]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/sd.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <linux/t10-pi.h>
56 #include <linux/uaccess.h>
57 #include <asm/unaligned.h>
58
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_dbg.h>
62 #include <scsi/scsi_device.h>
63 #include <scsi/scsi_driver.h>
64 #include <scsi/scsi_eh.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsicam.h>
68
69 #include "sd.h"
70 #include "scsi_priv.h"
71 #include "scsi_logging.h"
72
73 MODULE_AUTHOR("Eric Youngdale");
74 MODULE_DESCRIPTION("SCSI disk (sd) driver");
75 MODULE_LICENSE("GPL");
76
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
97
98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
99 #define SD_MINORS 16
100 #else
101 #define SD_MINORS 0
102 #endif
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int sd_probe(struct device *);
109 static int sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static void sd_rescan(struct device *);
115 static int sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
122 static void sd_print_result(const struct scsi_disk *, const char *, int);
123
124 static DEFINE_SPINLOCK(sd_index_lock);
125 static DEFINE_IDA(sd_index_ida);
126
127 /* This semaphore is used to mediate the 0->1 reference get in the
128 * face of object destruction (i.e. we can't allow a get on an
129 * object after last put) */
130 static DEFINE_MUTEX(sd_ref_mutex);
131
132 static struct kmem_cache *sd_cdb_cache;
133 static mempool_t *sd_cdb_pool;
134
135 static const char *sd_cache_types[] = {
136 "write through", "none", "write back",
137 "write back, no read (daft)"
138 };
139
140 static void sd_set_flush_flag(struct scsi_disk *sdkp)
141 {
142 bool wc = false, fua = false;
143
144 if (sdkp->WCE) {
145 wc = true;
146 if (sdkp->DPOFUA)
147 fua = true;
148 }
149
150 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
151 }
152
153 static ssize_t
154 cache_type_store(struct device *dev, struct device_attribute *attr,
155 const char *buf, size_t count)
156 {
157 int i, ct = -1, rcd, wce, sp;
158 struct scsi_disk *sdkp = to_scsi_disk(dev);
159 struct scsi_device *sdp = sdkp->device;
160 char buffer[64];
161 char *buffer_data;
162 struct scsi_mode_data data;
163 struct scsi_sense_hdr sshdr;
164 static const char temp[] = "temporary ";
165 int len;
166
167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
168 /* no cache control on RBC devices; theoretically they
169 * can do it, but there's probably so many exceptions
170 * it's not worth the risk */
171 return -EINVAL;
172
173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
174 buf += sizeof(temp) - 1;
175 sdkp->cache_override = 1;
176 } else {
177 sdkp->cache_override = 0;
178 }
179
180 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
181 len = strlen(sd_cache_types[i]);
182 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
183 buf[len] == '\n') {
184 ct = i;
185 break;
186 }
187 }
188 if (ct < 0)
189 return -EINVAL;
190 rcd = ct & 0x01 ? 1 : 0;
191 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
192
193 if (sdkp->cache_override) {
194 sdkp->WCE = wce;
195 sdkp->RCD = rcd;
196 sd_set_flush_flag(sdkp);
197 return count;
198 }
199
200 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
201 SD_MAX_RETRIES, &data, NULL))
202 return -EINVAL;
203 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
204 data.block_descriptor_length);
205 buffer_data = buffer + data.header_length +
206 data.block_descriptor_length;
207 buffer_data[2] &= ~0x05;
208 buffer_data[2] |= wce << 2 | rcd;
209 sp = buffer_data[0] & 0x80 ? 1 : 0;
210 buffer_data[0] &= ~0x80;
211
212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
213 SD_MAX_RETRIES, &data, &sshdr)) {
214 if (scsi_sense_valid(&sshdr))
215 sd_print_sense_hdr(sdkp, &sshdr);
216 return -EINVAL;
217 }
218 revalidate_disk(sdkp->disk);
219 return count;
220 }
221
222 static ssize_t
223 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
224 char *buf)
225 {
226 struct scsi_disk *sdkp = to_scsi_disk(dev);
227 struct scsi_device *sdp = sdkp->device;
228
229 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
230 }
231
232 static ssize_t
233 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
234 const char *buf, size_t count)
235 {
236 struct scsi_disk *sdkp = to_scsi_disk(dev);
237 struct scsi_device *sdp = sdkp->device;
238
239 if (!capable(CAP_SYS_ADMIN))
240 return -EACCES;
241
242 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
243
244 return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 struct scsi_disk *sdkp = to_scsi_disk(dev);
252
253 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
254 }
255
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 const char *buf, size_t count)
259 {
260 struct scsi_disk *sdkp = to_scsi_disk(dev);
261 struct scsi_device *sdp = sdkp->device;
262
263 if (!capable(CAP_SYS_ADMIN))
264 return -EACCES;
265
266 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
267 return -EINVAL;
268
269 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
270
271 return count;
272 }
273 static DEVICE_ATTR_RW(allow_restart);
274
275 static ssize_t
276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278 struct scsi_disk *sdkp = to_scsi_disk(dev);
279 int ct = sdkp->RCD + 2*sdkp->WCE;
280
281 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
282 }
283 static DEVICE_ATTR_RW(cache_type);
284
285 static ssize_t
286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 struct scsi_disk *sdkp = to_scsi_disk(dev);
289
290 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
291 }
292 static DEVICE_ATTR_RO(FUA);
293
294 static ssize_t
295 protection_type_show(struct device *dev, struct device_attribute *attr,
296 char *buf)
297 {
298 struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
301 }
302
303 static ssize_t
304 protection_type_store(struct device *dev, struct device_attribute *attr,
305 const char *buf, size_t count)
306 {
307 struct scsi_disk *sdkp = to_scsi_disk(dev);
308 unsigned int val;
309 int err;
310
311 if (!capable(CAP_SYS_ADMIN))
312 return -EACCES;
313
314 err = kstrtouint(buf, 10, &val);
315
316 if (err)
317 return err;
318
319 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
320 sdkp->protection_type = val;
321
322 return count;
323 }
324 static DEVICE_ATTR_RW(protection_type);
325
326 static ssize_t
327 protection_mode_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct scsi_disk *sdkp = to_scsi_disk(dev);
331 struct scsi_device *sdp = sdkp->device;
332 unsigned int dif, dix;
333
334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
336
337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
338 dif = 0;
339 dix = 1;
340 }
341
342 if (!dif && !dix)
343 return snprintf(buf, 20, "none\n");
344
345 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
346 }
347 static DEVICE_ATTR_RO(protection_mode);
348
349 static ssize_t
350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352 struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354 return snprintf(buf, 20, "%u\n", sdkp->ATO);
355 }
356 static DEVICE_ATTR_RO(app_tag_own);
357
358 static ssize_t
359 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
360 char *buf)
361 {
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
365 }
366 static DEVICE_ATTR_RO(thin_provisioning);
367
368 static const char *lbp_mode[] = {
369 [SD_LBP_FULL] = "full",
370 [SD_LBP_UNMAP] = "unmap",
371 [SD_LBP_WS16] = "writesame_16",
372 [SD_LBP_WS10] = "writesame_10",
373 [SD_LBP_ZERO] = "writesame_zero",
374 [SD_LBP_DISABLE] = "disabled",
375 };
376
377 static ssize_t
378 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
379 char *buf)
380 {
381 struct scsi_disk *sdkp = to_scsi_disk(dev);
382
383 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
384 }
385
386 static ssize_t
387 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
388 const char *buf, size_t count)
389 {
390 struct scsi_disk *sdkp = to_scsi_disk(dev);
391 struct scsi_device *sdp = sdkp->device;
392
393 if (!capable(CAP_SYS_ADMIN))
394 return -EACCES;
395
396 if (sd_is_zoned(sdkp)) {
397 sd_config_discard(sdkp, SD_LBP_DISABLE);
398 return count;
399 }
400
401 if (sdp->type != TYPE_DISK)
402 return -EINVAL;
403
404 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
405 sd_config_discard(sdkp, SD_LBP_UNMAP);
406 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
407 sd_config_discard(sdkp, SD_LBP_WS16);
408 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
409 sd_config_discard(sdkp, SD_LBP_WS10);
410 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
411 sd_config_discard(sdkp, SD_LBP_ZERO);
412 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
413 sd_config_discard(sdkp, SD_LBP_DISABLE);
414 else
415 return -EINVAL;
416
417 return count;
418 }
419 static DEVICE_ATTR_RW(provisioning_mode);
420
421 static ssize_t
422 max_medium_access_timeouts_show(struct device *dev,
423 struct device_attribute *attr, char *buf)
424 {
425 struct scsi_disk *sdkp = to_scsi_disk(dev);
426
427 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
428 }
429
430 static ssize_t
431 max_medium_access_timeouts_store(struct device *dev,
432 struct device_attribute *attr, const char *buf,
433 size_t count)
434 {
435 struct scsi_disk *sdkp = to_scsi_disk(dev);
436 int err;
437
438 if (!capable(CAP_SYS_ADMIN))
439 return -EACCES;
440
441 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
442
443 return err ? err : count;
444 }
445 static DEVICE_ATTR_RW(max_medium_access_timeouts);
446
447 static ssize_t
448 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
449 char *buf)
450 {
451 struct scsi_disk *sdkp = to_scsi_disk(dev);
452
453 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
454 }
455
456 static ssize_t
457 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
458 const char *buf, size_t count)
459 {
460 struct scsi_disk *sdkp = to_scsi_disk(dev);
461 struct scsi_device *sdp = sdkp->device;
462 unsigned long max;
463 int err;
464
465 if (!capable(CAP_SYS_ADMIN))
466 return -EACCES;
467
468 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
469 return -EINVAL;
470
471 err = kstrtoul(buf, 10, &max);
472
473 if (err)
474 return err;
475
476 if (max == 0)
477 sdp->no_write_same = 1;
478 else if (max <= SD_MAX_WS16_BLOCKS) {
479 sdp->no_write_same = 0;
480 sdkp->max_ws_blocks = max;
481 }
482
483 sd_config_write_same(sdkp);
484
485 return count;
486 }
487 static DEVICE_ATTR_RW(max_write_same_blocks);
488
489 static struct attribute *sd_disk_attrs[] = {
490 &dev_attr_cache_type.attr,
491 &dev_attr_FUA.attr,
492 &dev_attr_allow_restart.attr,
493 &dev_attr_manage_start_stop.attr,
494 &dev_attr_protection_type.attr,
495 &dev_attr_protection_mode.attr,
496 &dev_attr_app_tag_own.attr,
497 &dev_attr_thin_provisioning.attr,
498 &dev_attr_provisioning_mode.attr,
499 &dev_attr_max_write_same_blocks.attr,
500 &dev_attr_max_medium_access_timeouts.attr,
501 NULL,
502 };
503 ATTRIBUTE_GROUPS(sd_disk);
504
505 static struct class sd_disk_class = {
506 .name = "scsi_disk",
507 .owner = THIS_MODULE,
508 .dev_release = scsi_disk_release,
509 .dev_groups = sd_disk_groups,
510 };
511
512 static const struct dev_pm_ops sd_pm_ops = {
513 .suspend = sd_suspend_system,
514 .resume = sd_resume,
515 .poweroff = sd_suspend_system,
516 .restore = sd_resume,
517 .runtime_suspend = sd_suspend_runtime,
518 .runtime_resume = sd_resume,
519 };
520
521 static struct scsi_driver sd_template = {
522 .gendrv = {
523 .name = "sd",
524 .owner = THIS_MODULE,
525 .probe = sd_probe,
526 .remove = sd_remove,
527 .shutdown = sd_shutdown,
528 .pm = &sd_pm_ops,
529 },
530 .rescan = sd_rescan,
531 .init_command = sd_init_command,
532 .uninit_command = sd_uninit_command,
533 .done = sd_done,
534 .eh_action = sd_eh_action,
535 };
536
537 /*
538 * Dummy kobj_map->probe function.
539 * The default ->probe function will call modprobe, which is
540 * pointless as this module is already loaded.
541 */
542 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
543 {
544 return NULL;
545 }
546
547 /*
548 * Device no to disk mapping:
549 *
550 * major disc2 disc p1
551 * |............|.............|....|....| <- dev_t
552 * 31 20 19 8 7 4 3 0
553 *
554 * Inside a major, we have 16k disks, however mapped non-
555 * contiguously. The first 16 disks are for major0, the next
556 * ones with major1, ... Disk 256 is for major0 again, disk 272
557 * for major1, ...
558 * As we stay compatible with our numbering scheme, we can reuse
559 * the well-know SCSI majors 8, 65--71, 136--143.
