]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/sd.c
Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <asm/uaccess.h>
55 #include <asm/unaligned.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_dbg.h>
60 #include <scsi/scsi_device.h>
61 #include <scsi/scsi_driver.h>
62 #include <scsi/scsi_eh.h>
63 #include <scsi/scsi_host.h>
64 #include <scsi/scsi_ioctl.h>
65 #include <scsi/scsicam.h>
66
67 #include "sd.h"
68 #include "scsi_priv.h"
69 #include "scsi_logging.h"
70
71 MODULE_AUTHOR("Eric Youngdale");
72 MODULE_DESCRIPTION("SCSI disk (sd) driver");
73 MODULE_LICENSE("GPL");
74
75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
94
95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
96 #define SD_MINORS 16
97 #else
98 #define SD_MINORS 0
99 #endif
100
101 static void sd_config_discard(struct scsi_disk *, unsigned int);
102 static void sd_config_write_same(struct scsi_disk *);
103 static int sd_revalidate_disk(struct gendisk *);
104 static void sd_unlock_native_capacity(struct gendisk *disk);
105 static int sd_probe(struct device *);
106 static int sd_remove(struct device *);
107 static void sd_shutdown(struct device *);
108 static int sd_suspend_system(struct device *);
109 static int sd_suspend_runtime(struct device *);
110 static int sd_resume(struct device *);
111 static void sd_rescan(struct device *);
112 static int sd_init_command(struct scsi_cmnd *SCpnt);
113 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
114 static int sd_done(struct scsi_cmnd *);
115 static int sd_eh_action(struct scsi_cmnd *, int);
116 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
117 static void scsi_disk_release(struct device *cdev);
118 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
119 static void sd_print_result(const struct scsi_disk *, const char *, int);
120
121 static DEFINE_SPINLOCK(sd_index_lock);
122 static DEFINE_IDA(sd_index_ida);
123
124 /* This semaphore is used to mediate the 0->1 reference get in the
125 * face of object destruction (i.e. we can't allow a get on an
126 * object after last put) */
127 static DEFINE_MUTEX(sd_ref_mutex);
128
129 static struct kmem_cache *sd_cdb_cache;
130 static mempool_t *sd_cdb_pool;
131
132 static const char *sd_cache_types[] = {
133 "write through", "none", "write back",
134 "write back, no read (daft)"
135 };
136
137 static void sd_set_flush_flag(struct scsi_disk *sdkp)
138 {
139 unsigned flush = 0;
140
141 if (sdkp->WCE) {
142 flush |= REQ_FLUSH;
143 if (sdkp->DPOFUA)
144 flush |= REQ_FUA;
145 }
146
147 blk_queue_flush(sdkp->disk->queue, flush);
148 }
149
150 static ssize_t
151 cache_type_store(struct device *dev, struct device_attribute *attr,
152 const char *buf, size_t count)
153 {
154 int i, ct = -1, rcd, wce, sp;
155 struct scsi_disk *sdkp = to_scsi_disk(dev);
156 struct scsi_device *sdp = sdkp->device;
157 char buffer[64];
158 char *buffer_data;
159 struct scsi_mode_data data;
160 struct scsi_sense_hdr sshdr;
161 static const char temp[] = "temporary ";
162 int len;
163
164 if (sdp->type != TYPE_DISK)
165 /* no cache control on RBC devices; theoretically they
166 * can do it, but there's probably so many exceptions
167 * it's not worth the risk */
168 return -EINVAL;
169
170 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
171 buf += sizeof(temp) - 1;
172 sdkp->cache_override = 1;
173 } else {
174 sdkp->cache_override = 0;
175 }
176
177 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
178 len = strlen(sd_cache_types[i]);
179 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
180 buf[len] == '\n') {
181 ct = i;
182 break;
183 }
184 }
185 if (ct < 0)
186 return -EINVAL;
187 rcd = ct & 0x01 ? 1 : 0;
188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189
190 if (sdkp->cache_override) {
191 sdkp->WCE = wce;
192 sdkp->RCD = rcd;
193 sd_set_flush_flag(sdkp);
194 return count;
195 }
196
197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 SD_MAX_RETRIES, &data, NULL))
199 return -EINVAL;
200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 data.block_descriptor_length);
202 buffer_data = buffer + data.header_length +
203 data.block_descriptor_length;
204 buffer_data[2] &= ~0x05;
205 buffer_data[2] |= wce << 2 | rcd;
206 sp = buffer_data[0] & 0x80 ? 1 : 0;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234
235 if (!capable(CAP_SYS_ADMIN))
236 return -EACCES;
237
238 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239
240 return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257 struct scsi_device *sdp = sdkp->device;
258
259 if (!capable(CAP_SYS_ADMIN))
260 return -EACCES;
261
262 if (sdp->type != TYPE_DISK)
263 return -EINVAL;
264
265 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266
267 return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 struct scsi_disk *sdkp = to_scsi_disk(dev);
275 int ct = sdkp->RCD + 2*sdkp->WCE;
276
277 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285
286 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 char *buf)
293 {
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295
296 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
297 }
298
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 const char *buf, size_t count)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304 unsigned int val;
305 int err;
306
307 if (!capable(CAP_SYS_ADMIN))
308 return -EACCES;
309
310 err = kstrtouint(buf, 10, &val);
311
312 if (err)
313 return err;
314
315 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
316 sdkp->protection_type = val;
317
318 return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 char *buf)
325 {
326 struct scsi_disk *sdkp = to_scsi_disk(dev);
327 struct scsi_device *sdp = sdkp->device;
328 unsigned int dif, dix;
329
330 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332
333 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
334 dif = 0;
335 dix = 1;
336 }
337
338 if (!dif && !dix)
339 return snprintf(buf, 20, "none\n");
340
341 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 struct scsi_disk *sdkp = to_scsi_disk(dev);
349
350 return snprintf(buf, 20, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 char *buf)
357 {
358 struct scsi_disk *sdkp = to_scsi_disk(dev);
359
360 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363
364 static const char *lbp_mode[] = {
365 [SD_LBP_FULL] = "full",
366 [SD_LBP_UNMAP] = "unmap",
367 [SD_LBP_WS16] = "writesame_16",
368 [SD_LBP_WS10] = "writesame_10",
369 [SD_LBP_ZERO] = "writesame_zero",
370 [SD_LBP_DISABLE] = "disabled",
371 };
372
373 static ssize_t
374 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
375 char *buf)
376 {
377 struct scsi_disk *sdkp = to_scsi_disk(dev);
378
379 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
380 }
381
382 static ssize_t
383 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
384 const char *buf, size_t count)
385 {
386 struct scsi_disk *sdkp = to_scsi_disk(dev);
387 struct scsi_device *sdp = sdkp->device;
388
389 if (!capable(CAP_SYS_ADMIN))
390 return -EACCES;
391
392 if (sdp->type != TYPE_DISK)
393 return -EINVAL;
394
395 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
396 sd_config_discard(sdkp, SD_LBP_UNMAP);
397 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
398 sd_config_discard(sdkp, SD_LBP_WS16);
399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
400 sd_config_discard(sdkp, SD_LBP_WS10);
401 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
402 sd_config_discard(sdkp, SD_LBP_ZERO);
403 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
404 sd_config_discard(sdkp, SD_LBP_DISABLE);
405 else
406 return -EINVAL;
407
408 return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411
412 static ssize_t
413 max_medium_access_timeouts_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415 {
416 struct scsi_disk *sdkp = to_scsi_disk(dev);
417
418 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
419 }
420
421 static ssize_t
422 max_medium_access_timeouts_store(struct device *dev,
423 struct device_attribute *attr, const char *buf,
424 size_t count)
425 {
426 struct scsi_disk *sdkp = to_scsi_disk(dev);
427 int err;
428
429 if (!capable(CAP_SYS_ADMIN))
430 return -EACCES;
431
432 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
433
434 return err ? err : count;
435 }
436 static DEVICE_ATTR_RW(max_medium_access_timeouts);
437
438 static ssize_t
439 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
440 char *buf)
441 {
442 struct scsi_disk *sdkp = to_scsi_disk(dev);
443
444 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
445 }
446
447 static ssize_t
448 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
449 const char *buf, size_t count)
450 {
451 struct scsi_disk *sdkp = to_scsi_disk(dev);
452 struct scsi_device *sdp = sdkp->device;
453 unsigned long max;
454 int err;
455
456 if (!capable(CAP_SYS_ADMIN))
457 return -EACCES;
458
459 if (sdp->type != TYPE_DISK)
460 return -EINVAL;
461
462 err = kstrtoul(buf, 10, &max);
463
464 if (err)
465 return err;
466
467 if (max == 0)
468 sdp->no_write_same = 1;
469 else if (max <= SD_MAX_WS16_BLOCKS) {
470 sdp->no_write_same = 0;
471 sdkp->max_ws_blocks = max;
472 }
473
474 sd_config_write_same(sdkp);
475
476 return count;
477 }
478 static DEVICE_ATTR_RW(max_write_same_blocks);
479
480 static struct attribute *sd_disk_attrs[] = {
481 &dev_attr_cache_type.attr,
482 &dev_attr_FUA.attr,
483 &dev_attr_allow_restart.attr,
484 &dev_attr_manage_start_stop.attr,
485 &dev_attr_protection_type.attr,
486 &dev_attr_protection_mode.attr,
487 &dev_attr_app_tag_own.attr,
488 &dev_attr_thin_provisioning.attr,
489 &dev_attr_provisioning_mode.attr,
490 &dev_attr_max_write_same_blocks.attr,
491 &dev_attr_max_medium_access_timeouts.attr,
492 NULL,
493 };
494 ATTRIBUTE_GROUPS(sd_disk);
495
496 static struct class sd_disk_class = {
497 .name = "scsi_disk",
498 .owner = THIS_MODULE,
499 .dev_release = scsi_disk_release,
500 .dev_groups = sd_disk_groups,
501 };
502
503 static const struct dev_pm_ops sd_pm_ops = {
504 .suspend = sd_suspend_system,
505 .resume = sd_resume,
506 .poweroff = sd_suspend_system,
507 .restore = sd_resume,
508 .runtime_suspend = sd_suspend_runtime,
509 .runtime_resume = sd_resume,
510 };
511
512 static struct scsi_driver sd_template = {
513 .gendrv = {
514 .name = "sd",
515 .owner = THIS_MODULE,
516 .probe = sd_probe,
517 .remove = sd_remove,
518 .shutdown = sd_shutdown,
519 .pm = &sd_pm_ops,
520 },
521 .rescan = sd_rescan,
522 .init_command = sd_init_command,
523 .uninit_command = sd_uninit_command,
524 .done = sd_done,
525 .eh_action = sd_eh_action,
526 };
527
528 /*
529 * Dummy kobj_map->probe function.
