]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/sd.c
Merge branch 'siginfo-si_trapno-for-v5.15' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS 16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int sd_probe(struct device *);
108 static int sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121
122 static DEFINE_IDA(sd_index_ida);
123
124 /* This semaphore is used to mediate the 0->1 reference get in the
125 * face of object destruction (i.e. we can't allow a get on an
126 * object after last put) */
127 static DEFINE_MUTEX(sd_ref_mutex);
128
129 static struct kmem_cache *sd_cdb_cache;
130 static mempool_t *sd_cdb_pool;
131 static mempool_t *sd_page_pool;
132 static struct lock_class_key sd_bio_compl_lkclass;
133
134 static const char *sd_cache_types[] = {
135 "write through", "none", "write back",
136 "write back, no read (daft)"
137 };
138
139 static void sd_set_flush_flag(struct scsi_disk *sdkp)
140 {
141 bool wc = false, fua = false;
142
143 if (sdkp->WCE) {
144 wc = true;
145 if (sdkp->DPOFUA)
146 fua = true;
147 }
148
149 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
150 }
151
152 static ssize_t
153 cache_type_store(struct device *dev, struct device_attribute *attr,
154 const char *buf, size_t count)
155 {
156 int ct, rcd, wce, sp;
157 struct scsi_disk *sdkp = to_scsi_disk(dev);
158 struct scsi_device *sdp = sdkp->device;
159 char buffer[64];
160 char *buffer_data;
161 struct scsi_mode_data data;
162 struct scsi_sense_hdr sshdr;
163 static const char temp[] = "temporary ";
164 int len;
165
166 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
167 /* no cache control on RBC devices; theoretically they
168 * can do it, but there's probably so many exceptions
169 * it's not worth the risk */
170 return -EINVAL;
171
172 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
173 buf += sizeof(temp) - 1;
174 sdkp->cache_override = 1;
175 } else {
176 sdkp->cache_override = 0;
177 }
178
179 ct = sysfs_match_string(sd_cache_types, buf);
180 if (ct < 0)
181 return -EINVAL;
182
183 rcd = ct & 0x01 ? 1 : 0;
184 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
185
186 if (sdkp->cache_override) {
187 sdkp->WCE = wce;
188 sdkp->RCD = rcd;
189 sd_set_flush_flag(sdkp);
190 return count;
191 }
192
193 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
194 sdkp->max_retries, &data, NULL))
195 return -EINVAL;
196 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
197 data.block_descriptor_length);
198 buffer_data = buffer + data.header_length +
199 data.block_descriptor_length;
200 buffer_data[2] &= ~0x05;
201 buffer_data[2] |= wce << 2 | rcd;
202 sp = buffer_data[0] & 0x80 ? 1 : 0;
203 buffer_data[0] &= ~0x80;
204
205 /*
206 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
207 * received mode parameter buffer before doing MODE SELECT.
208 */
209 data.device_specific = 0;
210
211 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
212 sdkp->max_retries, &data, &sshdr)) {
213 if (scsi_sense_valid(&sshdr))
214 sd_print_sense_hdr(sdkp, &sshdr);
215 return -EINVAL;
216 }
217 sd_revalidate_disk(sdkp->disk);
218 return count;
219 }
220
221 static ssize_t
222 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
223 char *buf)
224 {
225 struct scsi_disk *sdkp = to_scsi_disk(dev);
226 struct scsi_device *sdp = sdkp->device;
227
228 return sprintf(buf, "%u\n", sdp->manage_start_stop);
229 }
230
231 static ssize_t
232 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
233 const char *buf, size_t count)
234 {
235 struct scsi_disk *sdkp = to_scsi_disk(dev);
236 struct scsi_device *sdp = sdkp->device;
237 bool v;
238
239 if (!capable(CAP_SYS_ADMIN))
240 return -EACCES;
241
242 if (kstrtobool(buf, &v))
243 return -EINVAL;
244
245 sdp->manage_start_stop = v;
246
247 return count;
248 }
249 static DEVICE_ATTR_RW(manage_start_stop);
250
251 static ssize_t
252 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
253 {
254 struct scsi_disk *sdkp = to_scsi_disk(dev);
255
256 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
257 }
258
259 static ssize_t
260 allow_restart_store(struct device *dev, struct device_attribute *attr,
261 const char *buf, size_t count)
262 {
263 bool v;
264 struct scsi_disk *sdkp = to_scsi_disk(dev);
265 struct scsi_device *sdp = sdkp->device;
266
267 if (!capable(CAP_SYS_ADMIN))
268 return -EACCES;
269
270 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
271 return -EINVAL;
272
273 if (kstrtobool(buf, &v))
274 return -EINVAL;
275
276 sdp->allow_restart = v;
277
278 return count;
279 }
280 static DEVICE_ATTR_RW(allow_restart);
281
282 static ssize_t
283 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
284 {
285 struct scsi_disk *sdkp = to_scsi_disk(dev);
286 int ct = sdkp->RCD + 2*sdkp->WCE;
287
288 return sprintf(buf, "%s\n", sd_cache_types[ct]);
289 }
290 static DEVICE_ATTR_RW(cache_type);
291
292 static ssize_t
293 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
294 {
295 struct scsi_disk *sdkp = to_scsi_disk(dev);
296
297 return sprintf(buf, "%u\n", sdkp->DPOFUA);
298 }
299 static DEVICE_ATTR_RO(FUA);
300
301 static ssize_t
302 protection_type_show(struct device *dev, struct device_attribute *attr,
303 char *buf)
304 {
305 struct scsi_disk *sdkp = to_scsi_disk(dev);
306
307 return sprintf(buf, "%u\n", sdkp->protection_type);
308 }
309
310 static ssize_t
311 protection_type_store(struct device *dev, struct device_attribute *attr,
312 const char *buf, size_t count)
313 {
314 struct scsi_disk *sdkp = to_scsi_disk(dev);
315 unsigned int val;
316 int err;
317
318 if (!capable(CAP_SYS_ADMIN))
319 return -EACCES;
320
321 err = kstrtouint(buf, 10, &val);
322
323 if (err)
324 return err;
325
326 if (val <= T10_PI_TYPE3_PROTECTION)
327 sdkp->protection_type = val;
328
329 return count;
330 }
331 static DEVICE_ATTR_RW(protection_type);
332
333 static ssize_t
334 protection_mode_show(struct device *dev, struct device_attribute *attr,
335 char *buf)
336 {
337 struct scsi_disk *sdkp = to_scsi_disk(dev);
338 struct scsi_device *sdp = sdkp->device;
339 unsigned int dif, dix;
340
341 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
342 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
343
344 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
345 dif = 0;
346 dix = 1;
347 }
348
349 if (!dif && !dix)
350 return sprintf(buf, "none\n");
351
352 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
353 }
354 static DEVICE_ATTR_RO(protection_mode);
355
356 static ssize_t
357 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
358 {
359 struct scsi_disk *sdkp = to_scsi_disk(dev);
360
361 return sprintf(buf, "%u\n", sdkp->ATO);
362 }
363 static DEVICE_ATTR_RO(app_tag_own);
364
365 static ssize_t
366 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
367 char *buf)
368 {
369 struct scsi_disk *sdkp = to_scsi_disk(dev);
370
371 return sprintf(buf, "%u\n", sdkp->lbpme);
372 }
373 static DEVICE_ATTR_RO(thin_provisioning);
374
375 /* sysfs_match_string() requires dense arrays */
376 static const char *lbp_mode[] = {
377 [SD_LBP_FULL] = "full",
378 [SD_LBP_UNMAP] = "unmap",
379 [SD_LBP_WS16] = "writesame_16",
380 [SD_LBP_WS10] = "writesame_10",
381 [SD_LBP_ZERO] = "writesame_zero",
382 [SD_LBP_DISABLE] = "disabled",
383 };
384
385 static ssize_t
386 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
387 char *buf)
388 {
389 struct scsi_disk *sdkp = to_scsi_disk(dev);
390
391 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
392 }
393
394 static ssize_t
395 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
396 const char *buf, size_t count)
397 {
398 struct scsi_disk *sdkp = to_scsi_disk(dev);
399 struct scsi_device *sdp = sdkp->device;
400 int mode;
401
402 if (!capable(CAP_SYS_ADMIN))
403 return -EACCES;
404
405 if (sd_is_zoned(sdkp)) {
406 sd_config_discard(sdkp, SD_LBP_DISABLE);
407 return count;
408 }
409
410 if (sdp->type != TYPE_DISK)
411 return -EINVAL;
412
413 mode = sysfs_match_string(lbp_mode, buf);
414 if (mode < 0)
415 return -EINVAL;
416
417 sd_config_discard(sdkp, mode);
418
419 return count;
420 }
421 static DEVICE_ATTR_RW(provisioning_mode);
422
423 /* sysfs_match_string() requires dense arrays */
424 static const char *zeroing_mode[] = {
425 [SD_ZERO_WRITE] = "write",
426 [SD_ZERO_WS] = "writesame",
427 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
428 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
429 };
430
431 static ssize_t
432 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
433 char *buf)
434 {
435 struct scsi_disk *sdkp = to_scsi_disk(dev);
436
437 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
438 }
439
440 static ssize_t
441 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
442 const char *buf, size_t count)
443 {
444 struct scsi_disk *sdkp = to_scsi_disk(dev);
445 int mode;
446
447 if (!capable(CAP_SYS_ADMIN))
448 return -EACCES;
449
450 mode = sysfs_match_string(zeroing_mode, buf);
451 if (mode < 0)
452 return -EINVAL;
453
454 sdkp->zeroing_mode = mode;
455
456 return count;
457 }
458 static DEVICE_ATTR_RW(zeroing_mode);
459
460 static ssize_t
461 max_medium_access_timeouts_show(struct device *dev,
462 struct device_attribute *attr, char *buf)
463 {
464 struct scsi_disk *sdkp = to_scsi_disk(dev);
465
466 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
467 }
468
469 static ssize_t
470 max_medium_access_timeouts_store(struct device *dev,
471 struct device_attribute *attr, const char *buf,
472 size_t count)
473 {
474 struct scsi_disk *sdkp = to_scsi_disk(dev);
475 int err;
476
477 if (!capable(CAP_SYS_ADMIN))
478 return -EACCES;
479
480 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
481
482 return err ? err : count;
483 }
484 static DEVICE_ATTR_RW(max_medium_access_timeouts);
485
486 static ssize_t
487 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
488 char *buf)
489 {
490 struct scsi_disk *sdkp = to_scsi_disk(dev);
491
492 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
493 }
494
495 static ssize_t
496 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
497 const char *buf, size_t count)
498 {
499 struct scsi_disk *sdkp = to_scsi_disk(dev);
500 struct scsi_device *sdp = sdkp->device;
501 unsigned long max;
502 int err;
503
504 if (!capable(CAP_SYS_ADMIN))
505 return -EACCES;
506
507 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
508 return -EINVAL;
509
510 err = kstrtoul(buf, 10, &max);
511
512 if (err)
513 return err;
514
515 if (max == 0)
516 sdp->no_write_same = 1;
517 else if (max <= SD_MAX_WS16_BLOCKS) {
518 sdp->no_write_same = 0;
519 sdkp->max_ws_blocks = max;
520 }
521
522 sd_config_write_same(sdkp);
523
524 return count;
525 }
526 static DEVICE_ATTR_RW(max_write_same_blocks);
527
528 static ssize_t
529 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
530 {
531 struct scsi_disk *sdkp = to_scsi_disk(dev);
532
533 if (sdkp->device->type == TYPE_ZBC)
534 return sprintf(buf, "host-managed\n");
535 if (sdkp->zoned == 1)
536 return sprintf(buf, "host-aware\n");
537 if (sdkp->zoned == 2)
538 return sprintf(buf, "drive-managed\n");
539 return sprintf(buf, "none\n");
540 }
541 static DEVICE_ATTR_RO(zoned_cap);
542
543 static ssize_t
544 max_retries_store(struct device *dev, struct device_attribute *attr,
545 const char *buf, size_t count)
546 {
547 struct scsi_disk *sdkp = to_scsi_disk(dev);
548 struct scsi_device *sdev = sdkp->device;
549 int retries, err;
550
551 err = kstrtoint(buf, 10, &retries);
552 if (err)
553 return err;
554
555 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
556 sdkp->max_retries = retries;
557 return count;
558 }
559
560 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
561 SD_MAX_RETRIES);
562 return -EINVAL;
563 }
564
565 static ssize_t
566 max_retries_show(struct device *dev, struct device_attribute *attr,
567 char *buf)
568 {
569 struct scsi_disk *sdkp = to_scsi_disk(dev);
570
571 return sprintf(buf, "%d\n", sdkp->max_retries);
572 }
573
574 static DEVICE_ATTR_RW(max_retries);
575
576 static struct attribute *sd_disk_attrs[] = {
577 &dev_attr_cache_type.attr,
578 &dev_attr_FUA.attr,
579 &dev_attr_allow_restart.attr,
580 &dev_attr_manage_start_stop.attr,
581 &dev_attr_protection_type.attr,
582 &dev_attr_protection_mode.attr,
583 &dev_attr_app_tag_own.attr,
584 &dev_attr_thin_provisioning.attr,
585 &dev_attr_provisioning_mode.attr,
586 &dev_attr_zeroing_mode.attr,
587 &dev_attr_max_write_same_blocks.attr,
588 &dev_attr_max_medium_access_timeouts.attr,
589 &dev_attr_zoned_cap.attr,
590 &dev_attr_max_retries.attr,
591 NULL,
592 };
593 ATTRIBUTE_GROUPS(sd_disk);
594
595 static struct class sd_disk_class = {
596 .name = "scsi_disk",
597 .owner = THIS_MODULE,
598 .dev_release = scsi_disk_release,
599 .dev_groups = sd_disk_groups,
600 };
601
602 static const struct dev_pm_ops sd_pm_ops = {
603 .suspend = sd_suspend_system,
604 .resume = sd_resume,
605 .poweroff = sd_suspend_system,
606 .restore = sd_resume,
607 .runtime_suspend = sd_suspend_runtime,
608 .runtime_resume = sd_resume,
609 };
610
611 static struct scsi_driver sd_template = {
612 .gendrv = {
613 .name = "sd",
614 .owner = THIS_MODULE,
615 .probe = sd_probe,
616 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
617 .remove = sd_remove,
618 .shutdown = sd_shutdown,
619 .pm = &sd_pm_ops,
620 },
621 .rescan = sd_rescan,
622 .init_command = sd_init_command,
623 .uninit_command = sd_uninit_command,
624 .done = sd_done,
625 .eh_action = sd_eh_action,
626 .eh_reset = sd_eh_reset,
627 };
628
629 /*
630 * Don't request a new module, as that could deadlock in multipath
631 * environment.
