp->DPOFUA;
2706
2707
2708 if (sdkp->cache_override)
2709 return;
2710
2711 first_len = 4;
2712 if (sdp->skip_ms_page_8) {
2713 if (sdp->type == TYPE_RBC)
2714 goto defaults;
2715 else {
2716 if (sdp->skip_ms_page_3f)
2717 goto defaults;
2718 modepage = 0x3F;
2719 if (sdp->use_192_bytes_for_3f)
2720 first_len = 192;
2721 dbd = 0;
2722 }
2723 } else if (sdp->type == TYPE_RBC) {
2724 modepage = 6;
2725 dbd = 8;
2726 } else {
2727 modepage = 8;
2728 dbd = 0;
2729 }
2730
2731 /* cautiously ask */
2732 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2733 &data, &sshdr);
2734
2735 if (!scsi_status_is_good(res))
2736 goto bad_sense;
2737
2738 if (!data.header_length) {
2739 modepage = 6;
2740 first_len = 0;
2741 sd_first_printk(KERN_ERR, sdkp,
2742 "Missing header in MODE_SENSE response\n");
2743 }
2744
2745 /* that went OK, now ask for the proper length */
2746 len = data.length;
2747
2748 /*
2749 * We're only interested in the first three bytes, actually.
2750 * But the data cache page is defined for the first 20.
2751 */
2752 if (len < 3)
2753 goto bad_sense;
2754 else if (len > SD_BUF_SIZE) {
2755 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2756 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2757 len = SD_BUF_SIZE;
2758 }
2759 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2760 len = 192;
2761
2762 /* Get the data */
2763 if (len > first_len)
2764 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2765 &data, &sshdr);
2766
2767 if (scsi_status_is_good(res)) {
2768 int offset = data.header_length + data.block_descriptor_length;
2769
2770 while (offset < len) {
2771 u8 page_code = buffer[offset] & 0x3F;
2772 u8 spf = buffer[offset] & 0x40;
2773
2774 if (page_code == 8 || page_code == 6) {
2775 /* We're interested only in the first 3 bytes.
2776 */
2777 if (len - offset <= 2) {
2778 sd_first_printk(KERN_ERR, sdkp,
2779 "Incomplete mode parameter "
2780 "data\n");
2781 goto defaults;
2782 } else {
2783 modepage = page_code;
2784 goto Page_found;
2785 }
2786 } else {
2787 /* Go to the next page */
2788 if (spf && len - offset > 3)
2789 offset += 4 + (buffer[offset+2] << 8) +
2790 buffer[offset+3];
2791 else if (!spf && len - offset > 1)
2792 offset += 2 + buffer[offset+1];
2793 else {
2794 sd_first_printk(KERN_ERR, sdkp,
2795 "Incomplete mode "
2796 "parameter data\n");
2797 goto defaults;
2798 }
2799 }
2800 }
2801
2802 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2803 goto defaults;
2804
2805 Page_found:
2806 if (modepage == 8) {
2807 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2808 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2809 } else {
2810 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2811 sdkp->RCD = 0;
2812 }
2813
2814 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2815 if (sdp->broken_fua) {
2816 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2817 sdkp->DPOFUA = 0;
2818 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2819 !sdkp->device->use_16_for_rw) {
2820 sd_first_printk(KERN_NOTICE, sdkp,
2821 "Uses READ/WRITE(6), disabling FUA\n");
2822 sdkp->DPOFUA = 0;
2823 }
2824
2825 /* No cache flush allowed for write protected devices */
2826 if (sdkp->WCE && sdkp->write_prot)
2827 sdkp->WCE = 0;
2828
2829 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2830 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2831 sd_printk(KERN_NOTICE, sdkp,
2832 "Write cache: %s, read cache: %s, %s\n",
2833 sdkp->WCE ? "enabled" : "disabled",
2834 sdkp->RCD ? "disabled" : "enabled",
2835 sdkp->DPOFUA ? "supports DPO and FUA"
2836 : "doesn't support DPO or FUA");
2837
2838 return;
2839 }
2840
2841 bad_sense:
2842 if (scsi_sense_valid(&sshdr) &&
2843 sshdr.sense_key == ILLEGAL_REQUEST &&
2844 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2845 /* Invalid field in CDB */
2846 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2847 else
2848 sd_first_printk(KERN_ERR, sdkp,
2849 "Asking for cache data failed\n");
2850
2851 defaults:
2852 if (sdp->wce_default_on) {
2853 sd_first_printk(KERN_NOTICE, sdkp,
2854 "Assuming drive cache: write back\n");
2855 sdkp->WCE = 1;
2856 } else {
2857 sd_first_printk(KERN_ERR, sdkp,
2858 "Assuming drive cache: write through\n");
2859 sdkp->WCE = 0;
2860 }
2861 sdkp->RCD = 0;
2862 sdkp->DPOFUA = 0;
2863 }
2864
2865 /*
2866 * The ATO bit indicates whether the DIF application tag is available
2867 * for use by the operating system.