530 * The default ->probe function will call modprobe, which is
531 * pointless as this module is already loaded.
532 */
533 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
534 {
535 return NULL;
536 }
537
538 /*
539 * Device no to disk mapping:
540 *
541 * major disc2 disc p1
542 * |............|.............|....|....| <- dev_t
543 * 31 20 19 8 7 4 3 0
544 *
545 * Inside a major, we have 16k disks, however mapped non-
546 * contiguously. The first 16 disks are for major0, the next
547 * ones with major1, ... Disk 256 is for major0 again, disk 272
548 * for major1, ...
549 * As we stay compatible with our numbering scheme, we can reuse
550 * the well-know SCSI majors 8, 65--71, 136--143.
551 */
552 static int sd_major(int major_idx)
553 {
554 switch (major_idx) {
555 case 0:
556 return SCSI_DISK0_MAJOR;
557 case 1 ... 7:
558 return SCSI_DISK1_MAJOR + major_idx - 1;
559 case 8 ... 15:
560 return SCSI_DISK8_MAJOR + major_idx - 8;
561 default:
562 BUG();
563 return 0; /* shut up gcc */
564 }
565 }
566
567 static struct scsi_disk *__scsi_disk_get(struct gendisk *disk)
568 {
569 struct scsi_disk *sdkp = NULL;
570
571 if (disk->private_data) {
572 sdkp = scsi_disk(disk);
573 if (scsi_device_get(sdkp->device) == 0)
574 get_device(&sdkp->dev);
575 else
576 sdkp = NULL;
577 }
578 return sdkp;
579 }
580
581 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
582 {
583 struct scsi_disk *sdkp;
584
585 mutex_lock(&sd_ref_mutex);
586 sdkp = __scsi_disk_get(disk);
587 mutex_unlock(&sd_ref_mutex);
588 return sdkp;
589 }
590
591 static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev)
592 {
593 struct scsi_disk *sdkp;
594
595 mutex_lock(&sd_ref_mutex);
596 sdkp = dev_get_drvdata(dev);
597 if (sdkp)
598 sdkp = __scsi_disk_get(sdkp->disk);
599 mutex_unlock(&sd_ref_mutex);
600 return sdkp;
601 }
602
603 static void scsi_disk_put(struct scsi_disk *sdkp)
604 {
605 struct scsi_device *sdev = sdkp->device;
606
607 mutex_lock(&sd_ref_mutex);
608 put_device(&sdkp->dev);
609 scsi_device_put(sdev);
610 mutex_unlock(&sd_ref_mutex);
611 }
612
613
614
615 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
616 unsigned int dix, unsigned int dif)
617 {
618 struct bio *bio = scmd->request->bio;
619 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
620 unsigned int protect = 0;
621
622 if (dix) { /* DIX Type 0, 1, 2, 3 */
623 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
624 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
625
626 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
627 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
628 }
629
630 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
631 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
632
633 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
634 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
635 }
636
637 if (dif) { /* DIX/DIF Type 1, 2, 3 */
638 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
639
640 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
641 protect = 3 << 5; /* Disable target PI checking */
642 else
643 protect = 1 << 5; /* Enable target PI checking */
644 }
645
646 scsi_set_prot_op(scmd, prot_op);
647 scsi_set_prot_type(scmd, dif);
648 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
649
650 return protect;
651 }
652
653 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
654 {
655 struct request_queue *q = sdkp->disk->queue;
656 unsigned int logical_block_size = sdkp->device->sector_size;
657 unsigned int max_blocks = 0;
658
659 q->limits.discard_zeroes_data = 0;
660 q->limits.discard_alignment = sdkp->unmap_alignment *
661 logical_block_size;
662 q->limits.discard_granularity =
663 max(sdkp->physical_block_size,
664 sdkp->unmap_granularity * logical_block_size);
665
666 sdkp->provisioning_mode = mode;
667
668 switch (mode) {
669
670 case SD_LBP_DISABLE:
671 q->limits.max_discard_sectors = 0;
672 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
673 return;
674
675 case SD_LBP_UNMAP:
676 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
677 (u32)SD_MAX_WS16_BLOCKS);
678 break;
679
680 case SD_LBP_WS16:
681 max_blocks = min_not_zero(sdkp->max_ws_blocks,
682 (u32)SD_MAX_WS16_BLOCKS);
683 q->limits.discard_zeroes_data = sdkp->lbprz;
684 break;
685
686 case SD_LBP_WS10:
687 max_blocks = min_not_zero(sdkp->max_ws_blocks,
688 (u32)SD_MAX_WS10_BLOCKS);
689 q->limits.discard_zeroes_data = sdkp->lbprz;
690 break;
691
692 case SD_LBP_ZERO:
693 max_blocks = min_not_zero(sdkp->max_ws_blocks,
694 (u32)SD_MAX_WS10_BLOCKS);
695 q->limits.discard_zeroes_data = 1;
696 break;
697 }
698
699 q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9);
700 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
701 }
702
703 /**
704 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
705 * @sdp: scsi device to operate one
706 * @rq: Request to prepare
707 *
708 * Will issue either UNMAP or WRITE SAME(16) depending on preference
709 * indicated by target device.
710 **/
711 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
712 {
713 struct request *rq = cmd->request;
714 struct scsi_device *sdp = cmd->device;
715 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
716 sector_t sector = blk_rq_pos(rq);
717 unsigned int nr_sectors = blk_rq_sectors(rq);
718 unsigned int nr_bytes = blk_rq_bytes(rq);
719 unsigned int len;
720 int ret;
721 char *buf;
722 struct page *page;
723
724 sector >>= ilog2(sdp->sector_size) - 9;
725 nr_sectors >>= ilog2(sdp->sector_size) - 9;
726
727 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
728 if (!page)
729 return BLKPREP_DEFER;
730
731 switch (sdkp->provisioning_mode) {
732 case SD_LBP_UNMAP:
733 buf = page_address(page);
734
735 cmd->cmd_len = 10;
736 cmd->cmnd[0] = UNMAP;
737 cmd->cmnd[8] = 24;
738
739 put_unaligned_be16(6 + 16, &buf[0]);
740 put_unaligned_be16(16, &buf[2]);
741 put_unaligned_be64(sector, &buf[8]);
742 put_unaligned_be32(nr_sectors, &buf[16]);
743
744 len = 24;
745 break;
746
747 case SD_LBP_WS16:
748 cmd->cmd_len = 16;
749 cmd->cmnd[0] = WRITE_SAME_16;
750 cmd->cmnd[1] = 0x8; /* UNMAP */
751 put_unaligned_be64(sector, &cmd->cmnd[2]);
752 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
753
754 len = sdkp->device->sector_size;
755 break;
756
757 case SD_LBP_WS10:
758 case SD_LBP_ZERO:
759 cmd->cmd_len = 10;
760 cmd->cmnd[0] = WRITE_SAME;
761 if (sdkp->provisioning_mode == SD_LBP_WS10)
762 cmd->cmnd[1] = 0x8; /* UNMAP */
763 put_unaligned_be32(sector, &cmd->cmnd[2]);
764 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
765
766 len = sdkp->device->sector_size;
767 break;
768
769 default:
770 ret = BLKPREP_KILL;
771 goto out;
772 }
773
774 rq->completion_data = page;
775 rq->timeout = SD_TIMEOUT;
776
777 cmd->transfersize = len;
778 cmd->allowed = SD_MAX_RETRIES;
779
780 /*
781 * Initially __data_len is set to the amount of data that needs to be
782 * transferred to the target. This amount depends on whether WRITE SAME
783 * or UNMAP is being used. After the scatterlist has been mapped by
784 * scsi_init_io() we set __data_len to the size of the area to be
785 * discarded on disk. This allows us to report completion on the full
786 * amount of blocks described by the request.
787 */
788 blk_add_request_payload(rq, page, len);
789 ret = scsi_init_io(cmd);
790 rq->__data_len = nr_bytes;
791
792 out:
793 if (ret != BLKPREP_OK)
794 __free_page(page);
795 return ret;
796 }
797
798 static void sd_config_write_same(struct scsi_disk *sdkp)
799 {
800 struct request_queue *q = sdkp->disk->queue;
801 unsigned int logical_block_size = sdkp->device->sector_size;
802
803 if (sdkp->device->no_write_same) {
804 sdkp->max_ws_blocks = 0;
805 goto out;
806 }
807
808 /* Some devices can not handle block counts above 0xffff despite
809 * supporting WRITE SAME(16). Consequently we default to 64k
810 * blocks per I/O unless the device explicitly advertises a
811 * bigger limit.
812 */
813 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
814 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
815 (u32)SD_MAX_WS16_BLOCKS);
816 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
817 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
818 (u32)SD_MAX_WS10_BLOCKS);
819 else {
820 sdkp->device->no_write_same = 1;
821 sdkp->max_ws_blocks = 0;
822 }
823
824 out:
825 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
826 (logical_block_size >> 9));
827 }
828
829 /**
830 * sd_setup_write_same_cmnd - write the same data to multiple blocks
831 * @cmd: command to prepare
832 *
833 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
834 * preference indicated by target device.