632 */
633 static void sd_default_probe(dev_t devt)
634 {
635 }
636
637 /*
638 * Device no to disk mapping:
639 *
640 * major disc2 disc p1
641 * |............|.............|....|....| <- dev_t
642 * 31 20 19 8 7 4 3 0
643 *
644 * Inside a major, we have 16k disks, however mapped non-
645 * contiguously. The first 16 disks are for major0, the next
646 * ones with major1, ... Disk 256 is for major0 again, disk 272
647 * for major1, ...
648 * As we stay compatible with our numbering scheme, we can reuse
649 * the well-know SCSI majors 8, 65--71, 136--143.
650 */
651 static int sd_major(int major_idx)
652 {
653 switch (major_idx) {
654 case 0:
655 return SCSI_DISK0_MAJOR;
656 case 1 ... 7:
657 return SCSI_DISK1_MAJOR + major_idx - 1;
658 case 8 ... 15:
659 return SCSI_DISK8_MAJOR + major_idx - 8;
660 default:
661 BUG();
662 return 0; /* shut up gcc */
663 }
664 }
665
666 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
667 {
668 struct scsi_disk *sdkp = NULL;
669
670 mutex_lock(&sd_ref_mutex);
671
672 if (disk->private_data) {
673 sdkp = scsi_disk(disk);
674 if (scsi_device_get(sdkp->device) == 0)
675 get_device(&sdkp->dev);
676 else
677 sdkp = NULL;
678 }
679 mutex_unlock(&sd_ref_mutex);
680 return sdkp;
681 }
682
683 static void scsi_disk_put(struct scsi_disk *sdkp)
684 {
685 struct scsi_device *sdev = sdkp->device;
686
687 mutex_lock(&sd_ref_mutex);
688 put_device(&sdkp->dev);
689 scsi_device_put(sdev);
690 mutex_unlock(&sd_ref_mutex);
691 }
692
693 #ifdef CONFIG_BLK_SED_OPAL
694 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
695 size_t len, bool send)
696 {
697 struct scsi_disk *sdkp = data;
698 struct scsi_device *sdev = sdkp->device;
699 u8 cdb[12] = { 0, };
700 int ret;
701
702 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
703 cdb[1] = secp;
704 put_unaligned_be16(spsp, &cdb[2]);
705 put_unaligned_be32(len, &cdb[6]);
706
707 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
708 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
709 RQF_PM, NULL);
710 return ret <= 0 ? ret : -EIO;
711 }
712 #endif /* CONFIG_BLK_SED_OPAL */
713
714 /*
715 * Look up the DIX operation based on whether the command is read or
716 * write and whether dix and dif are enabled.
717 */
718 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
719 {
720 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
721 static const unsigned int ops[] = { /* wrt dix dif */
722 SCSI_PROT_NORMAL, /* 0 0 0 */
723 SCSI_PROT_READ_STRIP, /* 0 0 1 */
724 SCSI_PROT_READ_INSERT, /* 0 1 0 */
725 SCSI_PROT_READ_PASS, /* 0 1 1 */
726 SCSI_PROT_NORMAL, /* 1 0 0 */
727 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
728 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
729 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
730 };
731
732 return ops[write << 2 | dix << 1 | dif];
733 }
734
735 /*
736 * Returns a mask of the protection flags that are valid for a given DIX
737 * operation.
738 */
739 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
740 {
741 static const unsigned int flag_mask[] = {
742 [SCSI_PROT_NORMAL] = 0,
743
744 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
745 SCSI_PROT_GUARD_CHECK |
746 SCSI_PROT_REF_CHECK |
747 SCSI_PROT_REF_INCREMENT,
748
749 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
750 SCSI_PROT_IP_CHECKSUM,
751
752 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
753 SCSI_PROT_GUARD_CHECK |
754 SCSI_PROT_REF_CHECK |
755 SCSI_PROT_REF_INCREMENT |
756 SCSI_PROT_IP_CHECKSUM,
757
758 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
759 SCSI_PROT_REF_INCREMENT,
760
761 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
762 SCSI_PROT_REF_CHECK |
763 SCSI_PROT_REF_INCREMENT |
764 SCSI_PROT_IP_CHECKSUM,
765
766 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
767 SCSI_PROT_GUARD_CHECK |
768 SCSI_PROT_REF_CHECK |
769 SCSI_PROT_REF_INCREMENT |
770 SCSI_PROT_IP_CHECKSUM,
771 };
772
773 return flag_mask[prot_op];
774 }
775
776 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
777 unsigned int dix, unsigned int dif)
778 {
779 struct bio *bio = scmd->request->bio;
780 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
781 unsigned int protect = 0;
782
783 if (dix) { /* DIX Type 0, 1, 2, 3 */
784 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
785 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
786
787 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
788 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
789 }
790
791 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
792 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
793
794 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
795 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
796 }
797
798 if (dif) { /* DIX/DIF Type 1, 2, 3 */
799 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
800
801 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
802 protect = 3 << 5; /* Disable target PI checking */
803 else
804 protect = 1 << 5; /* Enable target PI checking */
805 }
806
807 scsi_set_prot_op(scmd, prot_op);
808 scsi_set_prot_type(scmd, dif);
809 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
810
811 return protect;
812 }
813
814 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
815 {
816 struct request_queue *q = sdkp->disk->queue;
817 unsigned int logical_block_size = sdkp->device->sector_size;
818 unsigned int max_blocks = 0;
819
820 q->limits.discard_alignment =
821 sdkp->unmap_alignment * logical_block_size;
822 q->limits.discard_granularity =
823 max(sdkp->physical_block_size,
824 sdkp->unmap_granularity * logical_block_size);
825 sdkp->provisioning_mode = mode;
826
827 switch (mode) {
828
829 case SD_LBP_FULL:
830 case SD_LBP_DISABLE:
831 blk_queue_max_discard_sectors(q, 0);
832 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
833 return;
834
835 case SD_LBP_UNMAP:
836 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
837 (u32)SD_MAX_WS16_BLOCKS);
838 break;
839
840 case SD_LBP_WS16:
841 if (sdkp->device->unmap_limit_for_ws)
842 max_blocks = sdkp->max_unmap_blocks;
843 else
844 max_blocks = sdkp->max_ws_blocks;
845
846 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
847 break;
848
849 case SD_LBP_WS10:
850 if (sdkp->device->unmap_limit_for_ws)
851 max_blocks = sdkp->max_unmap_blocks;
852 else
853 max_blocks = sdkp->max_ws_blocks;
854
855 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
856 break;
857
858 case SD_LBP_ZERO:
859 max_blocks = min_not_zero(sdkp->max_ws_blocks,
860 (u32)SD_MAX_WS10_BLOCKS);
861 break;
862 }
863
864 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
865 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
866 }
867
868 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
869 {
870 struct scsi_device *sdp = cmd->device;
871 struct request *rq = cmd->request;
872 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
873 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
874 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
875 unsigned int data_len = 24;
876 char *buf;
877
878 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
879 if (!rq->special_vec.bv_page)
880 return BLK_STS_RESOURCE;
881 clear_highpage(rq->special_vec.bv_page);
882 rq->special_vec.bv_offset = 0;
883 rq->special_vec.bv_len = data_len;
884 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
885
886 cmd->cmd_len = 10;
887 cmd->cmnd[0] = UNMAP;
888 cmd->cmnd[8] = 24;
889
890 buf = bvec_virt(&rq->special_vec);
891 put_unaligned_be16(6 + 16, &buf[0]);
892 put_unaligned_be16(16, &buf[2]);
893 put_unaligned_be64(lba, &buf[8]);
894 put_unaligned_be32(nr_blocks, &buf[16]);
895
896 cmd->allowed = sdkp->max_retries;
897 cmd->transfersize = data_len;
898 rq->timeout = SD_TIMEOUT;
899
900 return scsi_alloc_sgtables(cmd);
901 }
902
903 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
904 bool unmap)
905 {
906 struct scsi_device *sdp = cmd->device;
907 struct request *rq = cmd->request;
908 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
909 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
910 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
911 u32 data_len = sdp->sector_size;
912
913 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
914 if (!rq->special_vec.bv_page)
915 return BLK_STS_RESOURCE;
916 clear_highpage(rq->special_vec.bv_page);
917 rq->special_vec.bv_offset = 0;
918 rq->special_vec.bv_len = data_len;
919 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
920
921 cmd->cmd_len = 16;
922 cmd->cmnd[0] = WRITE_SAME_16;
923 if (unmap)
924 cmd->cmnd[1] = 0x8; /* UNMAP */
925 put_unaligned_be64(lba, &cmd->cmnd[2]);
926 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
927
928 cmd->allowed = sdkp->max_retries;
929 cmd->transfersize = data_len;
930 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
931
932 return scsi_alloc_sgtables(cmd);
933 }
934
935 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
936 bool unmap)
937 {
938 struct scsi_device *sdp = cmd->device;
939 struct request *rq = cmd->request;
940 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
941 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
942 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
943 u32 data_len = sdp->sector_size;
944
945 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
946 if (!rq->special_vec.bv_page)
947 return BLK_STS_RESOURCE;
948 clear_highpage(rq->special_vec.bv_page);
949 rq->special_vec.bv_offset = 0;
950 rq->special_vec.bv_len = data_len;
951 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
952
953 cmd->cmd_len = 10;
954 cmd->cmnd[0] = WRITE_SAME;
955 if (unmap)
956 cmd->cmnd[1] = 0x8; /* UNMAP */
957 put_unaligned_be32(lba, &cmd->cmnd[2]);
958 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
959
960 cmd->allowed = sdkp->max_retries;
961 cmd->transfersize = data_len;
962 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
963
964 return scsi_alloc_sgtables(cmd);
965 }
966
967 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
968 {
969 struct request *rq = cmd->request;
970 struct scsi_device *sdp = cmd->device;
971 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
972 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
973 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
974
975 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
976 switch (sdkp->zeroing_mode) {
977 case SD_ZERO_WS16_UNMAP:
978 return sd_setup_write_same16_cmnd(cmd, true);
979 case SD_ZERO_WS10_UNMAP:
980 return sd_setup_write_same10_cmnd(cmd, true);
981 }
982 }
983
984 if (sdp->no_write_same) {
985 rq->rq_flags |= RQF_QUIET;
986 return BLK_STS_TARGET;
987 }
988
989 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
990 return sd_setup_write_same16_cmnd(cmd, false);
991
992 return sd_setup_write_same10_cmnd(cmd, false);
993 }
994
995 static void sd_config_write_same(struct scsi_disk *sdkp)
996 {
997 struct request_queue *q = sdkp->disk->queue;
998 unsigned int logical_block_size = sdkp->device->sector_size;
999
1000 if (sdkp->device->no_write_same) {
1001 sdkp->max_ws_blocks = 0;
1002 goto out;
1003 }
1004
1005 /* Some devices can not handle block counts above 0xffff despite
1006 * supporting WRITE SAME(16). Consequently we default to 64k
1007 * blocks per I/O unless the device explicitly advertises a
1008 * bigger limit.
1009 */
1010 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1011 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1012 (u32)SD_MAX_WS16_BLOCKS);
1013 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015 (u32)SD_MAX_WS10_BLOCKS);
1016 else {
1017 sdkp->device->no_write_same = 1;
1018 sdkp->max_ws_blocks = 0;
1019 }
1020
1021 if (sdkp->lbprz && sdkp->lbpws)
1022 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1023 else if (sdkp->lbprz && sdkp->lbpws10)
1024 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1025 else if (sdkp->max_ws_blocks)
1026 sdkp->zeroing_mode = SD_ZERO_WS;
1027 else
1028 sdkp->zeroing_mode = SD_ZERO_WRITE;
1029
1030 if (sdkp->max_ws_blocks &&
1031 sdkp->physical_block_size > logical_block_size) {
1032 /*
1033 * Reporting a maximum number of blocks that is not aligned
1034 * on the device physical size would cause a large write same
1035 * request to be split into physically unaligned chunks by
1036 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1037 * even if the caller of these functions took care to align the
1038 * large request. So make sure the maximum reported is aligned
1039 * to the device physical block size. This is only an optional
1040 * optimization for regular disks, but this is mandatory to
1041 * avoid failure of large write same requests directed at
1042 * sequential write required zones of host-managed ZBC disks.
1043 */
1044 sdkp->max_ws_blocks =
1045 round_down(sdkp->max_ws_blocks,
1046 bytes_to_logical(sdkp->device,
1047 sdkp->physical_block_size));
1048 }
1049
1050 out:
1051 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1052 (logical_block_size >> 9));
1053 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1054 (logical_block_size >> 9));
1055 }
1056
1057 /**
1058 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1059 * @cmd: command to prepare
1060 *
1061 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1062 * the preference indicated by the target device.
