]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/sd.c
scsi: sd: Defer spinning up drive while SANITIZE is in progress
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS 16
101 #else
102 #define SD_MINORS 0
103 #endif
104
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int sd_probe(struct device *);
110 static int sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 SD_MAX_RETRIES, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234 bool v;
235
236 if (!capable(CAP_SYS_ADMIN))
237 return -EACCES;
238
239 if (kstrtobool(buf, &v))
240 return -EINVAL;
241
242 sdp->manage_start_stop = v;
243
244 return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 struct scsi_disk *sdkp = to_scsi_disk(dev);
252
253 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
254 }
255
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 const char *buf, size_t count)
259 {
260 bool v;
261 struct scsi_disk *sdkp = to_scsi_disk(dev);
262 struct scsi_device *sdp = sdkp->device;
263
264 if (!capable(CAP_SYS_ADMIN))
265 return -EACCES;
266
267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 return -EINVAL;
269
270 if (kstrtobool(buf, &v))
271 return -EINVAL;
272
273 sdp->allow_restart = v;
274
275 return count;
276 }
277 static DEVICE_ATTR_RW(allow_restart);
278
279 static ssize_t
280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
281 {
282 struct scsi_disk *sdkp = to_scsi_disk(dev);
283 int ct = sdkp->RCD + 2*sdkp->WCE;
284
285 return sprintf(buf, "%s\n", sd_cache_types[ct]);
286 }
287 static DEVICE_ATTR_RW(cache_type);
288
289 static ssize_t
290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
291 {
292 struct scsi_disk *sdkp = to_scsi_disk(dev);
293
294 return sprintf(buf, "%u\n", sdkp->DPOFUA);
295 }
296 static DEVICE_ATTR_RO(FUA);
297
298 static ssize_t
299 protection_type_show(struct device *dev, struct device_attribute *attr,
300 char *buf)
301 {
302 struct scsi_disk *sdkp = to_scsi_disk(dev);
303
304 return sprintf(buf, "%u\n", sdkp->protection_type);
305 }
306
307 static ssize_t
308 protection_type_store(struct device *dev, struct device_attribute *attr,
309 const char *buf, size_t count)
310 {
311 struct scsi_disk *sdkp = to_scsi_disk(dev);
312 unsigned int val;
313 int err;
314
315 if (!capable(CAP_SYS_ADMIN))
316 return -EACCES;
317
318 err = kstrtouint(buf, 10, &val);
319
320 if (err)
321 return err;
322
323 if (val <= T10_PI_TYPE3_PROTECTION)
324 sdkp->protection_type = val;
325
326 return count;
327 }
328 static DEVICE_ATTR_RW(protection_type);
329
330 static ssize_t
331 protection_mode_show(struct device *dev, struct device_attribute *attr,
332 char *buf)
333 {
334 struct scsi_disk *sdkp = to_scsi_disk(dev);
335 struct scsi_device *sdp = sdkp->device;
336 unsigned int dif, dix;
337
338 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
339 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
340
341 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
342 dif = 0;
343 dix = 1;
344 }
345
346 if (!dif && !dix)
347 return sprintf(buf, "none\n");
348
349 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
350 }
351 static DEVICE_ATTR_RO(protection_mode);
352
353 static ssize_t
354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
355 {
356 struct scsi_disk *sdkp = to_scsi_disk(dev);
357
358 return sprintf(buf, "%u\n", sdkp->ATO);
359 }
360 static DEVICE_ATTR_RO(app_tag_own);
361
362 static ssize_t
363 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
364 char *buf)
365 {
366 struct scsi_disk *sdkp = to_scsi_disk(dev);
367
368 return sprintf(buf, "%u\n", sdkp->lbpme);
369 }
370 static DEVICE_ATTR_RO(thin_provisioning);
371
372 /* sysfs_match_string() requires dense arrays */
373 static const char *lbp_mode[] = {
374 [SD_LBP_FULL] = "full",
375 [SD_LBP_UNMAP] = "unmap",
376 [SD_LBP_WS16] = "writesame_16",
377 [SD_LBP_WS10] = "writesame_10",
378 [SD_LBP_ZERO] = "writesame_zero",
379 [SD_LBP_DISABLE] = "disabled",
380 };
381
382 static ssize_t
383 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
384 char *buf)
385 {
386 struct scsi_disk *sdkp = to_scsi_disk(dev);
387
388 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
389 }
390
391 static ssize_t
392 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
393 const char *buf, size_t count)
394 {
395 struct scsi_disk *sdkp = to_scsi_disk(dev);
396 struct scsi_device *sdp = sdkp->device;
397 int mode;
398
399 if (!capable(CAP_SYS_ADMIN))
400 return -EACCES;
401
402 if (sd_is_zoned(sdkp)) {
403 sd_config_discard(sdkp, SD_LBP_DISABLE);
404 return count;
405 }
406
407 if (sdp->type != TYPE_DISK)
408 return -EINVAL;
409
410 mode = sysfs_match_string(lbp_mode, buf);
411 if (mode < 0)
412 return -EINVAL;
413
414 sd_config_discard(sdkp, mode);
415
416 return count;
417 }
418 static DEVICE_ATTR_RW(provisioning_mode);
419
420 /* sysfs_match_string() requires dense arrays */
421 static const char *zeroing_mode[] = {
422 [SD_ZERO_WRITE] = "write",
423 [SD_ZERO_WS] = "writesame",
424 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
425 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
426 };
427
428 static ssize_t
429 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
430 char *buf)
431 {
432 struct scsi_disk *sdkp = to_scsi_disk(dev);
433
434 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
435 }
436
437 static ssize_t
438 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
439 const char *buf, size_t count)
440 {
441 struct scsi_disk *sdkp = to_scsi_disk(dev);
442 int mode;
443
444 if (!capable(CAP_SYS_ADMIN))
445 return -EACCES;
446
447 mode = sysfs_match_string(zeroing_mode, buf);
448 if (mode < 0)
449 return -EINVAL;
450
451 sdkp->zeroing_mode = mode;
452
453 return count;
454 }
455 static DEVICE_ATTR_RW(zeroing_mode);
456
457 static ssize_t
458 max_medium_access_timeouts_show(struct device *dev,
459 struct device_attribute *attr, char *buf)
460 {
461 struct scsi_disk *sdkp = to_scsi_disk(dev);
462
463 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
464 }
465
466 static ssize_t
467 max_medium_access_timeouts_store(struct device *dev,
468 struct device_attribute *attr, const char *buf,
469 size_t count)
470 {
471 struct scsi_disk *sdkp = to_scsi_disk(dev);
472 int err;
473
474 if (!capable(CAP_SYS_ADMIN))
475 return -EACCES;
476
477 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
478
479 return err ? err : count;
480 }
481 static DEVICE_ATTR_RW(max_medium_access_timeouts);
482
483 static ssize_t
484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
485 char *buf)
486 {
487 struct scsi_disk *sdkp = to_scsi_disk(dev);
488
489 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
490 }
491
492 static ssize_t
493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
494 const char *buf, size_t count)
495 {
496 struct scsi_disk *sdkp = to_scsi_disk(dev);
497 struct scsi_device *sdp = sdkp->device;
498 unsigned long max;
499 int err;
500
501 if (!capable(CAP_SYS_ADMIN))
502 return -EACCES;
503
504 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
505 return -EINVAL;
506
507 err = kstrtoul(buf, 10, &max);
508
509 if (err)
510 return err;
511
512 if (max == 0)
513 sdp->no_write_same = 1;
514 else if (max <= SD_MAX_WS16_BLOCKS) {
515 sdp->no_write_same = 0;
516 sdkp->max_ws_blocks = max;
517 }
518
519 sd_config_write_same(sdkp);
520
521 return count;
522 }
523 static DEVICE_ATTR_RW(max_write_same_blocks);
524
525 static struct attribute *sd_disk_attrs[] = {
526 &dev_attr_cache_type.attr,
527 &dev_attr_FUA.attr,
528 &dev_attr_allow_restart.attr,
529 &dev_attr_manage_start_stop.attr,
530 &dev_attr_protection_type.attr,
531 &dev_attr_protection_mode.attr,
532 &dev_attr_app_tag_own.attr,
533 &dev_attr_thin_provisioning.attr,
534 &dev_attr_provisioning_mode.attr,
535 &dev_attr_zeroing_mode.attr,
536 &dev_attr_max_write_same_blocks.attr,
537 &dev_attr_max_medium_access_timeouts.attr,
538 NULL,
539 };
540 ATTRIBUTE_GROUPS(sd_disk);
541
542 static struct class sd_disk_class = {
543 .name = "scsi_disk",
544 .owner = THIS_MODULE,
545 .dev_release = scsi_disk_release,
546 .dev_groups = sd_disk_groups,
547 };
548
549 static const struct dev_pm_ops sd_pm_ops = {
550 .suspend = sd_suspend_system,
551 .resume = sd_resume,
552 .poweroff = sd_suspend_system,
553 .restore = sd_resume,
554 .runtime_suspend = sd_suspend_runtime,
555 .runtime_resume = sd_resume,
556 };
557
558 static struct scsi_driver sd_template = {
559 .gendrv = {
560 .name = "sd",
561 .owner = THIS_MODULE,
562 .probe = sd_probe,
563 .remove = sd_remove,
564 .shutdown = sd_shutdown,
565 .pm = &sd_pm_ops,
566 },
567 .rescan = sd_rescan,
568 .init_command = sd_init_command,
569 .uninit_command = sd_uninit_command,
570 .done = sd_done,
571 .eh_action = sd_eh_action,
572 .eh_reset = sd_eh_reset,
573 };
574
575 /*
576 * Dummy kobj_map->probe function.
577 * The default ->probe function will call modprobe, which is
578 * pointless as this module is already loaded.
579 */
580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
581 {
582 return NULL;
583 }
584
585 /*
586 * Device no to disk mapping:
587 *
588 * major disc2 disc p1
589 * |............|.............|....|....| <- dev_t
590 * 31 20 19 8 7 4 3 0
591 *
592 * Inside a major, we have 16k disks, however mapped non-
593 * contiguously. The first 16 disks are for major0, the next
594 * ones with major1, ... Disk 256 is for major0 again, disk 272
595 * for major1, ...
596 * As we stay compatible with our numbering scheme, we can reuse
597 * the well-know SCSI majors 8, 65--71, 136--143.