835 **/
836 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
837 {
838 struct request *rq = cmd->request;
839 struct scsi_device *sdp = cmd->device;
840 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
841 struct bio *bio = rq->bio;
842 sector_t sector = blk_rq_pos(rq);
843 unsigned int nr_sectors = blk_rq_sectors(rq);
844 unsigned int nr_bytes = blk_rq_bytes(rq);
845 int ret;
846
847 if (sdkp->device->no_write_same)
848 return BLKPREP_KILL;
849
850 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
851
852 sector >>= ilog2(sdp->sector_size) - 9;
853 nr_sectors >>= ilog2(sdp->sector_size) - 9;
854
855 rq->timeout = SD_WRITE_SAME_TIMEOUT;
856
857 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
858 cmd->cmd_len = 16;
859 cmd->cmnd[0] = WRITE_SAME_16;
860 put_unaligned_be64(sector, &cmd->cmnd[2]);
861 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
862 } else {
863 cmd->cmd_len = 10;
864 cmd->cmnd[0] = WRITE_SAME;
865 put_unaligned_be32(sector, &cmd->cmnd[2]);
866 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
867 }
868
869 cmd->transfersize = sdp->sector_size;
870 cmd->allowed = SD_MAX_RETRIES;
871
872 /*
873 * For WRITE_SAME the data transferred in the DATA IN buffer is
874 * different from the amount of data actually written to the target.
875 *
876 * We set up __data_len to the amount of data transferred from the
877 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
878 * to transfer a single sector of data first, but then reset it to
879 * the amount of data to be written right after so that the I/O path
880 * knows how much to actually write.
881 */
882 rq->__data_len = sdp->sector_size;
883 ret = scsi_init_io(cmd);
884 rq->__data_len = nr_bytes;
885 return ret;
886 }
887
888 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
889 {
890 struct request *rq = cmd->request;
891
892 /* flush requests don't perform I/O, zero the S/G table */
893 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
894
895 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
896 cmd->cmd_len = 10;
897 cmd->transfersize = 0;
898 cmd->allowed = SD_MAX_RETRIES;
899
900 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
901 return BLKPREP_OK;
902 }
903
904 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
905 {
906 struct request *rq = SCpnt->request;
907 struct scsi_device *sdp = SCpnt->device;
908 struct gendisk *disk = rq->rq_disk;
909 struct scsi_disk *sdkp;
910 sector_t block = blk_rq_pos(rq);
911 sector_t threshold;
912 unsigned int this_count = blk_rq_sectors(rq);
913 unsigned int dif, dix;
914 int ret;
915 unsigned char protect;
916
917 ret = scsi_init_io(SCpnt);
918 if (ret != BLKPREP_OK)
919 goto out;
920 SCpnt = rq->special;
921 sdkp = scsi_disk(disk);
922
923 /* from here on until we're complete, any goto out
924 * is used for a killable error condition */
925 ret = BLKPREP_KILL;
926
927 SCSI_LOG_HLQUEUE(1,
928 scmd_printk(KERN_INFO, SCpnt,
929 "%s: block=%llu, count=%d\n",
930 __func__, (unsigned long long)block, this_count));
931
932 if (!sdp || !scsi_device_online(sdp) ||
933 block + blk_rq_sectors(rq) > get_capacity(disk)) {
934 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
935 "Finishing %u sectors\n",
936 blk_rq_sectors(rq)));
937 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
938 "Retry with 0x%p\n", SCpnt));
939 goto out;
940 }
941
942 if (sdp->changed) {
943 /*
944 * quietly refuse to do anything to a changed disc until
945 * the changed bit has been reset
946 */
947 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
948 goto out;
949 }
950
951 /*
952 * Some SD card readers can't handle multi-sector accesses which touch
953 * the last one or two hardware sectors. Split accesses as needed.
954 */
955 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
956 (sdp->sector_size / 512);
957
958 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
959 if (block < threshold) {
960 /* Access up to the threshold but not beyond */
961 this_count = threshold - block;
962 } else {
963 /* Access only a single hardware sector */
964 this_count = sdp->sector_size / 512;
965 }
966 }
967
968 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
969 (unsigned long long)block));
970
971 /*
972 * If we have a 1K hardware sectorsize, prevent access to single
973 * 512 byte sectors. In theory we could handle this - in fact
974 * the scsi cdrom driver must be able to handle this because
975 * we typically use 1K blocksizes, and cdroms typically have
976 * 2K hardware sectorsizes. Of course, things are simpler
977 * with the cdrom, since it is read-only. For performance
978 * reasons, the filesystems should be able to handle this
979 * and not force the scsi disk driver to use bounce buffers
980 * for this.
981 */
982 if (sdp->sector_size == 1024) {
983 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
984 scmd_printk(KERN_ERR, SCpnt,
985 "Bad block number requested\n");
986 goto out;
987 } else {
988 block = block >> 1;
989 this_count = this_count >> 1;
990 }
991 }
992 if (sdp->sector_size == 2048) {
993 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
994 scmd_printk(KERN_ERR, SCpnt,
995 "Bad block number requested\n");
996 goto out;
997 } else {
998 block = block >> 2;
999 this_count = this_count >> 2;
1000 }
1001 }
1002 if (sdp->sector_size == 4096) {
1003 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1004 scmd_printk(KERN_ERR, SCpnt,
1005 "Bad block number requested\n");
1006 goto out;
1007 } else {
1008 block = block >> 3;
1009 this_count = this_count >> 3;
1010 }
1011 }
1012 if (rq_data_dir(rq) == WRITE) {
1013 SCpnt->cmnd[0] = WRITE_6;
1014
1015 if (blk_integrity_rq(rq))
1016 sd_dif_prepare(SCpnt);
1017
1018 } else if (rq_data_dir(rq) == READ) {
1019 SCpnt->cmnd[0] = READ_6;
1020 } else {
1021 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1022 goto out;
1023 }
1024
1025 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1026 "%s %d/%u 512 byte blocks.\n",
1027 (rq_data_dir(rq) == WRITE) ?
1028 "writing" : "reading", this_count,
1029 blk_rq_sectors(rq)));
1030
1031 dix = scsi_prot_sg_count(SCpnt);
1032 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1033
1034 if (dif || dix)
1035 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1036 else
1037 protect = 0;
1038
1039 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1040 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1041
1042 if (unlikely(SCpnt->cmnd == NULL)) {
1043 ret = BLKPREP_DEFER;
1044 goto out;
1045 }
1046
1047 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1048 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1049 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1050 SCpnt->cmnd[7] = 0x18;
1051 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1052 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1053
1054 /* LBA */
1055 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1056 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1057 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1058 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1059 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1060 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1061 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1062 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1063
1064 /* Expected Indirect LBA */
1065 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1066 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1067 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1068 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1069
1070 /* Transfer length */
1071 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1072 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1073 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1074 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1075 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1076 SCpnt->cmnd[0] += READ_16 - READ_6;
1077 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1078 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1079 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1080 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1081 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1082 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1083 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1084 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1085 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1086 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1087 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1088 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1089 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1090 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1091 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1092 scsi_device_protection(SCpnt->device) ||
1093 SCpnt->device->use_10_for_rw) {
1094 SCpnt->cmnd[0] += READ_10 - READ_6;
1095 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1096 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1097 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1098 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1099 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1100 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1101 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1102 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1103 } else {
1104 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1105 /*
1106 * This happens only if this drive failed
1107 * 10byte rw command with ILLEGAL_REQUEST
1108 * during operation and thus turned off
1109 * use_10_for_rw.
1110 */
1111 scmd_printk(KERN_ERR, SCpnt,
1112 "FUA write on READ/WRITE(6) drive\n");
1113 goto out;
1114 }
1115
1116 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1117 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1118 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1119 SCpnt->cmnd[4] = (unsigned char) this_count;
1120 SCpnt->cmnd[5] = 0;
1121 }
1122 SCpnt->sdb.length = this_count * sdp->sector_size;
1123
1124 /*
1125 * We shouldn't disconnect in the middle of a sector, so with a dumb
1126 * host adapter, it's safe to assume that we can at least transfer
1127 * this many bytes between each connect / disconnect.
1128 */
1129 SCpnt->transfersize = sdp->sector_size;
1130 SCpnt->underflow = this_count << 9;
1131 SCpnt->allowed = SD_MAX_RETRIES;
1132
1133 /*
1134 * This indicates that the command is ready from our end to be
1135 * queued.
1136 */
1137 ret = BLKPREP_OK;
1138 out:
1139 return ret;
1140 }
1141
1142 static int sd_init_command(struct scsi_cmnd *cmd)
1143 {
1144 struct request *rq = cmd->request;
1145
1146 if (rq->cmd_flags & REQ_DISCARD)
1147 return sd_setup_discard_cmnd(cmd);
1148 else if (rq->cmd_flags & REQ_WRITE_SAME)
1149 return sd_setup_write_same_cmnd(cmd);
1150 else if (rq->cmd_flags & REQ_FLUSH)
1151 return sd_setup_flush_cmnd(cmd);
1152 else
1153 return sd_setup_read_write_cmnd(cmd);
1154 }
1155
1156 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1157 {
1158 struct request *rq = SCpnt->request;
1159
1160 if (rq->cmd_flags & REQ_DISCARD)
1161 __free_page(rq->completion_data);
1162
1163 if (SCpnt->cmnd != rq->cmd) {
1164 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1165 SCpnt->cmnd = NULL;
1166 SCpnt->cmd_len = 0;
1167 }
1168 }
1169
1170 /**
1171 * sd_open - open a scsi disk device
1172 * @inode: only i_rdev member may be used
1173 * @filp: only f_mode and f_flags may be used
1174 *
1175 * Returns 0 if successful. Returns a negated errno value in case
1176 * of error.
1177 *
1178 * Note: This can be called from a user context (e.g. fsck(1) )
1179 * or from within the kernel (e.g. as a result of a mount(1) ).
1180 * In the latter case @inode and @filp carry an abridged amount
1181 * of information as noted above.
1182 *
1183 * Locking: called with bdev->bd_mutex held.