1063 **/
1064 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1065 {
1066 struct request *rq = cmd->request;
1067 struct scsi_device *sdp = cmd->device;
1068 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1069 struct bio *bio = rq->bio;
1070 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1071 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1072 blk_status_t ret;
1073
1074 if (sdkp->device->no_write_same)
1075 return BLK_STS_TARGET;
1076
1077 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1078
1079 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1080
1081 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1082 cmd->cmd_len = 16;
1083 cmd->cmnd[0] = WRITE_SAME_16;
1084 put_unaligned_be64(lba, &cmd->cmnd[2]);
1085 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1086 } else {
1087 cmd->cmd_len = 10;
1088 cmd->cmnd[0] = WRITE_SAME;
1089 put_unaligned_be32(lba, &cmd->cmnd[2]);
1090 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1091 }
1092
1093 cmd->transfersize = sdp->sector_size;
1094 cmd->allowed = sdkp->max_retries;
1095
1096 /*
1097 * For WRITE SAME the data transferred via the DATA OUT buffer is
1098 * different from the amount of data actually written to the target.
1099 *
1100 * We set up __data_len to the amount of data transferred via the
1101 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1102 * to transfer a single sector of data first, but then reset it to
1103 * the amount of data to be written right after so that the I/O path
1104 * knows how much to actually write.
1105 */
1106 rq->__data_len = sdp->sector_size;
1107 ret = scsi_alloc_sgtables(cmd);
1108 rq->__data_len = blk_rq_bytes(rq);
1109
1110 return ret;
1111 }
1112
1113 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1114 {
1115 struct request *rq = cmd->request;
1116 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1117
1118 /* flush requests don't perform I/O, zero the S/G table */
1119 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1120
1121 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1122 cmd->cmd_len = 10;
1123 cmd->transfersize = 0;
1124 cmd->allowed = sdkp->max_retries;
1125
1126 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1127 return BLK_STS_OK;
1128 }
1129
1130 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1131 sector_t lba, unsigned int nr_blocks,
1132 unsigned char flags)
1133 {
1134 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1135 if (unlikely(cmd->cmnd == NULL))
1136 return BLK_STS_RESOURCE;
1137
1138 cmd->cmd_len = SD_EXT_CDB_SIZE;
1139 memset(cmd->cmnd, 0, cmd->cmd_len);
1140
1141 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1142 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1143 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1144 cmd->cmnd[10] = flags;
1145 put_unaligned_be64(lba, &cmd->cmnd[12]);
1146 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1147 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1148
1149 return BLK_STS_OK;
1150 }
1151
1152 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1153 sector_t lba, unsigned int nr_blocks,
1154 unsigned char flags)
1155 {
1156 cmd->cmd_len = 16;
1157 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1158 cmd->cmnd[1] = flags;
1159 cmd->cmnd[14] = 0;
1160 cmd->cmnd[15] = 0;
1161 put_unaligned_be64(lba, &cmd->cmnd[2]);
1162 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1163
1164 return BLK_STS_OK;
1165 }
1166
1167 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1168 sector_t lba, unsigned int nr_blocks,
1169 unsigned char flags)
1170 {
1171 cmd->cmd_len = 10;
1172 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1173 cmd->cmnd[1] = flags;
1174 cmd->cmnd[6] = 0;
1175 cmd->cmnd[9] = 0;
1176 put_unaligned_be32(lba, &cmd->cmnd[2]);
1177 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1178
1179 return BLK_STS_OK;
1180 }
1181
1182 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1183 sector_t lba, unsigned int nr_blocks,
1184 unsigned char flags)
1185 {
1186 /* Avoid that 0 blocks gets translated into 256 blocks. */
1187 if (WARN_ON_ONCE(nr_blocks == 0))
1188 return BLK_STS_IOERR;
1189
1190 if (unlikely(flags & 0x8)) {
1191 /*
1192 * This happens only if this drive failed 10byte rw
1193 * command with ILLEGAL_REQUEST during operation and
1194 * thus turned off use_10_for_rw.
1195 */
1196 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1197 return BLK_STS_IOERR;
1198 }
1199
1200 cmd->cmd_len = 6;
1201 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1202 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1203 cmd->cmnd[2] = (lba >> 8) & 0xff;
1204 cmd->cmnd[3] = lba & 0xff;
1205 cmd->cmnd[4] = nr_blocks;
1206 cmd->cmnd[5] = 0;
1207
1208 return BLK_STS_OK;
1209 }
1210
1211 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1212 {
1213 struct request *rq = cmd->request;
1214 struct scsi_device *sdp = cmd->device;
1215 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1216 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1217 sector_t threshold;
1218 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1219 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1220 bool write = rq_data_dir(rq) == WRITE;
1221 unsigned char protect, fua;
1222 blk_status_t ret;
1223 unsigned int dif;
1224 bool dix;
1225
1226 ret = scsi_alloc_sgtables(cmd);
1227 if (ret != BLK_STS_OK)
1228 return ret;
1229
1230 ret = BLK_STS_IOERR;
1231 if (!scsi_device_online(sdp) || sdp->changed) {
1232 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1233 goto fail;
1234 }
1235
1236 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1237 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1238 goto fail;
1239 }
1240
1241 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1242 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1243 goto fail;
1244 }
1245
1246 /*
1247 * Some SD card readers can't handle accesses which touch the
1248 * last one or two logical blocks. Split accesses as needed.
1249 */
1250 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1251
1252 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1253 if (lba < threshold) {
1254 /* Access up to the threshold but not beyond */
1255 nr_blocks = threshold - lba;
1256 } else {
1257 /* Access only a single logical block */
1258 nr_blocks = 1;
1259 }
1260 }
1261
1262 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1263 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1264 if (ret)
1265 goto fail;
1266 }
1267
1268 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1269 dix = scsi_prot_sg_count(cmd);
1270 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1271
1272 if (dif || dix)
1273 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1274 else
1275 protect = 0;
1276
1277 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1278 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1279 protect | fua);
1280 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1281 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1282 protect | fua);
1283 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1284 sdp->use_10_for_rw || protect) {
1285 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1286 protect | fua);
1287 } else {
1288 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1289 protect | fua);
1290 }
1291
1292 if (unlikely(ret != BLK_STS_OK))
1293 goto fail;
1294
1295 /*
1296 * We shouldn't disconnect in the middle of a sector, so with a dumb
1297 * host adapter, it's safe to assume that we can at least transfer
1298 * this many bytes between each connect / disconnect.
1299 */
1300 cmd->transfersize = sdp->sector_size;
1301 cmd->underflow = nr_blocks << 9;
1302 cmd->allowed = sdkp->max_retries;
1303 cmd->sdb.length = nr_blocks * sdp->sector_size;
1304
1305 SCSI_LOG_HLQUEUE(1,
1306 scmd_printk(KERN_INFO, cmd,
1307 "%s: block=%llu, count=%d\n", __func__,
1308 (unsigned long long)blk_rq_pos(rq),
1309 blk_rq_sectors(rq)));
1310 SCSI_LOG_HLQUEUE(2,
1311 scmd_printk(KERN_INFO, cmd,
1312 "%s %d/%u 512 byte blocks.\n",
1313 write ? "writing" : "reading", nr_blocks,
1314 blk_rq_sectors(rq)));
1315
1316 /*
1317 * This indicates that the command is ready from our end to be queued.
1318 */
1319 return BLK_STS_OK;
1320 fail:
1321 scsi_free_sgtables(cmd);
1322 return ret;
1323 }
1324
1325 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1326 {
1327 struct request *rq = cmd->request;
1328
1329 switch (req_op(rq)) {
1330 case REQ_OP_DISCARD:
1331 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1332 case SD_LBP_UNMAP:
1333 return sd_setup_unmap_cmnd(cmd);
1334 case SD_LBP_WS16:
1335 return sd_setup_write_same16_cmnd(cmd, true);
1336 case SD_LBP_WS10:
1337 return sd_setup_write_same10_cmnd(cmd, true);
1338 case SD_LBP_ZERO:
1339 return sd_setup_write_same10_cmnd(cmd, false);
1340 default:
1341 return BLK_STS_TARGET;
1342 }
1343 case REQ_OP_WRITE_ZEROES:
1344 return sd_setup_write_zeroes_cmnd(cmd);
1345 case REQ_OP_WRITE_SAME:
1346 return sd_setup_write_same_cmnd(cmd);
1347 case REQ_OP_FLUSH:
1348 return sd_setup_flush_cmnd(cmd);
1349 case REQ_OP_READ:
1350 case REQ_OP_WRITE:
1351 case REQ_OP_ZONE_APPEND:
1352 return sd_setup_read_write_cmnd(cmd);
1353 case REQ_OP_ZONE_RESET:
1354 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1355 false);
1356 case REQ_OP_ZONE_RESET_ALL:
1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 true);
1359 case REQ_OP_ZONE_OPEN:
1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1361 case REQ_OP_ZONE_CLOSE:
1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1363 case REQ_OP_ZONE_FINISH:
1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1365 default:
1366 WARN_ON_ONCE(1);
1367 return BLK_STS_NOTSUPP;
1368 }
1369 }
1370
1371 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1372 {
1373 struct request *rq = SCpnt->request;
1374 u8 *cmnd;
1375
1376 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1377 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1378
1379 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1380 cmnd = SCpnt->cmnd;
1381 SCpnt->cmnd = NULL;
1382 SCpnt->cmd_len = 0;
1383 mempool_free(cmnd, sd_cdb_pool);
1384 }
1385 }
1386
1387 static bool sd_need_revalidate(struct block_device *bdev,
1388 struct scsi_disk *sdkp)
1389 {
1390 if (sdkp->device->removable || sdkp->write_prot) {
1391 if (bdev_check_media_change(bdev))
1392 return true;
1393 }
1394
1395 /*
1396 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1397 * nothing to do with partitions, BLKRRPART is used to force a full
1398 * revalidate after things like a format for historical reasons.
1399 */
1400 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1401 }
1402
1403 /**
1404 * sd_open - open a scsi disk device
1405 * @bdev: Block device of the scsi disk to open
1406 * @mode: FMODE_* mask
1407 *
1408 * Returns 0 if successful. Returns a negated errno value in case
1409 * of error.
1410 *
1411 * Note: This can be called from a user context (e.g. fsck(1) )
1412 * or from within the kernel (e.g. as a result of a mount(1) ).
1413 * In the latter case @inode and @filp carry an abridged amount
1414 * of information as noted above.
1415 *
1416 * Locking: called with bdev->bd_disk->open_mutex held.
1417 **/
1418 static int sd_open(struct block_device *bdev, fmode_t mode)
1419 {
1420 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1421 struct scsi_device *sdev;
1422 int retval;
1423
1424 if (!sdkp)
1425 return -ENXIO;
1426
1427 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1428
1429 sdev = sdkp->device;
1430
1431 /*
1432 * If the device is in error recovery, wait until it is done.
1433 * If the device is offline, then disallow any access to it.
1434 */
1435 retval = -ENXIO;
1436 if (!scsi_block_when_processing_errors(sdev))
1437 goto error_out;
1438
1439 if (sd_need_revalidate(bdev, sdkp))
1440 sd_revalidate_disk(bdev->bd_disk);
1441
1442 /*
1443 * If the drive is empty, just let the open fail.
1444 */
1445 retval = -ENOMEDIUM;
1446 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1447 goto error_out;
1448
1449 /*
1450 * If the device has the write protect tab set, have the open fail
1451 * if the user expects to be able to write to the thing.
1452 */
1453 retval = -EROFS;
1454 if (sdkp->write_prot && (mode & FMODE_WRITE))
1455 goto error_out;
1456
1457 /*
1458 * It is possible that the disk changing stuff resulted in
1459 * the device being taken offline. If this is the case,
1460 * report this to the user, and don't pretend that the
1461 * open actually succeeded.
1462 */
1463 retval = -ENXIO;
1464 if (!scsi_device_online(sdev))
1465 goto error_out;
1466
1467 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1468 if (scsi_block_when_processing_errors(sdev))
1469 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1470 }
1471
1472 return 0;
1473
1474 error_out:
1475 scsi_disk_put(sdkp);
1476 return retval;
1477 }
1478
1479 /**
1480 * sd_release - invoked when the (last) close(2) is called on this
1481 * scsi disk.
1482 * @disk: disk to release
1483 * @mode: FMODE_* mask
1484 *
1485 * Returns 0.
1486 *
1487 * Note: may block (uninterruptible) if error recovery is underway
1488 * on this disk.
1489 *
1490 * Locking: called with bdev->bd_disk->open_mutex held.
1491 **/
1492 static void sd_release(struct gendisk *disk, fmode_t mode)
1493 {
1494 struct scsi_disk *sdkp = scsi_disk(disk);
1495 struct scsi_device *sdev = sdkp->device;
1496
1497 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1498
1499 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1500 if (scsi_block_when_processing_errors(sdev))
1501 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1502 }
1503
1504 scsi_disk_put(sdkp);
1505 }
1506
1507 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1508 {
1509 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1510 struct scsi_device *sdp = sdkp->device;
1511 struct Scsi_Host *host = sdp->host;
1512 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1513 int diskinfo[4];
1514
1515 /* default to most commonly used values */
1516 diskinfo[0] = 0x40; /* 1 << 6 */
1517 diskinfo[1] = 0x20; /* 1 << 5 */
1518 diskinfo[2] = capacity >> 11;
1519
1520 /* override with calculated, extended default, or driver values */
1521 if (host->hostt->bios_param)
1522 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1523 else
1524 scsicam_bios_param(bdev, capacity, diskinfo);
1525
1526 geo->heads = diskinfo[0];
1527 geo->sectors = diskinfo[1];
1528 geo->cylinders = diskinfo[2];
1529 return 0;
1530 }
1531
1532 /**
1533 * sd_ioctl_common - process an ioctl
1534 * @bdev: target block device
1535 * @mode: FMODE_* mask
1536 * @cmd: ioctl command number
1537 * @p: this is third argument given to ioctl(2) system call.
1538 * Often contains a pointer.
1539 *
1540 * Returns 0 if successful (some ioctls return positive numbers on
1541 * success as well). Returns a negated errno value in case of error.