560 */
561 static int sd_major(int major_idx)
562 {
563 switch (major_idx) {
564 case 0:
565 return SCSI_DISK0_MAJOR;
566 case 1 ... 7:
567 return SCSI_DISK1_MAJOR + major_idx - 1;
568 case 8 ... 15:
569 return SCSI_DISK8_MAJOR + major_idx - 8;
570 default:
571 BUG();
572 return 0; /* shut up gcc */
573 }
574 }
575
576 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
577 {
578 struct scsi_disk *sdkp = NULL;
579
580 mutex_lock(&sd_ref_mutex);
581
582 if (disk->private_data) {
583 sdkp = scsi_disk(disk);
584 if (scsi_device_get(sdkp->device) == 0)
585 get_device(&sdkp->dev);
586 else
587 sdkp = NULL;
588 }
589 mutex_unlock(&sd_ref_mutex);
590 return sdkp;
591 }
592
593 static void scsi_disk_put(struct scsi_disk *sdkp)
594 {
595 struct scsi_device *sdev = sdkp->device;
596
597 mutex_lock(&sd_ref_mutex);
598 put_device(&sdkp->dev);
599 scsi_device_put(sdev);
600 mutex_unlock(&sd_ref_mutex);
601 }
602
603 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
604 unsigned int dix, unsigned int dif)
605 {
606 struct bio *bio = scmd->request->bio;
607 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
608 unsigned int protect = 0;
609
610 if (dix) { /* DIX Type 0, 1, 2, 3 */
611 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
612 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
613
614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
615 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
616 }
617
618 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
619 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
620
621 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
622 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
623 }
624
625 if (dif) { /* DIX/DIF Type 1, 2, 3 */
626 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
627
628 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
629 protect = 3 << 5; /* Disable target PI checking */
630 else
631 protect = 1 << 5; /* Enable target PI checking */
632 }
633
634 scsi_set_prot_op(scmd, prot_op);
635 scsi_set_prot_type(scmd, dif);
636 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
637
638 return protect;
639 }
640
641 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
642 {
643 struct request_queue *q = sdkp->disk->queue;
644 unsigned int logical_block_size = sdkp->device->sector_size;
645 unsigned int max_blocks = 0;
646
647 q->limits.discard_zeroes_data = 0;
648
649 /*
650 * When LBPRZ is reported, discard alignment and granularity
651 * must be fixed to the logical block size. Otherwise the block
652 * layer will drop misaligned portions of the request which can
653 * lead to data corruption. If LBPRZ is not set, we honor the
654 * device preference.
655 */
656 if (sdkp->lbprz) {
657 q->limits.discard_alignment = 0;
658 q->limits.discard_granularity = logical_block_size;
659 } else {
660 q->limits.discard_alignment = sdkp->unmap_alignment *
661 logical_block_size;
662 q->limits.discard_granularity =
663 max(sdkp->physical_block_size,
664 sdkp->unmap_granularity * logical_block_size);
665 }
666
667 sdkp->provisioning_mode = mode;
668
669 switch (mode) {
670
671 case SD_LBP_DISABLE:
672 blk_queue_max_discard_sectors(q, 0);
673 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
674 return;
675
676 case SD_LBP_UNMAP:
677 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
678 (u32)SD_MAX_WS16_BLOCKS);
679 break;
680
681 case SD_LBP_WS16:
682 max_blocks = min_not_zero(sdkp->max_ws_blocks,
683 (u32)SD_MAX_WS16_BLOCKS);
684 q->limits.discard_zeroes_data = sdkp->lbprz;
685 break;
686
687 case SD_LBP_WS10:
688 max_blocks = min_not_zero(sdkp->max_ws_blocks,
689 (u32)SD_MAX_WS10_BLOCKS);
690 q->limits.discard_zeroes_data = sdkp->lbprz;
691 break;
692
693 case SD_LBP_ZERO:
694 max_blocks = min_not_zero(sdkp->max_ws_blocks,
695 (u32)SD_MAX_WS10_BLOCKS);
696 q->limits.discard_zeroes_data = 1;
697 break;
698 }
699
700 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
701 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
702 }
703
704 /**
705 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
706 * @sdp: scsi device to operate one
707 * @rq: Request to prepare
708 *
709 * Will issue either UNMAP or WRITE SAME(16) depending on preference
710 * indicated by target device.
711 **/
712 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
713 {
714 struct request *rq = cmd->request;
715 struct scsi_device *sdp = cmd->device;
716 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
717 sector_t sector = blk_rq_pos(rq);
718 unsigned int nr_sectors = blk_rq_sectors(rq);
719 unsigned int len;
720 int ret;
721 char *buf;
722 struct page *page;
723
724 sector >>= ilog2(sdp->sector_size) - 9;
725 nr_sectors >>= ilog2(sdp->sector_size) - 9;
726
727 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
728 if (!page)
729 return BLKPREP_DEFER;
730
731 switch (sdkp->provisioning_mode) {
732 case SD_LBP_UNMAP:
733 buf = page_address(page);
734
735 cmd->cmd_len = 10;
736 cmd->cmnd[0] = UNMAP;
737 cmd->cmnd[8] = 24;
738
739 put_unaligned_be16(6 + 16, &buf[0]);
740 put_unaligned_be16(16, &buf[2]);
741 put_unaligned_be64(sector, &buf[8]);
742 put_unaligned_be32(nr_sectors, &buf[16]);
743
744 len = 24;
745 break;
746
747 case SD_LBP_WS16:
748 cmd->cmd_len = 16;
749 cmd->cmnd[0] = WRITE_SAME_16;
750 cmd->cmnd[1] = 0x8; /* UNMAP */
751 put_unaligned_be64(sector, &cmd->cmnd[2]);
752 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
753
754 len = sdkp->device->sector_size;
755 break;
756
757 case SD_LBP_WS10:
758 case SD_LBP_ZERO:
759 cmd->cmd_len = 10;
760 cmd->cmnd[0] = WRITE_SAME;
761 if (sdkp->provisioning_mode == SD_LBP_WS10)
762 cmd->cmnd[1] = 0x8; /* UNMAP */
763 put_unaligned_be32(sector, &cmd->cmnd[2]);
764 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
765
766 len = sdkp->device->sector_size;
767 break;
768
769 default:
770 ret = BLKPREP_INVALID;
771 goto out;
772 }
773
774 rq->timeout = SD_TIMEOUT;
775
776 cmd->transfersize = len;
777 cmd->allowed = SD_MAX_RETRIES;
778
779 rq->special_vec.bv_page = page;
780 rq->special_vec.bv_offset = 0;
781 rq->special_vec.bv_len = len;
782
783 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
784 rq->resid_len = len;
785
786 ret = scsi_init_io(cmd);
787 out:
788 if (ret != BLKPREP_OK)
789 __free_page(page);
790 return ret;
791 }
792
793 static void sd_config_write_same(struct scsi_disk *sdkp)
794 {
795 struct request_queue *q = sdkp->disk->queue;
796 unsigned int logical_block_size = sdkp->device->sector_size;
797
798 if (sdkp->device->no_write_same) {
799 sdkp->max_ws_blocks = 0;
800 goto out;
801 }
802
803 /* Some devices can not handle block counts above 0xffff despite
804 * supporting WRITE SAME(16). Consequently we default to 64k
805 * blocks per I/O unless the device explicitly advertises a
806 * bigger limit.
807 */
808 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
809 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
810 (u32)SD_MAX_WS16_BLOCKS);
811 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
812 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
813 (u32)SD_MAX_WS10_BLOCKS);
814 else {
815 sdkp->device->no_write_same = 1;
816 sdkp->max_ws_blocks = 0;
817 }
818
819 out:
820 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
821 (logical_block_size >> 9));
822 }
823
824 /**
825 * sd_setup_write_same_cmnd - write the same data to multiple blocks
826 * @cmd: command to prepare
827 *
828 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
829 * preference indicated by target device.
830 **/
831 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
832 {
833 struct request *rq = cmd->request;
834 struct scsi_device *sdp = cmd->device;
835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
836 struct bio *bio = rq->bio;
837 sector_t sector = blk_rq_pos(rq);
838 unsigned int nr_sectors = blk_rq_sectors(rq);
839 unsigned int nr_bytes = blk_rq_bytes(rq);
840 int ret;
841
842 if (sdkp->device->no_write_same)
843 return BLKPREP_INVALID;
844
845 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
846
847 if (sd_is_zoned(sdkp)) {
848 ret = sd_zbc_setup_write_cmnd(cmd);
849 if (ret != BLKPREP_OK)
850 return ret;
851 }
852
853 sector >>= ilog2(sdp->sector_size) - 9;
854 nr_sectors >>= ilog2(sdp->sector_size) - 9;
855
856 rq->timeout = SD_WRITE_SAME_TIMEOUT;
857
858 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
859 cmd->cmd_len = 16;
860 cmd->cmnd[0] = WRITE_SAME_16;
861 put_unaligned_be64(sector, &cmd->cmnd[2]);
862 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
863 } else {
864 cmd->cmd_len = 10;
865 cmd->cmnd[0] = WRITE_SAME;
866 put_unaligned_be32(sector, &cmd->cmnd[2]);
867 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
868 }
869
870 cmd->transfersize = sdp->sector_size;
871 cmd->allowed = SD_MAX_RETRIES;
872
873 /*
874 * For WRITE SAME the data transferred via the DATA OUT buffer is
875 * different from the amount of data actually written to the target.
876 *
877 * We set up __data_len to the amount of data transferred via the
878 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
879 * to transfer a single sector of data first, but then reset it to
880 * the amount of data to be written right after so that the I/O path
881 * knows how much to actually write.
882 */
883 rq->__data_len = sdp->sector_size;
884 ret = scsi_init_io(cmd);
885 rq->__data_len = nr_bytes;
886 return ret;
887 }
888
889 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
890 {
891 struct request *rq = cmd->request;
892
893 /* flush requests don't perform I/O, zero the S/G table */
894 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
895
896 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
897 cmd->cmd_len = 10;
898 cmd->transfersize = 0;
899 cmd->allowed = SD_MAX_RETRIES;
900
901 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
902 return BLKPREP_OK;
903 }
904
905 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
906 {
907 struct request *rq = SCpnt->request;
908 struct scsi_device *sdp = SCpnt->device;
909 struct gendisk *disk = rq->rq_disk;
910 struct scsi_disk *sdkp = scsi_disk(disk);
911 sector_t block = blk_rq_pos(rq);
912 sector_t threshold;
913 unsigned int this_count = blk_rq_sectors(rq);
914 unsigned int dif, dix;
915 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
916 int ret;
917 unsigned char protect;
918
919 if (zoned_write) {
920 ret = sd_zbc_setup_write_cmnd(SCpnt);
921 if (ret != BLKPREP_OK)
922 return ret;
923 }
924
925 ret = scsi_init_io(SCpnt);
926 if (ret != BLKPREP_OK)
927 goto out;
928 SCpnt = rq->special;
929
930 /* from here on until we're complete, any goto out
931 * is used for a killable error condition */
932 ret = BLKPREP_KILL;
933
934 SCSI_LOG_HLQUEUE(1,
935 scmd_printk(KERN_INFO, SCpnt,
936 "%s: block=%llu, count=%d\n",
937 __func__, (unsigned long long)block, this_count));
938
939 if (!sdp || !scsi_device_online(sdp) ||
940 block + blk_rq_sectors(rq) > get_capacity(disk)) {
941 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
942 "Finishing %u sectors\n",
943 blk_rq_sectors(rq)));
944 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
945 "Retry with 0x%p\n", SCpnt));
946 goto out;
947 }
948
949 if (sdp->changed) {
950 /*
951 * quietly refuse to do anything to a changed disc until
952 * the changed bit has been reset
953 */
954 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
955 goto out;
956 }
957
958 /*
959 * Some SD card readers can't handle multi-sector accesses which touch
960 * the last one or two hardware sectors. Split accesses as needed.
961 */
962 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
963 (sdp->sector_size / 512);
964
965 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
966 if (block < threshold) {
967 /* Access up to the threshold but not beyond */
968 this_count = threshold - block;
969 } else {
970 /* Access only a single hardware sector */
971 this_count = sdp->sector_size / 512;
972 }
973 }
974
975 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
976 (unsigned long long)block));
977
978 /*
979 * If we have a 1K hardware sectorsize, prevent access to single
980 * 512 byte sectors. In theory we could handle this - in fact
981 * the scsi cdrom driver must be able to handle this because
982 * we typically use 1K blocksizes, and cdroms typically have
983 * 2K hardware sectorsizes. Of course, things are simpler
984 * with the cdrom, since it is read-only. For performance
985 * reasons, the filesystems should be able to handle this
986 * and not force the scsi disk driver to use bounce buffers
987 * for this.