2868 */
2869 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2870 {
2871 int res, offset;
2872 struct scsi_device *sdp = sdkp->device;
2873 struct scsi_mode_data data;
2874 struct scsi_sense_hdr sshdr;
2875
2876 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2877 return;
2878
2879 if (sdkp->protection_type == 0)
2880 return;
2881
2882 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2883 SD_MAX_RETRIES, &data, &sshdr);
2884
2885 if (!scsi_status_is_good(res) || !data.header_length ||
2886 data.length < 6) {
2887 sd_first_printk(KERN_WARNING, sdkp,
2888 "getting Control mode page failed, assume no ATO\n");
2889
2890 if (scsi_sense_valid(&sshdr))
2891 sd_print_sense_hdr(sdkp, &sshdr);
2892
2893 return;
2894 }
2895
2896 offset = data.header_length + data.block_descriptor_length;
2897
2898 if ((buffer[offset] & 0x3f) != 0x0a) {
2899 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2900 return;
2901 }
2902
2903 if ((buffer[offset + 5] & 0x80) == 0)
2904 return;
2905
2906 sdkp->ATO = 1;
2907
2908 return;
2909 }
2910
2911 /**
2912 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2913 * @sdkp: disk to query
2914 */
2915 static void sd_read_block_limits(struct scsi_disk *sdkp)
2916 {
2917 unsigned int sector_sz = sdkp->device->sector_size;
2918 const int vpd_len = 64;
2919 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2920
2921 if (!buffer ||
2922 /* Block Limits VPD */
2923 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2924 goto out;
2925
2926 blk_queue_io_min(sdkp->disk->queue,
2927 get_unaligned_be16(&buffer[6]) * sector_sz);
2928
2929 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2930 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2931
2932 if (buffer[3] == 0x3c) {
2933 unsigned int lba_count, desc_count;
2934
2935 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2936
2937 if (!sdkp->lbpme)
2938 goto out;
2939
2940 lba_count = get_unaligned_be32(&buffer[20]);
2941 desc_count = get_unaligned_be32(&buffer[24]);
2942
2943 if (lba_count && desc_count)
2944 sdkp->max_unmap_blocks = lba_count;
2945
2946 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2947
2948 if (buffer[32] & 0x80)
2949 sdkp->unmap_alignment =
2950 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2951
2952 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2953
2954 if (sdkp->max_unmap_blocks)
2955 sd_config_discard(sdkp, SD_LBP_UNMAP);
2956 else
2957 sd_config_discard(sdkp, SD_LBP_WS16);
2958
2959 } else { /* LBP VPD page tells us what to use */
2960 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2961 sd_config_discard(sdkp, SD_LBP_UNMAP);
2962 else if (sdkp->lbpws)
2963 sd_config_discard(sdkp, SD_LBP_WS16);
2964 else if (sdkp->lbpws10)
2965 sd_config_discard(sdkp, SD_LBP_WS10);
2966 else
2967 sd_config_discard(sdkp, SD_LBP_DISABLE);
2968 }
2969 }
2970
2971 out:
2972 kfree(buffer);
2973 }
2974
2975 /**
2976 * sd_read_block_characteristics - Query block dev. characteristics
2977 * @sdkp: disk to query
2978 */
2979 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2980 {
2981 struct request_queue *q = sdkp->disk->queue;
2982 unsigned char *buffer;
2983 u16 rot;
2984 const int vpd_len = 64;
2985
2986 buffer = kmalloc(vpd_len, GFP_KERNEL);
2987
2988 if (!buffer ||
2989 /* Block Device Characteristics VPD */
2990 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2991 goto out;
2992