598 */
599 static int sd_major(int major_idx)
600 {
601 switch (major_idx) {
602 case 0:
603 return SCSI_DISK0_MAJOR;
604 case 1 ... 7:
605 return SCSI_DISK1_MAJOR + major_idx - 1;
606 case 8 ... 15:
607 return SCSI_DISK8_MAJOR + major_idx - 8;
608 default:
609 BUG();
610 return 0; /* shut up gcc */
611 }
612 }
613
614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
615 {
616 struct scsi_disk *sdkp = NULL;
617
618 mutex_lock(&sd_ref_mutex);
619
620 if (disk->private_data) {
621 sdkp = scsi_disk(disk);
622 if (scsi_device_get(sdkp->device) == 0)
623 get_device(&sdkp->dev);
624 else
625 sdkp = NULL;
626 }
627 mutex_unlock(&sd_ref_mutex);
628 return sdkp;
629 }
630
631 static void scsi_disk_put(struct scsi_disk *sdkp)
632 {
633 struct scsi_device *sdev = sdkp->device;
634
635 mutex_lock(&sd_ref_mutex);
636 put_device(&sdkp->dev);
637 scsi_device_put(sdev);
638 mutex_unlock(&sd_ref_mutex);
639 }
640
641 #ifdef CONFIG_BLK_SED_OPAL
642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
643 size_t len, bool send)
644 {
645 struct scsi_device *sdev = data;
646 u8 cdb[12] = { 0, };
647 int ret;
648
649 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
650 cdb[1] = secp;
651 put_unaligned_be16(spsp, &cdb[2]);
652 put_unaligned_be32(len, &cdb[6]);
653
654 ret = scsi_execute_req(sdev, cdb,
655 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
656 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
657 return ret <= 0 ? ret : -EIO;
658 }
659 #endif /* CONFIG_BLK_SED_OPAL */
660
661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
662 unsigned int dix, unsigned int dif)
663 {
664 struct bio *bio = scmd->request->bio;
665 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
666 unsigned int protect = 0;
667
668 if (dix) { /* DIX Type 0, 1, 2, 3 */
669 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
670 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
671
672 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
673 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
674 }
675
676 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
677 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
678
679 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
681 }
682
683 if (dif) { /* DIX/DIF Type 1, 2, 3 */
684 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
685
686 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
687 protect = 3 << 5; /* Disable target PI checking */
688 else
689 protect = 1 << 5; /* Enable target PI checking */
690 }
691
692 scsi_set_prot_op(scmd, prot_op);
693 scsi_set_prot_type(scmd, dif);
694 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
695
696 return protect;
697 }
698
699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
700 {
701 struct request_queue *q = sdkp->disk->queue;
702 unsigned int logical_block_size = sdkp->device->sector_size;
703 unsigned int max_blocks = 0;
704
705 q->limits.discard_alignment =
706 sdkp->unmap_alignment * logical_block_size;
707 q->limits.discard_granularity =
708 max(sdkp->physical_block_size,
709 sdkp->unmap_granularity * logical_block_size);
710 sdkp->provisioning_mode = mode;
711
712 switch (mode) {
713
714 case SD_LBP_FULL:
715 case SD_LBP_DISABLE:
716 blk_queue_max_discard_sectors(q, 0);
717 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
718 return;
719
720 case SD_LBP_UNMAP:
721 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
722 (u32)SD_MAX_WS16_BLOCKS);
723 break;
724
725 case SD_LBP_WS16:
726 if (sdkp->device->unmap_limit_for_ws)
727 max_blocks = sdkp->max_unmap_blocks;
728 else
729 max_blocks = sdkp->max_ws_blocks;
730
731 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
732 break;
733
734 case SD_LBP_WS10:
735 if (sdkp->device->unmap_limit_for_ws)
736 max_blocks = sdkp->max_unmap_blocks;
737 else
738 max_blocks = sdkp->max_ws_blocks;
739
740 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
741 break;
742
743 case SD_LBP_ZERO:
744 max_blocks = min_not_zero(sdkp->max_ws_blocks,
745 (u32)SD_MAX_WS10_BLOCKS);
746 break;
747 }
748
749 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
750 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
751 }
752
753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
754 {
755 struct scsi_device *sdp = cmd->device;
756 struct request *rq = cmd->request;
757 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
758 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
759 unsigned int data_len = 24;
760 char *buf;
761
762 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
763 if (!rq->special_vec.bv_page)
764 return BLKPREP_DEFER;
765 rq->special_vec.bv_offset = 0;
766 rq->special_vec.bv_len = data_len;
767 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
768
769 cmd->cmd_len = 10;
770 cmd->cmnd[0] = UNMAP;
771 cmd->cmnd[8] = 24;
772
773 buf = page_address(rq->special_vec.bv_page);
774 put_unaligned_be16(6 + 16, &buf[0]);
775 put_unaligned_be16(16, &buf[2]);
776 put_unaligned_be64(sector, &buf[8]);
777 put_unaligned_be32(nr_sectors, &buf[16]);
778
779 cmd->allowed = SD_MAX_RETRIES;
780 cmd->transfersize = data_len;
781 rq->timeout = SD_TIMEOUT;
782 scsi_req(rq)->resid_len = data_len;
783
784 return scsi_init_io(cmd);
785 }
786
787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
788 {
789 struct scsi_device *sdp = cmd->device;
790 struct request *rq = cmd->request;
791 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
792 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
793 u32 data_len = sdp->sector_size;
794
795 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
796 if (!rq->special_vec.bv_page)
797 return BLKPREP_DEFER;
798 rq->special_vec.bv_offset = 0;
799 rq->special_vec.bv_len = data_len;
800 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
801
802 cmd->cmd_len = 16;
803 cmd->cmnd[0] = WRITE_SAME_16;
804 if (unmap)
805 cmd->cmnd[1] = 0x8; /* UNMAP */
806 put_unaligned_be64(sector, &cmd->cmnd[2]);
807 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
808
809 cmd->allowed = SD_MAX_RETRIES;
810 cmd->transfersize = data_len;
811 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
812 scsi_req(rq)->resid_len = data_len;
813
814 return scsi_init_io(cmd);
815 }
816
817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
818 {
819 struct scsi_device *sdp = cmd->device;
820 struct request *rq = cmd->request;
821 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
822 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
823 u32 data_len = sdp->sector_size;
824
825 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
826 if (!rq->special_vec.bv_page)
827 return BLKPREP_DEFER;
828 rq->special_vec.bv_offset = 0;
829 rq->special_vec.bv_len = data_len;
830 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
831
832 cmd->cmd_len = 10;
833 cmd->cmnd[0] = WRITE_SAME;
834 if (unmap)
835 cmd->cmnd[1] = 0x8; /* UNMAP */
836 put_unaligned_be32(sector, &cmd->cmnd[2]);
837 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
838
839 cmd->allowed = SD_MAX_RETRIES;
840 cmd->transfersize = data_len;
841 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
842 scsi_req(rq)->resid_len = data_len;
843
844 return scsi_init_io(cmd);
845 }
846
847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
848 {
849 struct request *rq = cmd->request;
850 struct scsi_device *sdp = cmd->device;
851 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
852 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
853 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
854 int ret;
855
856 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
857 switch (sdkp->zeroing_mode) {
858 case SD_ZERO_WS16_UNMAP:
859 ret = sd_setup_write_same16_cmnd(cmd, true);
860 goto out;
861 case SD_ZERO_WS10_UNMAP:
862 ret = sd_setup_write_same10_cmnd(cmd, true);
863 goto out;
864 }
865 }
866
867 if (sdp->no_write_same)
868 return BLKPREP_INVALID;
869
870 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
871 ret = sd_setup_write_same16_cmnd(cmd, false);
872 else
873 ret = sd_setup_write_same10_cmnd(cmd, false);
874
875 out:
876 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
877 return sd_zbc_write_lock_zone(cmd);
878
879 return ret;
880 }
881
882 static void sd_config_write_same(struct scsi_disk *sdkp)
883 {
884 struct request_queue *q = sdkp->disk->queue;
885 unsigned int logical_block_size = sdkp->device->sector_size;
886
887 if (sdkp->device->no_write_same) {
888 sdkp->max_ws_blocks = 0;
889 goto out;
890 }
891
892 /* Some devices can not handle block counts above 0xffff despite
893 * supporting WRITE SAME(16). Consequently we default to 64k
894 * blocks per I/O unless the device explicitly advertises a
895 * bigger limit.
896 */
897 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
898 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
899 (u32)SD_MAX_WS16_BLOCKS);
900 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
901 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
902 (u32)SD_MAX_WS10_BLOCKS);
903 else {
904 sdkp->device->no_write_same = 1;
905 sdkp->max_ws_blocks = 0;
906 }
907
908 if (sdkp->lbprz && sdkp->lbpws)
909 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
910 else if (sdkp->lbprz && sdkp->lbpws10)
911 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
912 else if (sdkp->max_ws_blocks)
913 sdkp->zeroing_mode = SD_ZERO_WS;
914 else
915 sdkp->zeroing_mode = SD_ZERO_WRITE;
916
917 if (sdkp->max_ws_blocks &&
918 sdkp->physical_block_size > logical_block_size) {
919 /*
920 * Reporting a maximum number of blocks that is not aligned
921 * on the device physical size would cause a large write same
922 * request to be split into physically unaligned chunks by
923 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
924 * even if the caller of these functions took care to align the
925 * large request. So make sure the maximum reported is aligned
926 * to the device physical block size. This is only an optional
927 * optimization for regular disks, but this is mandatory to
928 * avoid failure of large write same requests directed at
929 * sequential write required zones of host-managed ZBC disks.
930 */
931 sdkp->max_ws_blocks =
932 round_down(sdkp->max_ws_blocks,
933 bytes_to_logical(sdkp->device,
934 sdkp->physical_block_size));
935 }
936
937 out:
938 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
939 (logical_block_size >> 9));
940 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
941 (logical_block_size >> 9));
942 }
943
944 /**
945 * sd_setup_write_same_cmnd - write the same data to multiple blocks
946 * @cmd: command to prepare
947 *
948 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
949 * the preference indicated by the target device.
950 **/
951 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
952 {
953 struct request *rq = cmd->request;
954 struct scsi_device *sdp = cmd->device;
955 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
956 struct bio *bio = rq->bio;
957 sector_t sector = blk_rq_pos(rq);
958 unsigned int nr_sectors = blk_rq_sectors(rq);
959 unsigned int nr_bytes = blk_rq_bytes(rq);
960 int ret;
961
962 if (sdkp->device->no_write_same)
963 return BLKPREP_INVALID;
964
965 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
966
967 if (sd_is_zoned(sdkp)) {
968 ret = sd_zbc_write_lock_zone(cmd);
969 if (ret != BLKPREP_OK)
970 return ret;
971 }
972
973 sector >>= ilog2(sdp->sector_size) - 9;
974 nr_sectors >>= ilog2(sdp->sector_size) - 9;
975
976 rq->timeout = SD_WRITE_SAME_TIMEOUT;
977
978 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
979 cmd->cmd_len = 16;
980 cmd->cmnd[0] = WRITE_SAME_16;
981 put_unaligned_be64(sector, &cmd->cmnd[2]);
982 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
983 } else {
984 cmd->cmd_len = 10;
985 cmd->cmnd[0] = WRITE_SAME;
986 put_unaligned_be32(sector, &cmd->cmnd[2]);
987 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
988 }
989
990 cmd->transfersize = sdp->sector_size;
991 cmd->allowed = SD_MAX_RETRIES;
992
993 /*
994 * For WRITE SAME the data transferred via the DATA OUT buffer is
995 * different from the amount of data actually written to the target.
996 *
997 * We set up __data_len to the amount of data transferred via the
998 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
999 * to transfer a single sector of data first, but then reset it to
1000 * the amount of data to be written right after so that the I/O path
1001 * knows how much to actually write.
1002 */
1003 rq->__data_len = sdp->sector_size;
1004 ret = scsi_init_io(cmd);
1005 rq->__data_len = nr_bytes;
1006
1007 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
1008 sd_zbc_write_unlock_zone(cmd);
1009
1010 return ret;
1011 }
1012
1013 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1014 {
1015 struct request *rq = cmd->request;
1016
1017 /* flush requests don't perform I/O, zero the S/G table */
1018 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1019
1020 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1021 cmd->cmd_len = 10;
1022 cmd->transfersize = 0;
1023 cmd->allowed = SD_MAX_RETRIES;
1024
1025 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1026 return BLKPREP_OK;
1027 }
1028
1029 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1030 {
1031 struct request *rq = SCpnt->request;
1032 struct scsi_device *sdp = SCpnt->device;
1033 struct gendisk *disk = rq->rq_disk;
1034 struct scsi_disk *sdkp = scsi_disk(disk);
1035 sector_t block = blk_rq_pos(rq);
1036 sector_t threshold;
1037 unsigned int this_count = blk_rq_sectors(rq);
1038 unsigned int dif, dix;
1039 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1040 int ret;
1041 unsigned char protect;
1042
1043 if (zoned_write) {
1044 ret = sd_zbc_write_lock_zone(SCpnt);
1045 if (ret != BLKPREP_OK)
1046 return ret;
1047 }
1048
1049 ret = scsi_init_io(SCpnt);
1050 if (ret != BLKPREP_OK)
1051 goto out;
1052 WARN_ON_ONCE(SCpnt != rq->special);
1053
1054 /* from here on until we're complete, any goto out
1055 * is used for a killable error condition */
1056 ret = BLKPREP_KILL;
1057
1058 SCSI_LOG_HLQUEUE(1,
1059 scmd_printk(KERN_INFO, SCpnt,
1060 "%s: block=%llu, count=%d\n",
1061 __func__, (unsigned long long)block, this_count));
1062
1063 if (!sdp || !scsi_device_online(sdp) ||
1064 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1065 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1066 "Finishing %u sectors\n",
1067 blk_rq_sectors(rq)));
1068 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1069 "Retry with 0x%p\n", SCpnt));
1070 goto out;
1071 }
1072
1073 if (sdp->changed) {
1074 /*
1075 * quietly refuse to do anything to a changed disc until
1076 * the changed bit has been reset
1077 */
1078 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1079 goto out;
1080 }
1081
1082 /*
1083 * Some SD card readers can't handle multi-sector accesses which touch
1084 * the last one or two hardware sectors. Split accesses as needed.
1085 */
1086 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1087 (sdp->sector_size / 512);
1088
1089 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1090 if (block < threshold) {
1091 /* Access up to the threshold but not beyond */
1092 this_count = threshold - block;
1093 } else {
1094 /* Access only a single hardware sector */
1095 this_count = sdp->sector_size / 512;
1096 }
1097 }
1098
1099 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1100 (unsigned long long)block));
1101
1102 /*
1103 * If we have a 1K hardware sectorsize, prevent access to single
1104 * 512 byte sectors. In theory we could handle this - in fact
1105 * the scsi cdrom driver must be able to handle this because
1106 * we typically use 1K blocksizes, and cdroms typically have
1107 * 2K hardware sectorsizes. Of course, things are simpler
1108 * with the cdrom, since it is read-only. For performance
1109 * reasons, the filesystems should be able to handle this
1110 * and not force the scsi disk driver to use bounce buffers
1111 * for this.