988 */
989 if (sdp->sector_size == 1024) {
990 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
991 scmd_printk(KERN_ERR, SCpnt,
992 "Bad block number requested\n");
993 goto out;
994 } else {
995 block = block >> 1;
996 this_count = this_count >> 1;
997 }
998 }
999 if (sdp->sector_size == 2048) {
1000 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1001 scmd_printk(KERN_ERR, SCpnt,
1002 "Bad block number requested\n");
1003 goto out;
1004 } else {
1005 block = block >> 2;
1006 this_count = this_count >> 2;
1007 }
1008 }
1009 if (sdp->sector_size == 4096) {
1010 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1011 scmd_printk(KERN_ERR, SCpnt,
1012 "Bad block number requested\n");
1013 goto out;
1014 } else {
1015 block = block >> 3;
1016 this_count = this_count >> 3;
1017 }
1018 }
1019 if (rq_data_dir(rq) == WRITE) {
1020 SCpnt->cmnd[0] = WRITE_6;
1021
1022 if (blk_integrity_rq(rq))
1023 sd_dif_prepare(SCpnt);
1024
1025 } else if (rq_data_dir(rq) == READ) {
1026 SCpnt->cmnd[0] = READ_6;
1027 } else {
1028 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1029 goto out;
1030 }
1031
1032 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1033 "%s %d/%u 512 byte blocks.\n",
1034 (rq_data_dir(rq) == WRITE) ?
1035 "writing" : "reading", this_count,
1036 blk_rq_sectors(rq)));
1037
1038 dix = scsi_prot_sg_count(SCpnt);
1039 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1040
1041 if (dif || dix)
1042 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1043 else
1044 protect = 0;
1045
1046 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1047 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1048
1049 if (unlikely(SCpnt->cmnd == NULL)) {
1050 ret = BLKPREP_DEFER;
1051 goto out;
1052 }
1053
1054 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1055 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1056 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1057 SCpnt->cmnd[7] = 0x18;
1058 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1059 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1060
1061 /* LBA */
1062 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1063 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1064 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1065 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1066 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1067 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1068 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1069 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1070
1071 /* Expected Indirect LBA */
1072 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1073 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1074 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1075 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1076
1077 /* Transfer length */
1078 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1079 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1080 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1081 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1082 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1083 SCpnt->cmnd[0] += READ_16 - READ_6;
1084 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1085 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1086 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1087 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1088 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1089 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1090 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1091 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1092 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1093 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1094 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1095 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1096 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1097 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1098 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1099 scsi_device_protection(SCpnt->device) ||
1100 SCpnt->device->use_10_for_rw) {
1101 SCpnt->cmnd[0] += READ_10 - READ_6;
1102 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1103 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1104 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1105 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1106 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1107 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1108 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1109 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1110 } else {
1111 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1112 /*
1113 * This happens only if this drive failed
1114 * 10byte rw command with ILLEGAL_REQUEST
1115 * during operation and thus turned off
1116 * use_10_for_rw.
1117 */
1118 scmd_printk(KERN_ERR, SCpnt,
1119 "FUA write on READ/WRITE(6) drive\n");
1120 goto out;
1121 }
1122
1123 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1124 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1125 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1126 SCpnt->cmnd[4] = (unsigned char) this_count;
1127 SCpnt->cmnd[5] = 0;
1128 }
1129 SCpnt->sdb.length = this_count * sdp->sector_size;
1130
1131 /*
1132 * We shouldn't disconnect in the middle of a sector, so with a dumb
1133 * host adapter, it's safe to assume that we can at least transfer
1134 * this many bytes between each connect / disconnect.
1135 */
1136 SCpnt->transfersize = sdp->sector_size;
1137 SCpnt->underflow = this_count << 9;
1138 SCpnt->allowed = SD_MAX_RETRIES;
1139
1140 /*
1141 * This indicates that the command is ready from our end to be
1142 * queued.
1143 */
1144 ret = BLKPREP_OK;
1145 out:
1146 if (zoned_write && ret != BLKPREP_OK)
1147 sd_zbc_cancel_write_cmnd(SCpnt);
1148
1149 return ret;
1150 }
1151
1152 static int sd_init_command(struct scsi_cmnd *cmd)
1153 {
1154 struct request *rq = cmd->request;
1155
1156 switch (req_op(rq)) {
1157 case REQ_OP_DISCARD:
1158 return sd_setup_discard_cmnd(cmd);
1159 case REQ_OP_WRITE_SAME:
1160 return sd_setup_write_same_cmnd(cmd);
1161 case REQ_OP_FLUSH:
1162 return sd_setup_flush_cmnd(cmd);
1163 case REQ_OP_READ:
1164 case REQ_OP_WRITE:
1165 return sd_setup_read_write_cmnd(cmd);
1166 case REQ_OP_ZONE_REPORT:
1167 return sd_zbc_setup_report_cmnd(cmd);
1168 case REQ_OP_ZONE_RESET:
1169 return sd_zbc_setup_reset_cmnd(cmd);
1170 default:
1171 BUG();
1172 }
1173 }
1174
1175 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1176 {
1177 struct request *rq = SCpnt->request;
1178
1179 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1180 __free_page(rq->special_vec.bv_page);
1181
1182 if (SCpnt->cmnd != rq->cmd) {
1183 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1184 SCpnt->cmnd = NULL;
1185 SCpnt->cmd_len = 0;
1186 }
1187 }
1188
1189 /**
1190 * sd_open - open a scsi disk device
1191 * @inode: only i_rdev member may be used
1192 * @filp: only f_mode and f_flags may be used
1193 *
1194 * Returns 0 if successful. Returns a negated errno value in case
1195 * of error.
1196 *
1197 * Note: This can be called from a user context (e.g. fsck(1) )
1198 * or from within the kernel (e.g. as a result of a mount(1) ).
1199 * In the latter case @inode and @filp carry an abridged amount
1200 * of information as noted above.
1201 *
1202 * Locking: called with bdev->bd_mutex held.
1203 **/
1204 static int sd_open(struct block_device *bdev, fmode_t mode)
1205 {
1206 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1207 struct scsi_device *sdev;
1208 int retval;
1209
1210 if (!sdkp)
1211 return -ENXIO;
1212
1213 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1214
1215 sdev = sdkp->device;
1216
1217 /*
1218 * If the device is in error recovery, wait until it is done.
1219 * If the device is offline, then disallow any access to it.
1220 */
1221 retval = -ENXIO;
1222 if (!scsi_block_when_processing_errors(sdev))
1223 goto error_out;
1224
1225 if (sdev->removable || sdkp->write_prot)
1226 check_disk_change(bdev);
1227
1228 /*
1229 * If the drive is empty, just let the open fail.
1230 */
1231 retval = -ENOMEDIUM;
1232 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1233 goto error_out;
1234
1235 /*
1236 * If the device has the write protect tab set, have the open fail
1237 * if the user expects to be able to write to the thing.
1238 */
1239 retval = -EROFS;
1240 if (sdkp->write_prot && (mode & FMODE_WRITE))
1241 goto error_out;
1242
1243 /*
1244 * It is possible that the disk changing stuff resulted in
1245 * the device being taken offline. If this is the case,
1246 * report this to the user, and don't pretend that the
1247 * open actually succeeded.
1248 */
1249 retval = -ENXIO;
1250 if (!scsi_device_online(sdev))
1251 goto error_out;
1252
1253 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1254 if (scsi_block_when_processing_errors(sdev))
1255 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1256 }
1257
1258 return 0;
1259
1260 error_out:
1261 scsi_disk_put(sdkp);
1262 return retval;
1263 }
1264
1265 /**
1266 * sd_release - invoked when the (last) close(2) is called on this
1267 * scsi disk.
1268 * @inode: only i_rdev member may be used
1269 * @filp: only f_mode and f_flags may be used
1270 *
1271 * Returns 0.
1272 *
1273 * Note: may block (uninterruptible) if error recovery is underway
1274 * on this disk.
1275 *
1276 * Locking: called with bdev->bd_mutex held.
1277 **/
1278 static void sd_release(struct gendisk *disk, fmode_t mode)
1279 {
1280 struct scsi_disk *sdkp = scsi_disk(disk);
1281 struct scsi_device *sdev = sdkp->device;
1282
1283 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1284
1285 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1286 if (scsi_block_when_processing_errors(sdev))
1287 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1288 }
1289
1290 /*
1291 * XXX and what if there are packets in flight and this close()
1292 * XXX is followed by a "rmmod sd_mod"?
1293 */
1294
1295 scsi_disk_put(sdkp);
1296 }
1297
1298 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1299 {
1300 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1301 struct scsi_device *sdp = sdkp->device;
1302 struct Scsi_Host *host = sdp->host;
1303 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1304 int diskinfo[4];
1305
1306 /* default to most commonly used values */
1307 diskinfo[0] = 0x40; /* 1 << 6 */
1308 diskinfo[1] = 0x20; /* 1 << 5 */
1309 diskinfo[2] = capacity >> 11;
1310
1311 /* override with calculated, extended default, or driver values */
1312 if (host->hostt->bios_param)
1313 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1314 else
1315 scsicam_bios_param(bdev, capacity, diskinfo);
1316
1317 geo->heads = diskinfo[0];
1318 geo->sectors = diskinfo[1];
1319 geo->cylinders = diskinfo[2];
1320 return 0;
1321 }
1322
1323 /**
1324 * sd_ioctl - process an ioctl
1325 * @inode: only i_rdev/i_bdev members may be used
1326 * @filp: only f_mode and f_flags may be used
1327 * @cmd: ioctl command number
1328 * @arg: this is third argument given to ioctl(2) system call.
1329 * Often contains a pointer.
1330 *
1331 * Returns 0 if successful (some ioctls return positive numbers on
1332 * success as well). Returns a negated errno value in case of error.
1333 *
1334 * Note: most ioctls are forward onto the block subsystem or further
1335 * down in the scsi subsystem.
1336 **/
1337 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1338 unsigned int cmd, unsigned long arg)
1339 {
1340 struct gendisk *disk = bdev->bd_disk;
1341 struct scsi_disk *sdkp = scsi_disk(disk);
1342 struct scsi_device *sdp = sdkp->device;
1343 void __user *p = (void __user *)arg;
1344 int error;
1345
1346 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1347 "cmd=0x%x\n", disk->disk_name, cmd));
1348
1349 error = scsi_verify_blk_ioctl(bdev, cmd);
1350 if (error < 0)
1351 return error;
1352
1353 /*
1354 * If we are in the middle of error recovery, don't let anyone
1355 * else try and use this device. Also, if error recovery fails, it
1356 * may try and take the device offline, in which case all further
1357 * access to the device is prohibited.
1358 */
1359 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1360 (mode & FMODE_NDELAY) != 0);
1361 if (error)
1362 goto out;
1363
1364 /*
1365 * Send SCSI addressing ioctls directly to mid level, send other
1366 * ioctls to block level and then onto mid level if they can't be
1367 * resolved.
1368 */
1369 switch (cmd) {
1370 case SCSI_IOCTL_GET_IDLUN:
1371 case SCSI_IOCTL_GET_BUS_NUMBER:
1372 error = scsi_ioctl(sdp, cmd, p);
1373 break;
1374 default:
1375 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1376 if (error != -ENOTTY)
1377 break;
1378 error = scsi_ioctl(sdp, cmd, p);
1379 break;
1380 }
1381 out:
1382 return error;
1383 }
1384
1385 static void set_media_not_present(struct scsi_disk *sdkp)
1386 {
1387 if (sdkp->media_present)
1388 sdkp->device->changed = 1;
1389
1390 if (sdkp->device->removable) {
1391 sdkp->media_present = 0;
1392 sdkp->capacity = 0;
1393 }
1394 }
1395
1396 static int media_not_present(struct scsi_disk *sdkp,
1397 struct scsi_sense_hdr *sshdr)
1398 {
1399 if (!scsi_sense_valid(sshdr))
1400 return 0;
1401
1402 /* not invoked for commands that could return deferred errors */
1403 switch (sshdr->sense_key) {
1404 case UNIT_ATTENTION:
1405 case NOT_READY:
1406 /* medium not present */
1407 if (sshdr->asc == 0x3A) {
1408 set_media_not_present(sdkp);
1409 return 1;
1410 }
1411 }
1412 return 0;
1413 }
1414
1415 /**
1416 * sd_check_events - check media events
1417 * @disk: kernel device descriptor
1418 * @clearing: disk events currently being cleared
1419 *
1420 * Returns mask of DISK_EVENT_*.