2993 rot = get_unaligned_be16(&buffer[4]);
2994
2995 if (rot == 1) {
2996 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2997 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2998 }
2999
3000 if (sdkp->device->type == TYPE_ZBC) {
3001 /* Host-managed */
3002 q->limits.zoned = BLK_ZONED_HM;
3003 } else {
3004 sdkp->zoned = (buffer[8] >> 4) & 3;
3005 if (sdkp->zoned == 1)
3006 /* Host-aware */
3007 q->limits.zoned = BLK_ZONED_HA;
3008 else
3009 /*
3010 * Treat drive-managed devices as
3011 * regular block devices.
3012 */
3013 q->limits.zoned = BLK_ZONED_NONE;
3014 }
3015 if (blk_queue_is_zoned(q) && sdkp->first_scan)
3016 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3017 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3018
3019 out:
3020 kfree(buffer);
3021 }
3022
3023 /**
3024 * sd_read_block_provisioning - Query provisioning VPD page
3025 * @sdkp: disk to query
3026 */
3027 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3028 {
3029 unsigned char *buffer;
3030 const int vpd_len = 8;
3031
3032 if (sdkp->lbpme == 0)
3033 return;
3034
3035 buffer = kmalloc(vpd_len, GFP_KERNEL);
3036
3037 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3038 goto out;
3039
3040 sdkp->lbpvpd = 1;
3041 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3042 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3043 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3044
3045 out:
3046 kfree(buffer);
3047 }
3048
3049 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3050 {
3051 struct scsi_device *sdev = sdkp->device;
3052
3053 if (sdev->host->no_write_same) {
3054 sdev->no_write_same = 1;
3055
3056 return;
3057 }
3058
3059 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3060 /* too large values might cause issues with arcmsr */
3061 int vpd_buf_len = 64;
3062
3063 sdev->no_report_opcodes = 1;
3064
3065 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3066 * CODES is unsupported and the device has an ATA
3067 * Information VPD page (SAT).
3068 */
3069 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3070 sdev->no_write_same = 1;
3071 }
3072
3073 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3074 sdkp->ws16 = 1;
3075
3076 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3077 sdkp->ws10 = 1;
3078 }
3079
3080 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3081 {
3082 struct scsi_device *sdev = sdkp->device;
3083
3084 if (!sdev->security_supported)
3085 return;
3086
3087 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3088 SECURITY_PROTOCOL_IN) == 1 &&
3089 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3090 SECURITY_PROTOCOL_OUT) == 1)
3091 sdkp->security = 1;
3092 }
3093
3094 /**
3095 * sd_revalidate_disk - called the first time a new disk is seen,
3096 * performs disk spin up, read_capacity, etc.
3097 * @disk: struct gendisk we care about
3098 **/
3099 static int sd_revalidate_disk(struct gendisk *disk)
3100 {
3101 struct scsi_disk *sdkp = scsi_disk(disk);
3102 struct scsi_device *sdp = sdkp->device;
3103 struct request_queue *q = sdkp->disk->queue;
3104 sector_t old_capacity = sdkp->capacity;
3105 unsigned char *buffer;
3106 unsigned int dev_max, rw_max;
3107
3108 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3109 "sd_revalidate_disk\n"));
3110
3111 /*
3112 * If the device is offline, don't try and read capacity or any
3113 * of the other niceties.