1542 *
1543 * Note: most ioctls are forward onto the block subsystem or further
1544 * down in the scsi subsystem.
1545 **/
1546 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1547 unsigned int cmd, void __user *p)
1548 {
1549 struct gendisk *disk = bdev->bd_disk;
1550 struct scsi_disk *sdkp = scsi_disk(disk);
1551 struct scsi_device *sdp = sdkp->device;
1552 int error;
1553
1554 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1555 "cmd=0x%x\n", disk->disk_name, cmd));
1556
1557 error = scsi_verify_blk_ioctl(bdev, cmd);
1558 if (error < 0)
1559 return error;
1560
1561 /*
1562 * If we are in the middle of error recovery, don't let anyone
1563 * else try and use this device. Also, if error recovery fails, it
1564 * may try and take the device offline, in which case all further
1565 * access to the device is prohibited.
1566 */
1567 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1568 (mode & FMODE_NDELAY) != 0);
1569 if (error)
1570 goto out;
1571
1572 if (is_sed_ioctl(cmd))
1573 return sed_ioctl(sdkp->opal_dev, cmd, p);
1574
1575 /*
1576 * Send SCSI addressing ioctls directly to mid level, send other
1577 * ioctls to block level and then onto mid level if they can't be
1578 * resolved.
1579 */
1580 switch (cmd) {
1581 case SCSI_IOCTL_GET_IDLUN:
1582 case SCSI_IOCTL_GET_BUS_NUMBER:
1583 error = scsi_ioctl(sdp, cmd, p);
1584 break;
1585 default:
1586 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1587 break;
1588 }
1589 out:
1590 return error;
1591 }
1592
1593 static void set_media_not_present(struct scsi_disk *sdkp)
1594 {
1595 if (sdkp->media_present)
1596 sdkp->device->changed = 1;
1597
1598 if (sdkp->device->removable) {
1599 sdkp->media_present = 0;
1600 sdkp->capacity = 0;
1601 }
1602 }
1603
1604 static int media_not_present(struct scsi_disk *sdkp,
1605 struct scsi_sense_hdr *sshdr)
1606 {
1607 if (!scsi_sense_valid(sshdr))
1608 return 0;
1609
1610 /* not invoked for commands that could return deferred errors */
1611 switch (sshdr->sense_key) {
1612 case UNIT_ATTENTION:
1613 case NOT_READY:
1614 /* medium not present */
1615 if (sshdr->asc == 0x3A) {
1616 set_media_not_present(sdkp);
1617 return 1;
1618 }
1619 }
1620 return 0;
1621 }
1622
1623 /**
1624 * sd_check_events - check media events
1625 * @disk: kernel device descriptor
1626 * @clearing: disk events currently being cleared
1627 *
1628 * Returns mask of DISK_EVENT_*.
1629 *
1630 * Note: this function is invoked from the block subsystem.
1631 **/
1632 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1633 {
1634 struct scsi_disk *sdkp = scsi_disk_get(disk);
1635 struct scsi_device *sdp;
1636 int retval;
1637 bool disk_changed;
1638
1639 if (!sdkp)
1640 return 0;
1641
1642 sdp = sdkp->device;
1643 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1644
1645 /*
1646 * If the device is offline, don't send any commands - just pretend as
1647 * if the command failed. If the device ever comes back online, we
1648 * can deal with it then. It is only because of unrecoverable errors
1649 * that we would ever take a device offline in the first place.
1650 */
1651 if (!scsi_device_online(sdp)) {
1652 set_media_not_present(sdkp);
1653 goto out;
1654 }
1655
1656 /*
1657 * Using TEST_UNIT_READY enables differentiation between drive with
1658 * no cartridge loaded - NOT READY, drive with changed cartridge -
1659 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1660 *
1661 * Drives that auto spin down. eg iomega jaz 1G, will be started
1662 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1663 * sd_revalidate() is called.
1664 */
1665 if (scsi_block_when_processing_errors(sdp)) {
1666 struct scsi_sense_hdr sshdr = { 0, };
1667
1668 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1669 &sshdr);
1670
1671 /* failed to execute TUR, assume media not present */
1672 if (retval < 0 || host_byte(retval)) {
1673 set_media_not_present(sdkp);
1674 goto out;
1675 }
1676
1677 if (media_not_present(sdkp, &sshdr))
1678 goto out;
1679 }
1680
1681 /*
1682 * For removable scsi disk we have to recognise the presence
1683 * of a disk in the drive.
1684 */
1685 if (!sdkp->media_present)
1686 sdp->changed = 1;
1687 sdkp->media_present = 1;
1688 out:
1689 /*
1690 * sdp->changed is set under the following conditions:
1691 *
1692 * Medium present state has changed in either direction.
1693 * Device has indicated UNIT_ATTENTION.
1694 */
1695 disk_changed = sdp->changed;
1696 sdp->changed = 0;
1697 scsi_disk_put(sdkp);
1698 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1699 }
1700
1701 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1702 {
1703 int retries, res;
1704 struct scsi_device *sdp = sdkp->device;
1705 const int timeout = sdp->request_queue->rq_timeout
1706 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1707 struct scsi_sense_hdr my_sshdr;
1708
1709 if (!scsi_device_online(sdp))
1710 return -ENODEV;
1711
1712 /* caller might not be interested in sense, but we need it */
1713 if (!sshdr)
1714 sshdr = &my_sshdr;
1715
1716 for (retries = 3; retries > 0; --retries) {
1717 unsigned char cmd[10] = { 0 };
1718
1719 cmd[0] = SYNCHRONIZE_CACHE;
1720 /*
1721 * Leave the rest of the command zero to indicate
1722 * flush everything.
1723 */
1724 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1725 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1726 if (res == 0)
1727 break;
1728 }
1729
1730 if (res) {
1731 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1732
1733 if (res < 0)
1734 return res;
1735
1736 if (scsi_status_is_check_condition(res) &&
1737 scsi_sense_valid(sshdr)) {
1738 sd_print_sense_hdr(sdkp, sshdr);
1739
1740 /* we need to evaluate the error return */
1741 if (sshdr->asc == 0x3a || /* medium not present */
1742 sshdr->asc == 0x20 || /* invalid command */
1743 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1744 /* this is no error here */
1745 return 0;
1746 }
1747
1748 switch (host_byte(res)) {
1749 /* ignore errors due to racing a disconnection */
1750 case DID_BAD_TARGET:
1751 case DID_NO_CONNECT:
1752 return 0;
1753 /* signal the upper layer it might try again */
1754 case DID_BUS_BUSY:
1755 case DID_IMM_RETRY:
1756 case DID_REQUEUE:
1757 case DID_SOFT_ERROR:
1758 return -EBUSY;
1759 default:
1760 return -EIO;
1761 }
1762 }
1763 return 0;
1764 }
1765
1766 static void sd_rescan(struct device *dev)
1767 {
1768 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1769
1770 sd_revalidate_disk(sdkp->disk);
1771 }
1772
1773 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1774 unsigned int cmd, unsigned long arg)
1775 {
1776 void __user *p = (void __user *)arg;
1777 int ret;
1778
1779 ret = sd_ioctl_common(bdev, mode, cmd, p);
1780 if (ret != -ENOTTY)
1781 return ret;
1782
1783 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1784 }
1785
1786 #ifdef CONFIG_COMPAT
1787 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1788 unsigned int cmd, unsigned long arg)
1789 {
1790 void __user *p = compat_ptr(arg);
1791 int ret;
1792
1793 ret = sd_ioctl_common(bdev, mode, cmd, p);
1794 if (ret != -ENOTTY)
1795 return ret;
1796
1797 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1798 }
1799 #endif
1800
1801 static char sd_pr_type(enum pr_type type)
1802 {
1803 switch (type) {
1804 case PR_WRITE_EXCLUSIVE:
1805 return 0x01;
1806 case PR_EXCLUSIVE_ACCESS:
1807 return 0x03;
1808 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1809 return 0x05;
1810 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1811 return 0x06;
1812 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1813 return 0x07;
1814 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1815 return 0x08;
1816 default:
1817 return 0;
1818 }
1819 };
1820
1821 static int sd_pr_command(struct block_device *bdev, u8 sa,
1822 u64 key, u64 sa_key, u8 type, u8 flags)
1823 {
1824 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1825 struct scsi_device *sdev = sdkp->device;
1826 struct scsi_sense_hdr sshdr;
1827 int result;
1828 u8 cmd[16] = { 0, };
1829 u8 data[24] = { 0, };
1830
1831 cmd[0] = PERSISTENT_RESERVE_OUT;
1832 cmd[1] = sa;
1833 cmd[2] = type;
1834 put_unaligned_be32(sizeof(data), &cmd[5]);
1835
1836 put_unaligned_be64(key, &data[0]);
1837 put_unaligned_be64(sa_key, &data[8]);
1838 data[20] = flags;
1839
1840 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1841 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1842
1843 if (scsi_status_is_check_condition(result) &&
1844 scsi_sense_valid(&sshdr)) {
1845 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1846 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1847 }
1848
1849 return result;
1850 }
1851
1852 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1853 u32 flags)
1854 {
1855 if (flags & ~PR_FL_IGNORE_KEY)
1856 return -EOPNOTSUPP;
1857 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1858 old_key, new_key, 0,
1859 (1 << 0) /* APTPL */);
1860 }
1861
1862 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1863 u32 flags)
1864 {
1865 if (flags)
1866 return -EOPNOTSUPP;
1867 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1868 }
1869
1870 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1871 {
1872 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1873 }
1874
1875 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1876 enum pr_type type, bool abort)
1877 {
1878 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1879 sd_pr_type(type), 0);
1880 }
1881
1882 static int sd_pr_clear(struct block_device *bdev, u64 key)
1883 {
1884 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1885 }
1886
1887 static const struct pr_ops sd_pr_ops = {
1888 .pr_register = sd_pr_register,
1889 .pr_reserve = sd_pr_reserve,
1890 .pr_release = sd_pr_release,
1891 .pr_preempt = sd_pr_preempt,
1892 .pr_clear = sd_pr_clear,
1893 };
1894
1895 static const struct block_device_operations sd_fops = {
1896 .owner = THIS_MODULE,
1897 .open = sd_open,
1898 .release = sd_release,
1899 .ioctl = sd_ioctl,
1900 .getgeo = sd_getgeo,
1901 #ifdef CONFIG_COMPAT
1902 .compat_ioctl = sd_compat_ioctl,
1903 #endif
1904 .check_events = sd_check_events,
1905 .unlock_native_capacity = sd_unlock_native_capacity,
1906 .report_zones = sd_zbc_report_zones,
1907 .pr_ops = &sd_pr_ops,
1908 };
1909
1910 /**
1911 * sd_eh_reset - reset error handling callback
1912 * @scmd: sd-issued command that has failed
1913 *
1914 * This function is called by the SCSI midlayer before starting
1915 * SCSI EH. When counting medium access failures we have to be
1916 * careful to register it only only once per device and SCSI EH run;
1917 * there might be several timed out commands which will cause the
1918 * 'max_medium_access_timeouts' counter to trigger after the first
1919 * SCSI EH run already and set the device to offline.
1920 * So this function resets the internal counter before starting SCSI EH.
1921 **/
1922 static void sd_eh_reset(struct scsi_cmnd *scmd)
1923 {
1924 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1925
1926 /* New SCSI EH run, reset gate variable */
1927 sdkp->ignore_medium_access_errors = false;
1928 }
1929
1930 /**
1931 * sd_eh_action - error handling callback
1932 * @scmd: sd-issued command that has failed
1933 * @eh_disp: The recovery disposition suggested by the midlayer
1934 *
1935 * This function is called by the SCSI midlayer upon completion of an
1936 * error test command (currently TEST UNIT READY). The result of sending
1937 * the eh command is passed in eh_disp. We're looking for devices that
1938 * fail medium access commands but are OK with non access commands like
1939 * test unit ready (so wrongly see the device as having a successful
1940 * recovery)
1941 **/
1942 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1943 {
1944 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1945 struct scsi_device *sdev = scmd->device;
1946
1947 if (!scsi_device_online(sdev) ||
1948 !scsi_medium_access_command(scmd) ||
1949 host_byte(scmd->result) != DID_TIME_OUT ||
1950 eh_disp != SUCCESS)
1951 return eh_disp;
1952
1953 /*
1954 * The device has timed out executing a medium access command.
1955 * However, the TEST UNIT READY command sent during error
1956 * handling completed successfully. Either the device is in the
1957 * process of recovering or has it suffered an internal failure
1958 * that prevents access to the storage medium.
1959 */
1960 if (!sdkp->ignore_medium_access_errors) {
1961 sdkp->medium_access_timed_out++;
1962 sdkp->ignore_medium_access_errors = true;
1963 }
1964
1965 /*
1966 * If the device keeps failing read/write commands but TEST UNIT
1967 * READY always completes successfully we assume that medium
1968 * access is no longer possible and take the device offline.
1969 */
1970 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1971 scmd_printk(KERN_ERR, scmd,
1972 "Medium access timeout failure. Offlining disk!\n");
1973 mutex_lock(&sdev->state_mutex);
1974 scsi_device_set_state(sdev, SDEV_OFFLINE);
1975 mutex_unlock(&sdev->state_mutex);
1976
1977 return SUCCESS;
1978 }
1979
1980 return eh_disp;
1981 }
1982
1983 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1984 {
1985 struct request *req = scmd->request;
1986 struct scsi_device *sdev = scmd->device;
1987 unsigned int transferred, good_bytes;
1988 u64 start_lba, end_lba, bad_lba;
1989
1990 /*
1991 * Some commands have a payload smaller than the device logical
1992 * block size (e.g. INQUIRY on a 4K disk).