1421 *
1422 * Note: this function is invoked from the block subsystem.
1423 **/
1424 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1425 {
1426 struct scsi_disk *sdkp = scsi_disk_get(disk);
1427 struct scsi_device *sdp;
1428 struct scsi_sense_hdr *sshdr = NULL;
1429 int retval;
1430
1431 if (!sdkp)
1432 return 0;
1433
1434 sdp = sdkp->device;
1435 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1436
1437 /*
1438 * If the device is offline, don't send any commands - just pretend as
1439 * if the command failed. If the device ever comes back online, we
1440 * can deal with it then. It is only because of unrecoverable errors
1441 * that we would ever take a device offline in the first place.
1442 */
1443 if (!scsi_device_online(sdp)) {
1444 set_media_not_present(sdkp);
1445 goto out;
1446 }
1447
1448 /*
1449 * Using TEST_UNIT_READY enables differentiation between drive with
1450 * no cartridge loaded - NOT READY, drive with changed cartridge -
1451 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1452 *
1453 * Drives that auto spin down. eg iomega jaz 1G, will be started
1454 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1455 * sd_revalidate() is called.
1456 */
1457 retval = -ENODEV;
1458
1459 if (scsi_block_when_processing_errors(sdp)) {
1460 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1461 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1462 sshdr);
1463 }
1464
1465 /* failed to execute TUR, assume media not present */
1466 if (host_byte(retval)) {
1467 set_media_not_present(sdkp);
1468 goto out;
1469 }
1470
1471 if (media_not_present(sdkp, sshdr))
1472 goto out;
1473
1474 /*
1475 * For removable scsi disk we have to recognise the presence
1476 * of a disk in the drive.
1477 */
1478 if (!sdkp->media_present)
1479 sdp->changed = 1;
1480 sdkp->media_present = 1;
1481 out:
1482 /*
1483 * sdp->changed is set under the following conditions:
1484 *
1485 * Medium present state has changed in either direction.
1486 * Device has indicated UNIT_ATTENTION.
1487 */
1488 kfree(sshdr);
1489 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1490 sdp->changed = 0;
1491 scsi_disk_put(sdkp);
1492 return retval;
1493 }
1494
1495 static int sd_sync_cache(struct scsi_disk *sdkp)
1496 {
1497 int retries, res;
1498 struct scsi_device *sdp = sdkp->device;
1499 const int timeout = sdp->request_queue->rq_timeout
1500 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1501 struct scsi_sense_hdr sshdr;
1502
1503 if (!scsi_device_online(sdp))
1504 return -ENODEV;
1505
1506 for (retries = 3; retries > 0; --retries) {
1507 unsigned char cmd[10] = { 0 };
1508
1509 cmd[0] = SYNCHRONIZE_CACHE;
1510 /*
1511 * Leave the rest of the command zero to indicate
1512 * flush everything.
1513 */
1514 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1515 &sshdr, timeout, SD_MAX_RETRIES,
1516 NULL, 0, RQF_PM);
1517 if (res == 0)
1518 break;
1519 }
1520
1521 if (res) {
1522 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1523
1524 if (driver_byte(res) & DRIVER_SENSE)
1525 sd_print_sense_hdr(sdkp, &sshdr);
1526 /* we need to evaluate the error return */
1527 if (scsi_sense_valid(&sshdr) &&
1528 (sshdr.asc == 0x3a || /* medium not present */
1529 sshdr.asc == 0x20)) /* invalid command */
1530 /* this is no error here */
1531 return 0;
1532
1533 switch (host_byte(res)) {
1534 /* ignore errors due to racing a disconnection */
1535 case DID_BAD_TARGET:
1536 case DID_NO_CONNECT:
1537 return 0;
1538 /* signal the upper layer it might try again */
1539 case DID_BUS_BUSY:
1540 case DID_IMM_RETRY:
1541 case DID_REQUEUE:
1542 case DID_SOFT_ERROR:
1543 return -EBUSY;
1544 default:
1545 return -EIO;
1546 }
1547 }
1548 return 0;
1549 }
1550
1551 static void sd_rescan(struct device *dev)
1552 {
1553 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1554
1555 revalidate_disk(sdkp->disk);
1556 }
1557
1558
1559 #ifdef CONFIG_COMPAT
1560 /*
1561 * This gets directly called from VFS. When the ioctl
1562 * is not recognized we go back to the other translation paths.
1563 */
1564 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1565 unsigned int cmd, unsigned long arg)
1566 {
1567 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1568 int error;
1569
1570 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1571 (mode & FMODE_NDELAY) != 0);
1572 if (error)
1573 return error;
1574
1575 /*
1576 * Let the static ioctl translation table take care of it.
1577 */
1578 if (!sdev->host->hostt->compat_ioctl)
1579 return -ENOIOCTLCMD;
1580 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1581 }
1582 #endif
1583
1584 static char sd_pr_type(enum pr_type type)
1585 {
1586 switch (type) {
1587 case PR_WRITE_EXCLUSIVE:
1588 return 0x01;
1589 case PR_EXCLUSIVE_ACCESS:
1590 return 0x03;
1591 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1592 return 0x05;
1593 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1594 return 0x06;
1595 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1596 return 0x07;
1597 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1598 return 0x08;
1599 default:
1600 return 0;
1601 }
1602 };
1603
1604 static int sd_pr_command(struct block_device *bdev, u8 sa,
1605 u64 key, u64 sa_key, u8 type, u8 flags)
1606 {
1607 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1608 struct scsi_sense_hdr sshdr;
1609 int result;
1610 u8 cmd[16] = { 0, };
1611 u8 data[24] = { 0, };
1612
1613 cmd[0] = PERSISTENT_RESERVE_OUT;
1614 cmd[1] = sa;
1615 cmd[2] = type;
1616 put_unaligned_be32(sizeof(data), &cmd[5]);
1617
1618 put_unaligned_be64(key, &data[0]);
1619 put_unaligned_be64(sa_key, &data[8]);
1620 data[20] = flags;
1621
1622 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1623 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1624
1625 if ((driver_byte(result) & DRIVER_SENSE) &&
1626 (scsi_sense_valid(&sshdr))) {
1627 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1628 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1629 }
1630
1631 return result;
1632 }
1633
1634 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1635 u32 flags)
1636 {
1637 if (flags & ~PR_FL_IGNORE_KEY)
1638 return -EOPNOTSUPP;
1639 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1640 old_key, new_key, 0,
1641 (1 << 0) /* APTPL */);
1642 }
1643
1644 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1645 u32 flags)
1646 {
1647 if (flags)
1648 return -EOPNOTSUPP;
1649 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1650 }
1651
1652 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1653 {
1654 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1655 }
1656
1657 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1658 enum pr_type type, bool abort)
1659 {
1660 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1661 sd_pr_type(type), 0);
1662 }
1663
1664 static int sd_pr_clear(struct block_device *bdev, u64 key)
1665 {
1666 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1667 }
1668
1669 static const struct pr_ops sd_pr_ops = {
1670 .pr_register = sd_pr_register,
1671 .pr_reserve = sd_pr_reserve,
1672 .pr_release = sd_pr_release,
1673 .pr_preempt = sd_pr_preempt,
1674 .pr_clear = sd_pr_clear,
1675 };
1676
1677 static const struct block_device_operations sd_fops = {
1678 .owner = THIS_MODULE,
1679 .open = sd_open,
1680 .release = sd_release,
1681 .ioctl = sd_ioctl,
1682 .getgeo = sd_getgeo,
1683 #ifdef CONFIG_COMPAT
1684 .compat_ioctl = sd_compat_ioctl,
1685 #endif
1686 .check_events = sd_check_events,
1687 .revalidate_disk = sd_revalidate_disk,
1688 .unlock_native_capacity = sd_unlock_native_capacity,
1689 .pr_ops = &sd_pr_ops,
1690 };
1691
1692 /**
1693 * sd_eh_action - error handling callback
1694 * @scmd: sd-issued command that has failed
1695 * @eh_disp: The recovery disposition suggested by the midlayer
1696 *
1697 * This function is called by the SCSI midlayer upon completion of an
1698 * error test command (currently TEST UNIT READY). The result of sending
1699 * the eh command is passed in eh_disp. We're looking for devices that
1700 * fail medium access commands but are OK with non access commands like
1701 * test unit ready (so wrongly see the device as having a successful
1702 * recovery)
1703 **/
1704 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1705 {
1706 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1707
1708 if (!scsi_device_online(scmd->device) ||
1709 !scsi_medium_access_command(scmd) ||
1710 host_byte(scmd->result) != DID_TIME_OUT ||
1711 eh_disp != SUCCESS)
1712 return eh_disp;
1713
1714 /*
1715 * The device has timed out executing a medium access command.
1716 * However, the TEST UNIT READY command sent during error
1717 * handling completed successfully. Either the device is in the
1718 * process of recovering or has it suffered an internal failure
1719 * that prevents access to the storage medium.
1720 */
1721 sdkp->medium_access_timed_out++;
1722
1723 /*
1724 * If the device keeps failing read/write commands but TEST UNIT
1725 * READY always completes successfully we assume that medium
1726 * access is no longer possible and take the device offline.
1727 */
1728 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1729 scmd_printk(KERN_ERR, scmd,
1730 "Medium access timeout failure. Offlining disk!\n");
1731 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1732
1733 return FAILED;
1734 }
1735
1736 return eh_disp;
1737 }
1738
1739 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1740 {
1741 u64 start_lba = blk_rq_pos(scmd->request);
1742 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1743 u64 factor = scmd->device->sector_size / 512;
1744 u64 bad_lba;
1745 int info_valid;
1746 /*
1747 * resid is optional but mostly filled in. When it's unused,
1748 * its value is zero, so we assume the whole buffer transferred
1749 */
1750 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1751 unsigned int good_bytes;
1752
1753 if (scmd->request->cmd_type != REQ_TYPE_FS)
1754 return 0;
1755
1756 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1757 SCSI_SENSE_BUFFERSIZE,
1758 &bad_lba);
1759 if (!info_valid)
1760 return 0;
1761
1762 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1763 return 0;
1764
1765 /* be careful ... don't want any overflows */
1766 do_div(start_lba, factor);
1767 do_div(end_lba, factor);
1768
1769 /* The bad lba was reported incorrectly, we have no idea where
1770 * the error is.
1771 */
1772 if (bad_lba < start_lba || bad_lba >= end_lba)
1773 return 0;
1774
1775 /* This computation should always be done in terms of
1776 * the resolution of the device's medium.
1777 */
1778 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1779 return min(good_bytes, transferred);
1780 }
1781
1782 /**
1783 * sd_done - bottom half handler: called when the lower level
1784 * driver has completed (successfully or otherwise) a scsi command.
1785 * @SCpnt: mid-level's per command structure.
1786 *
1787 * Note: potentially run from within an ISR. Must not block.
1788 **/
1789 static int sd_done(struct scsi_cmnd *SCpnt)
1790 {
1791 int result = SCpnt->result;
1792 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1793 unsigned int sector_size = SCpnt->device->sector_size;
1794 unsigned int resid;
1795 struct scsi_sense_hdr sshdr;
1796 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1797 struct request *req = SCpnt->request;
1798 int sense_valid = 0;
1799 int sense_deferred = 0;
1800 unsigned char op = SCpnt->cmnd[0];
1801 unsigned char unmap = SCpnt->cmnd[1] & 8;
1802
1803 switch (req_op(req)) {
1804 case REQ_OP_DISCARD:
1805 case REQ_OP_WRITE_SAME:
1806 case REQ_OP_ZONE_RESET:
1807 if (!result) {
1808 good_bytes = blk_rq_bytes(req);
1809 scsi_set_resid(SCpnt, 0);
1810 } else {
1811 good_bytes = 0;
1812 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1813 }
1814 break;
1815 case REQ_OP_ZONE_REPORT:
1816 if (!result) {
1817 good_bytes = scsi_bufflen(SCpnt)
1818 - scsi_get_resid(SCpnt);
1819 scsi_set_resid(SCpnt, 0);
1820 } else {
1821 good_bytes = 0;
1822 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1823 }
1824 break;
1825 default:
1826 /*
1827 * In case of bogus fw or device, we could end up having
1828 * an unaligned partial completion. Check this here and force
1829 * alignment.