3114 */
3115 if (!scsi_device_online(sdp))
3116 goto out;
3117
3118 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3119 if (!buffer) {
3120 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3121 "allocation failure.\n");
3122 goto out;
3123 }
3124
3125 sd_spinup_disk(sdkp);
3126
3127 /*
3128 * Without media there is no reason to ask; moreover, some devices
3129 * react badly if we do.
3130 */
3131 if (sdkp->media_present) {
3132 sd_read_capacity(sdkp, buffer);
3133
3134 if (scsi_device_supports_vpd(sdp)) {
3135 sd_read_block_provisioning(sdkp);
3136 sd_read_block_limits(sdkp);
3137 sd_read_block_characteristics(sdkp);
3138 sd_zbc_read_zones(sdkp, buffer);
3139 }
3140
3141 sd_print_capacity(sdkp, old_capacity);
3142
3143 sd_read_write_protect_flag(sdkp, buffer);
3144 sd_read_cache_type(sdkp, buffer);
3145 sd_read_app_tag_own(sdkp, buffer);
3146 sd_read_write_same(sdkp, buffer);
3147 sd_read_security(sdkp, buffer);
3148 }
3149
3150 /*
3151 * We now have all cache related info, determine how we deal
3152 * with flush requests.
3153 */
3154 sd_set_flush_flag(sdkp);
3155
3156 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3157 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3158
3159 /* Some devices report a maximum block count for READ/WRITE requests. */
3160 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3161 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3162
3163 /*
3164 * Determine the device's preferred I/O size for reads and writes
3165 * unless the reported value is unreasonably small, large, or
3166 * garbage.
3167 */
3168 if (sdkp->opt_xfer_blocks &&
3169 sdkp->opt_xfer_blocks <= dev_max &&
3170 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3171 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3172 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3173 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3174 } else
3175 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3176 (sector_t)BLK_DEF_MAX_SECTORS);
3177
3178 /* Do not exceed controller limit */
3179 rw_max = min(rw_max, queue_max_hw_sectors(q));
3180
3181 /*
3182 * Only update max_sectors if previously unset or if the current value
3183 * exceeds the capabilities of the hardware.
3184 */
3185 if (sdkp->first_scan ||
3186 q->limits.max_sectors > q->limits.max_dev_sectors ||
3187 q->limits.max_sectors > q->limits.max_hw_sectors)
3188 q->limits.max_sectors = rw_max;
3189
3190 sdkp->first_scan = 0;
3191
3192 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3193 sd_config_write_same(sdkp);
3194 kfree(buffer);
3195
3196 out:
3197 return 0;
3198 }
3199
3200 /**
3201 * sd_unlock_native_capacity - unlock native capacity
3202 * @disk: struct gendisk to set capacity for
3203 *
3204 * Block layer calls this function if it detects that partitions
3205 * on @disk reach beyond the end of the device. If the SCSI host
3206 * implements ->unlock_native_capacity() method, it's invoked to
3207 * give it a chance to adjust the device capacity.
3208 *
3209 * CONTEXT:
3210 * Defined by block layer. Might sleep.
3211 */
3212 static void sd_unlock_native_capacity(struct gendisk *disk)
3213 {
3214 struct scsi_device *sdev = scsi_disk(disk)->device;
3215
3216 if (sdev->host->hostt->unlock_native_capacity)
3217 sdev->host->hostt->unlock_native_capacity(sdev);
3218 }
3219
3220 /**
3221 * sd_format_disk_name - format disk name
3222 * @prefix: name prefix - ie. "sd" for SCSI disks
3223 * @index: index of the disk to format name for
3224 * @buf: output buffer
3225 * @buflen: length of the output buffer
3226 *
3227 * SCSI disk names starts at sda. The 26th device is sdz and the
3228 * 27th is sdaa. The last one for two lettered suffix is sdzz
3229 * which is followed by sdaaa.
3230 *
3231 * This is basically 26 base counting with one extra 'nil' entry
3232 * at the beginning from the second digit on and can be
3233 * determined using similar method as 26 base conversion with the
3234 * index shifted -1 after each digit is computed.