1112 */
1113 if (sdp->sector_size == 1024) {
1114 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1115 scmd_printk(KERN_ERR, SCpnt,
1116 "Bad block number requested\n");
1117 goto out;
1118 } else {
1119 block = block >> 1;
1120 this_count = this_count >> 1;
1121 }
1122 }
1123 if (sdp->sector_size == 2048) {
1124 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1125 scmd_printk(KERN_ERR, SCpnt,
1126 "Bad block number requested\n");
1127 goto out;
1128 } else {
1129 block = block >> 2;
1130 this_count = this_count >> 2;
1131 }
1132 }
1133 if (sdp->sector_size == 4096) {
1134 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1135 scmd_printk(KERN_ERR, SCpnt,
1136 "Bad block number requested\n");
1137 goto out;
1138 } else {
1139 block = block >> 3;
1140 this_count = this_count >> 3;
1141 }
1142 }
1143 if (rq_data_dir(rq) == WRITE) {
1144 SCpnt->cmnd[0] = WRITE_6;
1145
1146 if (blk_integrity_rq(rq))
1147 sd_dif_prepare(SCpnt);
1148
1149 } else if (rq_data_dir(rq) == READ) {
1150 SCpnt->cmnd[0] = READ_6;
1151 } else {
1152 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1153 goto out;
1154 }
1155
1156 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1157 "%s %d/%u 512 byte blocks.\n",
1158 (rq_data_dir(rq) == WRITE) ?
1159 "writing" : "reading", this_count,
1160 blk_rq_sectors(rq)));
1161
1162 dix = scsi_prot_sg_count(SCpnt);
1163 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1164
1165 if (dif || dix)
1166 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1167 else
1168 protect = 0;
1169
1170 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1171 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1172
1173 if (unlikely(SCpnt->cmnd == NULL)) {
1174 ret = BLKPREP_DEFER;
1175 goto out;
1176 }
1177
1178 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1179 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1180 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1181 SCpnt->cmnd[7] = 0x18;
1182 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1183 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184
1185 /* LBA */
1186 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1187 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1188 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1189 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1190 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1191 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1192 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1193 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1194
1195 /* Expected Indirect LBA */
1196 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1197 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1198 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1199 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1200
1201 /* Transfer length */
1202 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1203 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1204 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1205 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1206 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1207 SCpnt->cmnd[0] += READ_16 - READ_6;
1208 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1209 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1210 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1211 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1212 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1213 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1214 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1215 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1216 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1217 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1218 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1219 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1220 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1221 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1222 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1223 scsi_device_protection(SCpnt->device) ||
1224 SCpnt->device->use_10_for_rw) {
1225 SCpnt->cmnd[0] += READ_10 - READ_6;
1226 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1227 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1228 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1229 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1230 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1231 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1232 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1233 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1234 } else {
1235 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1236 /*
1237 * This happens only if this drive failed
1238 * 10byte rw command with ILLEGAL_REQUEST
1239 * during operation and thus turned off
1240 * use_10_for_rw.
1241 */
1242 scmd_printk(KERN_ERR, SCpnt,
1243 "FUA write on READ/WRITE(6) drive\n");
1244 goto out;
1245 }
1246
1247 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1248 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1249 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1250 SCpnt->cmnd[4] = (unsigned char) this_count;
1251 SCpnt->cmnd[5] = 0;
1252 }
1253 SCpnt->sdb.length = this_count * sdp->sector_size;
1254
1255 /*
1256 * We shouldn't disconnect in the middle of a sector, so with a dumb
1257 * host adapter, it's safe to assume that we can at least transfer
1258 * this many bytes between each connect / disconnect.
1259 */
1260 SCpnt->transfersize = sdp->sector_size;
1261 SCpnt->underflow = this_count << 9;
1262 SCpnt->allowed = SD_MAX_RETRIES;
1263
1264 /*
1265 * This indicates that the command is ready from our end to be
1266 * queued.
1267 */
1268 ret = BLKPREP_OK;
1269 out:
1270 if (zoned_write && ret != BLKPREP_OK)
1271 sd_zbc_write_unlock_zone(SCpnt);
1272
1273 return ret;
1274 }
1275
1276 static int sd_init_command(struct scsi_cmnd *cmd)
1277 {
1278 struct request *rq = cmd->request;
1279
1280 switch (req_op(rq)) {
1281 case REQ_OP_DISCARD:
1282 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1283 case SD_LBP_UNMAP:
1284 return sd_setup_unmap_cmnd(cmd);
1285 case SD_LBP_WS16:
1286 return sd_setup_write_same16_cmnd(cmd, true);
1287 case SD_LBP_WS10:
1288 return sd_setup_write_same10_cmnd(cmd, true);
1289 case SD_LBP_ZERO:
1290 return sd_setup_write_same10_cmnd(cmd, false);
1291 default:
1292 return BLKPREP_INVALID;
1293 }
1294 case REQ_OP_WRITE_ZEROES:
1295 return sd_setup_write_zeroes_cmnd(cmd);
1296 case REQ_OP_WRITE_SAME:
1297 return sd_setup_write_same_cmnd(cmd);
1298 case REQ_OP_FLUSH:
1299 return sd_setup_flush_cmnd(cmd);
1300 case REQ_OP_READ:
1301 case REQ_OP_WRITE:
1302 return sd_setup_read_write_cmnd(cmd);
1303 case REQ_OP_ZONE_REPORT:
1304 return sd_zbc_setup_report_cmnd(cmd);
1305 case REQ_OP_ZONE_RESET:
1306 return sd_zbc_setup_reset_cmnd(cmd);
1307 default:
1308 BUG();
1309 }
1310 }
1311
1312 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1313 {
1314 struct request *rq = SCpnt->request;
1315 u8 *cmnd;
1316
1317 if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1318 sd_zbc_write_unlock_zone(SCpnt);
1319
1320 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1321 __free_page(rq->special_vec.bv_page);
1322
1323 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1324 cmnd = SCpnt->cmnd;
1325 SCpnt->cmnd = NULL;
1326 SCpnt->cmd_len = 0;
1327 mempool_free(cmnd, sd_cdb_pool);
1328 }
1329 }
1330
1331 /**
1332 * sd_open - open a scsi disk device
1333 * @bdev: Block device of the scsi disk to open
1334 * @mode: FMODE_* mask
1335 *
1336 * Returns 0 if successful. Returns a negated errno value in case
1337 * of error.
1338 *
1339 * Note: This can be called from a user context (e.g. fsck(1) )
1340 * or from within the kernel (e.g. as a result of a mount(1) ).
1341 * In the latter case @inode and @filp carry an abridged amount
1342 * of information as noted above.
1343 *
1344 * Locking: called with bdev->bd_mutex held.
1345 **/
1346 static int sd_open(struct block_device *bdev, fmode_t mode)
1347 {
1348 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1349 struct scsi_device *sdev;
1350 int retval;
1351
1352 if (!sdkp)
1353 return -ENXIO;
1354
1355 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1356
1357 sdev = sdkp->device;
1358
1359 /*
1360 * If the device is in error recovery, wait until it is done.
1361 * If the device is offline, then disallow any access to it.
1362 */
1363 retval = -ENXIO;
1364 if (!scsi_block_when_processing_errors(sdev))
1365 goto error_out;
1366
1367 if (sdev->removable || sdkp->write_prot)
1368 check_disk_change(bdev);
1369
1370 /*
1371 * If the drive is empty, just let the open fail.
1372 */
1373 retval = -ENOMEDIUM;
1374 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1375 goto error_out;
1376
1377 /*
1378 * If the device has the write protect tab set, have the open fail
1379 * if the user expects to be able to write to the thing.
1380 */
1381 retval = -EROFS;
1382 if (sdkp->write_prot && (mode & FMODE_WRITE))
1383 goto error_out;
1384
1385 /*
1386 * It is possible that the disk changing stuff resulted in
1387 * the device being taken offline. If this is the case,
1388 * report this to the user, and don't pretend that the
1389 * open actually succeeded.
1390 */
1391 retval = -ENXIO;
1392 if (!scsi_device_online(sdev))
1393 goto error_out;
1394
1395 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1396 if (scsi_block_when_processing_errors(sdev))
1397 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1398 }
1399
1400 return 0;
1401
1402 error_out:
1403 scsi_disk_put(sdkp);
1404 return retval;
1405 }
1406
1407 /**
1408 * sd_release - invoked when the (last) close(2) is called on this
1409 * scsi disk.
1410 * @disk: disk to release
1411 * @mode: FMODE_* mask
1412 *
1413 * Returns 0.
1414 *
1415 * Note: may block (uninterruptible) if error recovery is underway
1416 * on this disk.
1417 *
1418 * Locking: called with bdev->bd_mutex held.
1419 **/
1420 static void sd_release(struct gendisk *disk, fmode_t mode)
1421 {
1422 struct scsi_disk *sdkp = scsi_disk(disk);
1423 struct scsi_device *sdev = sdkp->device;
1424
1425 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1426
1427 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1428 if (scsi_block_when_processing_errors(sdev))
1429 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1430 }
1431
1432 /*
1433 * XXX and what if there are packets in flight and this close()
1434 * XXX is followed by a "rmmod sd_mod"?
1435 */
1436
1437 scsi_disk_put(sdkp);
1438 }
1439
1440 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1441 {
1442 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1443 struct scsi_device *sdp = sdkp->device;
1444 struct Scsi_Host *host = sdp->host;
1445 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1446 int diskinfo[4];
1447
1448 /* default to most commonly used values */
1449 diskinfo[0] = 0x40; /* 1 << 6 */
1450 diskinfo[1] = 0x20; /* 1 << 5 */
1451 diskinfo[2] = capacity >> 11;
1452
1453 /* override with calculated, extended default, or driver values */
1454 if (host->hostt->bios_param)
1455 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1456 else
1457 scsicam_bios_param(bdev, capacity, diskinfo);
1458
1459 geo->heads = diskinfo[0];
1460 geo->sectors = diskinfo[1];
1461 geo->cylinders = diskinfo[2];
1462 return 0;
1463 }
1464
1465 /**
1466 * sd_ioctl - process an ioctl
1467 * @bdev: target block device
1468 * @mode: FMODE_* mask
1469 * @cmd: ioctl command number
1470 * @arg: this is third argument given to ioctl(2) system call.
1471 * Often contains a pointer.
1472 *
1473 * Returns 0 if successful (some ioctls return positive numbers on
1474 * success as well). Returns a negated errno value in case of error.
1475 *
1476 * Note: most ioctls are forward onto the block subsystem or further
1477 * down in the scsi subsystem.
1478 **/
1479 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1480 unsigned int cmd, unsigned long arg)
1481 {
1482 struct gendisk *disk = bdev->bd_disk;
1483 struct scsi_disk *sdkp = scsi_disk(disk);
1484 struct scsi_device *sdp = sdkp->device;
1485 void __user *p = (void __user *)arg;
1486 int error;
1487
1488 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1489 "cmd=0x%x\n", disk->disk_name, cmd));
1490
1491 error = scsi_verify_blk_ioctl(bdev, cmd);
1492 if (error < 0)
1493 return error;
1494
1495 /*
1496 * If we are in the middle of error recovery, don't let anyone
1497 * else try and use this device. Also, if error recovery fails, it
1498 * may try and take the device offline, in which case all further
1499 * access to the device is prohibited.
1500 */
1501 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1502 (mode & FMODE_NDELAY) != 0);
1503 if (error)
1504 goto out;
1505
1506 if (is_sed_ioctl(cmd))
1507 return sed_ioctl(sdkp->opal_dev, cmd, p);
1508
1509 /*
1510 * Send SCSI addressing ioctls directly to mid level, send other
1511 * ioctls to block level and then onto mid level if they can't be
1512 * resolved.
1513 */
1514 switch (cmd) {
1515 case SCSI_IOCTL_GET_IDLUN:
1516 case SCSI_IOCTL_GET_BUS_NUMBER:
1517 error = scsi_ioctl(sdp, cmd, p);
1518 break;
1519 default:
1520 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1521 if (error != -ENOTTY)
1522 break;
1523 error = scsi_ioctl(sdp, cmd, p);
1524 break;
1525 }
1526 out:
1527 return error;
1528 }
1529
1530 static void set_media_not_present(struct scsi_disk *sdkp)
1531 {
1532 if (sdkp->media_present)
1533 sdkp->device->changed = 1;
1534
1535 if (sdkp->device->removable) {
1536 sdkp->media_present = 0;
1537 sdkp->capacity = 0;
1538 }
1539 }
1540
1541 static int media_not_present(struct scsi_disk *sdkp,
1542 struct scsi_sense_hdr *sshdr)
1543 {
1544 if (!scsi_sense_valid(sshdr))
1545 return 0;
1546
1547 /* not invoked for commands that could return deferred errors */
1548 switch (sshdr->sense_key) {
1549 case UNIT_ATTENTION:
1550 case NOT_READY:
1551 /* medium not present */
1552 if (sshdr->asc == 0x3A) {
1553 set_media_not_present(sdkp);
1554 return 1;
1555 }
1556 }
1557 return 0;
1558 }
1559
1560 /**
1561 * sd_check_events - check media events
1562 * @disk: kernel device descriptor
1563 * @clearing: disk events currently being cleared
1564 *
1565 * Returns mask of DISK_EVENT_*.
1566 *
1567 * Note: this function is invoked from the block subsystem.