1184 **/
1185 static int sd_open(struct block_device *bdev, fmode_t mode)
1186 {
1187 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1188 struct scsi_device *sdev;
1189 int retval;
1190
1191 if (!sdkp)
1192 return -ENXIO;
1193
1194 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1195
1196 sdev = sdkp->device;
1197
1198 /*
1199 * If the device is in error recovery, wait until it is done.
1200 * If the device is offline, then disallow any access to it.
1201 */
1202 retval = -ENXIO;
1203 if (!scsi_block_when_processing_errors(sdev))
1204 goto error_out;
1205
1206 if (sdev->removable || sdkp->write_prot)
1207 check_disk_change(bdev);
1208
1209 /*
1210 * If the drive is empty, just let the open fail.
1211 */
1212 retval = -ENOMEDIUM;
1213 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1214 goto error_out;
1215
1216 /*
1217 * If the device has the write protect tab set, have the open fail
1218 * if the user expects to be able to write to the thing.
1219 */
1220 retval = -EROFS;
1221 if (sdkp->write_prot && (mode & FMODE_WRITE))
1222 goto error_out;
1223
1224 /*
1225 * It is possible that the disk changing stuff resulted in
1226 * the device being taken offline. If this is the case,
1227 * report this to the user, and don't pretend that the
1228 * open actually succeeded.
1229 */
1230 retval = -ENXIO;
1231 if (!scsi_device_online(sdev))
1232 goto error_out;
1233
1234 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1235 if (scsi_block_when_processing_errors(sdev))
1236 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1237 }
1238
1239 return 0;
1240
1241 error_out:
1242 scsi_disk_put(sdkp);
1243 return retval;
1244 }
1245
1246 /**
1247 * sd_release - invoked when the (last) close(2) is called on this
1248 * scsi disk.
1249 * @inode: only i_rdev member may be used
1250 * @filp: only f_mode and f_flags may be used
1251 *
1252 * Returns 0.
1253 *
1254 * Note: may block (uninterruptible) if error recovery is underway
1255 * on this disk.
1256 *
1257 * Locking: called with bdev->bd_mutex held.
1258 **/
1259 static void sd_release(struct gendisk *disk, fmode_t mode)
1260 {
1261 struct scsi_disk *sdkp = scsi_disk(disk);
1262 struct scsi_device *sdev = sdkp->device;
1263
1264 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1265
1266 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1267 if (scsi_block_when_processing_errors(sdev))
1268 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1269 }
1270
1271 /*
1272 * XXX and what if there are packets in flight and this close()
1273 * XXX is followed by a "rmmod sd_mod"?
1274 */
1275
1276 scsi_disk_put(sdkp);
1277 }
1278
1279 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1280 {
1281 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1282 struct scsi_device *sdp = sdkp->device;
1283 struct Scsi_Host *host = sdp->host;
1284 int diskinfo[4];
1285
1286 /* default to most commonly used values */
1287 diskinfo[0] = 0x40; /* 1 << 6 */
1288 diskinfo[1] = 0x20; /* 1 << 5 */
1289 diskinfo[2] = sdkp->capacity >> 11;
1290
1291 /* override with calculated, extended default, or driver values */
1292 if (host->hostt->bios_param)
1293 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo);
1294 else
1295 scsicam_bios_param(bdev, sdkp->capacity, diskinfo);
1296
1297 geo->heads = diskinfo[0];
1298 geo->sectors = diskinfo[1];
1299 geo->cylinders = diskinfo[2];
1300 return 0;
1301 }
1302
1303 /**
1304 * sd_ioctl - process an ioctl
1305 * @inode: only i_rdev/i_bdev members may be used
1306 * @filp: only f_mode and f_flags may be used
1307 * @cmd: ioctl command number
1308 * @arg: this is third argument given to ioctl(2) system call.
1309 * Often contains a pointer.
1310 *
1311 * Returns 0 if successful (some ioctls return positive numbers on
1312 * success as well). Returns a negated errno value in case of error.
1313 *
1314 * Note: most ioctls are forward onto the block subsystem or further
1315 * down in the scsi subsystem.
1316 **/
1317 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1318 unsigned int cmd, unsigned long arg)
1319 {
1320 struct gendisk *disk = bdev->bd_disk;
1321 struct scsi_disk *sdkp = scsi_disk(disk);
1322 struct scsi_device *sdp = sdkp->device;
1323 void __user *p = (void __user *)arg;
1324 int error;
1325
1326 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1327 "cmd=0x%x\n", disk->disk_name, cmd));
1328
1329 error = scsi_verify_blk_ioctl(bdev, cmd);
1330 if (error < 0)
1331 return error;
1332
1333 /*
1334 * If we are in the middle of error recovery, don't let anyone
1335 * else try and use this device. Also, if error recovery fails, it
1336 * may try and take the device offline, in which case all further
1337 * access to the device is prohibited.
1338 */
1339 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1340 (mode & FMODE_NDELAY) != 0);
1341 if (error)
1342 goto out;
1343
1344 /*
1345 * Send SCSI addressing ioctls directly to mid level, send other
1346 * ioctls to block level and then onto mid level if they can't be
1347 * resolved.
1348 */
1349 switch (cmd) {
1350 case SCSI_IOCTL_GET_IDLUN:
1351 case SCSI_IOCTL_GET_BUS_NUMBER:
1352 error = scsi_ioctl(sdp, cmd, p);
1353 break;
1354 default:
1355 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1356 if (error != -ENOTTY)
1357 break;
1358 error = scsi_ioctl(sdp, cmd, p);
1359 break;
1360 }
1361 out:
1362 return error;
1363 }
1364
1365 static void set_media_not_present(struct scsi_disk *sdkp)
1366 {
1367 if (sdkp->media_present)
1368 sdkp->device->changed = 1;
1369
1370 if (sdkp->device->removable) {
1371 sdkp->media_present = 0;
1372 sdkp->capacity = 0;
1373 }
1374 }
1375
1376 static int media_not_present(struct scsi_disk *sdkp,
1377 struct scsi_sense_hdr *sshdr)
1378 {
1379 if (!scsi_sense_valid(sshdr))
1380 return 0;
1381
1382 /* not invoked for commands that could return deferred errors */
1383 switch (sshdr->sense_key) {
1384 case UNIT_ATTENTION:
1385 case NOT_READY:
1386 /* medium not present */
1387 if (sshdr->asc == 0x3A) {
1388 set_media_not_present(sdkp);
1389 return 1;
1390 }
1391 }
1392 return 0;
1393 }
1394
1395 /**
1396 * sd_check_events - check media events
1397 * @disk: kernel device descriptor
1398 * @clearing: disk events currently being cleared
1399 *
1400 * Returns mask of DISK_EVENT_*.
1401 *
1402 * Note: this function is invoked from the block subsystem.
1403 **/
1404 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1405 {
1406 struct scsi_disk *sdkp = scsi_disk(disk);
1407 struct scsi_device *sdp = sdkp->device;
1408 struct scsi_sense_hdr *sshdr = NULL;
1409 int retval;
1410
1411 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1412
1413 /*
1414 * If the device is offline, don't send any commands - just pretend as
1415 * if the command failed. If the device ever comes back online, we
1416 * can deal with it then. It is only because of unrecoverable errors
1417 * that we would ever take a device offline in the first place.
1418 */
1419 if (!scsi_device_online(sdp)) {
1420 set_media_not_present(sdkp);
1421 goto out;
1422 }
1423
1424 /*
1425 * Using TEST_UNIT_READY enables differentiation between drive with
1426 * no cartridge loaded - NOT READY, drive with changed cartridge -
1427 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1428 *
1429 * Drives that auto spin down. eg iomega jaz 1G, will be started
1430 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1431 * sd_revalidate() is called.
1432 */
1433 retval = -ENODEV;
1434
1435 if (scsi_block_when_processing_errors(sdp)) {
1436 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1437 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1438 sshdr);
1439 }
1440
1441 /* failed to execute TUR, assume media not present */
1442 if (host_byte(retval)) {
1443 set_media_not_present(sdkp);
1444 goto out;
1445 }
1446
1447 if (media_not_present(sdkp, sshdr))
1448 goto out;
1449
1450 /*
1451 * For removable scsi disk we have to recognise the presence
1452 * of a disk in the drive.
1453 */
1454 if (!sdkp->media_present)
1455 sdp->changed = 1;
1456 sdkp->media_present = 1;
1457 out:
1458 /*
1459 * sdp->changed is set under the following conditions:
1460 *
1461 * Medium present state has changed in either direction.
1462 * Device has indicated UNIT_ATTENTION.
1463 */
1464 kfree(sshdr);
1465 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1466 sdp->changed = 0;
1467 return retval;
1468 }
1469
1470 static int sd_sync_cache(struct scsi_disk *sdkp)
1471 {
1472 int retries, res;
1473 struct scsi_device *sdp = sdkp->device;
1474 const int timeout = sdp->request_queue->rq_timeout
1475 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1476 struct scsi_sense_hdr sshdr;
1477
1478 if (!scsi_device_online(sdp))
1479 return -ENODEV;
1480
1481 for (retries = 3; retries > 0; --retries) {
1482 unsigned char cmd[10] = { 0 };
1483
1484 cmd[0] = SYNCHRONIZE_CACHE;
1485 /*
1486 * Leave the rest of the command zero to indicate
1487 * flush everything.