3235 *
3236 * CONTEXT:
3237 * Don't care.
3238 *
3239 * RETURNS:
3240 * 0 on success, -errno on failure.
3241 */
3242 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3243 {
3244 const int base = 'z' - 'a' + 1;
3245 char *begin = buf + strlen(prefix);
3246 char *end = buf + buflen;
3247 char *p;
3248 int unit;
3249
3250 p = end - 1;
3251 *p = '\0';
3252 unit = base;
3253 do {
3254 if (p == begin)
3255 return -EINVAL;
3256 *--p = 'a' + (index % unit);
3257 index = (index / unit) - 1;
3258 } while (index >= 0);
3259
3260 memmove(begin, p, end - p);
3261 memcpy(buf, prefix, strlen(prefix));
3262
3263 return 0;
3264 }
3265
3266 /*
3267 * The asynchronous part of sd_probe
3268 */
3269 static void sd_probe_async(void *data, async_cookie_t cookie)
3270 {
3271 struct scsi_disk *sdkp = data;
3272 struct scsi_device *sdp;
3273 struct gendisk *gd;
3274 u32 index;
3275 struct device *dev;
3276
3277 sdp = sdkp->device;
3278 gd = sdkp->disk;
3279 index = sdkp->index;
3280 dev = &sdp->sdev_gendev;
3281
3282 gd->major = sd_major((index & 0xf0) >> 4);
3283 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3284
3285 gd->fops = &sd_fops;
3286 gd->private_data = &sdkp->driver;
3287 gd->queue = sdkp->device->request_queue;
3288
3289 /* defaults, until the device tells us otherwise */
3290 sdp->sector_size = 512;
3291 sdkp->capacity = 0;
3292 sdkp->media_present = 1;
3293 sdkp->write_prot = 0;
3294 sdkp->cache_override = 0;
3295 sdkp->WCE = 0;
3296 sdkp->RCD = 0;
3297 sdkp->ATO = 0;
3298 sdkp->first_scan = 1;
3299 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3300
3301 sd_revalidate_disk(gd);
3302
3303 gd->flags = GENHD_FL_EXT_DEVT;
3304 if (sdp->removable) {
3305 gd->flags |= GENHD_FL_REMOVABLE;
3306 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3307 }
3308
3309 blk_pm_runtime_init(sdp->request_queue, dev);
3310 device_add_disk(dev, gd);
3311 if (sdkp->capacity)
3312 sd_dif_config_host(sdkp);
3313
3314 sd_revalidate_disk(gd);
3315
3316 if (sdkp->security) {
3317 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3318 if (sdkp->opal_dev)
3319 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3320 }
3321
3322 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3323 sdp->removable ? "removable " : "");
3324 scsi_autopm_put_device(sdp);
3325 put_device(&sdkp->dev);
3326 }
3327
3328 /**
3329 * sd_probe - called during driver initialization and whenever a
3330 * new scsi device is attached to the system. It is called once
3331 * for each scsi device (not just disks) present.
3332 * @dev: pointer to device object
3333 *
3334 * Returns 0 if successful (or not interested in this scsi device
3335 * (e.g. scanner)); 1 when there is an error.
3336 *
3337 * Note: this function is invoked from the scsi mid-level.
3338 * This function sets up the mapping between a given
3339 * <host,channel,id,lun> (found in sdp) and new device name
3340 * (e.g. /dev/sda). More precisely it is the block device major
3341 * and minor number that is chosen here.
3342 *
3343 * Assume sd_probe is not re-entrant (for time being)
3344 * Also think about sd_probe() and sd_remove() running coincidentally.