1568 **/
1569 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1570 {
1571 struct scsi_disk *sdkp = scsi_disk_get(disk);
1572 struct scsi_device *sdp;
1573 int retval;
1574
1575 if (!sdkp)
1576 return 0;
1577
1578 sdp = sdkp->device;
1579 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1580
1581 /*
1582 * If the device is offline, don't send any commands - just pretend as
1583 * if the command failed. If the device ever comes back online, we
1584 * can deal with it then. It is only because of unrecoverable errors
1585 * that we would ever take a device offline in the first place.
1586 */
1587 if (!scsi_device_online(sdp)) {
1588 set_media_not_present(sdkp);
1589 goto out;
1590 }
1591
1592 /*
1593 * Using TEST_UNIT_READY enables differentiation between drive with
1594 * no cartridge loaded - NOT READY, drive with changed cartridge -
1595 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1596 *
1597 * Drives that auto spin down. eg iomega jaz 1G, will be started
1598 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1599 * sd_revalidate() is called.
1600 */
1601 if (scsi_block_when_processing_errors(sdp)) {
1602 struct scsi_sense_hdr sshdr = { 0, };
1603
1604 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1605 &sshdr);
1606
1607 /* failed to execute TUR, assume media not present */
1608 if (host_byte(retval)) {
1609 set_media_not_present(sdkp);
1610 goto out;
1611 }
1612
1613 if (media_not_present(sdkp, &sshdr))
1614 goto out;
1615 }
1616
1617 /*
1618 * For removable scsi disk we have to recognise the presence
1619 * of a disk in the drive.
1620 */
1621 if (!sdkp->media_present)
1622 sdp->changed = 1;
1623 sdkp->media_present = 1;
1624 out:
1625 /*
1626 * sdp->changed is set under the following conditions:
1627 *
1628 * Medium present state has changed in either direction.
1629 * Device has indicated UNIT_ATTENTION.
1630 */
1631 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1632 sdp->changed = 0;
1633 scsi_disk_put(sdkp);
1634 return retval;
1635 }
1636
1637 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1638 {
1639 int retries, res;
1640 struct scsi_device *sdp = sdkp->device;
1641 const int timeout = sdp->request_queue->rq_timeout
1642 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1643 struct scsi_sense_hdr my_sshdr;
1644
1645 if (!scsi_device_online(sdp))
1646 return -ENODEV;
1647
1648 /* caller might not be interested in sense, but we need it */
1649 if (!sshdr)
1650 sshdr = &my_sshdr;
1651
1652 for (retries = 3; retries > 0; --retries) {
1653 unsigned char cmd[10] = { 0 };
1654
1655 cmd[0] = SYNCHRONIZE_CACHE;
1656 /*
1657 * Leave the rest of the command zero to indicate
1658 * flush everything.
1659 */
1660 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1661 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1662 if (res == 0)
1663 break;
1664 }
1665
1666 if (res) {
1667 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1668
1669 if (driver_byte(res) & DRIVER_SENSE)
1670 sd_print_sense_hdr(sdkp, sshdr);
1671
1672 /* we need to evaluate the error return */
1673 if (scsi_sense_valid(sshdr) &&
1674 (sshdr->asc == 0x3a || /* medium not present */
1675 sshdr->asc == 0x20)) /* invalid command */
1676 /* this is no error here */
1677 return 0;
1678
1679 switch (host_byte(res)) {
1680 /* ignore errors due to racing a disconnection */
1681 case DID_BAD_TARGET:
1682 case DID_NO_CONNECT:
1683 return 0;
1684 /* signal the upper layer it might try again */
1685 case DID_BUS_BUSY:
1686 case DID_IMM_RETRY:
1687 case DID_REQUEUE:
1688 case DID_SOFT_ERROR:
1689 return -EBUSY;
1690 default:
1691 return -EIO;
1692 }
1693 }
1694 return 0;
1695 }
1696
1697 static void sd_rescan(struct device *dev)
1698 {
1699 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1700
1701 revalidate_disk(sdkp->disk);
1702 }
1703
1704
1705 #ifdef CONFIG_COMPAT
1706 /*
1707 * This gets directly called from VFS. When the ioctl
1708 * is not recognized we go back to the other translation paths.
1709 */
1710 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1711 unsigned int cmd, unsigned long arg)
1712 {
1713 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1714 int error;
1715
1716 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1717 (mode & FMODE_NDELAY) != 0);
1718 if (error)
1719 return error;
1720
1721 /*
1722 * Let the static ioctl translation table take care of it.
1723 */
1724 if (!sdev->host->hostt->compat_ioctl)
1725 return -ENOIOCTLCMD;
1726 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1727 }
1728 #endif
1729
1730 static char sd_pr_type(enum pr_type type)
1731 {
1732 switch (type) {
1733 case PR_WRITE_EXCLUSIVE:
1734 return 0x01;
1735 case PR_EXCLUSIVE_ACCESS:
1736 return 0x03;
1737 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1738 return 0x05;
1739 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1740 return 0x06;
1741 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1742 return 0x07;
1743 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1744 return 0x08;
1745 default:
1746 return 0;
1747 }
1748 };
1749
1750 static int sd_pr_command(struct block_device *bdev, u8 sa,
1751 u64 key, u64 sa_key, u8 type, u8 flags)
1752 {
1753 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1754 struct scsi_sense_hdr sshdr;
1755 int result;
1756 u8 cmd[16] = { 0, };
1757 u8 data[24] = { 0, };
1758
1759 cmd[0] = PERSISTENT_RESERVE_OUT;
1760 cmd[1] = sa;
1761 cmd[2] = type;
1762 put_unaligned_be32(sizeof(data), &cmd[5]);
1763
1764 put_unaligned_be64(key, &data[0]);
1765 put_unaligned_be64(sa_key, &data[8]);
1766 data[20] = flags;
1767
1768 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1769 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1770
1771 if ((driver_byte(result) & DRIVER_SENSE) &&
1772 (scsi_sense_valid(&sshdr))) {
1773 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1774 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1775 }
1776
1777 return result;
1778 }
1779
1780 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1781 u32 flags)
1782 {
1783 if (flags & ~PR_FL_IGNORE_KEY)
1784 return -EOPNOTSUPP;
1785 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1786 old_key, new_key, 0,
1787 (1 << 0) /* APTPL */);
1788 }
1789
1790 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1791 u32 flags)
1792 {
1793 if (flags)
1794 return -EOPNOTSUPP;
1795 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1796 }
1797
1798 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1799 {
1800 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1801 }
1802
1803 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1804 enum pr_type type, bool abort)
1805 {
1806 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1807 sd_pr_type(type), 0);
1808 }
1809
1810 static int sd_pr_clear(struct block_device *bdev, u64 key)
1811 {
1812 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1813 }
1814
1815 static const struct pr_ops sd_pr_ops = {
1816 .pr_register = sd_pr_register,
1817 .pr_reserve = sd_pr_reserve,
1818 .pr_release = sd_pr_release,
1819 .pr_preempt = sd_pr_preempt,
1820 .pr_clear = sd_pr_clear,
1821 };
1822
1823 static const struct block_device_operations sd_fops = {
1824 .owner = THIS_MODULE,
1825 .open = sd_open,
1826 .release = sd_release,
1827 .ioctl = sd_ioctl,
1828 .getgeo = sd_getgeo,
1829 #ifdef CONFIG_COMPAT
1830 .compat_ioctl = sd_compat_ioctl,
1831 #endif
1832 .check_events = sd_check_events,
1833 .revalidate_disk = sd_revalidate_disk,
1834 .unlock_native_capacity = sd_unlock_native_capacity,
1835 .pr_ops = &sd_pr_ops,
1836 };
1837
1838 /**
1839 * sd_eh_reset - reset error handling callback
1840 * @scmd: sd-issued command that has failed
1841 *
1842 * This function is called by the SCSI midlayer before starting
1843 * SCSI EH. When counting medium access failures we have to be
1844 * careful to register it only only once per device and SCSI EH run;
1845 * there might be several timed out commands which will cause the
1846 * 'max_medium_access_timeouts' counter to trigger after the first
1847 * SCSI EH run already and set the device to offline.
1848 * So this function resets the internal counter before starting SCSI EH.
1849 **/
1850 static void sd_eh_reset(struct scsi_cmnd *scmd)
1851 {
1852 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1853
1854 /* New SCSI EH run, reset gate variable */
1855 sdkp->ignore_medium_access_errors = false;
1856 }
1857
1858 /**
1859 * sd_eh_action - error handling callback
1860 * @scmd: sd-issued command that has failed
1861 * @eh_disp: The recovery disposition suggested by the midlayer
1862 *
1863 * This function is called by the SCSI midlayer upon completion of an
1864 * error test command (currently TEST UNIT READY). The result of sending
1865 * the eh command is passed in eh_disp. We're looking for devices that
1866 * fail medium access commands but are OK with non access commands like
1867 * test unit ready (so wrongly see the device as having a successful
1868 * recovery)
1869 **/
1870 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1871 {
1872 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1873 struct scsi_device *sdev = scmd->device;
1874
1875 if (!scsi_device_online(sdev) ||
1876 !scsi_medium_access_command(scmd) ||
1877 host_byte(scmd->result) != DID_TIME_OUT ||
1878 eh_disp != SUCCESS)
1879 return eh_disp;
1880
1881 /*
1882 * The device has timed out executing a medium access command.
1883 * However, the TEST UNIT READY command sent during error
1884 * handling completed successfully. Either the device is in the
1885 * process of recovering or has it suffered an internal failure
1886 * that prevents access to the storage medium.
1887 */
1888 if (!sdkp->ignore_medium_access_errors) {
1889 sdkp->medium_access_timed_out++;
1890 sdkp->ignore_medium_access_errors = true;
1891 }
1892
1893 /*
1894 * If the device keeps failing read/write commands but TEST UNIT
1895 * READY always completes successfully we assume that medium
1896 * access is no longer possible and take the device offline.
1897 */
1898 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1899 scmd_printk(KERN_ERR, scmd,
1900 "Medium access timeout failure. Offlining disk!\n");
1901 mutex_lock(&sdev->state_mutex);
1902 scsi_device_set_state(sdev, SDEV_OFFLINE);
1903 mutex_unlock(&sdev->state_mutex);
1904
1905 return SUCCESS;
1906 }
1907
1908 return eh_disp;
1909 }
1910
1911 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1912 {
1913 struct request *req = scmd->request;
1914 struct scsi_device *sdev = scmd->device;
1915 unsigned int transferred, good_bytes;
1916 u64 start_lba, end_lba, bad_lba;
1917
1918 /*
1919 * Some commands have a payload smaller than the device logical
1920 * block size (e.g. INQUIRY on a 4K disk).
1921 */
1922 if (scsi_bufflen(scmd) <= sdev->sector_size)
1923 return 0;
1924
1925 /* Check if we have a 'bad_lba' information */
1926 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1927 SCSI_SENSE_BUFFERSIZE,
1928 &bad_lba))
1929 return 0;
1930
1931 /*
1932 * If the bad lba was reported incorrectly, we have no idea where
1933 * the error is.
1934 */
1935 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1936 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1937 if (bad_lba < start_lba || bad_lba >= end_lba)
1938 return 0;
1939
1940 /*
1941 * resid is optional but mostly filled in. When it's unused,
1942 * its value is zero, so we assume the whole buffer transferred
1943 */
1944 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1945
1946 /* This computation should always be done in terms of the
1947 * resolution of the device's medium.
1948 */
1949 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1950
1951 return min(good_bytes, transferred);
1952 }
1953
1954 /**
1955 * sd_done - bottom half handler: called when the lower level
1956 * driver has completed (successfully or otherwise) a scsi command.
1957 * @SCpnt: mid-level's per command structure.
1958 *
1959 * Note: potentially run from within an ISR. Must not block.
1960 **/
1961 static int sd_done(struct scsi_cmnd *SCpnt)
1962 {
1963 int result = SCpnt->result;
1964 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1965 unsigned int sector_size = SCpnt->device->sector_size;
1966 unsigned int resid;
1967 struct scsi_sense_hdr sshdr;
1968 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1969 struct request *req = SCpnt->request;
1970 int sense_valid = 0;
1971 int sense_deferred = 0;
1972
1973 switch (req_op(req)) {
1974 case REQ_OP_DISCARD:
1975 case REQ_OP_WRITE_ZEROES:
1976 case REQ_OP_WRITE_SAME:
1977 case REQ_OP_ZONE_RESET:
1978 if (!result) {
1979 good_bytes = blk_rq_bytes(req);
1980 scsi_set_resid(SCpnt, 0);
1981 } else {
1982 good_bytes = 0;
1983 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1984 }
1985 break;
1986 case REQ_OP_ZONE_REPORT:
1987 if (!result) {
1988 good_bytes = scsi_bufflen(SCpnt)
1989 - scsi_get_resid(SCpnt);
1990 scsi_set_resid(SCpnt, 0);
1991 } else {
1992 good_bytes = 0;
1993 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1994 }
1995 break;
1996 default:
1997 /*
1998 * In case of bogus fw or device, we could end up having
1999 * an unaligned partial completion. Check this here and force
2000 * alignment.