1488 */
1489 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1490 &sshdr, timeout, SD_MAX_RETRIES,
1491 NULL, REQ_PM);
1492 if (res == 0)
1493 break;
1494 }
1495
1496 if (res) {
1497 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1498
1499 if (driver_byte(res) & DRIVER_SENSE)
1500 sd_print_sense_hdr(sdkp, &sshdr);
1501 /* we need to evaluate the error return */
1502 if (scsi_sense_valid(&sshdr) &&
1503 (sshdr.asc == 0x3a || /* medium not present */
1504 sshdr.asc == 0x20)) /* invalid command */
1505 /* this is no error here */
1506 return 0;
1507
1508 switch (host_byte(res)) {
1509 /* ignore errors due to racing a disconnection */
1510 case DID_BAD_TARGET:
1511 case DID_NO_CONNECT:
1512 return 0;
1513 /* signal the upper layer it might try again */
1514 case DID_BUS_BUSY:
1515 case DID_IMM_RETRY:
1516 case DID_REQUEUE:
1517 case DID_SOFT_ERROR:
1518 return -EBUSY;
1519 default:
1520 return -EIO;
1521 }
1522 }
1523 return 0;
1524 }
1525
1526 static void sd_rescan(struct device *dev)
1527 {
1528 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
1529
1530 if (sdkp) {
1531 revalidate_disk(sdkp->disk);
1532 scsi_disk_put(sdkp);
1533 }
1534 }
1535
1536
1537 #ifdef CONFIG_COMPAT
1538 /*
1539 * This gets directly called from VFS. When the ioctl
1540 * is not recognized we go back to the other translation paths.
1541 */
1542 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1543 unsigned int cmd, unsigned long arg)
1544 {
1545 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1546 int error;
1547
1548 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1549 (mode & FMODE_NDELAY) != 0);
1550 if (error)
1551 return error;
1552
1553 /*
1554 * Let the static ioctl translation table take care of it.
1555 */
1556 if (!sdev->host->hostt->compat_ioctl)
1557 return -ENOIOCTLCMD;
1558 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1559 }
1560 #endif
1561
1562 static const struct block_device_operations sd_fops = {
1563 .owner = THIS_MODULE,
1564 .open = sd_open,
1565 .release = sd_release,
1566 .ioctl = sd_ioctl,
1567 .getgeo = sd_getgeo,
1568 #ifdef CONFIG_COMPAT
1569 .compat_ioctl = sd_compat_ioctl,
1570 #endif
1571 .check_events = sd_check_events,
1572 .revalidate_disk = sd_revalidate_disk,
1573 .unlock_native_capacity = sd_unlock_native_capacity,
1574 };
1575
1576 /**
1577 * sd_eh_action - error handling callback
1578 * @scmd: sd-issued command that has failed
1579 * @eh_disp: The recovery disposition suggested by the midlayer
1580 *
1581 * This function is called by the SCSI midlayer upon completion of an
1582 * error test command (currently TEST UNIT READY). The result of sending
1583 * the eh command is passed in eh_disp. We're looking for devices that
1584 * fail medium access commands but are OK with non access commands like
1585 * test unit ready (so wrongly see the device as having a successful
1586 * recovery)
1587 **/
1588 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1589 {
1590 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1591
1592 if (!scsi_device_online(scmd->device) ||
1593 !scsi_medium_access_command(scmd) ||
1594 host_byte(scmd->result) != DID_TIME_OUT ||
1595 eh_disp != SUCCESS)
1596 return eh_disp;
1597
1598 /*
1599 * The device has timed out executing a medium access command.
1600 * However, the TEST UNIT READY command sent during error
1601 * handling completed successfully. Either the device is in the
1602 * process of recovering or has it suffered an internal failure
1603 * that prevents access to the storage medium.
1604 */
1605 sdkp->medium_access_timed_out++;
1606
1607 /*
1608 * If the device keeps failing read/write commands but TEST UNIT
1609 * READY always completes successfully we assume that medium
1610 * access is no longer possible and take the device offline.
1611 */
1612 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1613 scmd_printk(KERN_ERR, scmd,
1614 "Medium access timeout failure. Offlining disk!\n");
1615 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1616
1617 return FAILED;
1618 }
1619
1620 return eh_disp;
1621 }
1622
1623 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1624 {
1625 u64 start_lba = blk_rq_pos(scmd->request);
1626 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1627 u64 bad_lba;
1628 int info_valid;
1629 /*
1630 * resid is optional but mostly filled in. When it's unused,
1631 * its value is zero, so we assume the whole buffer transferred
1632 */
1633 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1634 unsigned int good_bytes;
1635
1636 if (scmd->request->cmd_type != REQ_TYPE_FS)
1637 return 0;
1638
1639 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1640 SCSI_SENSE_BUFFERSIZE,
1641 &bad_lba);
1642 if (!info_valid)
1643 return 0;
1644
1645 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1646 return 0;
1647
1648 if (scmd->device->sector_size < 512) {
1649 /* only legitimate sector_size here is 256 */
1650 start_lba <<= 1;
1651 end_lba <<= 1;
1652 } else {
1653 /* be careful ... don't want any overflows */
1654 unsigned int factor = scmd->device->sector_size / 512;
1655 do_div(start_lba, factor);
1656 do_div(end_lba, factor);
1657 }
1658
1659 /* The bad lba was reported incorrectly, we have no idea where
1660 * the error is.
1661 */
1662 if (bad_lba < start_lba || bad_lba >= end_lba)
1663 return 0;
1664
1665 /* This computation should always be done in terms of
1666 * the resolution of the device's medium.
1667 */
1668 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1669 return min(good_bytes, transferred);
1670 }
1671
1672 /**
1673 * sd_done - bottom half handler: called when the lower level
1674 * driver has completed (successfully or otherwise) a scsi command.
1675 * @SCpnt: mid-level's per command structure.
1676 *
1677 * Note: potentially run from within an ISR. Must not block.
1678 **/
1679 static int sd_done(struct scsi_cmnd *SCpnt)
1680 {
1681 int result = SCpnt->result;
1682 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1683 struct scsi_sense_hdr sshdr;
1684 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1685 struct request *req = SCpnt->request;
1686 int sense_valid = 0;
1687 int sense_deferred = 0;
1688 unsigned char op = SCpnt->cmnd[0];
1689 unsigned char unmap = SCpnt->cmnd[1] & 8;
1690
1691 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
1692 if (!result) {
1693 good_bytes = blk_rq_bytes(req);
1694 scsi_set_resid(SCpnt, 0);
1695 } else {
1696 good_bytes = 0;
1697 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1698 }
1699 }
1700
1701 if (result) {
1702 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1703 if (sense_valid)
1704 sense_deferred = scsi_sense_is_deferred(&sshdr);
1705 }
1706 sdkp->medium_access_timed_out = 0;
1707
1708 if (driver_byte(result) != DRIVER_SENSE &&
1709 (!sense_valid || sense_deferred))
1710 goto out;
1711
1712 switch (sshdr.sense_key) {
1713 case HARDWARE_ERROR:
1714 case MEDIUM_ERROR:
1715 good_bytes = sd_completed_bytes(SCpnt);
1716 break;
1717 case RECOVERED_ERROR:
1718 good_bytes = scsi_bufflen(SCpnt);
1719 break;
1720 case NO_SENSE:
1721 /* This indicates a false check condition, so ignore it. An
1722 * unknown amount of data was transferred so treat it as an
1723 * error.
1724 */
1725 SCpnt->result = 0;
1726 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1727 break;
1728 case ABORTED_COMMAND:
1729 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1730 good_bytes = sd_completed_bytes(SCpnt);
1731 break;
1732 case ILLEGAL_REQUEST:
1733 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1734 good_bytes = sd_completed_bytes(SCpnt);
1735 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1736 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1737 switch (op) {
1738 case UNMAP:
1739 sd_config_discard(sdkp, SD_LBP_DISABLE);
1740 break;
1741 case WRITE_SAME_16:
1742 case WRITE_SAME:
1743 if (unmap)
1744 sd_config_discard(sdkp, SD_LBP_DISABLE);
1745 else {
1746 sdkp->device->no_write_same = 1;
1747 sd_config_write_same(sdkp);
1748
1749 good_bytes = 0;
1750 req->__data_len = blk_rq_bytes(req);
1751 req->cmd_flags |= REQ_QUIET;
1752 }
1753 }
1754 }
1755 break;
1756 default:
1757 break;
1758 }
1759 out:
1760 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1761 "sd_done: completed %d of %d bytes\n",
1762 good_bytes, scsi_bufflen(SCpnt)));
1763
1764 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1765 sd_dif_complete(SCpnt, good_bytes);
1766
1767 return good_bytes;
1768 }
1769
1770 /*
1771 * spinup disk - called only in sd_revalidate_disk()
1772 */
1773 static void
1774 sd_spinup_disk(struct scsi_disk *sdkp)
1775 {
1776 unsigned char cmd[10];
1777 unsigned long spintime_expire = 0;
1778 int retries, spintime;
1779 unsigned int the_result;
1780 struct scsi_sense_hdr sshdr;
1781 int sense_valid = 0;
1782
1783 spintime = 0;
1784
1785 /* Spin up drives, as required. Only do this at boot time */
1786 /* Spinup needs to be done for module loads too. */
1787 do {
1788 retries = 0;
1789
1790 do {
1791 cmd[0] = TEST_UNIT_READY;
1792 memset((void *) &cmd[1], 0, 9);
1793
1794 the_result = scsi_execute_req(sdkp->device, cmd,
1795 DMA_NONE, NULL, 0,
1796 &sshdr, SD_TIMEOUT,
1797 SD_MAX_RETRIES, NULL);
1798
1799 /*
1800 * If the drive has indicated to us that it
1801 * doesn't have any media in it, don't bother
1802 * with any more polling.
1803 */
1804 if (media_not_present(sdkp, &sshdr))
1805 return;
1806
1807 if (the_result)
1808 sense_valid = scsi_sense_valid(&sshdr);
1809 retries++;
1810 } while (retries < 3 &&
1811 (!scsi_status_is_good(the_result) ||
1812 ((driver_byte(the_result) & DRIVER_SENSE) &&
1813 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1814
1815 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1816 /* no sense, TUR either succeeded or failed
1817 * with a status error */
1818 if(!spintime && !scsi_status_is_good(the_result)) {
1819 sd_print_result(sdkp, "Test Unit Ready failed",
1820 the_result);
1821 }
1822 break;
1823 }
1824
1825 /*
1826 * The device does not want the automatic start to be issued.