1830 */
1831 resid = scsi_get_resid(SCpnt);
1832 if (resid & (sector_size - 1)) {
1833 sd_printk(KERN_INFO, sdkp,
1834 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1835 resid, sector_size);
1836 resid = min(scsi_bufflen(SCpnt),
1837 round_up(resid, sector_size));
1838 scsi_set_resid(SCpnt, resid);
1839 }
1840 }
1841
1842 if (result) {
1843 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1844 if (sense_valid)
1845 sense_deferred = scsi_sense_is_deferred(&sshdr);
1846 }
1847 sdkp->medium_access_timed_out = 0;
1848
1849 if (driver_byte(result) != DRIVER_SENSE &&
1850 (!sense_valid || sense_deferred))
1851 goto out;
1852
1853 switch (sshdr.sense_key) {
1854 case HARDWARE_ERROR:
1855 case MEDIUM_ERROR:
1856 good_bytes = sd_completed_bytes(SCpnt);
1857 break;
1858 case RECOVERED_ERROR:
1859 good_bytes = scsi_bufflen(SCpnt);
1860 break;
1861 case NO_SENSE:
1862 /* This indicates a false check condition, so ignore it. An
1863 * unknown amount of data was transferred so treat it as an
1864 * error.
1865 */
1866 SCpnt->result = 0;
1867 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1868 break;
1869 case ABORTED_COMMAND:
1870 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1871 good_bytes = sd_completed_bytes(SCpnt);
1872 break;
1873 case ILLEGAL_REQUEST:
1874 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1875 good_bytes = sd_completed_bytes(SCpnt);
1876 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1877 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1878 switch (op) {
1879 case UNMAP:
1880 sd_config_discard(sdkp, SD_LBP_DISABLE);
1881 break;
1882 case WRITE_SAME_16:
1883 case WRITE_SAME:
1884 if (unmap)
1885 sd_config_discard(sdkp, SD_LBP_DISABLE);
1886 else {
1887 sdkp->device->no_write_same = 1;
1888 sd_config_write_same(sdkp);
1889
1890 good_bytes = 0;
1891 req->__data_len = blk_rq_bytes(req);
1892 req->rq_flags |= RQF_QUIET;
1893 }
1894 }
1895 }
1896 break;
1897 default:
1898 break;
1899 }
1900
1901 out:
1902 if (sd_is_zoned(sdkp))
1903 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
1904
1905 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1906 "sd_done: completed %d of %d bytes\n",
1907 good_bytes, scsi_bufflen(SCpnt)));
1908
1909 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1910 sd_dif_complete(SCpnt, good_bytes);
1911
1912 return good_bytes;
1913 }
1914
1915 /*
1916 * spinup disk - called only in sd_revalidate_disk()
1917 */
1918 static void
1919 sd_spinup_disk(struct scsi_disk *sdkp)
1920 {
1921 unsigned char cmd[10];
1922 unsigned long spintime_expire = 0;
1923 int retries, spintime;
1924 unsigned int the_result;
1925 struct scsi_sense_hdr sshdr;
1926 int sense_valid = 0;
1927
1928 spintime = 0;
1929
1930 /* Spin up drives, as required. Only do this at boot time */
1931 /* Spinup needs to be done for module loads too. */
1932 do {
1933 retries = 0;
1934
1935 do {
1936 cmd[0] = TEST_UNIT_READY;
1937 memset((void *) &cmd[1], 0, 9);
1938
1939 the_result = scsi_execute_req(sdkp->device, cmd,
1940 DMA_NONE, NULL, 0,
1941 &sshdr, SD_TIMEOUT,
1942 SD_MAX_RETRIES, NULL);
1943
1944 /*
1945 * If the drive has indicated to us that it
1946 * doesn't have any media in it, don't bother
1947 * with any more polling.
1948 */
1949 if (media_not_present(sdkp, &sshdr))
1950 return;
1951
1952 if (the_result)
1953 sense_valid = scsi_sense_valid(&sshdr);
1954 retries++;
1955 } while (retries < 3 &&
1956 (!scsi_status_is_good(the_result) ||
1957 ((driver_byte(the_result) & DRIVER_SENSE) &&
1958 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1959
1960 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1961 /* no sense, TUR either succeeded or failed
1962 * with a status error */
1963 if(!spintime && !scsi_status_is_good(the_result)) {
1964 sd_print_result(sdkp, "Test Unit Ready failed",
1965 the_result);
1966 }
1967 break;
1968 }
1969
1970 /*
1971 * The device does not want the automatic start to be issued.
1972 */
1973 if (sdkp->device->no_start_on_add)
1974 break;
1975
1976 if (sense_valid && sshdr.sense_key == NOT_READY) {
1977 if (sshdr.asc == 4 && sshdr.ascq == 3)
1978 break; /* manual intervention required */
1979 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1980 break; /* standby */
1981 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1982 break; /* unavailable */
1983 /*
1984 * Issue command to spin up drive when not ready
1985 */
1986 if (!spintime) {
1987 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1988 cmd[0] = START_STOP;
1989 cmd[1] = 1; /* Return immediately */
1990 memset((void *) &cmd[2], 0, 8);
1991 cmd[4] = 1; /* Start spin cycle */
1992 if (sdkp->device->start_stop_pwr_cond)
1993 cmd[4] |= 1 << 4;
1994 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1995 NULL, 0, &sshdr,
1996 SD_TIMEOUT, SD_MAX_RETRIES,
1997 NULL);
1998 spintime_expire = jiffies + 100 * HZ;
1999 spintime = 1;
2000 }
2001 /* Wait 1 second for next try */
2002 msleep(1000);
2003 printk(".");
2004
2005 /*
2006 * Wait for USB flash devices with slow firmware.
2007 * Yes, this sense key/ASC combination shouldn't
2008 * occur here. It's characteristic of these devices.
2009 */
2010 } else if (sense_valid &&
2011 sshdr.sense_key == UNIT_ATTENTION &&
2012 sshdr.asc == 0x28) {
2013 if (!spintime) {
2014 spintime_expire = jiffies + 5 * HZ;
2015 spintime = 1;
2016 }
2017 /* Wait 1 second for next try */
2018 msleep(1000);
2019 } else {
2020 /* we don't understand the sense code, so it's
2021 * probably pointless to loop */
2022 if(!spintime) {
2023 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2024 sd_print_sense_hdr(sdkp, &sshdr);
2025 }
2026 break;
2027 }
2028
2029 } while (spintime && time_before_eq(jiffies, spintime_expire));
2030
2031 if (spintime) {
2032 if (scsi_status_is_good(the_result))
2033 printk("ready\n");
2034 else
2035 printk("not responding...\n");
2036 }
2037 }
2038
2039 /*
2040 * Determine whether disk supports Data Integrity Field.
2041 */
2042 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2043 {
2044 struct scsi_device *sdp = sdkp->device;
2045 u8 type;
2046 int ret = 0;
2047
2048 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2049 return ret;
2050
2051 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2052
2053 if (type > T10_PI_TYPE3_PROTECTION)
2054 ret = -ENODEV;
2055 else if (scsi_host_dif_capable(sdp->host, type))
2056 ret = 1;
2057
2058 if (sdkp->first_scan || type != sdkp->protection_type)
2059 switch (ret) {
2060 case -ENODEV:
2061 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2062 " protection type %u. Disabling disk!\n",
2063 type);
2064 break;
2065 case 1:
2066 sd_printk(KERN_NOTICE, sdkp,
2067 "Enabling DIF Type %u protection\n", type);
2068 break;
2069 case 0:
2070 sd_printk(KERN_NOTICE, sdkp,
2071 "Disabling DIF Type %u protection\n", type);
2072 break;
2073 }
2074
2075 sdkp->protection_type = type;
2076
2077 return ret;
2078 }
2079
2080 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2081 struct scsi_sense_hdr *sshdr, int sense_valid,
2082 int the_result)
2083 {
2084 if (driver_byte(the_result) & DRIVER_SENSE)
2085 sd_print_sense_hdr(sdkp, sshdr);
2086 else
2087 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2088
2089 /*
2090 * Set dirty bit for removable devices if not ready -
2091 * sometimes drives will not report this properly.
2092 */
2093 if (sdp->removable &&
2094 sense_valid && sshdr->sense_key == NOT_READY)
2095 set_media_not_present(sdkp);
2096
2097 /*
2098 * We used to set media_present to 0 here to indicate no media
2099 * in the drive, but some drives fail read capacity even with
2100 * media present, so we can't do that.
2101 */
2102 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2103 }
2104
2105 #define RC16_LEN 32
2106 #if RC16_LEN > SD_BUF_SIZE
2107 #error RC16_LEN must not be more than SD_BUF_SIZE
2108 #endif
2109
2110 #define READ_CAPACITY_RETRIES_ON_RESET 10
2111
2112 /*
2113 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2114 * and the reported logical block size is bigger than 512 bytes. Note
2115 * that last_sector is a u64 and therefore logical_to_sectors() is not
2116 * applicable.
2117 */
2118 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2119 {
2120 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2121
2122 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2123 return false;
2124
2125 return true;
2126 }
2127
2128 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2129 unsigned char *buffer)
2130 {
2131 unsigned char cmd[16];
2132 struct scsi_sense_hdr sshdr;
2133 int sense_valid = 0;
2134 int the_result;
2135 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2136 unsigned int alignment;
2137 unsigned long long lba;
2138 unsigned sector_size;
2139
2140 if (sdp->no_read_capacity_16)
2141 return -EINVAL;
2142
2143 do {
2144 memset(cmd, 0, 16);
2145 cmd[0] = SERVICE_ACTION_IN_16;
2146 cmd[1] = SAI_READ_CAPACITY_16;
2147 cmd[13] = RC16_LEN;
2148 memset(buffer, 0, RC16_LEN);
2149
2150 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2151 buffer, RC16_LEN, &sshdr,
2152 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2153
2154 if (media_not_present(sdkp, &sshdr))
2155 return -ENODEV;
2156
2157 if (the_result) {
2158 sense_valid = scsi_sense_valid(&sshdr);
2159 if (sense_valid &&
2160 sshdr.sense_key == ILLEGAL_REQUEST &&
2161 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2162 sshdr.ascq == 0x00)
2163 /* Invalid Command Operation Code or
2164 * Invalid Field in CDB, just retry
2165 * silently with RC10 */
2166 return -EINVAL;
2167 if (sense_valid &&
2168 sshdr.sense_key == UNIT_ATTENTION &&
2169 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2170 /* Device reset might occur several times,
2171 * give it one more chance */
2172 if (--reset_retries > 0)
2173 continue;
2174 }
2175 retries--;
2176
2177 } while (the_result && retries);
2178
2179 if (the_result) {
2180 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2181 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2182 return -EINVAL;
2183 }
2184
2185 sector_size = get_unaligned_be32(&buffer[8]);
2186 lba = get_unaligned_be64(&buffer[0]);
2187
2188 if (sd_read_protection_type(sdkp, buffer) < 0) {
2189 sdkp->capacity = 0;
2190 return -ENODEV;
2191 }
2192
2193 if (!sd_addressable_capacity(lba, sector_size)) {
2194 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2195 "kernel compiled with support for large block "
2196 "devices.\n");
2197 sdkp->capacity = 0;
2198 return -EOVERFLOW;
2199 }
2200
2201 /* Logical blocks per physical block exponent */
2202 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2203
2204 /* RC basis */
2205 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2206
2207 /* Lowest aligned logical block */
2208 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2209 blk_queue_alignment_offset(sdp->request_queue, alignment);
2210 if (alignment && sdkp->first_scan)
2211 sd_printk(KERN_NOTICE, sdkp,
2212 "physical block alignment offset: %u\n", alignment);
2213
2214 if (buffer[14] & 0x80) { /* LBPME */
2215 sdkp->lbpme = 1;
2216
2217 if (buffer[14] & 0x40) /* LBPRZ */
2218 sdkp->lbprz = 1;
2219
2220 sd_config_discard(sdkp, SD_LBP_WS16);
2221 }
2222
2223 sdkp->capacity = lba + 1;
2224 return sector_size;
2225 }
2226
2227 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2228 unsigned char *buffer)
2229 {
2230 unsigned char cmd[16];
2231 struct scsi_sense_hdr sshdr;
2232 int sense_valid = 0;
2233 int the_result;
2234 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2235 sector_t lba;
2236 unsigned sector_size;
2237
2238 do {
2239 cmd[0] = READ_CAPACITY;
2240 memset(&cmd[1], 0, 9);
2241 memset(buffer, 0, 8);
2242
2243 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2244 buffer, 8, &sshdr,
2245 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2246
2247 if (media_not_present(sdkp, &sshdr))
2248 return -ENODEV;
2249
2250 if (the_result) {
2251 sense_valid = scsi_sense_valid(&sshdr);
2252 if (sense_valid &&
2253 sshdr.sense_key == UNIT_ATTENTION &&
2254 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2255 /* Device reset might occur several times,
2256 * give it one more chance */
2257 if (--reset_retries > 0)
2258 continue;
2259 }
2260 retries--;
2261
2262 } while (the_result && retries);
2263
2264 if (the_result) {
2265 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2266 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2267 return -EINVAL;
2268 }
2269
2270 sector_size = get_unaligned_be32(&buffer[4]);
2271 lba = get_unaligned_be32(&buffer[0]);
2272
2273 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2274 /* Some buggy (usb cardreader) devices return an lba of
2275 0xffffffff when the want to report a size of 0 (with
2276 which they really mean no media is present) */
2277 sdkp->capacity = 0;
2278 sdkp->physical_block_size = sector_size;
2279 return sector_size;
2280 }
2281
2282 if (!sd_addressable_capacity(lba, sector_size)) {
2283 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2284 "kernel compiled with support for large block "
2285 "devices.\n");
2286 sdkp->capacity = 0;
2287 return -EOVERFLOW;
2288 }
2289
2290 sdkp->capacity = lba + 1;
2291 sdkp->physical_block_size = sector_size;
2292 return sector_size;
2293 }
2294
2295 static int sd_try_rc16_first(struct scsi_device *sdp)
2296 {
2297 if (sdp->host->max_cmd_len < 16)
2298 return 0;
2299 if (sdp->try_rc_10_first)
2300 return 0;
2301 if (sdp->scsi_level > SCSI_SPC_2)
2302 return 1;
2303 if (scsi_device_protection(sdp))
2304 return 1;
2305 return 0;
2306 }
2307
2308 /*
2309 * read disk capacity
2310 */
2311 static void
2312 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2313 {
2314 int sector_size;
2315 struct scsi_device *sdp = sdkp->device;
2316
2317 if (sd_try_rc16_first(sdp)) {
2318 sector_size = read_capacity_16(sdkp, sdp, buffer);
2319 if (sector_size == -EOVERFLOW)
2320 goto got_data;
2321 if (sector_size == -ENODEV)
2322 return;
2323 if (sector_size < 0)
2324 sector_size = read_capacity_10(sdkp, sdp, buffer);
2325 if (sector_size < 0)
2326 return;
2327 } else {
2328 sector_size = read_capacity_10(sdkp, sdp, buffer);
2329 if (sector_size == -EOVERFLOW)
2330 goto got_data;
2331 if (sector_size < 0)
2332 return;
2333 if ((sizeof(sdkp->capacity) > 4) &&
2334 (sdkp->capacity > 0xffffffffULL)) {
2335 int old_sector_size = sector_size;
2336 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2337 "Trying to use READ CAPACITY(16).\n");
2338 sector_size = read_capacity_16(sdkp, sdp, buffer);
2339 if (sector_size < 0) {
2340 sd_printk(KERN_NOTICE, sdkp,
2341 "Using 0xffffffff as device size\n");
2342 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2343 sector_size = old_sector_size;
2344 goto got_data;
2345 }
2346 }
2347 }
2348
2349 /* Some devices are known to return the total number of blocks,
2350 * not the highest block number. Some devices have versions
2351 * which do this and others which do not. Some devices we might
2352 * suspect of doing this but we don't know for certain.