2001 */
2002 resid = scsi_get_resid(SCpnt);
2003 if (resid & (sector_size - 1)) {
2004 sd_printk(KERN_INFO, sdkp,
2005 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2006 resid, sector_size);
2007 resid = min(scsi_bufflen(SCpnt),
2008 round_up(resid, sector_size));
2009 scsi_set_resid(SCpnt, resid);
2010 }
2011 }
2012
2013 if (result) {
2014 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2015 if (sense_valid)
2016 sense_deferred = scsi_sense_is_deferred(&sshdr);
2017 }
2018 sdkp->medium_access_timed_out = 0;
2019
2020 if (driver_byte(result) != DRIVER_SENSE &&
2021 (!sense_valid || sense_deferred))
2022 goto out;
2023
2024 switch (sshdr.sense_key) {
2025 case HARDWARE_ERROR:
2026 case MEDIUM_ERROR:
2027 good_bytes = sd_completed_bytes(SCpnt);
2028 break;
2029 case RECOVERED_ERROR:
2030 good_bytes = scsi_bufflen(SCpnt);
2031 break;
2032 case NO_SENSE:
2033 /* This indicates a false check condition, so ignore it. An
2034 * unknown amount of data was transferred so treat it as an
2035 * error.
2036 */
2037 SCpnt->result = 0;
2038 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2039 break;
2040 case ABORTED_COMMAND:
2041 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2042 good_bytes = sd_completed_bytes(SCpnt);
2043 break;
2044 case ILLEGAL_REQUEST:
2045 switch (sshdr.asc) {
2046 case 0x10: /* DIX: Host detected corruption */
2047 good_bytes = sd_completed_bytes(SCpnt);
2048 break;
2049 case 0x20: /* INVALID COMMAND OPCODE */
2050 case 0x24: /* INVALID FIELD IN CDB */
2051 switch (SCpnt->cmnd[0]) {
2052 case UNMAP:
2053 sd_config_discard(sdkp, SD_LBP_DISABLE);
2054 break;
2055 case WRITE_SAME_16:
2056 case WRITE_SAME:
2057 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2058 sd_config_discard(sdkp, SD_LBP_DISABLE);
2059 } else {
2060 sdkp->device->no_write_same = 1;
2061 sd_config_write_same(sdkp);
2062 req->__data_len = blk_rq_bytes(req);
2063 req->rq_flags |= RQF_QUIET;
2064 }
2065 break;
2066 }
2067 }
2068 break;
2069 default:
2070 break;
2071 }
2072
2073 out:
2074 if (sd_is_zoned(sdkp))
2075 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2076
2077 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2078 "sd_done: completed %d of %d bytes\n",
2079 good_bytes, scsi_bufflen(SCpnt)));
2080
2081 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2082 sd_dif_complete(SCpnt, good_bytes);
2083
2084 return good_bytes;
2085 }
2086
2087 /*
2088 * spinup disk - called only in sd_revalidate_disk()
2089 */
2090 static void
2091 sd_spinup_disk(struct scsi_disk *sdkp)
2092 {
2093 unsigned char cmd[10];
2094 unsigned long spintime_expire = 0;
2095 int retries, spintime;
2096 unsigned int the_result;
2097 struct scsi_sense_hdr sshdr;
2098 int sense_valid = 0;
2099
2100 spintime = 0;
2101
2102 /* Spin up drives, as required. Only do this at boot time */
2103 /* Spinup needs to be done for module loads too. */
2104 do {
2105 retries = 0;
2106
2107 do {
2108 cmd[0] = TEST_UNIT_READY;
2109 memset((void *) &cmd[1], 0, 9);
2110
2111 the_result = scsi_execute_req(sdkp->device, cmd,
2112 DMA_NONE, NULL, 0,
2113 &sshdr, SD_TIMEOUT,
2114 SD_MAX_RETRIES, NULL);
2115
2116 /*
2117 * If the drive has indicated to us that it
2118 * doesn't have any media in it, don't bother
2119 * with any more polling.
2120 */
2121 if (media_not_present(sdkp, &sshdr))
2122 return;
2123
2124 if (the_result)
2125 sense_valid = scsi_sense_valid(&sshdr);
2126 retries++;
2127 } while (retries < 3 &&
2128 (!scsi_status_is_good(the_result) ||
2129 ((driver_byte(the_result) & DRIVER_SENSE) &&
2130 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2131
2132 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2133 /* no sense, TUR either succeeded or failed
2134 * with a status error */
2135 if(!spintime && !scsi_status_is_good(the_result)) {
2136 sd_print_result(sdkp, "Test Unit Ready failed",
2137 the_result);
2138 }
2139 break;
2140 }
2141
2142 /*
2143 * The device does not want the automatic start to be issued.
2144 */
2145 if (sdkp->device->no_start_on_add)
2146 break;
2147
2148 if (sense_valid && sshdr.sense_key == NOT_READY) {
2149 if (sshdr.asc == 4 && sshdr.ascq == 3)
2150 break; /* manual intervention required */
2151 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2152 break; /* standby */
2153 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2154 break; /* unavailable */
2155 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2156 break; /* sanitize in progress */
2157 /*
2158 * Issue command to spin up drive when not ready
2159 */
2160 if (!spintime) {
2161 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2162 cmd[0] = START_STOP;
2163 cmd[1] = 1; /* Return immediately */
2164 memset((void *) &cmd[2], 0, 8);
2165 cmd[4] = 1; /* Start spin cycle */
2166 if (sdkp->device->start_stop_pwr_cond)
2167 cmd[4] |= 1 << 4;
2168 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2169 NULL, 0, &sshdr,
2170 SD_TIMEOUT, SD_MAX_RETRIES,
2171 NULL);
2172 spintime_expire = jiffies + 100 * HZ;
2173 spintime = 1;
2174 }
2175 /* Wait 1 second for next try */
2176 msleep(1000);
2177 printk(".");
2178
2179 /*
2180 * Wait for USB flash devices with slow firmware.
2181 * Yes, this sense key/ASC combination shouldn't
2182 * occur here. It's characteristic of these devices.
2183 */
2184 } else if (sense_valid &&
2185 sshdr.sense_key == UNIT_ATTENTION &&
2186 sshdr.asc == 0x28) {
2187 if (!spintime) {
2188 spintime_expire = jiffies + 5 * HZ;
2189 spintime = 1;
2190 }
2191 /* Wait 1 second for next try */
2192 msleep(1000);
2193 } else {
2194 /* we don't understand the sense code, so it's
2195 * probably pointless to loop */
2196 if(!spintime) {
2197 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2198 sd_print_sense_hdr(sdkp, &sshdr);
2199 }
2200 break;
2201 }
2202
2203 } while (spintime && time_before_eq(jiffies, spintime_expire));
2204
2205 if (spintime) {
2206 if (scsi_status_is_good(the_result))
2207 printk("ready\n");
2208 else
2209 printk("not responding...\n");
2210 }
2211 }
2212
2213 /*
2214 * Determine whether disk supports Data Integrity Field.
2215 */
2216 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2217 {
2218 struct scsi_device *sdp = sdkp->device;
2219 u8 type;
2220 int ret = 0;
2221
2222 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2223 return ret;
2224
2225 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2226
2227 if (type > T10_PI_TYPE3_PROTECTION)
2228 ret = -ENODEV;
2229 else if (scsi_host_dif_capable(sdp->host, type))
2230 ret = 1;
2231
2232 if (sdkp->first_scan || type != sdkp->protection_type)
2233 switch (ret) {
2234 case -ENODEV:
2235 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2236 " protection type %u. Disabling disk!\n",
2237 type);
2238 break;
2239 case 1:
2240 sd_printk(KERN_NOTICE, sdkp,
2241 "Enabling DIF Type %u protection\n", type);
2242 break;
2243 case 0:
2244 sd_printk(KERN_NOTICE, sdkp,
2245 "Disabling DIF Type %u protection\n", type);
2246 break;
2247 }
2248
2249 sdkp->protection_type = type;
2250
2251 return ret;
2252 }
2253
2254 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2255 struct scsi_sense_hdr *sshdr, int sense_valid,
2256 int the_result)
2257 {
2258 if (driver_byte(the_result) & DRIVER_SENSE)
2259 sd_print_sense_hdr(sdkp, sshdr);
2260 else
2261 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2262
2263 /*
2264 * Set dirty bit for removable devices if not ready -
2265 * sometimes drives will not report this properly.
2266 */
2267 if (sdp->removable &&
2268 sense_valid && sshdr->sense_key == NOT_READY)
2269 set_media_not_present(sdkp);
2270
2271 /*
2272 * We used to set media_present to 0 here to indicate no media
2273 * in the drive, but some drives fail read capacity even with
2274 * media present, so we can't do that.
2275 */
2276 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2277 }
2278
2279 #define RC16_LEN 32
2280 #if RC16_LEN > SD_BUF_SIZE
2281 #error RC16_LEN must not be more than SD_BUF_SIZE
2282 #endif
2283
2284 #define READ_CAPACITY_RETRIES_ON_RESET 10
2285
2286 /*
2287 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2288 * and the reported logical block size is bigger than 512 bytes. Note
2289 * that last_sector is a u64 and therefore logical_to_sectors() is not
2290 * applicable.
2291 */
2292 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2293 {
2294 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2295
2296 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2297 return false;
2298
2299 return true;
2300 }
2301
2302 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2303 unsigned char *buffer)
2304 {
2305 unsigned char cmd[16];
2306 struct scsi_sense_hdr sshdr;
2307 int sense_valid = 0;
2308 int the_result;
2309 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2310 unsigned int alignment;
2311 unsigned long long lba;
2312 unsigned sector_size;
2313
2314 if (sdp->no_read_capacity_16)
2315 return -EINVAL;
2316
2317 do {
2318 memset(cmd, 0, 16);
2319 cmd[0] = SERVICE_ACTION_IN_16;
2320 cmd[1] = SAI_READ_CAPACITY_16;
2321 cmd[13] = RC16_LEN;
2322 memset(buffer, 0, RC16_LEN);
2323
2324 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2325 buffer, RC16_LEN, &sshdr,
2326 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2327
2328 if (media_not_present(sdkp, &sshdr))
2329 return -ENODEV;
2330
2331 if (the_result) {
2332 sense_valid = scsi_sense_valid(&sshdr);
2333 if (sense_valid &&
2334 sshdr.sense_key == ILLEGAL_REQUEST &&
2335 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2336 sshdr.ascq == 0x00)
2337 /* Invalid Command Operation Code or
2338 * Invalid Field in CDB, just retry
2339 * silently with RC10 */
2340 return -EINVAL;
2341 if (sense_valid &&
2342 sshdr.sense_key == UNIT_ATTENTION &&
2343 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2344 /* Device reset might occur several times,
2345 * give it one more chance */
2346 if (--reset_retries > 0)
2347 continue;
2348 }
2349 retries--;
2350
2351 } while (the_result && retries);
2352
2353 if (the_result) {
2354 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2355 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2356 return -EINVAL;
2357 }
2358
2359 sector_size = get_unaligned_be32(&buffer[8]);
2360 lba = get_unaligned_be64(&buffer[0]);
2361
2362 if (sd_read_protection_type(sdkp, buffer) < 0) {
2363 sdkp->capacity = 0;
2364 return -ENODEV;
2365 }
2366
2367 if (!sd_addressable_capacity(lba, sector_size)) {
2368 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2369 "kernel compiled with support for large block "
2370 "devices.\n");
2371 sdkp->capacity = 0;
2372 return -EOVERFLOW;
2373 }
2374
2375 /* Logical blocks per physical block exponent */
2376 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2377
2378 /* RC basis */
2379 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2380
2381 /* Lowest aligned logical block */
2382 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2383 blk_queue_alignment_offset(sdp->request_queue, alignment);
2384 if (alignment && sdkp->first_scan)
2385 sd_printk(KERN_NOTICE, sdkp,
2386 "physical block alignment offset: %u\n", alignment);
2387
2388 if (buffer[14] & 0x80) { /* LBPME */
2389 sdkp->lbpme = 1;
2390
2391 if (buffer[14] & 0x40) /* LBPRZ */
2392 sdkp->lbprz = 1;
2393
2394 sd_config_discard(sdkp, SD_LBP_WS16);
2395 }
2396
2397 sdkp->capacity = lba + 1;
2398 return sector_size;
2399 }
2400
2401 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2402 unsigned char *buffer)
2403 {
2404 unsigned char cmd[16];
2405 struct scsi_sense_hdr sshdr;
2406 int sense_valid = 0;
2407 int the_result;
2408 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2409 sector_t lba;
2410 unsigned sector_size;
2411
2412 do {
2413 cmd[0] = READ_CAPACITY;
2414 memset(&cmd[1], 0, 9);
2415 memset(buffer, 0, 8);
2416
2417 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2418 buffer, 8, &sshdr,
2419 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2420
2421 if (media_not_present(sdkp, &sshdr))
2422 return -ENODEV;
2423
2424 if (the_result) {
2425 sense_valid = scsi_sense_valid(&sshdr);
2426 if (sense_valid &&
2427 sshdr.sense_key == UNIT_ATTENTION &&
2428 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2429 /* Device reset might occur several times,
2430 * give it one more chance */
2431 if (--reset_retries > 0)
2432 continue;
2433 }
2434 retries--;
2435
2436 } while (the_result && retries);
2437
2438 if (the_result) {
2439 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2440 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2441 return -EINVAL;
2442 }
2443
2444 sector_size = get_unaligned_be32(&buffer[4]);
2445 lba = get_unaligned_be32(&buffer[0]);
2446
2447 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2448 /* Some buggy (usb cardreader) devices return an lba of
2449 0xffffffff when the want to report a size of 0 (with
2450 which they really mean no media is present) */
2451 sdkp->capacity = 0;
2452 sdkp->physical_block_size = sector_size;
2453 return sector_size;
2454 }
2455
2456 if (!sd_addressable_capacity(lba, sector_size)) {
2457 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2458 "kernel compiled with support for large block "
2459 "devices.\n");
2460 sdkp->capacity = 0;
2461 return -EOVERFLOW;
2462 }
2463
2464 sdkp->capacity = lba + 1;
2465 sdkp->physical_block_size = sector_size;
2466 return sector_size;
2467 }
2468
2469 static int sd_try_rc16_first(struct scsi_device *sdp)
2470 {
2471 if (sdp->host->max_cmd_len < 16)
2472 return 0;
2473 if (sdp->try_rc_10_first)
2474 return 0;
2475 if (sdp->scsi_level > SCSI_SPC_2)
2476 return 1;
2477 if (scsi_device_protection(sdp))
2478 return 1;
2479 return 0;
2480 }
2481
2482 /*
2483 * read disk capacity
2484 */
2485 static void
2486 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2487 {
2488 int sector_size;
2489 struct scsi_device *sdp = sdkp->device;
2490
2491 if (sd_try_rc16_first(sdp)) {
2492 sector_size = read_capacity_16(sdkp, sdp, buffer);
2493 if (sector_size == -EOVERFLOW)
2494 goto got_data;
2495 if (sector_size == -ENODEV)
2496 return;
2497 if (sector_size < 0)
2498 sector_size = read_capacity_10(sdkp, sdp, buffer);
2499 if (sector_size < 0)
2500 return;
2501 } else {
2502 sector_size = read_capacity_10(sdkp, sdp, buffer);
2503 if (sector_size == -EOVERFLOW)
2504 goto got_data;
2505 if (sector_size < 0)
2506 return;
2507 if ((sizeof(sdkp->capacity) > 4) &&
2508 (sdkp->capacity > 0xffffffffULL)) {
2509 int old_sector_size = sector_size;
2510 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2511 "Trying to use READ CAPACITY(16).\n");
2512 sector_size = read_capacity_16(sdkp, sdp, buffer);
2513 if (sector_size < 0) {
2514 sd_printk(KERN_NOTICE, sdkp,
2515 "Using 0xffffffff as device size\n");
2516 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2517 sector_size = old_sector_size;
2518 goto got_data;
2519 }
2520 }
2521 }
2522
2523 /* Some devices are known to return the total number of blocks,
2524 * not the highest block number. Some devices have versions
2525 * which do this and others which do not. Some devices we might
2526 * suspect of doing this but we don't know for certain.