3345 **/
3346 static int sd_probe(struct device *dev)
3347 {
3348 struct scsi_device *sdp = to_scsi_device(dev);
3349 struct scsi_disk *sdkp;
3350 struct gendisk *gd;
3351 int index;
3352 int error;
3353
3354 scsi_autopm_get_device(sdp);
3355 error = -ENODEV;
3356 if (sdp->type != TYPE_DISK &&
3357 sdp->type != TYPE_ZBC &&
3358 sdp->type != TYPE_MOD &&
3359 sdp->type != TYPE_RBC)
3360 goto out;
3361
3362 #ifndef CONFIG_BLK_DEV_ZONED
3363 if (sdp->type == TYPE_ZBC)
3364 goto out;
3365 #endif
3366 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3367 "sd_probe\n"));
3368
3369 error = -ENOMEM;
3370 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3371 if (!sdkp)
3372 goto out;
3373
3374 gd = alloc_disk(SD_MINORS);
3375 if (!gd)
3376 goto out_free;
3377
3378 do {
3379 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3380 goto out_put;
3381
3382 spin_lock(&sd_index_lock);
3383 error = ida_get_new(&sd_index_ida, &index);
3384 spin_unlock(&sd_index_lock);
3385 } while (error == -EAGAIN);
3386
3387 if (error) {
3388 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3389 goto out_put;
3390 }
3391
3392 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3393 if (error) {
3394 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3395 goto out_free_index;
3396 }
3397
3398 sdkp->device = sdp;
3399 sdkp->driver = &sd_template;
3400 sdkp->disk = gd;
3401 sdkp->index = index;
3402 atomic_set(&sdkp->openers, 0);
3403 atomic_set(&sdkp->device->ioerr_cnt, 0);
3404
3405 if (!sdp->request_queue->rq_timeout) {
3406 if (sdp->type != TYPE_MOD)
3407 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3408 else
3409 blk_queue_rq_timeout(sdp->request_queue,
3410 SD_MOD_TIMEOUT);
3411 }
3412
3413 device_initialize(&sdkp->dev);
3414 sdkp->dev.parent = dev;
3415 sdkp->dev.class = &sd_disk_class;
3416 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3417
3418 error = device_add(&sdkp->dev);
3419 if (error)
3420 goto out_free_index;
3421
3422 get_device(dev);
3423 dev_set_drvdata(dev, sdkp);
3424
3425 get_device(&sdkp->dev); /* prevent release before async_schedule */
3426 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3427
3428 return 0;
3429
3430 out_free_index:
3431 spin_lock(&sd_index_lock);
3432 ida_remove(&sd_index_ida, index);
3433 spin_unlock(&sd_index_lock);
3434 out_put:
3435 put_disk(gd);
3436 out_free:
3437 kfree(sdkp);
3438 out:
3439 scsi_autopm_put_device(sdp);
3440 return error;
3441 }
3442
3443 /**
3444 * sd_remove - called whenever a scsi disk (previously recognized by
3445 * sd_probe) is detached from the system. It is called (potentially
3446 * multiple times) during sd module unload.
3447 * @dev: pointer to device object
3448 *
3449 * Note: this function is invoked from the scsi mid-level.
3450 * This function potentially frees up a device name (e.g. /dev/sdc)
3451 * that could be re-used by a subsequent sd_probe().
3452 * This function is not called when the built-in sd driver is "exit-ed".
3453 **/
3454 static int sd_remove(struct device *dev)
3455 {
3456 struct scsi_disk *sdkp;
3457 dev_t devt;
3458
3459 sdkp = dev_get_drvdata(dev);
3460 devt = disk_devt(sdkp->disk);
3461 scsi_autopm_get_device(sdkp->device);
3462
3463 async_synchronize_full_domain(&scsi_sd_pm_domain);
3464 async_synchronize_full_domain(&scsi_sd_probe_domain);
3465 device_del(&sdkp->dev);
3466 del_gendisk(sdkp->disk);
3467 sd_shutdown(dev);
3468
3469 sd_zbc_remove(sdkp);
3470
3471 free_opal_dev(sdkp->opal_dev);
3472
3473 blk_register_region(devt, SD_MINORS, NULL,
3474 sd_default_probe, NULL, NULL);
3475
3476 mutex_lock(&sd_ref_mutex);
3477 dev_set_drvdata(dev, NULL);
3478 put_device(&sdkp->dev);
3479 mutex_unlock(&sd_ref_mutex);
3480
3481 return 0;
3482 }
3483
3484 /**
3485 * scsi_disk_release - Called to free the scsi_disk structure
3486 * @dev: pointer to embedded class device
3487 *
3488 * sd_ref_mutex must be held entering this routine. Because it is
3489 * called on last put, you should always use the scsi_disk_get()
3490 * scsi_disk_put() helpers which manipulate the semaphore directly
3491 * and never do a direct put_device.