1827 */
1828 if (sdkp->device->no_start_on_add)
1829 break;
1830
1831 if (sense_valid && sshdr.sense_key == NOT_READY) {
1832 if (sshdr.asc == 4 && sshdr.ascq == 3)
1833 break; /* manual intervention required */
1834 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1835 break; /* standby */
1836 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1837 break; /* unavailable */
1838 /*
1839 * Issue command to spin up drive when not ready
1840 */
1841 if (!spintime) {
1842 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1843 cmd[0] = START_STOP;
1844 cmd[1] = 1; /* Return immediately */
1845 memset((void *) &cmd[2], 0, 8);
1846 cmd[4] = 1; /* Start spin cycle */
1847 if (sdkp->device->start_stop_pwr_cond)
1848 cmd[4] |= 1 << 4;
1849 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1850 NULL, 0, &sshdr,
1851 SD_TIMEOUT, SD_MAX_RETRIES,
1852 NULL);
1853 spintime_expire = jiffies + 100 * HZ;
1854 spintime = 1;
1855 }
1856 /* Wait 1 second for next try */
1857 msleep(1000);
1858 printk(".");
1859
1860 /*
1861 * Wait for USB flash devices with slow firmware.
1862 * Yes, this sense key/ASC combination shouldn't
1863 * occur here. It's characteristic of these devices.
1864 */
1865 } else if (sense_valid &&
1866 sshdr.sense_key == UNIT_ATTENTION &&
1867 sshdr.asc == 0x28) {
1868 if (!spintime) {
1869 spintime_expire = jiffies + 5 * HZ;
1870 spintime = 1;
1871 }
1872 /* Wait 1 second for next try */
1873 msleep(1000);
1874 } else {
1875 /* we don't understand the sense code, so it's
1876 * probably pointless to loop */
1877 if(!spintime) {
1878 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1879 sd_print_sense_hdr(sdkp, &sshdr);
1880 }
1881 break;
1882 }
1883
1884 } while (spintime && time_before_eq(jiffies, spintime_expire));
1885
1886 if (spintime) {
1887 if (scsi_status_is_good(the_result))
1888 printk("ready\n");
1889 else
1890 printk("not responding...\n");
1891 }
1892 }
1893
1894
1895 /*
1896 * Determine whether disk supports Data Integrity Field.
1897 */
1898 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1899 {
1900 struct scsi_device *sdp = sdkp->device;
1901 u8 type;
1902 int ret = 0;
1903
1904 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1905 return ret;
1906
1907 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1908
1909 if (type > SD_DIF_TYPE3_PROTECTION)
1910 ret = -ENODEV;
1911 else if (scsi_host_dif_capable(sdp->host, type))
1912 ret = 1;
1913
1914 if (sdkp->first_scan || type != sdkp->protection_type)
1915 switch (ret) {
1916 case -ENODEV:
1917 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1918 " protection type %u. Disabling disk!\n",
1919 type);
1920 break;
1921 case 1:
1922 sd_printk(KERN_NOTICE, sdkp,
1923 "Enabling DIF Type %u protection\n", type);
1924 break;
1925 case 0:
1926 sd_printk(KERN_NOTICE, sdkp,
1927 "Disabling DIF Type %u protection\n", type);
1928 break;
1929 }
1930
1931 sdkp->protection_type = type;
1932
1933 return ret;
1934 }
1935
1936 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
1937 struct scsi_sense_hdr *sshdr, int sense_valid,
1938 int the_result)
1939 {
1940 if (driver_byte(the_result) & DRIVER_SENSE)
1941 sd_print_sense_hdr(sdkp, sshdr);
1942 else
1943 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
1944
1945 /*
1946 * Set dirty bit for removable devices if not ready -
1947 * sometimes drives will not report this properly.
1948 */
1949 if (sdp->removable &&
1950 sense_valid && sshdr->sense_key == NOT_READY)
1951 set_media_not_present(sdkp);
1952
1953 /*
1954 * We used to set media_present to 0 here to indicate no media
1955 * in the drive, but some drives fail read capacity even with
1956 * media present, so we can't do that.
1957 */
1958 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
1959 }
1960
1961 #define RC16_LEN 32
1962 #if RC16_LEN > SD_BUF_SIZE
1963 #error RC16_LEN must not be more than SD_BUF_SIZE
1964 #endif
1965
1966 #define READ_CAPACITY_RETRIES_ON_RESET 10
1967
1968 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
1969 unsigned char *buffer)
1970 {
1971 unsigned char cmd[16];
1972 struct scsi_sense_hdr sshdr;
1973 int sense_valid = 0;
1974 int the_result;
1975 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
1976 unsigned int alignment;
1977 unsigned long long lba;
1978 unsigned sector_size;
1979
1980 if (sdp->no_read_capacity_16)
1981 return -EINVAL;
1982
1983 do {
1984 memset(cmd, 0, 16);
1985 cmd[0] = SERVICE_ACTION_IN_16;
1986 cmd[1] = SAI_READ_CAPACITY_16;
1987 cmd[13] = RC16_LEN;
1988 memset(buffer, 0, RC16_LEN);
1989
1990 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
1991 buffer, RC16_LEN, &sshdr,
1992 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1993
1994 if (media_not_present(sdkp, &sshdr))
1995 return -ENODEV;
1996
1997 if (the_result) {
1998 sense_valid = scsi_sense_valid(&sshdr);
1999 if (sense_valid &&
2000 sshdr.sense_key == ILLEGAL_REQUEST &&
2001 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2002 sshdr.ascq == 0x00)
2003 /* Invalid Command Operation Code or
2004 * Invalid Field in CDB, just retry
2005 * silently with RC10 */
2006 return -EINVAL;
2007 if (sense_valid &&
2008 sshdr.sense_key == UNIT_ATTENTION &&
2009 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2010 /* Device reset might occur several times,
2011 * give it one more chance */
2012 if (--reset_retries > 0)
2013 continue;
2014 }
2015 retries--;
2016
2017 } while (the_result && retries);
2018
2019 if (the_result) {
2020 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2021 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2022 return -EINVAL;
2023 }
2024
2025 sector_size = get_unaligned_be32(&buffer[8]);
2026 lba = get_unaligned_be64(&buffer[0]);
2027
2028 if (sd_read_protection_type(sdkp, buffer) < 0) {
2029 sdkp->capacity = 0;
2030 return -ENODEV;
2031 }
2032
2033 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2034 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2035 "kernel compiled with support for large block "
2036 "devices.\n");
2037 sdkp->capacity = 0;
2038 return -EOVERFLOW;
2039 }
2040
2041 /* Logical blocks per physical block exponent */
2042 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2043
2044 /* Lowest aligned logical block */
2045 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2046 blk_queue_alignment_offset(sdp->request_queue, alignment);
2047 if (alignment && sdkp->first_scan)
2048 sd_printk(KERN_NOTICE, sdkp,
2049 "physical block alignment offset: %u\n", alignment);
2050
2051 if (buffer[14] & 0x80) { /* LBPME */
2052 sdkp->lbpme = 1;
2053
2054 if (buffer[14] & 0x40) /* LBPRZ */
2055 sdkp->lbprz = 1;
2056
2057 sd_config_discard(sdkp, SD_LBP_WS16);
2058 }
2059
2060 sdkp->capacity = lba + 1;
2061 return sector_size;
2062 }
2063
2064 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2065 unsigned char *buffer)
2066 {
2067 unsigned char cmd[16];
2068 struct scsi_sense_hdr sshdr;
2069 int sense_valid = 0;
2070 int the_result;
2071 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2072 sector_t lba;
2073 unsigned sector_size;
2074
2075 do {
2076 cmd[0] = READ_CAPACITY;
2077 memset(&cmd[1], 0, 9);
2078 memset(buffer, 0, 8);
2079
2080 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2081 buffer, 8, &sshdr,
2082 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2083
2084 if (media_not_present(sdkp, &sshdr))
2085 return -ENODEV;
2086
2087 if (the_result) {
2088 sense_valid = scsi_sense_valid(&sshdr);
2089 if (sense_valid &&
2090 sshdr.sense_key == UNIT_ATTENTION &&
2091 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2092 /* Device reset might occur several times,
2093 * give it one more chance */
2094 if (--reset_retries > 0)
2095 continue;
2096 }
2097 retries--;
2098
2099 } while (the_result && retries);
2100
2101 if (the_result) {
2102 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2103 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2104 return -EINVAL;
2105 }
2106
2107 sector_size = get_unaligned_be32(&buffer[4]);
2108 lba = get_unaligned_be32(&buffer[0]);
2109
2110 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2111 /* Some buggy (usb cardreader) devices return an lba of
2112 0xffffffff when the want to report a size of 0 (with
2113 which they really mean no media is present) */
2114 sdkp->capacity = 0;
2115 sdkp->physical_block_size = sector_size;
2116 return sector_size;
2117 }
2118
2119 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2120 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2121 "kernel compiled with support for large block "
2122 "devices.\n");
2123 sdkp->capacity = 0;
2124 return -EOVERFLOW;
2125 }
2126
2127 sdkp->capacity = lba + 1;
2128 sdkp->physical_block_size = sector_size;
2129 return sector_size;
2130 }
2131
2132 static int sd_try_rc16_first(struct scsi_device *sdp)
2133 {
2134 if (sdp->host->max_cmd_len < 16)
2135 return 0;
2136 if (sdp->try_rc_10_first)
2137 return 0;
2138 if (sdp->scsi_level > SCSI_SPC_2)
2139 return 1;
2140 if (scsi_device_protection(sdp))
2141 return 1;
2142 return 0;
2143 }
2144
2145 /*
2146 * read disk capacity
2147 */
2148 static void
2149 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2150 {
2151 int sector_size;
2152 struct scsi_device *sdp = sdkp->device;
2153 sector_t old_capacity = sdkp->capacity;
2154
2155 if (sd_try_rc16_first(sdp)) {
2156 sector_size = read_capacity_16(sdkp, sdp, buffer);
2157 if (sector_size == -EOVERFLOW)
2158 goto got_data;
2159 if (sector_size == -ENODEV)
2160 return;
2161 if (sector_size < 0)
2162 sector_size = read_capacity_10(sdkp, sdp, buffer);
2163 if (sector_size < 0)
2164 return;
2165 } else {
2166 sector_size = read_capacity_10(sdkp, sdp, buffer);
2167 if (sector_size == -EOVERFLOW)
2168 goto got_data;
2169 if (sector_size < 0)
2170 return;
2171 if ((sizeof(sdkp->capacity) > 4) &&
2172 (sdkp->capacity > 0xffffffffULL)) {
2173 int old_sector_size = sector_size;
2174 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2175 "Trying to use READ CAPACITY(16).\n");
2176 sector_size = read_capacity_16(sdkp, sdp, buffer);
2177 if (sector_size < 0) {
2178 sd_printk(KERN_NOTICE, sdkp,
2179 "Using 0xffffffff as device size\n");
2180 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2181 sector_size = old_sector_size;
2182 goto got_data;
2183 }
2184 }
2185 }
2186
2187 /* Some devices are known to return the total number of blocks,
2188 * not the highest block number. Some devices have versions
2189 * which do this and others which do not. Some devices we might
2190 * suspect of doing this but we don't know for certain.