2353 *
2354 * If we know the reported capacity is wrong, decrement it. If
2355 * we can only guess, then assume the number of blocks is even
2356 * (usually true but not always) and err on the side of lowering
2357 * the capacity.
2358 */
2359 if (sdp->fix_capacity ||
2360 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2361 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2362 "from its reported value: %llu\n",
2363 (unsigned long long) sdkp->capacity);
2364 --sdkp->capacity;
2365 }
2366
2367 got_data:
2368 if (sector_size == 0) {
2369 sector_size = 512;
2370 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2371 "assuming 512.\n");
2372 }
2373
2374 if (sector_size != 512 &&
2375 sector_size != 1024 &&
2376 sector_size != 2048 &&
2377 sector_size != 4096) {
2378 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2379 sector_size);
2380 /*
2381 * The user might want to re-format the drive with
2382 * a supported sectorsize. Once this happens, it
2383 * would be relatively trivial to set the thing up.
2384 * For this reason, we leave the thing in the table.
2385 */
2386 sdkp->capacity = 0;
2387 /*
2388 * set a bogus sector size so the normal read/write
2389 * logic in the block layer will eventually refuse any
2390 * request on this device without tripping over power
2391 * of two sector size assumptions
2392 */
2393 sector_size = 512;
2394 }
2395 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2396 blk_queue_physical_block_size(sdp->request_queue,
2397 sdkp->physical_block_size);
2398 sdkp->device->sector_size = sector_size;
2399
2400 if (sdkp->capacity > 0xffffffff)
2401 sdp->use_16_for_rw = 1;
2402
2403 }
2404
2405 /*
2406 * Print disk capacity
2407 */
2408 static void
2409 sd_print_capacity(struct scsi_disk *sdkp,
2410 sector_t old_capacity)
2411 {
2412 int sector_size = sdkp->device->sector_size;
2413 char cap_str_2[10], cap_str_10[10];
2414
2415 string_get_size(sdkp->capacity, sector_size,
2416 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2417 string_get_size(sdkp->capacity, sector_size,
2418 STRING_UNITS_10, cap_str_10,
2419 sizeof(cap_str_10));
2420
2421 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2422 sd_printk(KERN_NOTICE, sdkp,
2423 "%llu %d-byte logical blocks: (%s/%s)\n",
2424 (unsigned long long)sdkp->capacity,
2425 sector_size, cap_str_10, cap_str_2);
2426
2427 if (sdkp->physical_block_size != sector_size)
2428 sd_printk(KERN_NOTICE, sdkp,
2429 "%u-byte physical blocks\n",
2430 sdkp->physical_block_size);
2431
2432 sd_zbc_print_zones(sdkp);
2433 }
2434 }
2435
2436 /* called with buffer of length 512 */
2437 static inline int
2438 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2439 unsigned char *buffer, int len, struct scsi_mode_data *data,
2440 struct scsi_sense_hdr *sshdr)
2441 {
2442 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2443 SD_TIMEOUT, SD_MAX_RETRIES, data,
2444 sshdr);
2445 }
2446
2447 /*
2448 * read write protect setting, if possible - called only in sd_revalidate_disk()
2449 * called with buffer of length SD_BUF_SIZE
2450 */
2451 static void
2452 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2453 {
2454 int res;
2455 struct scsi_device *sdp = sdkp->device;
2456 struct scsi_mode_data data;
2457 int old_wp = sdkp->write_prot;
2458
2459 set_disk_ro(sdkp->disk, 0);
2460 if (sdp->skip_ms_page_3f) {
2461 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2462 return;
2463 }
2464
2465 if (sdp->use_192_bytes_for_3f) {
2466 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2467 } else {
2468 /*
2469 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2470 * We have to start carefully: some devices hang if we ask
2471 * for more than is available.
2472 */
2473 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2474
2475 /*
2476 * Second attempt: ask for page 0 When only page 0 is
2477 * implemented, a request for page 3F may return Sense Key
2478 * 5: Illegal Request, Sense Code 24: Invalid field in
2479 * CDB.
2480 */
2481 if (!scsi_status_is_good(res))
2482 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2483
2484 /*
2485 * Third attempt: ask 255 bytes, as we did earlier.
2486 */
2487 if (!scsi_status_is_good(res))
2488 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2489 &data, NULL);
2490 }
2491
2492 if (!scsi_status_is_good(res)) {
2493 sd_first_printk(KERN_WARNING, sdkp,
2494 "Test WP failed, assume Write Enabled\n");
2495 } else {
2496 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2497 set_disk_ro(sdkp->disk, sdkp->write_prot);
2498 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2499 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2500 sdkp->write_prot ? "on" : "off");
2501 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2502 }
2503 }
2504 }
2505
2506 /*
2507 * sd_read_cache_type - called only from sd_revalidate_disk()
2508 * called with buffer of length SD_BUF_SIZE
2509 */
2510 static void
2511 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2512 {
2513 int len = 0, res;
2514 struct scsi_device *sdp = sdkp->device;
2515
2516 int dbd;
2517 int modepage;
2518 int first_len;
2519 struct scsi_mode_data data;
2520 struct scsi_sense_hdr sshdr;
2521 int old_wce = sdkp->WCE;
2522 int old_rcd = sdkp->RCD;
2523 int old_dpofua = sdkp->DPOFUA;
2524
2525
2526 if (sdkp->cache_override)
2527 return;
2528
2529 first_len = 4;
2530 if (sdp->skip_ms_page_8) {
2531 if (sdp->type == TYPE_RBC)
2532 goto defaults;
2533 else {
2534 if (sdp->skip_ms_page_3f)
2535 goto defaults;
2536 modepage = 0x3F;
2537 if (sdp->use_192_bytes_for_3f)
2538 first_len = 192;
2539 dbd = 0;
2540 }
2541 } else if (sdp->type == TYPE_RBC) {
2542 modepage = 6;
2543 dbd = 8;
2544 } else {
2545 modepage = 8;
2546 dbd = 0;
2547 }
2548
2549 /* cautiously ask */
2550 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2551 &data, &sshdr);
2552
2553 if (!scsi_status_is_good(res))
2554 goto bad_sense;
2555
2556 if (!data.header_length) {
2557 modepage = 6;
2558 first_len = 0;
2559 sd_first_printk(KERN_ERR, sdkp,
2560 "Missing header in MODE_SENSE response\n");
2561 }
2562
2563 /* that went OK, now ask for the proper length */
2564 len = data.length;
2565
2566 /*
2567 * We're only interested in the first three bytes, actually.
2568 * But the data cache page is defined for the first 20.
2569 */
2570 if (len < 3)
2571 goto bad_sense;
2572 else if (len > SD_BUF_SIZE) {
2573 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2574 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2575 len = SD_BUF_SIZE;
2576 }
2577 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2578 len = 192;
2579
2580 /* Get the data */
2581 if (len > first_len)
2582 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2583 &data, &sshdr);
2584
2585 if (scsi_status_is_good(res)) {
2586 int offset = data.header_length + data.block_descriptor_length;
2587
2588 while (offset < len) {
2589 u8 page_code = buffer[offset] & 0x3F;
2590 u8 spf = buffer[offset] & 0x40;
2591
2592 if (page_code == 8 || page_code == 6) {
2593 /* We're interested only in the first 3 bytes.
2594 */
2595 if (len - offset <= 2) {
2596 sd_first_printk(KERN_ERR, sdkp,
2597 "Incomplete mode parameter "
2598 "data\n");
2599 goto defaults;
2600 } else {
2601 modepage = page_code;
2602 goto Page_found;
2603 }
2604 } else {
2605 /* Go to the next page */
2606 if (spf && len - offset > 3)
2607 offset += 4 + (buffer[offset+2] << 8) +
2608 buffer[offset+3];
2609 else if (!spf && len - offset > 1)
2610 offset += 2 + buffer[offset+1];
2611 else {
2612 sd_first_printk(KERN_ERR, sdkp,
2613 "Incomplete mode "
2614 "parameter data\n");
2615 goto defaults;
2616 }
2617 }
2618 }
2619
2620 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2621 goto defaults;
2622
2623 Page_found:
2624 if (modepage == 8) {
2625 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2626 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2627 } else {
2628 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2629 sdkp->RCD = 0;
2630 }
2631
2632 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2633 if (sdp->broken_fua) {
2634 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2635 sdkp->DPOFUA = 0;
2636 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2637 !sdkp->device->use_16_for_rw) {
2638 sd_first_printk(KERN_NOTICE, sdkp,
2639 "Uses READ/WRITE(6), disabling FUA\n");
2640 sdkp->DPOFUA = 0;
2641 }
2642
2643 /* No cache flush allowed for write protected devices */
2644 if (sdkp->WCE && sdkp->write_prot)
2645 sdkp->WCE = 0;
2646
2647 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2648 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2649 sd_printk(KERN_NOTICE, sdkp,
2650 "Write cache: %s, read cache: %s, %s\n",
2651 sdkp->WCE ? "enabled" : "disabled",
2652 sdkp->RCD ? "disabled" : "enabled",
2653 sdkp->DPOFUA ? "supports DPO and FUA"
2654 : "doesn't support DPO or FUA");
2655
2656 return;
2657 }
2658
2659 bad_sense:
2660 if (scsi_sense_valid(&sshdr) &&
2661 sshdr.sense_key == ILLEGAL_REQUEST &&
2662 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2663 /* Invalid field in CDB */
2664 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2665 else
2666 sd_first_printk(KERN_ERR, sdkp,
2667 "Asking for cache data failed\n");
2668
2669 defaults:
2670 if (sdp->wce_default_on) {
2671 sd_first_printk(KERN_NOTICE, sdkp,
2672 "Assuming drive cache: write back\n");
2673 sdkp->WCE = 1;
2674 } else {
2675 sd_first_printk(KERN_ERR, sdkp,
2676 "Assuming drive cache: write through\n");
2677 sdkp->WCE = 0;
2678 }
2679 sdkp->RCD = 0;
2680 sdkp->DPOFUA = 0;
2681 }
2682
2683 /*
2684 * The ATO bit indicates whether the DIF application tag is available
2685 * for use by the operating system.