3492 **/
3493 static void scsi_disk_release(struct device *dev)
3494 {
3495 struct scsi_disk *sdkp = to_scsi_disk(dev);
3496 struct gendisk *disk = sdkp->disk;
3497
3498 spin_lock(&sd_index_lock);
3499 ida_remove(&sd_index_ida, sdkp->index);
3500 spin_unlock(&sd_index_lock);
3501
3502 disk->private_data = NULL;
3503 put_disk(disk);
3504 put_device(&sdkp->device->sdev_gendev);
3505
3506 kfree(sdkp);
3507 }
3508
3509 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3510 {
3511 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3512 struct scsi_sense_hdr sshdr;
3513 struct scsi_device *sdp = sdkp->device;
3514 int res;
3515
3516 if (start)
3517 cmd[4] |= 1; /* START */
3518
3519 if (sdp->start_stop_pwr_cond)
3520 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3521
3522 if (!scsi_device_online(sdp))
3523 return -ENODEV;
3524
3525 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3526 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3527 if (res) {
3528 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3529 if (driver_byte(res) & DRIVER_SENSE)
3530 sd_print_sense_hdr(sdkp, &sshdr);
3531 if (scsi_sense_valid(&sshdr) &&
3532 /* 0x3a is medium not present */
3533 sshdr.asc == 0x3a)
3534 res = 0;
3535 }
3536
3537 /* SCSI error codes must not go to the generic layer */
3538 if (res)
3539 return -EIO;
3540
3541 return 0;
3542 }
3543
3544 /*
3545 * Send a SYNCHRONIZE CACHE instruction down to the device through
3546 * the normal SCSI command structure. Wait for the command to
3547 * complete.
3548 */
3549 static void sd_shutdown(struct device *dev)
3550 {
3551 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3552
3553 if (!sdkp)
3554 return; /* this can happen */
3555
3556 if (pm_runtime_suspended(dev))
3557 return;
3558
3559 if (sdkp->WCE && sdkp->media_present) {
3560 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3561 sd_sync_cache(sdkp, NULL);
3562 }
3563
3564 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3565 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3566 sd_start_stop_device(sdkp, 0);
3567 }
3568 }
3569
3570 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3571 {
3572 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3573 struct scsi_sense_hdr sshdr;
3574 int ret = 0;
3575
3576 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3577 return 0;
3578
3579 if (sdkp->WCE && sdkp->media_present) {
3580 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3581 ret = sd_sync_cache(sdkp, &sshdr);
3582
3583 if (ret) {
3584 /* ignore OFFLINE device */
3585 if (ret == -ENODEV)
3586 return 0;
3587
3588 if (!scsi_sense_valid(&sshdr) ||
3589 sshdr.sense_key != ILLEGAL_REQUEST)
3590 return ret;
3591
3592 /*
3593 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3594 * doesn't support sync. There's not much to do and
3595 * suspend shouldn't fail.
3596 */
3597 ret = 0;
3598 }
3599 }
3600
3601 if (sdkp->device->manage_start_stop) {
3602 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3603 /* an error is not worth aborting a system sleep */
3604 ret = sd_start_stop_device(sdkp, 0);
3605 if (ignore_stop_errors)
3606 ret = 0;
3607 }
3608
3609 return ret;
3610 }
3611
3612 static int sd_suspend_system(struct device *dev)
3613 {
3614 return sd_suspend_common(dev, true);
3615 }
3616
3617 static int sd_suspend_runtime(struct device *dev)
3618 {
3619 return sd_suspend_common(dev, false);
3620 }
3621
3622 static int sd_resume(struct device *dev)
3623 {
3624 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3625 int ret;
3626
3627 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3628 return 0;
3629
3630 if (!sdkp->device->manage_start_stop)
3631 return 0;
3632
3633 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3634 ret = sd_start_stop_device(sdkp, 1);
3635 if (!ret)
3636 opal_unlock_from_suspend(sdkp->opal_dev);
3637 return ret;
3638 }
3639
3640 /**
3641 * init_sd - entry point for this driver (both when built in or when
3642 * a module).