2191 *
2192 * If we know the reported capacity is wrong, decrement it. If
2193 * we can only guess, then assume the number of blocks is even
2194 * (usually true but not always) and err on the side of lowering
2195 * the capacity.
2196 */
2197 if (sdp->fix_capacity ||
2198 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2199 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2200 "from its reported value: %llu\n",
2201 (unsigned long long) sdkp->capacity);
2202 --sdkp->capacity;
2203 }
2204
2205 got_data:
2206 if (sector_size == 0) {
2207 sector_size = 512;
2208 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2209 "assuming 512.\n");
2210 }
2211
2212 if (sector_size != 512 &&
2213 sector_size != 1024 &&
2214 sector_size != 2048 &&
2215 sector_size != 4096 &&
2216 sector_size != 256) {
2217 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2218 sector_size);
2219 /*
2220 * The user might want to re-format the drive with
2221 * a supported sectorsize. Once this happens, it
2222 * would be relatively trivial to set the thing up.
2223 * For this reason, we leave the thing in the table.
2224 */
2225 sdkp->capacity = 0;
2226 /*
2227 * set a bogus sector size so the normal read/write
2228 * logic in the block layer will eventually refuse any
2229 * request on this device without tripping over power
2230 * of two sector size assumptions
2231 */
2232 sector_size = 512;
2233 }
2234 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2235
2236 {
2237 char cap_str_2[10], cap_str_10[10];
2238 u64 sz = (u64)sdkp->capacity << ilog2(sector_size);
2239
2240 string_get_size(sz, STRING_UNITS_2, cap_str_2,
2241 sizeof(cap_str_2));
2242 string_get_size(sz, STRING_UNITS_10, cap_str_10,
2243 sizeof(cap_str_10));
2244
2245 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2246 sd_printk(KERN_NOTICE, sdkp,
2247 "%llu %d-byte logical blocks: (%s/%s)\n",
2248 (unsigned long long)sdkp->capacity,
2249 sector_size, cap_str_10, cap_str_2);
2250
2251 if (sdkp->physical_block_size != sector_size)
2252 sd_printk(KERN_NOTICE, sdkp,
2253 "%u-byte physical blocks\n",
2254 sdkp->physical_block_size);
2255 }
2256 }
2257
2258 if (sdkp->capacity > 0xffffffff) {
2259 sdp->use_16_for_rw = 1;
2260 sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS;
2261 } else
2262 sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS;
2263
2264 /* Rescale capacity to 512-byte units */
2265 if (sector_size == 4096)
2266 sdkp->capacity <<= 3;
2267 else if (sector_size == 2048)
2268 sdkp->capacity <<= 2;
2269 else if (sector_size == 1024)
2270 sdkp->capacity <<= 1;
2271 else if (sector_size == 256)
2272 sdkp->capacity >>= 1;
2273
2274 blk_queue_physical_block_size(sdp->request_queue,
2275 sdkp->physical_block_size);
2276 sdkp->device->sector_size = sector_size;
2277 }
2278
2279 /* called with buffer of length 512 */
2280 static inline int
2281 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2282 unsigned char *buffer, int len, struct scsi_mode_data *data,
2283 struct scsi_sense_hdr *sshdr)
2284 {
2285 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2286 SD_TIMEOUT, SD_MAX_RETRIES, data,
2287 sshdr);
2288 }
2289
2290 /*
2291 * read write protect setting, if possible - called only in sd_revalidate_disk()
2292 * called with buffer of length SD_BUF_SIZE
2293 */
2294 static void
2295 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2296 {
2297 int res;
2298 struct scsi_device *sdp = sdkp->device;
2299 struct scsi_mode_data data;
2300 int old_wp = sdkp->write_prot;
2301
2302 set_disk_ro(sdkp->disk, 0);
2303 if (sdp->skip_ms_page_3f) {
2304 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2305 return;
2306 }
2307
2308 if (sdp->use_192_bytes_for_3f) {
2309 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2310 } else {
2311 /*
2312 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2313 * We have to start carefully: some devices hang if we ask
2314 * for more than is available.
2315 */
2316 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2317
2318 /*
2319 * Second attempt: ask for page 0 When only page 0 is
2320 * implemented, a request for page 3F may return Sense Key
2321 * 5: Illegal Request, Sense Code 24: Invalid field in
2322 * CDB.
2323 */
2324 if (!scsi_status_is_good(res))
2325 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2326
2327 /*
2328 * Third attempt: ask 255 bytes, as we did earlier.
2329 */
2330 if (!scsi_status_is_good(res))
2331 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2332 &data, NULL);
2333 }
2334
2335 if (!scsi_status_is_good(res)) {
2336 sd_first_printk(KERN_WARNING, sdkp,
2337 "Test WP failed, assume Write Enabled\n");
2338 } else {
2339 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2340 set_disk_ro(sdkp->disk, sdkp->write_prot);
2341 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2342 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2343 sdkp->write_prot ? "on" : "off");
2344 sd_printk(KERN_DEBUG, sdkp,
2345 "Mode Sense: %02x %02x %02x %02x\n",
2346 buffer[0], buffer[1], buffer[2], buffer[3]);
2347 }
2348 }
2349 }
2350
2351 /*
2352 * sd_read_cache_type - called only from sd_revalidate_disk()
2353 * called with buffer of length SD_BUF_SIZE
2354 */
2355 static void
2356 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2357 {
2358 int len = 0, res;
2359 struct scsi_device *sdp = sdkp->device;
2360
2361 int dbd;
2362 int modepage;
2363 int first_len;
2364 struct scsi_mode_data data;
2365 struct scsi_sense_hdr sshdr;
2366 int old_wce = sdkp->WCE;
2367 int old_rcd = sdkp->RCD;
2368 int old_dpofua = sdkp->DPOFUA;
2369
2370
2371 if (sdkp->cache_override)
2372 return;
2373
2374 first_len = 4;
2375 if (sdp->skip_ms_page_8) {
2376 if (sdp->type == TYPE_RBC)
2377 goto defaults;
2378 else {
2379 if (sdp->skip_ms_page_3f)
2380 goto defaults;
2381 modepage = 0x3F;
2382 if (sdp->use_192_bytes_for_3f)
2383 first_len = 192;
2384 dbd = 0;
2385 }
2386 } else if (sdp->type == TYPE_RBC) {
2387 modepage = 6;
2388 dbd = 8;
2389 } else {
2390 modepage = 8;
2391 dbd = 0;
2392 }
2393
2394 /* cautiously ask */
2395 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2396 &data, &sshdr);
2397
2398 if (!scsi_status_is_good(res))
2399 goto bad_sense;
2400
2401 if (!data.header_length) {
2402 modepage = 6;
2403 first_len = 0;
2404 sd_first_printk(KERN_ERR, sdkp,
2405 "Missing header in MODE_SENSE response\n");
2406 }
2407
2408 /* that went OK, now ask for the proper length */
2409 len = data.length;
2410
2411 /*
2412 * We're only interested in the first three bytes, actually.
2413 * But the data cache page is defined for the first 20.
2414 */
2415 if (len < 3)
2416 goto bad_sense;
2417 else if (len > SD_BUF_SIZE) {
2418 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2419 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2420 len = SD_BUF_SIZE;
2421 }
2422 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2423 len = 192;
2424
2425 /* Get the data */
2426 if (len > first_len)
2427 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2428 &data, &sshdr);
2429
2430 if (scsi_status_is_good(res)) {
2431 int offset = data.header_length + data.block_descriptor_length;
2432
2433 while (offset < len) {
2434 u8 page_code = buffer[offset] & 0x3F;
2435 u8 spf = buffer[offset] & 0x40;
2436
2437 if (page_code == 8 || page_code == 6) {
2438 /* We're interested only in the first 3 bytes.