2686 */
2687 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2688 {
2689 int res, offset;
2690 struct scsi_device *sdp = sdkp->device;
2691 struct scsi_mode_data data;
2692 struct scsi_sense_hdr sshdr;
2693
2694 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2695 return;
2696
2697 if (sdkp->protection_type == 0)
2698 return;
2699
2700 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2701 SD_MAX_RETRIES, &data, &sshdr);
2702
2703 if (!scsi_status_is_good(res) || !data.header_length ||
2704 data.length < 6) {
2705 sd_first_printk(KERN_WARNING, sdkp,
2706 "getting Control mode page failed, assume no ATO\n");
2707
2708 if (scsi_sense_valid(&sshdr))
2709 sd_print_sense_hdr(sdkp, &sshdr);
2710
2711 return;
2712 }
2713
2714 offset = data.header_length + data.block_descriptor_length;
2715
2716 if ((buffer[offset] & 0x3f) != 0x0a) {
2717 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2718 return;
2719 }
2720
2721 if ((buffer[offset + 5] & 0x80) == 0)
2722 return;
2723
2724 sdkp->ATO = 1;
2725
2726 return;
2727 }
2728
2729 /**
2730 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2731 * @disk: disk to query
2732 */
2733 static void sd_read_block_limits(struct scsi_disk *sdkp)
2734 {
2735 unsigned int sector_sz = sdkp->device->sector_size;
2736 const int vpd_len = 64;
2737 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2738
2739 if (!buffer ||
2740 /* Block Limits VPD */
2741 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2742 goto out;
2743
2744 blk_queue_io_min(sdkp->disk->queue,
2745 get_unaligned_be16(&buffer[6]) * sector_sz);
2746
2747 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2748 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2749
2750 if (buffer[3] == 0x3c) {
2751 unsigned int lba_count, desc_count;
2752
2753 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2754
2755 if (!sdkp->lbpme)
2756 goto out;
2757
2758 lba_count = get_unaligned_be32(&buffer[20]);
2759 desc_count = get_unaligned_be32(&buffer[24]);
2760
2761 if (lba_count && desc_count)
2762 sdkp->max_unmap_blocks = lba_count;
2763
2764 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2765
2766 if (buffer[32] & 0x80)
2767 sdkp->unmap_alignment =
2768 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2769
2770 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2771
2772 if (sdkp->max_unmap_blocks)
2773 sd_config_discard(sdkp, SD_LBP_UNMAP);
2774 else
2775 sd_config_discard(sdkp, SD_LBP_WS16);
2776
2777 } else { /* LBP VPD page tells us what to use */
2778 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2779 sd_config_discard(sdkp, SD_LBP_UNMAP);
2780 else if (sdkp->lbpws)
2781 sd_config_discard(sdkp, SD_LBP_WS16);
2782 else if (sdkp->lbpws10)
2783 sd_config_discard(sdkp, SD_LBP_WS10);
2784 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2785 sd_config_discard(sdkp, SD_LBP_UNMAP);
2786 else
2787 sd_config_discard(sdkp, SD_LBP_DISABLE);
2788 }
2789 }
2790
2791 out:
2792 kfree(buffer);
2793 }
2794
2795 /**
2796 * sd_read_block_characteristics - Query block dev. characteristics
2797 * @disk: disk to query
2798 */
2799 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2800 {
2801 struct request_queue *q = sdkp->disk->queue;
2802 unsigned char *buffer;
2803 u16 rot;
2804 const int vpd_len = 64;
2805
2806 buffer = kmalloc(vpd_len, GFP_KERNEL);
2807
2808 if (!buffer ||
2809 /* Block Device Characteristics VPD */
2810 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2811 goto out;
2812
2813 rot = get_unaligned_be16(&buffer[4]);
2814
2815 if (rot == 1) {
2816 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2817 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2818 }
2819
2820 if (sdkp->device->type == TYPE_ZBC) {
2821 /* Host-managed */
2822 q->limits.zoned = BLK_ZONED_HM;
2823 } else {
2824 sdkp->zoned = (buffer[8] >> 4) & 3;
2825 if (sdkp->zoned == 1)
2826 /* Host-aware */
2827 q->limits.zoned = BLK_ZONED_HA;
2828 else
2829 /*
2830 * Treat drive-managed devices as
2831 * regular block devices.
2832 */
2833 q->limits.zoned = BLK_ZONED_NONE;
2834 }
2835 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2836 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2837 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2838
2839 out:
2840 kfree(buffer);
2841 }
2842
2843 /**
2844 * sd_read_block_provisioning - Query provisioning VPD page
2845 * @disk: disk to query
2846 */
2847 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2848 {
2849 unsigned char *buffer;
2850 const int vpd_len = 8;
2851
2852 if (sdkp->lbpme == 0)
2853 return;
2854
2855 buffer = kmalloc(vpd_len, GFP_KERNEL);
2856
2857 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2858 goto out;
2859
2860 sdkp->lbpvpd = 1;
2861 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2862 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2863 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2864
2865 out:
2866 kfree(buffer);
2867 }
2868
2869 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2870 {
2871 struct scsi_device *sdev = sdkp->device;
2872
2873 if (sdev->host->no_write_same) {
2874 sdev->no_write_same = 1;
2875
2876 return;
2877 }
2878
2879 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2880 /* too large values might cause issues with arcmsr */
2881 int vpd_buf_len = 64;
2882
2883 sdev->no_report_opcodes = 1;
2884
2885 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2886 * CODES is unsupported and the device has an ATA
2887 * Information VPD page (SAT).
2888 */
2889 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2890 sdev->no_write_same = 1;
2891 }
2892
2893 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2894 sdkp->ws16 = 1;
2895
2896 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2897 sdkp->ws10 = 1;
2898 }
2899
2900 /**
2901 * sd_revalidate_disk - called the first time a new disk is seen,
2902 * performs disk spin up, read_capacity, etc.
2903 * @disk: struct gendisk we care about
2904 **/
2905 static int sd_revalidate_disk(struct gendisk *disk)
2906 {
2907 struct scsi_disk *sdkp = scsi_disk(disk);
2908 struct scsi_device *sdp = sdkp->device;
2909 struct request_queue *q = sdkp->disk->queue;
2910 sector_t old_capacity = sdkp->capacity;
2911 unsigned char *buffer;
2912 unsigned int dev_max, rw_max;
2913
2914 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2915 "sd_revalidate_disk\n"));
2916
2917 /*
2918 * If the device is offline, don't try and read capacity or any
2919 * of the other niceties.
2920 */
2921 if (!scsi_device_online(sdp))
2922 goto out;
2923
2924 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2925 if (!buffer) {
2926 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2927 "allocation failure.\n");
2928 goto out;
2929 }
2930
2931 sd_spinup_disk(sdkp);
2932
2933 /*
2934 * Without media there is no reason to ask; moreover, some devices
2935 * react badly if we do.
2936 */
2937 if (sdkp->media_present) {
2938 sd_read_capacity(sdkp, buffer);
2939
2940 if (scsi_device_supports_vpd(sdp)) {
2941 sd_read_block_provisioning(sdkp);
2942 sd_read_block_limits(sdkp);
2943 sd_read_block_characteristics(sdkp);
2944 sd_zbc_read_zones(sdkp, buffer);
2945 }
2946
2947 sd_print_capacity(sdkp, old_capacity);
2948
2949 sd_read_write_protect_flag(sdkp, buffer);
2950 sd_read_cache_type(sdkp, buffer);
2951 sd_read_app_tag_own(sdkp, buffer);
2952 sd_read_write_same(sdkp, buffer);
2953 }
2954
2955 sdkp->first_scan = 0;
2956
2957 /*
2958 * We now have all cache related info, determine how we deal
2959 * with flush requests.
2960 */
2961 sd_set_flush_flag(sdkp);
2962
2963 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
2964 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
2965
2966 /* Some devices report a maximum block count for READ/WRITE requests. */
2967 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
2968 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
2969
2970 /*
2971 * Use the device's preferred I/O size for reads and writes
2972 * unless the reported value is unreasonably small, large, or
2973 * garbage.
2974 */
2975 if (sdkp->opt_xfer_blocks &&
2976 sdkp->opt_xfer_blocks <= dev_max &&
2977 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
2978 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
2979 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
2980 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
2981 } else
2982 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
2983 (sector_t)BLK_DEF_MAX_SECTORS);
2984
2985 /* Combine with controller limits */
2986 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
2987
2988 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
2989 sd_config_write_same(sdkp);
2990 kfree(buffer);
2991
2992 out:
2993 return 0;
2994 }
2995
2996 /**
2997 * sd_unlock_native_capacity - unlock native capacity
2998 * @disk: struct gendisk to set capacity for
2999 *
3000 * Block layer calls this function if it detects that partitions
3001 * on @disk reach beyond the end of the device. If the SCSI host
3002 * implements ->unlock_native_capacity() method, it's invoked to
3003 * give it a chance to adjust the device capacity.
3004 *
3005 * CONTEXT:
3006 * Defined by block layer. Might sleep.
3007 */
3008 static void sd_unlock_native_capacity(struct gendisk *disk)
3009 {
3010 struct scsi_device *sdev = scsi_disk(disk)->device;
3011
3012 if (sdev->host->hostt->unlock_native_capacity)
3013 sdev->host->hostt->unlock_native_capacity(sdev);
3014 }
3015
3016 /**
3017 * sd_format_disk_name - format disk name
3018 * @prefix: name prefix - ie. "sd" for SCSI disks
3019 * @index: index of the disk to format name for
3020 * @buf: output buffer
3021 * @buflen: length of the output buffer
3022 *
3023 * SCSI disk names starts at sda. The 26th device is sdz and the
3024 * 27th is sdaa. The last one for two lettered suffix is sdzz
3025 * which is followed by sdaaa.
3026 *
3027 * This is basically 26 base counting with one extra 'nil' entry
3028 * at the beginning from the second digit on and can be
3029 * determined using similar method as 26 base conversion with the
3030 * index shifted -1 after each digit is computed.
3031 *
3032 * CONTEXT:
3033 * Don't care.
3034 *
3035 * RETURNS:
3036 * 0 on success, -errno on failure.
3037 */
3038 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3039 {
3040 const int base = 'z' - 'a' + 1;
3041 char *begin = buf + strlen(prefix);
3042 char *end = buf + buflen;
3043 char *p;
3044 int unit;
3045
3046 p = end - 1;
3047 *p = '\0';
3048 unit = base;
3049 do {
3050 if (p == begin)
3051 return -EINVAL;
3052 *--p = 'a' + (index % unit);
3053 index = (index / unit) - 1;
3054 } while (index >= 0);
3055
3056 memmove(begin, p, end - p);
3057 memcpy(buf, prefix, strlen(prefix));
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * The asynchronous part of sd_probe
3064 */
3065 static void sd_probe_async(void *data, async_cookie_t cookie)
3066 {
3067 struct scsi_disk *sdkp = data;
3068 struct scsi_device *sdp;
3069 struct gendisk *gd;
3070 u32 index;
3071 struct device *dev;
3072
3073 sdp = sdkp->device;
3074 gd = sdkp->disk;
3075 index = sdkp->index;
3076 dev = &sdp->sdev_gendev;
3077
3078 gd->major = sd_major((index & 0xf0) >> 4);
3079 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3080 gd->minors = SD_MINORS;
3081
3082 gd->fops = &sd_fops;
3083 gd->private_data = &sdkp->driver;
3084 gd->queue = sdkp->device->request_queue;
3085
3086 /* defaults, until the device tells us otherwise */
3087 sdp->sector_size = 512;
3088 sdkp->capacity = 0;
3089 sdkp->media_present = 1;
3090 sdkp->write_prot = 0;
3091 sdkp->cache_override = 0;
3092 sdkp->WCE = 0;
3093 sdkp->RCD = 0;
3094 sdkp->ATO = 0;
3095 sdkp->first_scan = 1;
3096 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3097
3098 sd_revalidate_disk(gd);
3099
3100 gd->flags = GENHD_FL_EXT_DEVT;
3101 if (sdp->removable) {
3102 gd->flags |= GENHD_FL_REMOVABLE;
3103 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3104 }
3105
3106 blk_pm_runtime_init(sdp->request_queue, dev);
3107 device_add_disk(dev, gd);
3108 if (sdkp->capacity)
3109 sd_dif_config_host(sdkp);
3110
3111 sd_revalidate_disk(gd);
3112
3113 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3114 sdp->removable ? "removable " : "");
3115 scsi_autopm_put_device(sdp);
3116 put_device(&sdkp->dev);
3117 }
3118
3119 /**
3120 * sd_probe - called during driver initialization and whenever a
3121 * new scsi device is attached to the system. It is called once
3122 * for each scsi device (not just disks) present.