1993 */
1994 if (scsi_bufflen(scmd) <= sdev->sector_size)
1995 return 0;
1996
1997 /* Check if we have a 'bad_lba' information */
1998 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1999 SCSI_SENSE_BUFFERSIZE,
2000 &bad_lba))
2001 return 0;
2002
2003 /*
2004 * If the bad lba was reported incorrectly, we have no idea where
2005 * the error is.
2006 */
2007 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2008 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2009 if (bad_lba < start_lba || bad_lba >= end_lba)
2010 return 0;
2011
2012 /*
2013 * resid is optional but mostly filled in. When it's unused,
2014 * its value is zero, so we assume the whole buffer transferred
2015 */
2016 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2017
2018 /* This computation should always be done in terms of the
2019 * resolution of the device's medium.
2020 */
2021 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2022
2023 return min(good_bytes, transferred);
2024 }
2025
2026 /**
2027 * sd_done - bottom half handler: called when the lower level
2028 * driver has completed (successfully or otherwise) a scsi command.
2029 * @SCpnt: mid-level's per command structure.
2030 *
2031 * Note: potentially run from within an ISR. Must not block.
2032 **/
2033 static int sd_done(struct scsi_cmnd *SCpnt)
2034 {
2035 int result = SCpnt->result;
2036 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2037 unsigned int sector_size = SCpnt->device->sector_size;
2038 unsigned int resid;
2039 struct scsi_sense_hdr sshdr;
2040 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2041 struct request *req = SCpnt->request;
2042 int sense_valid = 0;
2043 int sense_deferred = 0;
2044
2045 switch (req_op(req)) {
2046 case REQ_OP_DISCARD:
2047 case REQ_OP_WRITE_ZEROES:
2048 case REQ_OP_WRITE_SAME:
2049 case REQ_OP_ZONE_RESET:
2050 case REQ_OP_ZONE_RESET_ALL:
2051 case REQ_OP_ZONE_OPEN:
2052 case REQ_OP_ZONE_CLOSE:
2053 case REQ_OP_ZONE_FINISH:
2054 if (!result) {
2055 good_bytes = blk_rq_bytes(req);
2056 scsi_set_resid(SCpnt, 0);
2057 } else {
2058 good_bytes = 0;
2059 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2060 }
2061 break;
2062 default:
2063 /*
2064 * In case of bogus fw or device, we could end up having
2065 * an unaligned partial completion. Check this here and force
2066 * alignment.
2067 */
2068 resid = scsi_get_resid(SCpnt);
2069 if (resid & (sector_size - 1)) {
2070 sd_printk(KERN_INFO, sdkp,
2071 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2072 resid, sector_size);
2073 scsi_print_command(SCpnt);
2074 resid = min(scsi_bufflen(SCpnt),
2075 round_up(resid, sector_size));
2076 scsi_set_resid(SCpnt, resid);
2077 }
2078 }
2079
2080 if (result) {
2081 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2082 if (sense_valid)
2083 sense_deferred = scsi_sense_is_deferred(&sshdr);
2084 }
2085 sdkp->medium_access_timed_out = 0;
2086
2087 if (!scsi_status_is_check_condition(result) &&
2088 (!sense_valid || sense_deferred))
2089 goto out;
2090
2091 switch (sshdr.sense_key) {
2092 case HARDWARE_ERROR:
2093 case MEDIUM_ERROR:
2094 good_bytes = sd_completed_bytes(SCpnt);
2095 break;
2096 case RECOVERED_ERROR:
2097 good_bytes = scsi_bufflen(SCpnt);
2098 break;
2099 case NO_SENSE:
2100 /* This indicates a false check condition, so ignore it. An
2101 * unknown amount of data was transferred so treat it as an
2102 * error.
2103 */
2104 SCpnt->result = 0;
2105 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2106 break;
2107 case ABORTED_COMMAND:
2108 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2109 good_bytes = sd_completed_bytes(SCpnt);
2110 break;
2111 case ILLEGAL_REQUEST:
2112 switch (sshdr.asc) {
2113 case 0x10: /* DIX: Host detected corruption */
2114 good_bytes = sd_completed_bytes(SCpnt);
2115 break;
2116 case 0x20: /* INVALID COMMAND OPCODE */
2117 case 0x24: /* INVALID FIELD IN CDB */
2118 switch (SCpnt->cmnd[0]) {
2119 case UNMAP:
2120 sd_config_discard(sdkp, SD_LBP_DISABLE);
2121 break;
2122 case WRITE_SAME_16:
2123 case WRITE_SAME:
2124 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2125 sd_config_discard(sdkp, SD_LBP_DISABLE);
2126 } else {
2127 sdkp->device->no_write_same = 1;
2128 sd_config_write_same(sdkp);
2129 req->rq_flags |= RQF_QUIET;
2130 }
2131 break;
2132 }
2133 }
2134 break;
2135 default:
2136 break;
2137 }
2138
2139 out:
2140 if (sd_is_zoned(sdkp))
2141 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2142
2143 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2144 "sd_done: completed %d of %d bytes\n",
2145 good_bytes, scsi_bufflen(SCpnt)));
2146
2147 return good_bytes;
2148 }
2149
2150 /*
2151 * spinup disk - called only in sd_revalidate_disk()
2152 */
2153 static void
2154 sd_spinup_disk(struct scsi_disk *sdkp)
2155 {
2156 unsigned char cmd[10];
2157 unsigned long spintime_expire = 0;
2158 int retries, spintime;
2159 unsigned int the_result;
2160 struct scsi_sense_hdr sshdr;
2161 int sense_valid = 0;
2162
2163 spintime = 0;
2164
2165 /* Spin up drives, as required. Only do this at boot time */
2166 /* Spinup needs to be done for module loads too. */
2167 do {
2168 retries = 0;
2169
2170 do {
2171 cmd[0] = TEST_UNIT_READY;
2172 memset((void *) &cmd[1], 0, 9);
2173
2174 the_result = scsi_execute_req(sdkp->device, cmd,
2175 DMA_NONE, NULL, 0,
2176 &sshdr, SD_TIMEOUT,
2177 sdkp->max_retries, NULL);
2178
2179 /*
2180 * If the drive has indicated to us that it
2181 * doesn't have any media in it, don't bother
2182 * with any more polling.
2183 */
2184 if (media_not_present(sdkp, &sshdr))
2185 return;
2186
2187 if (the_result)
2188 sense_valid = scsi_sense_valid(&sshdr);
2189 retries++;
2190 } while (retries < 3 &&
2191 (!scsi_status_is_good(the_result) ||
2192 (scsi_status_is_check_condition(the_result) &&
2193 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2194
2195 if (!scsi_status_is_check_condition(the_result)) {
2196 /* no sense, TUR either succeeded or failed
2197 * with a status error */
2198 if(!spintime && !scsi_status_is_good(the_result)) {
2199 sd_print_result(sdkp, "Test Unit Ready failed",
2200 the_result);
2201 }
2202 break;
2203 }
2204
2205 /*
2206 * The device does not want the automatic start to be issued.
2207 */
2208 if (sdkp->device->no_start_on_add)
2209 break;
2210
2211 if (sense_valid && sshdr.sense_key == NOT_READY) {
2212 if (sshdr.asc == 4 && sshdr.ascq == 3)
2213 break; /* manual intervention required */
2214 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2215 break; /* standby */
2216 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2217 break; /* unavailable */
2218 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2219 break; /* sanitize in progress */
2220 /*
2221 * Issue command to spin up drive when not ready
2222 */
2223 if (!spintime) {
2224 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2225 cmd[0] = START_STOP;
2226 cmd[1] = 1; /* Return immediately */
2227 memset((void *) &cmd[2], 0, 8);
2228 cmd[4] = 1; /* Start spin cycle */
2229 if (sdkp->device->start_stop_pwr_cond)
2230 cmd[4] |= 1 << 4;
2231 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2232 NULL, 0, &sshdr,
2233 SD_TIMEOUT, sdkp->max_retries,
2234 NULL);
2235 spintime_expire = jiffies + 100 * HZ;
2236 spintime = 1;
2237 }
2238 /* Wait 1 second for next try */
2239 msleep(1000);
2240 printk(KERN_CONT ".");
2241
2242 /*
2243 * Wait for USB flash devices with slow firmware.
2244 * Yes, this sense key/ASC combination shouldn't
2245 * occur here. It's characteristic of these devices.
2246 */
2247 } else if (sense_valid &&
2248 sshdr.sense_key == UNIT_ATTENTION &&
2249 sshdr.asc == 0x28) {
2250 if (!spintime) {
2251 spintime_expire = jiffies + 5 * HZ;
2252 spintime = 1;
2253 }
2254 /* Wait 1 second for next try */
2255 msleep(1000);
2256 } else {
2257 /* we don't understand the sense code, so it's
2258 * probably pointless to loop */
2259 if(!spintime) {
2260 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2261 sd_print_sense_hdr(sdkp, &sshdr);
2262 }
2263 break;
2264 }
2265
2266 } while (spintime && time_before_eq(jiffies, spintime_expire));
2267
2268 if (spintime) {
2269 if (scsi_status_is_good(the_result))
2270 printk(KERN_CONT "ready\n");
2271 else
2272 printk(KERN_CONT "not responding...\n");
2273 }
2274 }
2275
2276 /*
2277 * Determine whether disk supports Data Integrity Field.
2278 */
2279 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2280 {
2281 struct scsi_device *sdp = sdkp->device;
2282 u8 type;
2283 int ret = 0;
2284
2285 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2286 sdkp->protection_type = 0;
2287 return ret;
2288 }
2289
2290 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2291
2292 if (type > T10_PI_TYPE3_PROTECTION)
2293 ret = -ENODEV;
2294 else if (scsi_host_dif_capable(sdp->host, type))
2295 ret = 1;
2296
2297 if (sdkp->first_scan || type != sdkp->protection_type)
2298 switch (ret) {
2299 case -ENODEV:
2300 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2301 " protection type %u. Disabling disk!\n",
2302 type);
2303 break;
2304 case 1:
2305 sd_printk(KERN_NOTICE, sdkp,
2306 "Enabling DIF Type %u protection\n", type);
2307 break;
2308 case 0:
2309 sd_printk(KERN_NOTICE, sdkp,
2310 "Disabling DIF Type %u protection\n", type);
2311 break;
2312 }
2313
2314 sdkp->protection_type = type;
2315
2316 return ret;
2317 }
2318
2319 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2320 struct scsi_sense_hdr *sshdr, int sense_valid,
2321 int the_result)
2322 {
2323 if (sense_valid)
2324 sd_print_sense_hdr(sdkp, sshdr);
2325 else
2326 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2327
2328 /*
2329 * Set dirty bit for removable devices if not ready -
2330 * sometimes drives will not report this properly.
2331 */
2332 if (sdp->removable &&
2333 sense_valid && sshdr->sense_key == NOT_READY)
2334 set_media_not_present(sdkp);
2335
2336 /*
2337 * We used to set media_present to 0 here to indicate no media
2338 * in the drive, but some drives fail read capacity even with
2339 * media present, so we can't do that.