2527 *
2528 * If we know the reported capacity is wrong, decrement it. If
2529 * we can only guess, then assume the number of blocks is even
2530 * (usually true but not always) and err on the side of lowering
2531 * the capacity.
2532 */
2533 if (sdp->fix_capacity ||
2534 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2535 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2536 "from its reported value: %llu\n",
2537 (unsigned long long) sdkp->capacity);
2538 --sdkp->capacity;
2539 }
2540
2541 got_data:
2542 if (sector_size == 0) {
2543 sector_size = 512;
2544 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2545 "assuming 512.\n");
2546 }
2547
2548 if (sector_size != 512 &&
2549 sector_size != 1024 &&
2550 sector_size != 2048 &&
2551 sector_size != 4096) {
2552 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2553 sector_size);
2554 /*
2555 * The user might want to re-format the drive with
2556 * a supported sectorsize. Once this happens, it
2557 * would be relatively trivial to set the thing up.
2558 * For this reason, we leave the thing in the table.
2559 */
2560 sdkp->capacity = 0;
2561 /*
2562 * set a bogus sector size so the normal read/write
2563 * logic in the block layer will eventually refuse any
2564 * request on this device without tripping over power
2565 * of two sector size assumptions
2566 */
2567 sector_size = 512;
2568 }
2569 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2570 blk_queue_physical_block_size(sdp->request_queue,
2571 sdkp->physical_block_size);
2572 sdkp->device->sector_size = sector_size;
2573
2574 if (sdkp->capacity > 0xffffffff)
2575 sdp->use_16_for_rw = 1;
2576
2577 }
2578
2579 /*
2580 * Print disk capacity
2581 */
2582 static void
2583 sd_print_capacity(struct scsi_disk *sdkp,
2584 sector_t old_capacity)
2585 {
2586 int sector_size = sdkp->device->sector_size;
2587 char cap_str_2[10], cap_str_10[10];
2588
2589 string_get_size(sdkp->capacity, sector_size,
2590 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2591 string_get_size(sdkp->capacity, sector_size,
2592 STRING_UNITS_10, cap_str_10,
2593 sizeof(cap_str_10));
2594
2595 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2596 sd_printk(KERN_NOTICE, sdkp,
2597 "%llu %d-byte logical blocks: (%s/%s)\n",
2598 (unsigned long long)sdkp->capacity,
2599 sector_size, cap_str_10, cap_str_2);
2600
2601 if (sdkp->physical_block_size != sector_size)
2602 sd_printk(KERN_NOTICE, sdkp,
2603 "%u-byte physical blocks\n",
2604 sdkp->physical_block_size);
2605
2606 sd_zbc_print_zones(sdkp);
2607 }
2608 }
2609
2610 /* called with buffer of length 512 */
2611 static inline int
2612 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2613 unsigned char *buffer, int len, struct scsi_mode_data *data,
2614 struct scsi_sense_hdr *sshdr)
2615 {
2616 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2617 SD_TIMEOUT, SD_MAX_RETRIES, data,
2618 sshdr);
2619 }
2620
2621 /*
2622 * read write protect setting, if possible - called only in sd_revalidate_disk()
2623 * called with buffer of length SD_BUF_SIZE
2624 */
2625 static void
2626 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2627 {
2628 int res;
2629 struct scsi_device *sdp = sdkp->device;
2630 struct scsi_mode_data data;
2631 int old_wp = sdkp->write_prot;
2632
2633 set_disk_ro(sdkp->disk, 0);
2634 if (sdp->skip_ms_page_3f) {
2635 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2636 return;
2637 }
2638
2639 if (sdp->use_192_bytes_for_3f) {
2640 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2641 } else {
2642 /*
2643 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2644 * We have to start carefully: some devices hang if we ask
2645 * for more than is available.
2646 */
2647 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2648
2649 /*
2650 * Second attempt: ask for page 0 When only page 0 is
2651 * implemented, a request for page 3F may return Sense Key
2652 * 5: Illegal Request, Sense Code 24: Invalid field in
2653 * CDB.
2654 */
2655 if (!scsi_status_is_good(res))
2656 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2657
2658 /*
2659 * Third attempt: ask 255 bytes, as we did earlier.
2660 */
2661 if (!scsi_status_is_good(res))
2662 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2663 &data, NULL);
2664 }
2665
2666 if (!scsi_status_is_good(res)) {
2667 sd_first_printk(KERN_WARNING, sdkp,
2668 "Test WP failed, assume Write Enabled\n");
2669 } else {
2670 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2671 set_disk_ro(sdkp->disk, sdkp->write_prot);
2672 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2673 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2674 sdkp->write_prot ? "on" : "off");
2675 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2676 }
2677 }
2678 }
2679
2680 /*
2681 * sd_read_cache_type - called only from sd_revalidate_disk()
2682 * called with buffer of length SD_BUF_SIZE
2683 */
2684 static void
2685 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2686 {
2687 int len = 0, res;
2688 struct scsi_device *sdp = sdkp->device;
2689
2690 int dbd;
2691 int modepage;
2692 int first_len;
2693 struct scsi_mode_data data;
2694 struct scsi_sense_hdr sshdr;
2695 int old_wce = sdkp->WCE;
2696 int old_rcd = sdkp->RCD;
2697 int old_dpofua = sdkp->DPOFUA;
2698
2699
2700 if (sdkp->cache_override)
2701 return;
2702
2703 first_len = 4;
2704 if (sdp->skip_ms_page_8) {
2705 if (sdp->type == TYPE_RBC)
2706 goto defaults;
2707 else {
2708 if (sdp->skip_ms_page_3f)
2709 goto defaults;
2710 modepage = 0x3F;
2711 if (sdp->use_192_bytes_for_3f)
2712 first_len = 192;
2713 dbd = 0;
2714 }
2715 } else if (sdp->type == TYPE_RBC) {
2716 modepage = 6;
2717 dbd = 8;
2718 } else {
2719 modepage = 8;
2720 dbd = 0;
2721 }
2722
2723 /* cautiously ask */
2724 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2725 &data, &sshdr);
2726
2727 if (!scsi_status_is_good(res))
2728 goto bad_sense;
2729
2730 if (!data.header_length) {
2731 modepage = 6;
2732 first_len = 0;
2733 sd_first_printk(KERN_ERR, sdkp,
2734 "Missing header in MODE_SENSE response\n");
2735 }
2736
2737 /* that went OK, now ask for the proper length */
2738 len = data.length;
2739
2740 /*
2741 * We're only interested in the first three bytes, actually.
2742 * But the data cache page is defined for the first 20.
2743 */
2744 if (len < 3)
2745 goto bad_sense;
2746 else if (len > SD_BUF_SIZE) {
2747 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2748 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2749 len = SD_BUF_SIZE;
2750 }
2751 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2752 len = 192;
2753
2754 /* Get the data */
2755 if (len > first_len)
2756 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2757 &data, &sshdr);
2758
2759 if (scsi_status_is_good(res)) {
2760 int offset = data.header_length + data.block_descriptor_length;
2761
2762 while (offset < len) {
2763 u8 page_code = buffer[offset] & 0x3F;
2764 u8 spf = buffer[offset] & 0x40;
2765
2766 if (page_code == 8 || page_code == 6) {
2767 /* We're interested only in the first 3 bytes.
2768 */
2769 if (len - offset <= 2) {
2770 sd_first_printk(KERN_ERR, sdkp,
2771 "Incomplete mode parameter "
2772 "data\n");
2773 goto defaults;
2774 } else {
2775 modepage = page_code;
2776 goto Page_found;
2777 }
2778 } else {
2779 /* Go to the next page */
2780 if (spf && len - offset > 3)
2781 offset += 4 + (buffer[offset+2] << 8) +
2782 buffer[offset+3];
2783 else if (!spf && len - offset > 1)
2784 offset += 2 + buffer[offset+1];
2785 else {
2786 sd_first_printk(KERN_ERR, sdkp,
2787 "Incomplete mode "
2788 "parameter data\n");
2789 goto defaults;
2790 }
2791 }
2792 }
2793
2794 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2795 goto defaults;
2796
2797 Page_found:
2798 if (modepage == 8) {
2799 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2800 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2801 } else {
2802 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2803 sdkp->RCD = 0;
2804 }
2805
2806 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2807 if (sdp->broken_fua) {
2808 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2809 sdkp->DPOFUA = 0;
2810 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2811 !sdkp->device->use_16_for_rw) {
2812 sd_first_printk(KERN_NOTICE, sdkp,
2813 "Uses READ/WRITE(6), disabling FUA\n");
2814 sdkp->DPOFUA = 0;
2815 }
2816
2817 /* No cache flush allowed for write protected devices */
2818 if (sdkp->WCE && sdkp->write_prot)
2819 sdkp->WCE = 0;
2820
2821 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2822 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2823 sd_printk(KERN_NOTICE, sdkp,
2824 "Write cache: %s, read cache: %s, %s\n",
2825 sdkp->WCE ? "enabled" : "disabled",
2826 sdkp->RCD ? "disabled" : "enabled",
2827 sdkp->DPOFUA ? "supports DPO and FUA"
2828 : "doesn't support DPO or FUA");
2829
2830 return;
2831 }
2832
2833 bad_sense:
2834 if (scsi_sense_valid(&sshdr) &&
2835 sshdr.sense_key == ILLEGAL_REQUEST &&
2836 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2837 /* Invalid field in CDB */
2838 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2839 else
2840 sd_first_printk(KERN_ERR, sdkp,
2841 "Asking for cache data failed\n");
2842
2843 defaults:
2844 if (sdp->wce_default_on) {
2845 sd_first_printk(KERN_NOTICE, sdkp,
2846 "Assuming drive cache: write back\n");
2847 sdkp->WCE = 1;
2848 } else {
2849 sd_first_printk(KERN_ERR, sdkp,
2850 "Assuming drive cache: write through\n");
2851 sdkp->WCE = 0;
2852 }
2853 sdkp->RCD = 0;
2854 sdkp->DPOFUA = 0;
2855 }
2856
2857 /*
2858 * The ATO bit indicates whether the DIF application tag is available
2859 * for use by the operating system.