3123 * @dev: pointer to device object
3124 *
3125 * Returns 0 if successful (or not interested in this scsi device
3126 * (e.g. scanner)); 1 when there is an error.
3127 *
3128 * Note: this function is invoked from the scsi mid-level.
3129 * This function sets up the mapping between a given
3130 * <host,channel,id,lun> (found in sdp) and new device name
3131 * (e.g. /dev/sda). More precisely it is the block device major
3132 * and minor number that is chosen here.
3133 *
3134 * Assume sd_probe is not re-entrant (for time being)
3135 * Also think about sd_probe() and sd_remove() running coincidentally.
3136 **/
3137 static int sd_probe(struct device *dev)
3138 {
3139 struct scsi_device *sdp = to_scsi_device(dev);
3140 struct scsi_disk *sdkp;
3141 struct gendisk *gd;
3142 int index;
3143 int error;
3144
3145 scsi_autopm_get_device(sdp);
3146 error = -ENODEV;
3147 if (sdp->type != TYPE_DISK &&
3148 sdp->type != TYPE_ZBC &&
3149 sdp->type != TYPE_MOD &&
3150 sdp->type != TYPE_RBC)
3151 goto out;
3152
3153 #ifndef CONFIG_BLK_DEV_ZONED
3154 if (sdp->type == TYPE_ZBC)
3155 goto out;
3156 #endif
3157 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3158 "sd_probe\n"));
3159
3160 error = -ENOMEM;
3161 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3162 if (!sdkp)
3163 goto out;
3164
3165 gd = alloc_disk(SD_MINORS);
3166 if (!gd)
3167 goto out_free;
3168
3169 do {
3170 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3171 goto out_put;
3172
3173 spin_lock(&sd_index_lock);
3174 error = ida_get_new(&sd_index_ida, &index);
3175 spin_unlock(&sd_index_lock);
3176 } while (error == -EAGAIN);
3177
3178 if (error) {
3179 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3180 goto out_put;
3181 }
3182
3183 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3184 if (error) {
3185 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3186 goto out_free_index;
3187 }
3188
3189 sdkp->device = sdp;
3190 sdkp->driver = &sd_template;
3191 sdkp->disk = gd;
3192 sdkp->index = index;
3193 atomic_set(&sdkp->openers, 0);
3194 atomic_set(&sdkp->device->ioerr_cnt, 0);
3195
3196 if (!sdp->request_queue->rq_timeout) {
3197 if (sdp->type != TYPE_MOD)
3198 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3199 else
3200 blk_queue_rq_timeout(sdp->request_queue,
3201 SD_MOD_TIMEOUT);
3202 }
3203
3204 device_initialize(&sdkp->dev);
3205 sdkp->dev.parent = dev;
3206 sdkp->dev.class = &sd_disk_class;
3207 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3208
3209 error = device_add(&sdkp->dev);
3210 if (error)
3211 goto out_free_index;
3212
3213 get_device(dev);
3214 dev_set_drvdata(dev, sdkp);
3215
3216 get_device(&sdkp->dev); /* prevent release before async_schedule */
3217 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3218
3219 return 0;
3220
3221 out_free_index:
3222 spin_lock(&sd_index_lock);
3223 ida_remove(&sd_index_ida, index);
3224 spin_unlock(&sd_index_lock);
3225 out_put:
3226 put_disk(gd);
3227 out_free:
3228 kfree(sdkp);
3229 out:
3230 scsi_autopm_put_device(sdp);
3231 return error;
3232 }
3233
3234 /**
3235 * sd_remove - called whenever a scsi disk (previously recognized by
3236 * sd_probe) is detached from the system. It is called (potentially
3237 * multiple times) during sd module unload.
3238 * @sdp: pointer to mid level scsi device object
3239 *
3240 * Note: this function is invoked from the scsi mid-level.
3241 * This function potentially frees up a device name (e.g. /dev/sdc)
3242 * that could be re-used by a subsequent sd_probe().
3243 * This function is not called when the built-in sd driver is "exit-ed".
3244 **/
3245 static int sd_remove(struct device *dev)
3246 {
3247 struct scsi_disk *sdkp;
3248 dev_t devt;
3249
3250 sdkp = dev_get_drvdata(dev);
3251 devt = disk_devt(sdkp->disk);
3252 scsi_autopm_get_device(sdkp->device);
3253
3254 async_synchronize_full_domain(&scsi_sd_pm_domain);
3255 async_synchronize_full_domain(&scsi_sd_probe_domain);
3256 device_del(&sdkp->dev);
3257 del_gendisk(sdkp->disk);
3258 sd_shutdown(dev);
3259
3260 sd_zbc_remove(sdkp);
3261
3262 blk_register_region(devt, SD_MINORS, NULL,
3263 sd_default_probe, NULL, NULL);
3264
3265 mutex_lock(&sd_ref_mutex);
3266 dev_set_drvdata(dev, NULL);
3267 put_device(&sdkp->dev);
3268 mutex_unlock(&sd_ref_mutex);
3269
3270 return 0;
3271 }
3272
3273 /**
3274 * scsi_disk_release - Called to free the scsi_disk structure
3275 * @dev: pointer to embedded class device
3276 *
3277 * sd_ref_mutex must be held entering this routine. Because it is
3278 * called on last put, you should always use the scsi_disk_get()
3279 * scsi_disk_put() helpers which manipulate the semaphore directly
3280 * and never do a direct put_device.
3281 **/
3282 static void scsi_disk_release(struct device *dev)
3283 {
3284 struct scsi_disk *sdkp = to_scsi_disk(dev);
3285 struct gendisk *disk = sdkp->disk;
3286
3287 spin_lock(&sd_index_lock);
3288 ida_remove(&sd_index_ida, sdkp->index);
3289 spin_unlock(&sd_index_lock);
3290
3291 disk->private_data = NULL;
3292 put_disk(disk);
3293 put_device(&sdkp->device->sdev_gendev);
3294
3295 kfree(sdkp);
3296 }
3297
3298 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3299 {
3300 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3301 struct scsi_sense_hdr sshdr;
3302 struct scsi_device *sdp = sdkp->device;
3303 int res;
3304
3305 if (start)
3306 cmd[4] |= 1; /* START */
3307
3308 if (sdp->start_stop_pwr_cond)
3309 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3310
3311 if (!scsi_device_online(sdp))
3312 return -ENODEV;
3313
3314 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3315 SD_TIMEOUT, SD_MAX_RETRIES, NULL, 0, RQF_PM);
3316 if (res) {
3317 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3318 if (driver_byte(res) & DRIVER_SENSE)
3319 sd_print_sense_hdr(sdkp, &sshdr);
3320 if (scsi_sense_valid(&sshdr) &&
3321 /* 0x3a is medium not present */
3322 sshdr.asc == 0x3a)
3323 res = 0;
3324 }
3325
3326 /* SCSI error codes must not go to the generic layer */
3327 if (res)
3328 return -EIO;
3329
3330 return 0;
3331 }
3332
3333 /*
3334 * Send a SYNCHRONIZE CACHE instruction down to the device through
3335 * the normal SCSI command structure. Wait for the command to
3336 * complete.
3337 */
3338 static void sd_shutdown(struct device *dev)
3339 {
3340 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3341
3342 if (!sdkp)
3343 return; /* this can happen */
3344
3345 if (pm_runtime_suspended(dev))
3346 return;
3347
3348 if (sdkp->WCE && sdkp->media_present) {
3349 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3350 sd_sync_cache(sdkp);
3351 }
3352
3353 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3354 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3355 sd_start_stop_device(sdkp, 0);
3356 }
3357 }
3358
3359 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3360 {
3361 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3362 int ret = 0;
3363
3364 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3365 return 0;
3366
3367 if (sdkp->WCE && sdkp->media_present) {
3368 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3369 ret = sd_sync_cache(sdkp);
3370 if (ret) {
3371 /* ignore OFFLINE device */
3372 if (ret == -ENODEV)
3373 ret = 0;
3374 goto done;
3375 }
3376 }
3377
3378 if (sdkp->device->manage_start_stop) {
3379 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3380 /* an error is not worth aborting a system sleep */
3381 ret = sd_start_stop_device(sdkp, 0);
3382 if (ignore_stop_errors)
3383 ret = 0;
3384 }
3385
3386 done:
3387 return ret;
3388 }
3389
3390 static int sd_suspend_system(struct device *dev)
3391 {
3392 return sd_suspend_common(dev, true);
3393 }
3394
3395 static int sd_suspend_runtime(struct device *dev)
3396 {
3397 return sd_suspend_common(dev, false);
3398 }
3399
3400 static int sd_resume(struct device *dev)
3401 {
3402 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3403
3404 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3405 return 0;
3406
3407 if (!sdkp->device->manage_start_stop)
3408 return 0;
3409
3410 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3411 return sd_start_stop_device(sdkp, 1);
3412 }
3413
3414 /**
3415 * init_sd - entry point for this driver (both when built in or when
3416 * a module).
3417 *
3418 * Note: this function registers this driver with the scsi mid-level.
3419 **/
3420 static int __init init_sd(void)
3421 {
3422 int majors = 0, i, err;
3423
3424 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3425
3426 for (i = 0; i < SD_MAJORS; i++) {
3427 if (register_blkdev(sd_major(i), "sd") != 0)
3428 continue;
3429 majors++;
3430 blk_register_region(sd_major(i), SD_MINORS, NULL,
3431 sd_default_probe, NULL, NULL);
3432 }
3433
3434 if (!majors)
3435 return -ENODEV;
3436
3437 err = class_register(&sd_disk_class);
3438 if (err)
3439 goto err_out;
3440
3441 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3442 0, 0, NULL);
3443 if (!sd_cdb_cache) {
3444 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3445 err = -ENOMEM;
3446 goto err_out_class;
3447 }
3448
3449 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3450 if (!sd_cdb_pool) {
3451 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3452 err = -ENOMEM;
3453 goto err_out_cache;
3454 }
3455
3456 err = scsi_register_driver(&sd_template.gendrv);
3457 if (err)
3458 goto err_out_driver;
3459
3460 return 0;
3461
3462 err_out_driver:
3463 mempool_destroy(sd_cdb_pool);
3464
3465 err_out_cache:
3466 kmem_cache_destroy(sd_cdb_cache);
3467
3468 err_out_class:
3469 class_unregister(&sd_disk_class);
3470 err_out:
3471 for (i = 0; i < SD_MAJORS; i++)
3472 unregister_blkdev(sd_major(i), "sd");
3473 return err;
3474 }
3475
3476 /**
3477 * exit_sd - exit point for this driver (when it is a module).
3478 *
3479 * Note: this function unregisters this driver from the scsi mid-level.
3480 **/
3481 static void __exit exit_sd(void)
3482 {
3483 int i;
3484
3485 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3486
3487 scsi_unregister_driver(&sd_template.gendrv);
3488 mempool_destroy(sd_cdb_pool);
3489 kmem_cache_destroy(sd_cdb_cache);
3490
3491 class_unregister(&sd_disk_class);
3492
3493 for (i = 0; i < SD_MAJORS; i++) {
3494 blk_unregister_region(sd_major(i), SD_MINORS);
3495 unregister_blkdev(sd_major(i), "sd");
3496 }
3497 }
3498
3499 module_init(init_sd);
3500 module_exit(exit_sd);
3501
3502 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3503 struct scsi_sense_hdr *sshdr)
3504 {
3505 scsi_print_sense_hdr(sdkp->device,
3506 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3507 }
3508
3509 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3510 int result)
3511 {
3512 const char *hb_string = scsi_hostbyte_string(result);
3513 const char *db_string = scsi_driverbyte_string(result);
3514
3515 if (hb_string || db_string)
3516 sd_printk(KERN_INFO, sdkp,
3517 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3518 hb_string ? hb_string : "invalid",
3519 db_string ? db_string : "invalid");
3520 else
3521 sd_printk(KERN_INFO, sdkp,
3522 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3523 msg, host_byte(result), driver_byte(result));
3524 }
3525