2340 */
2341 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2342 }
2343
2344 #define RC16_LEN 32
2345 #if RC16_LEN > SD_BUF_SIZE
2346 #error RC16_LEN must not be more than SD_BUF_SIZE
2347 #endif
2348
2349 #define READ_CAPACITY_RETRIES_ON_RESET 10
2350
2351 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2352 unsigned char *buffer)
2353 {
2354 unsigned char cmd[16];
2355 struct scsi_sense_hdr sshdr;
2356 int sense_valid = 0;
2357 int the_result;
2358 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2359 unsigned int alignment;
2360 unsigned long long lba;
2361 unsigned sector_size;
2362
2363 if (sdp->no_read_capacity_16)
2364 return -EINVAL;
2365
2366 do {
2367 memset(cmd, 0, 16);
2368 cmd[0] = SERVICE_ACTION_IN_16;
2369 cmd[1] = SAI_READ_CAPACITY_16;
2370 cmd[13] = RC16_LEN;
2371 memset(buffer, 0, RC16_LEN);
2372
2373 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2374 buffer, RC16_LEN, &sshdr,
2375 SD_TIMEOUT, sdkp->max_retries, NULL);
2376
2377 if (media_not_present(sdkp, &sshdr))
2378 return -ENODEV;
2379
2380 if (the_result > 0) {
2381 sense_valid = scsi_sense_valid(&sshdr);
2382 if (sense_valid &&
2383 sshdr.sense_key == ILLEGAL_REQUEST &&
2384 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2385 sshdr.ascq == 0x00)
2386 /* Invalid Command Operation Code or
2387 * Invalid Field in CDB, just retry
2388 * silently with RC10 */
2389 return -EINVAL;
2390 if (sense_valid &&
2391 sshdr.sense_key == UNIT_ATTENTION &&
2392 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2393 /* Device reset might occur several times,
2394 * give it one more chance */
2395 if (--reset_retries > 0)
2396 continue;
2397 }
2398 retries--;
2399
2400 } while (the_result && retries);
2401
2402 if (the_result) {
2403 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2404 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2405 return -EINVAL;
2406 }
2407
2408 sector_size = get_unaligned_be32(&buffer[8]);
2409 lba = get_unaligned_be64(&buffer[0]);
2410
2411 if (sd_read_protection_type(sdkp, buffer) < 0) {
2412 sdkp->capacity = 0;
2413 return -ENODEV;
2414 }
2415
2416 /* Logical blocks per physical block exponent */
2417 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2418
2419 /* RC basis */
2420 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2421
2422 /* Lowest aligned logical block */
2423 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2424 blk_queue_alignment_offset(sdp->request_queue, alignment);
2425 if (alignment && sdkp->first_scan)
2426 sd_printk(KERN_NOTICE, sdkp,
2427 "physical block alignment offset: %u\n", alignment);
2428
2429 if (buffer[14] & 0x80) { /* LBPME */
2430 sdkp->lbpme = 1;
2431
2432 if (buffer[14] & 0x40) /* LBPRZ */
2433 sdkp->lbprz = 1;
2434
2435 sd_config_discard(sdkp, SD_LBP_WS16);
2436 }
2437
2438 sdkp->capacity = lba + 1;
2439 return sector_size;
2440 }
2441
2442 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2443 unsigned char *buffer)
2444 {
2445 unsigned char cmd[16];
2446 struct scsi_sense_hdr sshdr;
2447 int sense_valid = 0;
2448 int the_result;
2449 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2450 sector_t lba;
2451 unsigned sector_size;
2452
2453 do {
2454 cmd[0] = READ_CAPACITY;
2455 memset(&cmd[1], 0, 9);
2456 memset(buffer, 0, 8);
2457
2458 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2459 buffer, 8, &sshdr,
2460 SD_TIMEOUT, sdkp->max_retries, NULL);
2461
2462 if (media_not_present(sdkp, &sshdr))
2463 return -ENODEV;
2464
2465 if (the_result > 0) {
2466 sense_valid = scsi_sense_valid(&sshdr);
2467 if (sense_valid &&
2468 sshdr.sense_key == UNIT_ATTENTION &&
2469 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2470 /* Device reset might occur several times,
2471 * give it one more chance */
2472 if (--reset_retries > 0)
2473 continue;
2474 }
2475 retries--;
2476
2477 } while (the_result && retries);
2478
2479 if (the_result) {
2480 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2481 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2482 return -EINVAL;
2483 }
2484
2485 sector_size = get_unaligned_be32(&buffer[4]);
2486 lba = get_unaligned_be32(&buffer[0]);
2487
2488 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2489 /* Some buggy (usb cardreader) devices return an lba of
2490 0xffffffff when the want to report a size of 0 (with
2491 which they really mean no media is present) */
2492 sdkp->capacity = 0;
2493 sdkp->physical_block_size = sector_size;
2494 return sector_size;
2495 }
2496
2497 sdkp->capacity = lba + 1;
2498 sdkp->physical_block_size = sector_size;
2499 return sector_size;
2500 }
2501
2502 static int sd_try_rc16_first(struct scsi_device *sdp)
2503 {
2504 if (sdp->host->max_cmd_len < 16)
2505 return 0;
2506 if (sdp->try_rc_10_first)
2507 return 0;
2508 if (sdp->scsi_level > SCSI_SPC_2)
2509 return 1;
2510 if (scsi_device_protection(sdp))
2511 return 1;
2512 return 0;
2513 }
2514
2515 /*
2516 * read disk capacity
2517 */
2518 static void
2519 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2520 {
2521 int sector_size;
2522 struct scsi_device *sdp = sdkp->device;
2523
2524 if (sd_try_rc16_first(sdp)) {
2525 sector_size = read_capacity_16(sdkp, sdp, buffer);
2526 if (sector_size == -EOVERFLOW)
2527 goto got_data;
2528 if (sector_size == -ENODEV)
2529 return;
2530 if (sector_size < 0)
2531 sector_size = read_capacity_10(sdkp, sdp, buffer);
2532 if (sector_size < 0)
2533 return;
2534 } else {
2535 sector_size = read_capacity_10(sdkp, sdp, buffer);
2536 if (sector_size == -EOVERFLOW)
2537 goto got_data;
2538 if (sector_size < 0)
2539 return;
2540 if ((sizeof(sdkp->capacity) > 4) &&
2541 (sdkp->capacity > 0xffffffffULL)) {
2542 int old_sector_size = sector_size;
2543 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2544 "Trying to use READ CAPACITY(16).\n");
2545 sector_size = read_capacity_16(sdkp, sdp, buffer);
2546 if (sector_size < 0) {
2547 sd_printk(KERN_NOTICE, sdkp,
2548 "Using 0xffffffff as device size\n");
2549 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2550 sector_size = old_sector_size;
2551 goto got_data;
2552 }
2553 /* Remember that READ CAPACITY(16) succeeded */
2554 sdp->try_rc_10_first = 0;
2555 }
2556 }
2557
2558 /* Some devices are known to return the total number of blocks,
2559 * not the highest block number. Some devices have versions
2560 * which do this and others which do not. Some devices we might
2561 * suspect of doing this but we don't know for certain.
2562 *
2563 * If we know the reported capacity is wrong, decrement it. If
2564 * we can only guess, then assume the number of blocks is even
2565 * (usually true but not always) and err on the side of lowering
2566 * the capacity.
2567 */
2568 if (sdp->fix_capacity ||
2569 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2570 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2571 "from its reported value: %llu\n",
2572 (unsigned long long) sdkp->capacity);
2573 --sdkp->capacity;
2574 }
2575
2576 got_data:
2577 if (sector_size == 0) {
2578 sector_size = 512;
2579 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2580 "assuming 512.\n");
2581 }
2582
2583 if (sector_size != 512 &&
2584 sector_size != 1024 &&
2585 sector_size != 2048 &&
2586 sector_size != 4096) {
2587 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2588 sector_size);
2589 /*
2590 * The user might want to re-format the drive with
2591 * a supported sectorsize. Once this happens, it
2592 * would be relatively trivial to set the thing up.
2593 * For this reason, we leave the thing in the table.
2594 */
2595 sdkp->capacity = 0;
2596 /*
2597 * set a bogus sector size so the normal read/write
2598 * logic in the block layer will eventually refuse any
2599 * request on this device without tripping over power
2600 * of two sector size assumptions
2601 */
2602 sector_size = 512;
2603 }
2604 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2605 blk_queue_physical_block_size(sdp->request_queue,
2606 sdkp->physical_block_size);
2607 sdkp->device->sector_size = sector_size;
2608
2609 if (sdkp->capacity > 0xffffffff)
2610 sdp->use_16_for_rw = 1;
2611
2612 }
2613
2614 /*
2615 * Print disk capacity
2616 */
2617 static void
2618 sd_print_capacity(struct scsi_disk *sdkp,
2619 sector_t old_capacity)
2620 {
2621 int sector_size = sdkp->device->sector_size;
2622 char cap_str_2[10], cap_str_10[10];
2623
2624 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2625 return;
2626
2627 string_get_size(sdkp->capacity, sector_size,
2628 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2629 string_get_size(sdkp->capacity, sector_size,
2630 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2631
2632 sd_printk(KERN_NOTICE, sdkp,
2633 "%llu %d-byte logical blocks: (%s/%s)\n",
2634 (unsigned long long)sdkp->capacity,
2635 sector_size, cap_str_10, cap_str_2);
2636
2637 if (sdkp->physical_block_size != sector_size)
2638 sd_printk(KERN_NOTICE, sdkp,
2639 "%u-byte physical blocks\n",
2640 sdkp->physical_block_size);
2641 }
2642
2643 /* called with buffer of length 512 */
2644 static inline int
2645 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2646 unsigned char *buffer, int len, struct scsi_mode_data *data,
2647 struct scsi_sense_hdr *sshdr)
2648 {
2649 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2650 SD_TIMEOUT, sdkp->max_retries, data,
2651 sshdr);
2652 }
2653
2654 /*
2655 * read write protect setting, if possible - called only in sd_revalidate_disk()
2656 * called with buffer of length SD_BUF_SIZE
2657 */
2658 static void
2659 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2660 {
2661 int res;
2662 struct scsi_device *sdp = sdkp->device;
2663 struct scsi_mode_data data;
2664 int old_wp = sdkp->write_prot;
2665
2666 set_disk_ro(sdkp->disk, 0);
2667 if (sdp->skip_ms_page_3f) {
2668 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2669 return;
2670 }
2671
2672 if (sdp->use_192_bytes_for_3f) {
2673 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2674 } else {
2675 /*
2676 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2677 * We have to start carefully: some devices hang if we ask
2678 * for more than is available.
2679 */
2680 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2681
2682 /*
2683 * Second attempt: ask for page 0 When only page 0 is
2684 * implemented, a request for page 3F may return Sense Key
2685 * 5: Illegal Request, Sense Code 24: Invalid field in
2686 * CDB.
2687 */
2688 if (res < 0)
2689 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2690
2691 /*
2692 * Third attempt: ask 255 bytes, as we did earlier.
2693 */
2694 if (res < 0)
2695 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2696 &data, NULL);
2697 }
2698
2699 if (res < 0) {
2700 sd_first_printk(KERN_WARNING, sdkp,
2701 "Test WP failed, assume Write Enabled\n");
2702 } else {
2703 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2704 set_disk_ro(sdkp->disk, sdkp->write_prot);
2705 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2706 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2707 sdkp->write_prot ? "on" : "off");
2708 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2709 }
2710 }
2711 }
2712
2713 /*
2714 * sd_read_cache_type - called only from sd_revalidate_disk()
2715 * called with buffer of length SD_BUF_SIZE
2716 */
2717 static void
2718 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2719 {
2720 int len = 0, res;
2721 struct scsi_device *sdp = sdkp->device;
2722
2723 int dbd;
2724 int modepage;
2725 int first_len;
2726 struct scsi_mode_data data;
2727 struct scsi_sense_hdr sshdr;
2728 int old_wce = sdkp->WCE;
2729 int old_rcd = sdkp->RCD;
2730 int old_dpofua = sdkp->DPOFUA;
2731
2732
2733 if (sdkp->cache_override)
2734 return;
2735
2736 first_len = 4;
2737 if (sdp->skip_ms_page_8) {
2738 if (sdp->type == TYPE_RBC)
2739 goto defaults;
2740 else {
2741 if (sdp->skip_ms_page_3f)
2742 goto defaults;
2743 modepage = 0x3F;
2744 if (sdp->use_192_bytes_for_3f)
2745 first_len = 192;
2746 dbd = 0;
2747 }
2748 } else if (sdp->type == TYPE_RBC) {
2749 modepage = 6;
2750 dbd = 8;
2751 } else {
2752 modepage = 8;
2753 dbd = 0;
2754 }
2755
2756 /* cautiously ask */
2757 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2758 &data, &sshdr);
2759
2760 if (res < 0)
2761 goto bad_sense;
2762
2763 if (!data.header_length) {
2764 modepage = 6;
2765 first_len = 0;
2766 sd_first_printk(KERN_ERR, sdkp,
2767 "Missing header in MODE_SENSE response\n");
2768 }
2769
2770 /* that went OK, now ask for the proper length */
2771 len = data.length;
2772
2773 /*
2774 * We're only interested in the first three bytes, actually.
2775 * But the data cache page is defined for the first 20.
2776 */
2777 if (len < 3)
2778 goto bad_sense;
2779 else if (len > SD_BUF_SIZE) {
2780 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2781 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2782 len = SD_BUF_SIZE;
2783 }
2784 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2785 len = 192;
2786
2787 /* Get the data */
2788 if (len > first_len)
2789 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2790 &data, &sshdr);
2791
2792 if (!res) {
2793 int offset = data.header_length + data.block_descriptor_length;
2794
2795 while (offset < len) {
2796 u8 page_code = buffer[offset] & 0x3F;
2797 u8 spf = buffer[offset] & 0x40;
2798
2799 if (page_code == 8 || page_code == 6) {
2800 /* We're interested only in the first 3 bytes.
2801 */
2802 if (len - offset <= 2) {
2803 sd_first_printk(KERN_ERR, sdkp,
2804 "Incomplete mode parameter "
2805 "data\n");
2806 goto defaults;
2807 } else {
2808 modepage = page_code;
2809 goto Page_found;
2810 }
2811 } else {
2812 /* Go to the next page */
2813 if (spf && len - offset > 3)
2814 offset += 4 + (buffer[offset+2] << 8) +
2815 buffer[offset+3];
2816 else if (!spf && len - offset > 1)
2817 offset += 2 + buffer[offset+1];
2818 else {
2819 sd_first_printk(KERN_ERR, sdkp,
2820 "Incomplete mode "
2821 "parameter data\n");
2822 goto defaults;
2823 }
2824 }
2825 }
2826
2827 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2828 goto defaults;
2829
2830 Page_found:
2831 if (modepage == 8) {
2832 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2833 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2834 } else {
2835 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2836 sdkp->RCD = 0;
2837 }
2838
2839 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2840 if (sdp->broken_fua) {
2841 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2842 sdkp->DPOFUA = 0;
2843 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2844 !sdkp->device->use_16_for_rw) {
2845 sd_first_printk(KERN_NOTICE, sdkp,
2846 "Uses READ/WRITE(6), disabling FUA\n");
2847 sdkp->DPOFUA = 0;
2848 }
2849
2850 /* No cache flush allowed for write protected devices */
2851 if (sdkp->WCE && sdkp->write_prot)
2852 sdkp->WCE = 0;
2853
2854 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2855 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2856 sd_printk(KERN_NOTICE, sdkp,
2857 "Write cache: %s, read cache: %s, %s\n",
2858 sdkp->WCE ? "enabled" : "disabled",
2859 sdkp->RCD ? "disabled" : "enabled",
2860 sdkp->DPOFUA ? "supports DPO and FUA"
2861 : "doesn't support DPO or FUA");
2862
2863 return;
2864 }
2865
2866 bad_sense:
2867 if (scsi_sense_valid(&sshdr) &&
2868 sshdr.sense_key == ILLEGAL_REQUEST &&
2869 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2870 /* Invalid field in CDB */
2871 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2872 else
2873 sd_first_printk(KERN_ERR, sdkp,
2874 "Asking for cache data failed\n");
2875
2876 defaults:
2877 if (sdp->wce_default_on) {
2878 sd_first_printk(KERN_NOTICE, sdkp,
2879 "Assuming drive cache: write back\n");
2880 sdkp->WCE = 1;
2881 } else {
2882 sd_first_printk(KERN_ERR, sdkp,
2883 "Assuming drive cache: write through\n");
2884 sdkp->WCE = 0;
2885 }
2886 sdkp->RCD = 0;
2887 sdkp->DPOFUA = 0;
2888 }
2889
2890 /*
2891 * The ATO bit indicates whether the DIF application tag is available
2892 * for use by the operating system.