2860 */
2861 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2862 {
2863 int res, offset;
2864 struct scsi_device *sdp = sdkp->device;
2865 struct scsi_mode_data data;
2866 struct scsi_sense_hdr sshdr;
2867
2868 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2869 return;
2870
2871 if (sdkp->protection_type == 0)
2872 return;
2873
2874 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2875 SD_MAX_RETRIES, &data, &sshdr);
2876
2877 if (!scsi_status_is_good(res) || !data.header_length ||
2878 data.length < 6) {
2879 sd_first_printk(KERN_WARNING, sdkp,
2880 "getting Control mode page failed, assume no ATO\n");
2881
2882 if (scsi_sense_valid(&sshdr))
2883 sd_print_sense_hdr(sdkp, &sshdr);
2884
2885 return;
2886 }
2887
2888 offset = data.header_length + data.block_descriptor_length;
2889
2890 if ((buffer[offset] & 0x3f) != 0x0a) {
2891 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2892 return;
2893 }
2894
2895 if ((buffer[offset + 5] & 0x80) == 0)
2896 return;
2897
2898 sdkp->ATO = 1;
2899
2900 return;
2901 }
2902
2903 /**
2904 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2905 * @sdkp: disk to query
2906 */
2907 static void sd_read_block_limits(struct scsi_disk *sdkp)
2908 {
2909 unsigned int sector_sz = sdkp->device->sector_size;
2910 const int vpd_len = 64;
2911 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2912
2913 if (!buffer ||
2914 /* Block Limits VPD */
2915 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2916 goto out;
2917
2918 blk_queue_io_min(sdkp->disk->queue,
2919 get_unaligned_be16(&buffer[6]) * sector_sz);
2920
2921 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2922 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2923
2924 if (buffer[3] == 0x3c) {
2925 unsigned int lba_count, desc_count;
2926
2927 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2928
2929 if (!sdkp->lbpme)
2930 goto out;
2931
2932 lba_count = get_unaligned_be32(&buffer[20]);
2933 desc_count = get_unaligned_be32(&buffer[24]);
2934
2935 if (lba_count && desc_count)
2936 sdkp->max_unmap_blocks = lba_count;
2937
2938 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2939
2940 if (buffer[32] & 0x80)
2941 sdkp->unmap_alignment =
2942 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2943
2944 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2945
2946 if (sdkp->max_unmap_blocks)
2947 sd_config_discard(sdkp, SD_LBP_UNMAP);
2948 else
2949 sd_config_discard(sdkp, SD_LBP_WS16);
2950
2951 } else { /* LBP VPD page tells us what to use */
2952 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2953 sd_config_discard(sdkp, SD_LBP_UNMAP);
2954 else if (sdkp->lbpws)
2955 sd_config_discard(sdkp, SD_LBP_WS16);
2956 else if (sdkp->lbpws10)
2957 sd_config_discard(sdkp, SD_LBP_WS10);
2958 else
2959 sd_config_discard(sdkp, SD_LBP_DISABLE);
2960 }
2961 }
2962
2963 out:
2964 kfree(buffer);
2965 }
2966
2967 /**
2968 * sd_read_block_characteristics - Query block dev. characteristics
2969 * @sdkp: disk to query
2970 */
2971 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2972 {
2973 struct request_queue *q = sdkp->disk->queue;
2974 unsigned char *buffer;
2975 u16 rot;
2976 const int vpd_len = 64;
2977
2978 buffer = kmalloc(vpd_len, GFP_KERNEL);
2979
2980 if (!buffer ||
2981 /* Block Device Characteristics VPD */
2982 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2983 goto out;
2984
2985 rot = get_unaligned_be16(&buffer[4]);
2986
2987 if (rot == 1) {
2988 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2989 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2990 }
2991
2992 if (sdkp->device->type == TYPE_ZBC) {
2993 /* Host-managed */
2994 q->limits.zoned = BLK_ZONED_HM;
2995 } else {
2996 sdkp->zoned = (buffer[8] >> 4) & 3;
2997 if (sdkp->zoned == 1)
2998 /* Host-aware */
2999 q->limits.zoned = BLK_ZONED_HA;
3000 else
3001 /*
3002 * Treat drive-managed devices as
3003 * regular block devices.
3004 */
3005 q->limits.zoned = BLK_ZONED_NONE;
3006 }
3007 if (blk_queue_is_zoned(q) && sdkp->first_scan)
3008 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3009 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3010
3011 out:
3012 kfree(buffer);
3013 }
3014
3015 /**
3016 * sd_read_block_provisioning - Query provisioning VPD page
3017 * @sdkp: disk to query
3018 */
3019 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3020 {
3021 unsigned char *buffer;
3022 const int vpd_len = 8;
3023
3024 if (sdkp->lbpme == 0)
3025 return;
3026
3027 buffer = kmalloc(vpd_len, GFP_KERNEL);
3028
3029 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3030 goto out;
3031
3032 sdkp->lbpvpd = 1;
3033 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3034 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3035 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3036
3037 out:
3038 kfree(buffer);
3039 }
3040
3041 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3042 {
3043 struct scsi_device *sdev = sdkp->device;
3044
3045 if (sdev->host->no_write_same) {
3046 sdev->no_write_same = 1;
3047
3048 return;
3049 }
3050
3051 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3052 /* too large values might cause issues with arcmsr */
3053 int vpd_buf_len = 64;
3054
3055 sdev->no_report_opcodes = 1;
3056
3057 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3058 * CODES is unsupported and the device has an ATA
3059 * Information VPD page (SAT).
3060 */
3061 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3062 sdev->no_write_same = 1;
3063 }
3064
3065 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3066 sdkp->ws16 = 1;
3067
3068 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3069 sdkp->ws10 = 1;
3070 }
3071
3072 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3073 {
3074 struct scsi_device *sdev = sdkp->device;
3075
3076 if (!sdev->security_supported)
3077 return;
3078
3079 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3080 SECURITY_PROTOCOL_IN) == 1 &&
3081 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3082 SECURITY_PROTOCOL_OUT) == 1)
3083 sdkp->security = 1;
3084 }
3085
3086 /**
3087 * sd_revalidate_disk - called the first time a new disk is seen,
3088 * performs disk spin up, read_capacity, etc.
3089 * @disk: struct gendisk we care about
3090 **/
3091 static int sd_revalidate_disk(struct gendisk *disk)
3092 {
3093 struct scsi_disk *sdkp = scsi_disk(disk);
3094 struct scsi_device *sdp = sdkp->device;
3095 struct request_queue *q = sdkp->disk->queue;
3096 sector_t old_capacity = sdkp->capacity;
3097 unsigned char *buffer;
3098 unsigned int dev_max, rw_max;
3099
3100 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3101 "sd_revalidate_disk\n"));
3102
3103 /*
3104 * If the device is offline, don't try and read capacity or any
3105 * of the other niceties.
3106 */
3107 if (!scsi_device_online(sdp))
3108 goto out;
3109
3110 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3111 if (!buffer) {
3112 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3113 "allocation failure.\n");
3114 goto out;
3115 }
3116
3117 sd_spinup_disk(sdkp);
3118
3119 /*
3120 * Without media there is no reason to ask; moreover, some devices
3121 * react badly if we do.
3122 */
3123 if (sdkp->media_present) {
3124 sd_read_capacity(sdkp, buffer);
3125
3126 if (scsi_device_supports_vpd(sdp)) {
3127 sd_read_block_provisioning(sdkp);
3128 sd_read_block_limits(sdkp);
3129 sd_read_block_characteristics(sdkp);
3130 sd_zbc_read_zones(sdkp, buffer);
3131 }
3132
3133 sd_print_capacity(sdkp, old_capacity);
3134
3135 sd_read_write_protect_flag(sdkp, buffer);
3136 sd_read_cache_type(sdkp, buffer);
3137 sd_read_app_tag_own(sdkp, buffer);
3138 sd_read_write_same(sdkp, buffer);
3139 sd_read_security(sdkp, buffer);
3140 }
3141
3142 /*
3143 * We now have all cache related info, determine how we deal
3144 * with flush requests.
3145 */
3146 sd_set_flush_flag(sdkp);
3147
3148 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3149 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3150
3151 /* Some devices report a maximum block count for READ/WRITE requests. */
3152 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3153 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3154
3155 /*
3156 * Determine the device's preferred I/O size for reads and writes
3157 * unless the reported value is unreasonably small, large, or
3158 * garbage.
3159 */
3160 if (sdkp->opt_xfer_blocks &&
3161 sdkp->opt_xfer_blocks <= dev_max &&
3162 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3163 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3164 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3165 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3166 } else
3167 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3168 (sector_t)BLK_DEF_MAX_SECTORS);
3169
3170 /* Do not exceed controller limit */
3171 rw_max = min(rw_max, queue_max_hw_sectors(q));
3172
3173 /*
3174 * Only update max_sectors if previously unset or if the current value
3175 * exceeds the capabilities of the hardware.
3176 */
3177 if (sdkp->first_scan ||
3178 q->limits.max_sectors > q->limits.max_dev_sectors ||
3179 q->limits.max_sectors > q->limits.max_hw_sectors)
3180 q->limits.max_sectors = rw_max;
3181
3182 sdkp->first_scan = 0;
3183
3184 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3185 sd_config_write_same(sdkp);
3186 kfree(buffer);
3187
3188 out:
3189 return 0;
3190 }
3191
3192 /**
3193 * sd_unlock_native_capacity - unlock native capacity
3194 * @disk: struct gendisk to set capacity for
3195 *
3196 * Block layer calls this function if it detects that partitions
3197 * on @disk reach beyond the end of the device. If the SCSI host
3198 * implements ->unlock_native_capacity() method, it's invoked to
3199 * give it a chance to adjust the device capacity.
3200 *
3201 * CONTEXT:
3202 * Defined by block layer. Might sleep.
3203 */
3204 static void sd_unlock_native_capacity(struct gendisk *disk)
3205 {
3206 struct scsi_device *sdev = scsi_disk(disk)->device;
3207
3208 if (sdev->host->hostt->unlock_native_capacity)
3209 sdev->host->hostt->unlock_native_capacity(sdev);
3210 }
3211
3212 /**
3213 * sd_format_disk_name - format disk name
3214 * @prefix: name prefix - ie. "sd" for SCSI disks
3215 * @index: index of the disk to format name for
3216 * @buf: output buffer
3217 * @buflen: length of the output buffer
3218 *
3219 * SCSI disk names starts at sda. The 26th device is sdz and the
3220 * 27th is sdaa. The last one for two lettered suffix is sdzz
3221 * which is followed by sdaaa.
3222 *
3223 * This is basically 26 base counting with one extra 'nil' entry
3224 * at the beginning from the second digit on and can be
3225 * determined using similar method as 26 base conversion with the
3226 * index shifted -1 after each digit is computed.
3227 *
3228 * CONTEXT:
3229 * Don't care.
3230 *
3231 * RETURNS:
3232 * 0 on success, -errno on failure.
3233 */
3234 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3235 {
3236 const int base = 'z' - 'a' + 1;
3237 char *begin = buf + strlen(prefix);
3238 char *end = buf + buflen;
3239 char *p;
3240 int unit;
3241
3242 p = end - 1;
3243 *p = '\0';
3244 unit = base;
3245 do {
3246 if (p == begin)
3247 return -EINVAL;
3248 *--p = 'a' + (index % unit);
3249 index = (index / unit) - 1;
3250 } while (index >= 0);
3251
3252 memmove(begin, p, end - p);
3253 memcpy(buf, prefix, strlen(prefix));
3254
3255 return 0;
3256 }
3257
3258 /*
3259 * The asynchronous part of sd_probe
3260 */
3261 static void sd_probe_async(void *data, async_cookie_t cookie)
3262 {
3263 struct scsi_disk *sdkp = data;
3264 struct scsi_device *sdp;
3265 struct gendisk *gd;
3266 u32 index;
3267 struct device *dev;
3268
3269 sdp = sdkp->device;
3270 gd = sdkp->disk;
3271 index = sdkp->index;
3272 dev = &sdp->sdev_gendev;
3273
3274 gd->major = sd_major((index & 0xf0) >> 4);
3275 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3276
3277 gd->fops = &sd_fops;
3278 gd->private_data = &sdkp->driver;
3279 gd->queue = sdkp->device->request_queue;
3280
3281 /* defaults, until the device tells us otherwise */
3282 sdp->sector_size = 512;
3283 sdkp->capacity = 0;
3284 sdkp->media_present = 1;
3285 sdkp->write_prot = 0;
3286 sdkp->cache_override = 0;
3287 sdkp->WCE = 0;
3288 sdkp->RCD = 0;
3289 sdkp->ATO = 0;
3290 sdkp->first_scan = 1;
3291 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3292
3293 sd_revalidate_disk(gd);
3294
3295 gd->flags = GENHD_FL_EXT_DEVT;
3296 if (sdp->removable) {
3297 gd->flags |= GENHD_FL_REMOVABLE;
3298 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3299 }
3300
3301 blk_pm_runtime_init(sdp->request_queue, dev);
3302 device_add_disk(dev, gd);
3303 if (sdkp->capacity)
3304 sd_dif_config_host(sdkp);
3305
3306 sd_revalidate_disk(gd);
3307
3308 if (sdkp->security) {
3309 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3310 if (sdkp->opal_dev)
3311 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3312 }
3313
3314 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3315 sdp->removable ? "removable " : "");
3316 scsi_autopm_put_device(sdp);
3317 put_device(&sdkp->dev);
3318 }
3319
3320 /**
3321 * sd_probe - called during driver initialization and whenever a
3322 * new scsi device is attached to the system. It is called once
3323 * for each scsi device (not just disks) present.