3643 *
3644 * Note: this function registers this driver with the scsi mid-level.
3645 **/
3646 static int __init init_sd(void)
3647 {
3648 int majors = 0, i, err;
3649
3650 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3651
3652 for (i = 0; i < SD_MAJORS; i++) {
3653 if (register_blkdev(sd_major(i), "sd") != 0)
3654 continue;
3655 majors++;
3656 blk_register_region(sd_major(i), SD_MINORS, NULL,
3657 sd_default_probe, NULL, NULL);
3658 }
3659
3660 if (!majors)
3661 return -ENODEV;
3662
3663 err = class_register(&sd_disk_class);
3664 if (err)
3665 goto err_out;
3666
3667 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3668 0, 0, NULL);
3669 if (!sd_cdb_cache) {
3670 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3671 err = -ENOMEM;
3672 goto err_out_class;
3673 }
3674
3675 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3676 if (!sd_cdb_pool) {
3677 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3678 err = -ENOMEM;
3679 goto err_out_cache;
3680 }
3681
3682 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3683 if (!sd_page_pool) {
3684 printk(KERN_ERR "sd: can't init discard page pool\n");
3685 err = -ENOMEM;
3686 goto err_out_ppool;
3687 }
3688
3689 err = scsi_register_driver(&sd_template.gendrv);
3690 if (err)
3691 goto err_out_driver;
3692
3693 return 0;
3694
3695 err_out_driver:
3696 mempool_destroy(sd_page_pool);
3697
3698 err_out_ppool:
3699 mempool_destroy(sd_cdb_pool);
3700
3701 err_out_cache:
3702 kmem_cache_destroy(sd_cdb_cache);
3703
3704 err_out_class:
3705 class_unregister(&sd_disk_class);
3706 err_out:
3707 for (i = 0; i < SD_MAJORS; i++)
3708 unregister_blkdev(sd_major(i), "sd");
3709 return err;
3710 }
3711
3712 /**
3713 * exit_sd - exit point for this driver (when it is a module).
3714 *
3715 * Note: this function unregisters this driver from the scsi mid-level.
3716 **/
3717 static void __exit exit_sd(void)
3718 {
3719 int i;
3720
3721 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3722
3723 scsi_unregister_driver(&sd_template.gendrv);
3724 mempool_destroy(sd_cdb_pool);
3725 mempool_destroy(sd_page_pool);
3726 kmem_cache_destroy(sd_cdb_cache);
3727
3728 class_unregister(&sd_disk_class);
3729
3730 for (i = 0; i < SD_MAJORS; i++) {
3731 blk_unregister_region(sd_major(i), SD_MINORS);
3732 unregister_blkdev(sd_major(i), "sd");
3733 }
3734 }
3735
3736 module_init(init_sd);
3737 module_exit(exit_sd);
3738
3739 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3740 struct scsi_sense_hdr *sshdr)
3741 {
3742 scsi_print_sense_hdr(sdkp->device,
3743 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3744 }
3745
3746 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3747 int result)
3748 {
3749 const char *hb_string = scsi_hostbyte_string(result);
3750 const char *db_string = scsi_driverbyte_string(result);
3751
3752 if (hb_string || db_string)
3753 sd_printk(KERN_INFO, sdkp,
3754 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3755 hb_string ? hb_string : "invalid",
3756 db_string ? db_string : "invalid");
3757 else
3758 sd_printk(KERN_INFO, sdkp,
3759 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3760 msg, host_byte(result), driver_byte(result));
3761 }
3762