2893 */
2894 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2895 {
2896 int res, offset;
2897 struct scsi_device *sdp = sdkp->device;
2898 struct scsi_mode_data data;
2899 struct scsi_sense_hdr sshdr;
2900
2901 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2902 return;
2903
2904 if (sdkp->protection_type == 0)
2905 return;
2906
2907 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2908 sdkp->max_retries, &data, &sshdr);
2909
2910 if (res < 0 || !data.header_length ||
2911 data.length < 6) {
2912 sd_first_printk(KERN_WARNING, sdkp,
2913 "getting Control mode page failed, assume no ATO\n");
2914
2915 if (scsi_sense_valid(&sshdr))
2916 sd_print_sense_hdr(sdkp, &sshdr);
2917
2918 return;
2919 }
2920
2921 offset = data.header_length + data.block_descriptor_length;
2922
2923 if ((buffer[offset] & 0x3f) != 0x0a) {
2924 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2925 return;
2926 }
2927
2928 if ((buffer[offset + 5] & 0x80) == 0)
2929 return;
2930
2931 sdkp->ATO = 1;
2932
2933 return;
2934 }
2935
2936 /**
2937 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2938 * @sdkp: disk to query
2939 */
2940 static void sd_read_block_limits(struct scsi_disk *sdkp)
2941 {
2942 unsigned int sector_sz = sdkp->device->sector_size;
2943 const int vpd_len = 64;
2944 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2945
2946 if (!buffer ||
2947 /* Block Limits VPD */
2948 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2949 goto out;
2950
2951 blk_queue_io_min(sdkp->disk->queue,
2952 get_unaligned_be16(&buffer[6]) * sector_sz);
2953
2954 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2955 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2956
2957 if (buffer[3] == 0x3c) {
2958 unsigned int lba_count, desc_count;
2959
2960 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2961
2962 if (!sdkp->lbpme)
2963 goto out;
2964
2965 lba_count = get_unaligned_be32(&buffer[20]);
2966 desc_count = get_unaligned_be32(&buffer[24]);
2967
2968 if (lba_count && desc_count)
2969 sdkp->max_unmap_blocks = lba_count;
2970
2971 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2972
2973 if (buffer[32] & 0x80)
2974 sdkp->unmap_alignment =
2975 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2976
2977 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2978
2979 if (sdkp->max_unmap_blocks)
2980 sd_config_discard(sdkp, SD_LBP_UNMAP);
2981 else
2982 sd_config_discard(sdkp, SD_LBP_WS16);
2983
2984 } else { /* LBP VPD page tells us what to use */
2985 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2986 sd_config_discard(sdkp, SD_LBP_UNMAP);
2987 else if (sdkp->lbpws)
2988 sd_config_discard(sdkp, SD_LBP_WS16);
2989 else if (sdkp->lbpws10)
2990 sd_config_discard(sdkp, SD_LBP_WS10);
2991 else
2992 sd_config_discard(sdkp, SD_LBP_DISABLE);
2993 }
2994 }
2995
2996 out:
2997 kfree(buffer);
2998 }
2999
3000 /**
3001 * sd_read_block_characteristics - Query block dev. characteristics
3002 * @sdkp: disk to query
3003 */
3004 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3005 {
3006 struct request_queue *q = sdkp->disk->queue;
3007 unsigned char *buffer;
3008 u16 rot;
3009 const int vpd_len = 64;
3010
3011 buffer = kmalloc(vpd_len, GFP_KERNEL);
3012
3013 if (!buffer ||
3014 /* Block Device Characteristics VPD */
3015 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3016 goto out;
3017
3018 rot = get_unaligned_be16(&buffer[4]);
3019
3020 if (rot == 1) {
3021 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3022 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3023 }
3024
3025 if (sdkp->device->type == TYPE_ZBC) {
3026 /* Host-managed */
3027 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3028 } else {
3029 sdkp->zoned = (buffer[8] >> 4) & 3;
3030 if (sdkp->zoned == 1) {
3031 /* Host-aware */
3032 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3033 } else {
3034 /* Regular disk or drive managed disk */
3035 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3036 }
3037 }
3038
3039 if (!sdkp->first_scan)
3040 goto out;
3041
3042 if (blk_queue_is_zoned(q)) {
3043 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3044 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3045 } else {
3046 if (sdkp->zoned == 1)
3047 sd_printk(KERN_NOTICE, sdkp,
3048 "Host-aware SMR disk used as regular disk\n");
3049 else if (sdkp->zoned == 2)
3050 sd_printk(KERN_NOTICE, sdkp,
3051 "Drive-managed SMR disk\n");
3052 }
3053
3054 out:
3055 kfree(buffer);
3056 }
3057
3058 /**
3059 * sd_read_block_provisioning - Query provisioning VPD page
3060 * @sdkp: disk to query
3061 */
3062 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3063 {
3064 unsigned char *buffer;
3065 const int vpd_len = 8;
3066
3067 if (sdkp->lbpme == 0)
3068 return;
3069
3070 buffer = kmalloc(vpd_len, GFP_KERNEL);
3071
3072 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3073 goto out;
3074
3075 sdkp->lbpvpd = 1;
3076 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3077 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3078 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3079
3080 out:
3081 kfree(buffer);
3082 }
3083
3084 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3085 {
3086 struct scsi_device *sdev = sdkp->device;
3087
3088 if (sdev->host->no_write_same) {
3089 sdev->no_write_same = 1;
3090
3091 return;
3092 }
3093
3094 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3095 /* too large values might cause issues with arcmsr */
3096 int vpd_buf_len = 64;
3097
3098 sdev->no_report_opcodes = 1;
3099
3100 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3101 * CODES is unsupported and the device has an ATA
3102 * Information VPD page (SAT).
3103 */
3104 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3105 sdev->no_write_same = 1;
3106 }
3107
3108 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3109 sdkp->ws16 = 1;
3110
3111 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3112 sdkp->ws10 = 1;
3113 }
3114
3115 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3116 {
3117 struct scsi_device *sdev = sdkp->device;
3118
3119 if (!sdev->security_supported)
3120 return;
3121
3122 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3123 SECURITY_PROTOCOL_IN) == 1 &&
3124 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3125 SECURITY_PROTOCOL_OUT) == 1)
3126 sdkp->security = 1;
3127 }
3128
3129 /*
3130 * Determine the device's preferred I/O size for reads and writes
3131 * unless the reported value is unreasonably small, large, not a
3132 * multiple of the physical block size, or simply garbage.
3133 */
3134 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3135 unsigned int dev_max)
3136 {
3137 struct scsi_device *sdp = sdkp->device;
3138 unsigned int opt_xfer_bytes =
3139 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3140
3141 if (sdkp->opt_xfer_blocks == 0)
3142 return false;
3143
3144 if (sdkp->opt_xfer_blocks > dev_max) {
3145 sd_first_printk(KERN_WARNING, sdkp,
3146 "Optimal transfer size %u logical blocks " \
3147 "> dev_max (%u logical blocks)\n",
3148 sdkp->opt_xfer_blocks, dev_max);
3149 return false;
3150 }
3151
3152 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3153 sd_first_printk(KERN_WARNING, sdkp,
3154 "Optimal transfer size %u logical blocks " \
3155 "> sd driver limit (%u logical blocks)\n",
3156 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3157 return false;
3158 }
3159
3160 if (opt_xfer_bytes < PAGE_SIZE) {
3161 sd_first_printk(KERN_WARNING, sdkp,
3162 "Optimal transfer size %u bytes < " \
3163 "PAGE_SIZE (%u bytes)\n",
3164 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3165 return false;
3166 }
3167
3168 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3169 sd_first_printk(KERN_WARNING, sdkp,
3170 "Optimal transfer size %u bytes not a " \
3171 "multiple of physical block size (%u bytes)\n",
3172 opt_xfer_bytes, sdkp->physical_block_size);
3173 return false;
3174 }
3175
3176 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3177 opt_xfer_bytes);
3178 return true;
3179 }
3180
3181 /**
3182 * sd_revalidate_disk - called the first time a new disk is seen,
3183 * performs disk spin up, read_capacity, etc.
3184 * @disk: struct gendisk we care about
3185 **/
3186 static int sd_revalidate_disk(struct gendisk *disk)
3187 {
3188 struct scsi_disk *sdkp = scsi_disk(disk);
3189 struct scsi_device *sdp = sdkp->device;
3190 struct request_queue *q = sdkp->disk->queue;
3191 sector_t old_capacity = sdkp->capacity;
3192 unsigned char *buffer;
3193 unsigned int dev_max, rw_max;
3194
3195 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3196 "sd_revalidate_disk\n"));
3197
3198 /*
3199 * If the device is offline, don't try and read capacity or any
3200 * of the other niceties.
3201 */
3202 if (!scsi_device_online(sdp))
3203 goto out;
3204
3205 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3206 if (!buffer) {
3207 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3208 "allocation failure.\n");
3209 goto out;
3210 }
3211
3212 sd_spinup_disk(sdkp);
3213
3214 /*
3215 * Without media there is no reason to ask; moreover, some devices
3216 * react badly if we do.
3217 */
3218 if (sdkp->media_present) {
3219 sd_read_capacity(sdkp, buffer);
3220
3221 /*
3222 * set the default to rotational. All non-rotational devices
3223 * support the block characteristics VPD page, which will
3224 * cause this to be updated correctly and any device which
3225 * doesn't support it should be treated as rotational.
3226 */
3227 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3228 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3229
3230 if (scsi_device_supports_vpd(sdp)) {
3231 sd_read_block_provisioning(sdkp);
3232 sd_read_block_limits(sdkp);
3233 sd_read_block_characteristics(sdkp);
3234 sd_zbc_read_zones(sdkp, buffer);
3235 }
3236
3237 sd_print_capacity(sdkp, old_capacity);
3238
3239 sd_read_write_protect_flag(sdkp, buffer);
3240 sd_read_cache_type(sdkp, buffer);
3241 sd_read_app_tag_own(sdkp, buffer);
3242 sd_read_write_same(sdkp, buffer);
3243 sd_read_security(sdkp, buffer);
3244 }
3245
3246 /*
3247 * We now have all cache related info, determine how we deal
3248 * with flush requests.
3249 */
3250 sd_set_flush_flag(sdkp);
3251
3252 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3253 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3254
3255 /* Some devices report a maximum block count for READ/WRITE requests. */
3256 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3257 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3258
3259 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3260 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3261 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3262 } else {
3263 q->limits.io_opt = 0;
3264 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3265 (sector_t)BLK_DEF_MAX_SECTORS);
3266 }
3267
3268 /* Do not exceed controller limit */
3269 rw_max = min(rw_max, queue_max_hw_sectors(q));
3270
3271 /*
3272 * Only update max_sectors if previously unset or if the current value
3273 * exceeds the capabilities of the hardware.
3274 */
3275 if (sdkp->first_scan ||
3276 q->limits.max_sectors > q->limits.max_dev_sectors ||
3277 q->limits.max_sectors > q->limits.max_hw_sectors)
3278 q->limits.max_sectors = rw_max;
3279
3280 sdkp->first_scan = 0;
3281
3282 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3283 sd_config_write_same(sdkp);
3284 kfree(buffer);
3285
3286 /*
3287 * For a zoned drive, revalidating the zones can be done only once
3288 * the gendisk capacity is set. So if this fails, set back the gendisk
3289 * capacity to 0.
3290 */
3291 if (sd_zbc_revalidate_zones(sdkp))
3292 set_capacity_and_notify(disk, 0);
3293
3294 out:
3295 return 0;
3296 }
3297
3298 /**
3299 * sd_unlock_native_capacity - unlock native capacity
3300 * @disk: struct gendisk to set capacity for
3301 *
3302 * Block layer calls this function if it detects that partitions
3303 * on @disk reach beyond the end of the device. If the SCSI host
3304 * implements ->unlock_native_capacity() method, it's invoked to
3305 * give it a chance to adjust the device capacity.
3306 *
3307 * CONTEXT:
3308 * Defined by block layer. Might sleep.
3309 */
3310 static void sd_unlock_native_capacity(struct gendisk *disk)
3311 {
3312 struct scsi_device *sdev = scsi_disk(disk)->device;
3313
3314 if (sdev->host->hostt->unlock_native_capacity)
3315 sdev->host->hostt->unlock_native_capacity(sdev);
3316 }
3317
3318 /**
3319 * sd_format_disk_name - format disk name
3320 * @prefix: name prefix - ie. "sd" for SCSI disks
3321 * @index: index of the disk to format name for
3322 * @buf: output buffer
3323 * @buflen: length of the output buffer
3324 *
3325 * SCSI disk names starts at sda. The 26th device is sdz and the
3326 * 27th is sdaa. The last one for two lettered suffix is sdzz
3327 * which is followed by sdaaa.
3328 *
3329 * This is basically 26 base counting with one extra 'nil' entry
3330 * at the beginning from the second digit on and can be
3331 * determined using similar method as 26 base conversion with the
3332 * index shifted -1 after each digit is computed.
3333 *
3334 * CONTEXT:
3335 * Don't care.
3336 *
3337 * RETURNS:
3338 * 0 on success, -errno on failure.
3339 */
3340 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3341 {
3342 const int base = 'z' - 'a' + 1;
3343 char *begin = buf + strlen(prefix);
3344 char *end = buf + buflen;
3345 char *p;
3346 int unit;
3347
3348 p = end - 1;
3349 *p = '\0';
3350 unit = base;
3351 do {
3352 if (p == begin)
3353 return -EINVAL;
3354 *--p = 'a' + (index % unit);
3355 index = (index / unit) - 1;
3356 } while (index >= 0);
3357
3358 memmove(begin, p, end - p);
3359 memcpy(buf, prefix, strlen(prefix));
3360
3361 return 0;
3362 }
3363
3364 /**
3365 * sd_probe - called during driver initialization and whenever a
3366 * new scsi device is attached to the system. It is called once
3367 * for each scsi device (not just disks) present.