3324 * @dev: pointer to device object
3325 *
3326 * Returns 0 if successful (or not interested in this scsi device
3327 * (e.g. scanner)); 1 when there is an error.
3328 *
3329 * Note: this function is invoked from the scsi mid-level.
3330 * This function sets up the mapping between a given
3331 * <host,channel,id,lun> (found in sdp) and new device name
3332 * (e.g. /dev/sda). More precisely it is the block device major
3333 * and minor number that is chosen here.
3334 *
3335 * Assume sd_probe is not re-entrant (for time being)
3336 * Also think about sd_probe() and sd_remove() running coincidentally.
3337 **/
3338 static int sd_probe(struct device *dev)
3339 {
3340 struct scsi_device *sdp = to_scsi_device(dev);
3341 struct scsi_disk *sdkp;
3342 struct gendisk *gd;
3343 int index;
3344 int error;
3345
3346 scsi_autopm_get_device(sdp);
3347 error = -ENODEV;
3348 if (sdp->type != TYPE_DISK &&
3349 sdp->type != TYPE_ZBC &&
3350 sdp->type != TYPE_MOD &&
3351 sdp->type != TYPE_RBC)
3352 goto out;
3353
3354 #ifndef CONFIG_BLK_DEV_ZONED
3355 if (sdp->type == TYPE_ZBC)
3356 goto out;
3357 #endif
3358 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3359 "sd_probe\n"));
3360
3361 error = -ENOMEM;
3362 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3363 if (!sdkp)
3364 goto out;
3365
3366 gd = alloc_disk(SD_MINORS);
3367 if (!gd)
3368 goto out_free;
3369
3370 do {
3371 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3372 goto out_put;
3373
3374 spin_lock(&sd_index_lock);
3375 error = ida_get_new(&sd_index_ida, &index);
3376 spin_unlock(&sd_index_lock);
3377 } while (error == -EAGAIN);
3378
3379 if (error) {
3380 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3381 goto out_put;
3382 }
3383
3384 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3385 if (error) {
3386 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3387 goto out_free_index;
3388 }
3389
3390 sdkp->device = sdp;
3391 sdkp->driver = &sd_template;
3392 sdkp->disk = gd;
3393 sdkp->index = index;
3394 atomic_set(&sdkp->openers, 0);
3395 atomic_set(&sdkp->device->ioerr_cnt, 0);
3396
3397 if (!sdp->request_queue->rq_timeout) {
3398 if (sdp->type != TYPE_MOD)
3399 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3400 else
3401 blk_queue_rq_timeout(sdp->request_queue,
3402 SD_MOD_TIMEOUT);
3403 }
3404
3405 device_initialize(&sdkp->dev);
3406 sdkp->dev.parent = dev;
3407 sdkp->dev.class = &sd_disk_class;
3408 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3409
3410 error = device_add(&sdkp->dev);
3411 if (error)
3412 goto out_free_index;
3413
3414 get_device(dev);
3415 dev_set_drvdata(dev, sdkp);
3416
3417 get_device(&sdkp->dev); /* prevent release before async_schedule */
3418 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3419
3420 return 0;
3421
3422 out_free_index:
3423 spin_lock(&sd_index_lock);
3424 ida_remove(&sd_index_ida, index);
3425 spin_unlock(&sd_index_lock);
3426 out_put:
3427 put_disk(gd);
3428 out_free:
3429 kfree(sdkp);
3430 out:
3431 scsi_autopm_put_device(sdp);
3432 return error;
3433 }
3434
3435 /**
3436 * sd_remove - called whenever a scsi disk (previously recognized by
3437 * sd_probe) is detached from the system. It is called (potentially
3438 * multiple times) during sd module unload.
3439 * @dev: pointer to device object
3440 *
3441 * Note: this function is invoked from the scsi mid-level.
3442 * This function potentially frees up a device name (e.g. /dev/sdc)
3443 * that could be re-used by a subsequent sd_probe().
3444 * This function is not called when the built-in sd driver is "exit-ed".
3445 **/
3446 static int sd_remove(struct device *dev)
3447 {
3448 struct scsi_disk *sdkp;
3449 dev_t devt;
3450
3451 sdkp = dev_get_drvdata(dev);
3452 devt = disk_devt(sdkp->disk);
3453 scsi_autopm_get_device(sdkp->device);
3454
3455 async_synchronize_full_domain(&scsi_sd_pm_domain);
3456 async_synchronize_full_domain(&scsi_sd_probe_domain);
3457 device_del(&sdkp->dev);
3458 del_gendisk(sdkp->disk);
3459 sd_shutdown(dev);
3460
3461 sd_zbc_remove(sdkp);
3462
3463 free_opal_dev(sdkp->opal_dev);
3464
3465 blk_register_region(devt, SD_MINORS, NULL,
3466 sd_default_probe, NULL, NULL);
3467
3468 mutex_lock(&sd_ref_mutex);
3469 dev_set_drvdata(dev, NULL);
3470 put_device(&sdkp->dev);
3471 mutex_unlock(&sd_ref_mutex);
3472
3473 return 0;
3474 }
3475
3476 /**
3477 * scsi_disk_release - Called to free the scsi_disk structure
3478 * @dev: pointer to embedded class device
3479 *
3480 * sd_ref_mutex must be held entering this routine. Because it is
3481 * called on last put, you should always use the scsi_disk_get()
3482 * scsi_disk_put() helpers which manipulate the semaphore directly
3483 * and never do a direct put_device.
3484 **/
3485 static void scsi_disk_release(struct device *dev)
3486 {
3487 struct scsi_disk *sdkp = to_scsi_disk(dev);
3488 struct gendisk *disk = sdkp->disk;
3489
3490 spin_lock(&sd_index_lock);
3491 ida_remove(&sd_index_ida, sdkp->index);
3492 spin_unlock(&sd_index_lock);
3493
3494 disk->private_data = NULL;
3495 put_disk(disk);
3496 put_device(&sdkp->device->sdev_gendev);
3497
3498 kfree(sdkp);
3499 }
3500
3501 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3502 {
3503 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3504 struct scsi_sense_hdr sshdr;
3505 struct scsi_device *sdp = sdkp->device;
3506 int res;
3507
3508 if (start)
3509 cmd[4] |= 1; /* START */
3510
3511 if (sdp->start_stop_pwr_cond)
3512 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3513
3514 if (!scsi_device_online(sdp))
3515 return -ENODEV;
3516
3517 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3518 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3519 if (res) {
3520 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3521 if (driver_byte(res) & DRIVER_SENSE)
3522 sd_print_sense_hdr(sdkp, &sshdr);
3523 if (scsi_sense_valid(&sshdr) &&
3524 /* 0x3a is medium not present */
3525 sshdr.asc == 0x3a)
3526 res = 0;
3527 }
3528
3529 /* SCSI error codes must not go to the generic layer */
3530 if (res)
3531 return -EIO;
3532
3533 return 0;
3534 }
3535
3536 /*
3537 * Send a SYNCHRONIZE CACHE instruction down to the device through
3538 * the normal SCSI command structure. Wait for the command to
3539 * complete.
3540 */
3541 static void sd_shutdown(struct device *dev)
3542 {
3543 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3544
3545 if (!sdkp)
3546 return; /* this can happen */
3547
3548 if (pm_runtime_suspended(dev))
3549 return;
3550
3551 if (sdkp->WCE && sdkp->media_present) {
3552 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3553 sd_sync_cache(sdkp, NULL);
3554 }
3555
3556 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3557 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3558 sd_start_stop_device(sdkp, 0);
3559 }
3560 }
3561
3562 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3563 {
3564 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3565 struct scsi_sense_hdr sshdr;
3566 int ret = 0;
3567
3568 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3569 return 0;
3570
3571 if (sdkp->WCE && sdkp->media_present) {
3572 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3573 ret = sd_sync_cache(sdkp, &sshdr);
3574
3575 if (ret) {
3576 /* ignore OFFLINE device */
3577 if (ret == -ENODEV)
3578 return 0;
3579
3580 if (!scsi_sense_valid(&sshdr) ||
3581 sshdr.sense_key != ILLEGAL_REQUEST)
3582 return ret;
3583
3584 /*
3585 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3586 * doesn't support sync. There's not much to do and
3587 * suspend shouldn't fail.
3588 */
3589 ret = 0;
3590 }
3591 }
3592
3593 if (sdkp->device->manage_start_stop) {
3594 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3595 /* an error is not worth aborting a system sleep */
3596 ret = sd_start_stop_device(sdkp, 0);
3597 if (ignore_stop_errors)
3598 ret = 0;
3599 }
3600
3601 return ret;
3602 }
3603
3604 static int sd_suspend_system(struct device *dev)
3605 {
3606 return sd_suspend_common(dev, true);
3607 }
3608
3609 static int sd_suspend_runtime(struct device *dev)
3610 {
3611 return sd_suspend_common(dev, false);
3612 }
3613
3614 static int sd_resume(struct device *dev)
3615 {
3616 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3617 int ret;
3618
3619 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3620 return 0;
3621
3622 if (!sdkp->device->manage_start_stop)
3623 return 0;
3624
3625 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3626 ret = sd_start_stop_device(sdkp, 1);
3627 if (!ret)
3628 opal_unlock_from_suspend(sdkp->opal_dev);
3629 return ret;
3630 }
3631
3632 /**
3633 * init_sd - entry point for this driver (both when built in or when
3634 * a module).
3635 *
3636 * Note: this function registers this driver with the scsi mid-level.
3637 **/
3638 static int __init init_sd(void)
3639 {
3640 int majors = 0, i, err;
3641
3642 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3643
3644 for (i = 0; i < SD_MAJORS; i++) {
3645 if (register_blkdev(sd_major(i), "sd") != 0)
3646 continue;
3647 majors++;
3648 blk_register_region(sd_major(i), SD_MINORS, NULL,
3649 sd_default_probe, NULL, NULL);
3650 }
3651
3652 if (!majors)
3653 return -ENODEV;
3654
3655 err = class_register(&sd_disk_class);
3656 if (err)
3657 goto err_out;
3658
3659 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3660 0, 0, NULL);
3661 if (!sd_cdb_cache) {
3662 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3663 err = -ENOMEM;
3664 goto err_out_class;
3665 }
3666
3667 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3668 if (!sd_cdb_pool) {
3669 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3670 err = -ENOMEM;
3671 goto err_out_cache;
3672 }
3673
3674 err = scsi_register_driver(&sd_template.gendrv);
3675 if (err)
3676 goto err_out_driver;
3677
3678 return 0;
3679
3680 err_out_driver:
3681 mempool_destroy(sd_cdb_pool);
3682
3683 err_out_cache:
3684 kmem_cache_destroy(sd_cdb_cache);
3685
3686 err_out_class:
3687 class_unregister(&sd_disk_class);
3688 err_out:
3689 for (i = 0; i < SD_MAJORS; i++)
3690 unregister_blkdev(sd_major(i), "sd");
3691 return err;
3692 }
3693
3694 /**
3695 * exit_sd - exit point for this driver (when it is a module).
3696 *
3697 * Note: this function unregisters this driver from the scsi mid-level.
3698 **/
3699 static void __exit exit_sd(void)
3700 {
3701 int i;
3702
3703 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3704
3705 scsi_unregister_driver(&sd_template.gendrv);
3706 mempool_destroy(sd_cdb_pool);
3707 kmem_cache_destroy(sd_cdb_cache);
3708
3709 class_unregister(&sd_disk_class);
3710
3711 for (i = 0; i < SD_MAJORS; i++) {
3712 blk_unregister_region(sd_major(i), SD_MINORS);
3713 unregister_blkdev(sd_major(i), "sd");
3714 }
3715 }
3716
3717 module_init(init_sd);
3718 module_exit(exit_sd);
3719
3720 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3721 struct scsi_sense_hdr *sshdr)
3722 {
3723 scsi_print_sense_hdr(sdkp->device,
3724 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3725 }
3726
3727 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3728 int result)
3729 {
3730 const char *hb_string = scsi_hostbyte_string(result);
3731 const char *db_string = scsi_driverbyte_string(result);
3732
3733 if (hb_string || db_string)
3734 sd_printk(KERN_INFO, sdkp,
3735 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3736 hb_string ? hb_string : "invalid",
3737 db_string ? db_string : "invalid");
3738 else
3739 sd_printk(KERN_INFO, sdkp,
3740 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3741 msg, host_byte(result), driver_byte(result));
3742 }
3743