3368 * @dev: pointer to device object
3369 *
3370 * Returns 0 if successful (or not interested in this scsi device
3371 * (e.g. scanner)); 1 when there is an error.
3372 *
3373 * Note: this function is invoked from the scsi mid-level.
3374 * This function sets up the mapping between a given
3375 * <host,channel,id,lun> (found in sdp) and new device name
3376 * (e.g. /dev/sda). More precisely it is the block device major
3377 * and minor number that is chosen here.
3378 *
3379 * Assume sd_probe is not re-entrant (for time being)
3380 * Also think about sd_probe() and sd_remove() running coincidentally.
3381 **/
3382 static int sd_probe(struct device *dev)
3383 {
3384 struct scsi_device *sdp = to_scsi_device(dev);
3385 struct scsi_disk *sdkp;
3386 struct gendisk *gd;
3387 int index;
3388 int error;
3389
3390 scsi_autopm_get_device(sdp);
3391 error = -ENODEV;
3392 if (sdp->type != TYPE_DISK &&
3393 sdp->type != TYPE_ZBC &&
3394 sdp->type != TYPE_MOD &&
3395 sdp->type != TYPE_RBC)
3396 goto out;
3397
3398 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3399 sdev_printk(KERN_WARNING, sdp,
3400 "Unsupported ZBC host-managed device.\n");
3401 goto out;
3402 }
3403
3404 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3405 "sd_probe\n"));
3406
3407 error = -ENOMEM;
3408 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3409 if (!sdkp)
3410 goto out;
3411
3412 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3413 &sd_bio_compl_lkclass);
3414 if (!gd)
3415 goto out_free;
3416
3417 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3418 if (index < 0) {
3419 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3420 goto out_put;
3421 }
3422
3423 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3424 if (error) {
3425 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3426 goto out_free_index;
3427 }
3428
3429 sdkp->device = sdp;
3430 sdkp->driver = &sd_template;
3431 sdkp->disk = gd;
3432 sdkp->index = index;
3433 sdkp->max_retries = SD_MAX_RETRIES;
3434 atomic_set(&sdkp->openers, 0);
3435 atomic_set(&sdkp->device->ioerr_cnt, 0);
3436
3437 if (!sdp->request_queue->rq_timeout) {
3438 if (sdp->type != TYPE_MOD)
3439 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3440 else
3441 blk_queue_rq_timeout(sdp->request_queue,
3442 SD_MOD_TIMEOUT);
3443 }
3444
3445 device_initialize(&sdkp->dev);
3446 sdkp->dev.parent = dev;
3447 sdkp->dev.class = &sd_disk_class;
3448 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3449
3450 error = device_add(&sdkp->dev);
3451 if (error)
3452 goto out_free_index;
3453
3454 get_device(dev);
3455 dev_set_drvdata(dev, sdkp);
3456
3457 gd->major = sd_major((index & 0xf0) >> 4);
3458 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3459 gd->minors = SD_MINORS;
3460
3461 gd->fops = &sd_fops;
3462 gd->private_data = &sdkp->driver;
3463
3464 /* defaults, until the device tells us otherwise */
3465 sdp->sector_size = 512;
3466 sdkp->capacity = 0;
3467 sdkp->media_present = 1;
3468 sdkp->write_prot = 0;
3469 sdkp->cache_override = 0;
3470 sdkp->WCE = 0;
3471 sdkp->RCD = 0;
3472 sdkp->ATO = 0;
3473 sdkp->first_scan = 1;
3474 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3475
3476 sd_revalidate_disk(gd);
3477
3478 gd->flags = GENHD_FL_EXT_DEVT;
3479 if (sdp->removable) {
3480 gd->flags |= GENHD_FL_REMOVABLE;
3481 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3482 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3483 }
3484
3485 blk_pm_runtime_init(sdp->request_queue, dev);
3486 if (sdp->rpm_autosuspend) {
3487 pm_runtime_set_autosuspend_delay(dev,
3488 sdp->host->hostt->rpm_autosuspend_delay);
3489 }
3490 device_add_disk(dev, gd, NULL);
3491 if (sdkp->capacity)
3492 sd_dif_config_host(sdkp);
3493
3494 sd_revalidate_disk(gd);
3495
3496 if (sdkp->security) {
3497 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3498 if (sdkp->opal_dev)
3499 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3500 }
3501
3502 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3503 sdp->removable ? "removable " : "");
3504 scsi_autopm_put_device(sdp);
3505
3506 return 0;
3507
3508 out_free_index:
3509 ida_free(&sd_index_ida, index);
3510 out_put:
3511 put_disk(gd);
3512 out_free:
3513 sd_zbc_release_disk(sdkp);
3514 kfree(sdkp);
3515 out:
3516 scsi_autopm_put_device(sdp);
3517 return error;
3518 }
3519
3520 /**
3521 * sd_remove - called whenever a scsi disk (previously recognized by
3522 * sd_probe) is detached from the system. It is called (potentially
3523 * multiple times) during sd module unload.
3524 * @dev: pointer to device object
3525 *
3526 * Note: this function is invoked from the scsi mid-level.
3527 * This function potentially frees up a device name (e.g. /dev/sdc)
3528 * that could be re-used by a subsequent sd_probe().
3529 * This function is not called when the built-in sd driver is "exit-ed".
3530 **/
3531 static int sd_remove(struct device *dev)
3532 {
3533 struct scsi_disk *sdkp;
3534
3535 sdkp = dev_get_drvdata(dev);
3536 scsi_autopm_get_device(sdkp->device);
3537
3538 async_synchronize_full_domain(&scsi_sd_pm_domain);
3539 device_del(&sdkp->dev);
3540 del_gendisk(sdkp->disk);
3541 sd_shutdown(dev);
3542
3543 free_opal_dev(sdkp->opal_dev);
3544
3545 mutex_lock(&sd_ref_mutex);
3546 dev_set_drvdata(dev, NULL);
3547 put_device(&sdkp->dev);
3548 mutex_unlock(&sd_ref_mutex);
3549
3550 return 0;
3551 }
3552
3553 /**
3554 * scsi_disk_release - Called to free the scsi_disk structure
3555 * @dev: pointer to embedded class device
3556 *
3557 * sd_ref_mutex must be held entering this routine. Because it is
3558 * called on last put, you should always use the scsi_disk_get()
3559 * scsi_disk_put() helpers which manipulate the semaphore directly
3560 * and never do a direct put_device.
3561 **/
3562 static void scsi_disk_release(struct device *dev)
3563 {
3564 struct scsi_disk *sdkp = to_scsi_disk(dev);
3565 struct gendisk *disk = sdkp->disk;
3566 struct request_queue *q = disk->queue;
3567
3568 ida_free(&sd_index_ida, sdkp->index);
3569
3570 /*
3571 * Wait until all requests that are in progress have completed.
3572 * This is necessary to avoid that e.g. scsi_end_request() crashes
3573 * due to clearing the disk->private_data pointer. Wait from inside
3574 * scsi_disk_release() instead of from sd_release() to avoid that
3575 * freezing and unfreezing the request queue affects user space I/O
3576 * in case multiple processes open a /dev/sd... node concurrently.
3577 */
3578 blk_mq_freeze_queue(q);
3579 blk_mq_unfreeze_queue(q);
3580
3581 disk->private_data = NULL;
3582 put_disk(disk);
3583 put_device(&sdkp->device->sdev_gendev);
3584
3585 sd_zbc_release_disk(sdkp);
3586
3587 kfree(sdkp);
3588 }
3589
3590 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3591 {
3592 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3593 struct scsi_sense_hdr sshdr;
3594 struct scsi_device *sdp = sdkp->device;
3595 int res;
3596
3597 if (start)
3598 cmd[4] |= 1; /* START */
3599
3600 if (sdp->start_stop_pwr_cond)
3601 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3602
3603 if (!scsi_device_online(sdp))
3604 return -ENODEV;
3605
3606 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3607 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3608 if (res) {
3609 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3610 if (res > 0 && scsi_sense_valid(&sshdr)) {
3611 sd_print_sense_hdr(sdkp, &sshdr);
3612 /* 0x3a is medium not present */
3613 if (sshdr.asc == 0x3a)
3614 res = 0;
3615 }
3616 }
3617
3618 /* SCSI error codes must not go to the generic layer */
3619 if (res)
3620 return -EIO;
3621
3622 return 0;
3623 }
3624
3625 /*
3626 * Send a SYNCHRONIZE CACHE instruction down to the device through
3627 * the normal SCSI command structure. Wait for the command to
3628 * complete.
3629 */
3630 static void sd_shutdown(struct device *dev)
3631 {
3632 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3633
3634 if (!sdkp)
3635 return; /* this can happen */
3636
3637 if (pm_runtime_suspended(dev))
3638 return;
3639
3640 if (sdkp->WCE && sdkp->media_present) {
3641 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3642 sd_sync_cache(sdkp, NULL);
3643 }
3644
3645 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3646 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3647 sd_start_stop_device(sdkp, 0);
3648 }
3649 }
3650
3651 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3652 {
3653 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3654 struct scsi_sense_hdr sshdr;
3655 int ret = 0;
3656
3657 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3658 return 0;
3659
3660 if (sdkp->WCE && sdkp->media_present) {
3661 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3662 ret = sd_sync_cache(sdkp, &sshdr);
3663
3664 if (ret) {
3665 /* ignore OFFLINE device */
3666 if (ret == -ENODEV)
3667 return 0;
3668
3669 if (!scsi_sense_valid(&sshdr) ||
3670 sshdr.sense_key != ILLEGAL_REQUEST)
3671 return ret;
3672
3673 /*
3674 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3675 * doesn't support sync. There's not much to do and
3676 * suspend shouldn't fail.
3677 */
3678 ret = 0;
3679 }
3680 }
3681
3682 if (sdkp->device->manage_start_stop) {
3683 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3684 /* an error is not worth aborting a system sleep */
3685 ret = sd_start_stop_device(sdkp, 0);
3686 if (ignore_stop_errors)
3687 ret = 0;
3688 }
3689
3690 return ret;
3691 }
3692
3693 static int sd_suspend_system(struct device *dev)
3694 {
3695 return sd_suspend_common(dev, true);
3696 }
3697
3698 static int sd_suspend_runtime(struct device *dev)
3699 {
3700 return sd_suspend_common(dev, false);
3701 }
3702
3703 static int sd_resume(struct device *dev)
3704 {
3705 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3706 int ret;
3707
3708 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3709 return 0;
3710
3711 if (!sdkp->device->manage_start_stop)
3712 return 0;
3713
3714 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3715 ret = sd_start_stop_device(sdkp, 1);
3716 if (!ret)
3717 opal_unlock_from_suspend(sdkp->opal_dev);
3718 return ret;
3719 }
3720
3721 /**
3722 * init_sd - entry point for this driver (both when built in or when
3723 * a module).
3724 *
3725 * Note: this function registers this driver with the scsi mid-level.
3726 **/
3727 static int __init init_sd(void)
3728 {
3729 int majors = 0, i, err;
3730
3731 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3732
3733 for (i = 0; i < SD_MAJORS; i++) {
3734 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3735 continue;
3736 majors++;
3737 }
3738
3739 if (!majors)
3740 return -ENODEV;
3741
3742 err = class_register(&sd_disk_class);
3743 if (err)
3744 goto err_out;
3745
3746 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3747 0, 0, NULL);
3748 if (!sd_cdb_cache) {
3749 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3750 err = -ENOMEM;
3751 goto err_out_class;
3752 }
3753
3754 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3755 if (!sd_cdb_pool) {
3756 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3757 err = -ENOMEM;
3758 goto err_out_cache;
3759 }
3760
3761 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3762 if (!sd_page_pool) {
3763 printk(KERN_ERR "sd: can't init discard page pool\n");
3764 err = -ENOMEM;
3765 goto err_out_ppool;
3766 }
3767
3768 err = scsi_register_driver(&sd_template.gendrv);
3769 if (err)
3770 goto err_out_driver;
3771
3772 return 0;
3773
3774 err_out_driver:
3775 mempool_destroy(sd_page_pool);
3776
3777 err_out_ppool:
3778 mempool_destroy(sd_cdb_pool);
3779
3780 err_out_cache:
3781 kmem_cache_destroy(sd_cdb_cache);
3782
3783 err_out_class:
3784 class_unregister(&sd_disk_class);
3785 err_out:
3786 for (i = 0; i < SD_MAJORS; i++)
3787 unregister_blkdev(sd_major(i), "sd");
3788 return err;
3789 }
3790
3791 /**
3792 * exit_sd - exit point for this driver (when it is a module).
3793 *
3794 * Note: this function unregisters this driver from the scsi mid-level.
3795 **/
3796 static void __exit exit_sd(void)
3797 {
3798 int i;
3799
3800 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3801
3802 scsi_unregister_driver(&sd_template.gendrv);
3803 mempool_destroy(sd_cdb_pool);
3804 mempool_destroy(sd_page_pool);
3805 kmem_cache_destroy(sd_cdb_cache);
3806
3807 class_unregister(&sd_disk_class);
3808
3809 for (i = 0; i < SD_MAJORS; i++)
3810 unregister_blkdev(sd_major(i), "sd");
3811 }
3812
3813 module_init(init_sd);
3814 module_exit(exit_sd);
3815
3816 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3817 {
3818 scsi_print_sense_hdr(sdkp->device,
3819 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3820 }
3821
3822 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3823 {
3824 const char *hb_string = scsi_hostbyte_string(result);
3825
3826 if (hb_string)
3827 sd_printk(KERN_INFO, sdkp,
3828 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3829 hb_string ? hb_string : "invalid",
3830 "DRIVER_OK");
3831 else
3832 sd_printk(KERN_INFO, sdkp,
3833 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3834 msg, host_byte(result), "DRIVER_OK");
3835 }