2439 */
2440 if (len - offset <= 2) {
2441 sd_first_printk(KERN_ERR, sdkp,
2442 "Incomplete mode parameter "
2443 "data\n");
2444 goto defaults;
2445 } else {
2446 modepage = page_code;
2447 goto Page_found;
2448 }
2449 } else {
2450 /* Go to the next page */
2451 if (spf && len - offset > 3)
2452 offset += 4 + (buffer[offset+2] << 8) +
2453 buffer[offset+3];
2454 else if (!spf && len - offset > 1)
2455 offset += 2 + buffer[offset+1];
2456 else {
2457 sd_first_printk(KERN_ERR, sdkp,
2458 "Incomplete mode "
2459 "parameter data\n");
2460 goto defaults;
2461 }
2462 }
2463 }
2464
2465 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2466 goto defaults;
2467
2468 Page_found:
2469 if (modepage == 8) {
2470 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2471 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2472 } else {
2473 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2474 sdkp->RCD = 0;
2475 }
2476
2477 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2478 if (sdp->broken_fua) {
2479 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2480 sdkp->DPOFUA = 0;
2481 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2482 sd_first_printk(KERN_NOTICE, sdkp,
2483 "Uses READ/WRITE(6), disabling FUA\n");
2484 sdkp->DPOFUA = 0;
2485 }
2486
2487 /* No cache flush allowed for write protected devices */
2488 if (sdkp->WCE && sdkp->write_prot)
2489 sdkp->WCE = 0;
2490
2491 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2492 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2493 sd_printk(KERN_NOTICE, sdkp,
2494 "Write cache: %s, read cache: %s, %s\n",
2495 sdkp->WCE ? "enabled" : "disabled",
2496 sdkp->RCD ? "disabled" : "enabled",
2497 sdkp->DPOFUA ? "supports DPO and FUA"
2498 : "doesn't support DPO or FUA");
2499
2500 return;
2501 }
2502
2503 bad_sense:
2504 if (scsi_sense_valid(&sshdr) &&
2505 sshdr.sense_key == ILLEGAL_REQUEST &&
2506 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2507 /* Invalid field in CDB */
2508 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2509 else
2510 sd_first_printk(KERN_ERR, sdkp,
2511 "Asking for cache data failed\n");
2512
2513 defaults:
2514 if (sdp->wce_default_on) {
2515 sd_first_printk(KERN_NOTICE, sdkp,
2516 "Assuming drive cache: write back\n");
2517 sdkp->WCE = 1;
2518 } else {
2519 sd_first_printk(KERN_ERR, sdkp,
2520 "Assuming drive cache: write through\n");
2521 sdkp->WCE = 0;
2522 }
2523 sdkp->RCD = 0;
2524 sdkp->DPOFUA = 0;
2525 }
2526
2527 /*
2528 * The ATO bit indicates whether the DIF application tag is available
2529 * for use by the operating system.
2530 */
2531 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2532 {
2533 int res, offset;
2534 struct scsi_device *sdp = sdkp->device;
2535 struct scsi_mode_data data;
2536 struct scsi_sense_hdr sshdr;
2537
2538 if (sdp->type != TYPE_DISK)
2539 return;
2540
2541 if (sdkp->protection_type == 0)
2542 return;
2543
2544 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2545 SD_MAX_RETRIES, &data, &sshdr);
2546
2547 if (!scsi_status_is_good(res) || !data.header_length ||
2548 data.length < 6) {
2549 sd_first_printk(KERN_WARNING, sdkp,
2550 "getting Control mode page failed, assume no ATO\n");
2551
2552 if (scsi_sense_valid(&sshdr))
2553 sd_print_sense_hdr(sdkp, &sshdr);
2554
2555 return;
2556 }
2557
2558 offset = data.header_length + data.block_descriptor_length;
2559
2560 if ((buffer[offset] & 0x3f) != 0x0a) {
2561 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2562 return;
2563 }
2564
2565 if ((buffer[offset + 5] & 0x80) == 0)
2566 return;
2567
2568 sdkp->ATO = 1;
2569
2570 return;
2571 }
2572
2573 /**
2574 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2575 * @disk: disk to query
2576 */
2577 static void sd_read_block_limits(struct scsi_disk *sdkp)
2578 {
2579 unsigned int sector_sz = sdkp->device->sector_size;
2580 const int vpd_len = 64;
2581 u32 max_xfer_length;
2582 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2583
2584 if (!buffer ||
2585 /* Block Limits VPD */
2586 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2587 goto out;
2588
2589 max_xfer_length = get_unaligned_be32(&buffer[8]);
2590 if (max_xfer_length)
2591 sdkp->max_xfer_blocks = max_xfer_length;
2592
2593 blk_queue_io_min(sdkp->disk->queue,
2594 get_unaligned_be16(&buffer[6]) * sector_sz);
2595 blk_queue_io_opt(sdkp->disk->queue,
2596 get_unaligned_be32(&buffer[12]) * sector_sz);
2597
2598 if (buffer[3] == 0x3c) {
2599 unsigned int lba_count, desc_count;
2600
2601 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2602
2603 if (!sdkp->lbpme)
2604 goto out;
2605
2606 lba_count = get_unaligned_be32(&buffer[20]);
2607 desc_count = get_unaligned_be32(&buffer[24]);
2608
2609 if (lba_count && desc_count)
2610 sdkp->max_unmap_blocks = lba_count;
2611
2612 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2613
2614 if (buffer[32] & 0x80)
2615 sdkp->unmap_alignment =
2616 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2617
2618 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2619
2620 if (sdkp->max_unmap_blocks)
2621 sd_config_discard(sdkp, SD_LBP_UNMAP);
2622 else
2623 sd_config_discard(sdkp, SD_LBP_WS16);
2624
2625 } else { /* LBP VPD page tells us what to use */
2626 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2627 sd_config_discard(sdkp, SD_LBP_UNMAP);
2628 else if (sdkp->lbpws)
2629 sd_config_discard(sdkp, SD_LBP_WS16);
2630 else if (sdkp->lbpws10)
2631 sd_config_discard(sdkp, SD_LBP_WS10);
2632 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2633 sd_config_discard(sdkp, SD_LBP_UNMAP);
2634 else
2635 sd_config_discard(sdkp, SD_LBP_DISABLE);
2636 }
2637 }
2638
2639 out:
2640 kfree(buffer);
2641 }
2642
2643 /**
2644 * sd_read_block_characteristics - Query block dev. characteristics
2645 * @disk: disk to query
2646 */
2647 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2648 {
2649 unsigned char *buffer;
2650 u16 rot;
2651 const int vpd_len = 64;
2652
2653 buffer = kmalloc(vpd_len, GFP_KERNEL);
2654
2655 if (!buffer ||
2656 /* Block Device Characteristics VPD */
2657 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2658 goto out;
2659
2660 rot = get_unaligned_be16(&buffer[4]);
2661
2662 if (rot == 1) {
2663 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2664 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2665 }
2666
2667 out:
2668 kfree(buffer);
2669 }
2670
2671 /**
2672 * sd_read_block_provisioning - Query provisioning VPD page
2673 * @disk: disk to query
2674 */
2675 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2676 {
2677 unsigned char *buffer;
2678 const int vpd_len = 8;
2679
2680 if (sdkp->lbpme == 0)
2681 return;
2682
2683 buffer = kmalloc(vpd_len, GFP_KERNEL);
2684
2685 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2686 goto out;
2687
2688 sdkp->lbpvpd = 1;
2689 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2690 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2691 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2692
2693 out:
2694 kfree(buffer);
2695 }
2696
2697 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2698 {
2699 struct scsi_device *sdev = sdkp->device;
2700
2701 if (sdev->host->no_write_same) {
2702 sdev->no_write_same = 1;
2703
2704 return;
2705 }
2706
2707 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2708 /* too large values might cause issues with arcmsr */
2709 int vpd_buf_len = 64;
2710
2711 sdev->no_report_opcodes = 1;
2712
2713 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2714 * CODES is unsupported and the device has an ATA
2715 * Information VPD page (SAT).
2716 */
2717 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2718 sdev->no_write_same = 1;
2719 }
2720
2721 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2722 sdkp->ws16 = 1;
2723
2724 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2725 sdkp->ws10 = 1;
2726 }
2727
2728 static int sd_try_extended_inquiry(struct scsi_device *sdp)
2729 {
2730 /* Attempt VPD inquiry if the device blacklist explicitly calls
2731 * for it.
2732 */
2733 if (sdp->try_vpd_pages)
2734 return 1;
2735 /*
2736 * Although VPD inquiries can go to SCSI-2 type devices,
2737 * some USB ones crash on receiving them, and the pages
2738 * we currently ask for are for SPC-3 and beyond
2739 */
2740 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2741 return 1;
2742 return 0;
2743 }
2744
2745 /**
2746 * sd_revalidate_disk - called the first time a new disk is seen,
2747 * performs disk spin up, read_capacity, etc.
2748 * @disk: struct gendisk we care about
2749 **/
2750 static int sd_revalidate_disk(struct gendisk *disk)
2751 {
2752 struct scsi_disk *sdkp = scsi_disk(disk);
2753 struct scsi_device *sdp = sdkp->device;
2754 unsigned char *buffer;
2755 unsigned int max_xfer;
2756
2757 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2758 "sd_revalidate_disk\n"));
2759
2760 /*
2761 * If the device is offline, don't try and read capacity or any
2762 * of the other niceties.
2763 */
2764 if (!scsi_device_online(sdp))
2765 goto out;
2766
2767 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2768 if (!buffer) {
2769 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2770 "allocation failure.\n");
2771 goto out;
2772 }
2773
2774 sd_spinup_disk(sdkp);
2775
2776 /*
2777 * Without media there is no reason to ask; moreover, some devices
2778 * react badly if we do.
2779 */
2780 if (sdkp->media_present) {
2781 sd_read_capacity(sdkp, buffer);
2782
2783 if (sd_try_extended_inquiry(sdp)) {
2784 sd_read_block_provisioning(sdkp);
2785 sd_read_block_limits(sdkp);
2786 sd_read_block_characteristics(sdkp);
2787 }
2788
2789 sd_read_write_protect_flag(sdkp, buffer);
2790 sd_read_cache_type(sdkp, buffer);
2791 sd_read_app_tag_own(sdkp, buffer);
2792 sd_read_write_same(sdkp, buffer);
2793 }
2794
2795 sdkp->first_scan = 0;
2796
2797 /*
2798 * We now have all cache related info, determine how we deal
2799 * with flush requests.
2800 */
2801 sd_set_flush_flag(sdkp);
2802
2803 max_xfer = sdkp->max_xfer_blocks;
2804 max_xfer <<= ilog2(sdp->sector_size) - 9;
2805
2806 max_xfer = min_not_zero(queue_max_hw_sectors(sdkp->disk->queue),
2807 max_xfer);
2808 blk_queue_max_hw_sectors(sdkp->disk->queue, max_xfer);
2809 set_capacity(disk, sdkp->capacity);
2810 sd_config_write_same(sdkp);
2811 kfree(buffer);
2812
2813 out:
2814 return 0;
2815 }
2816
2817 /**
2818 * sd_unlock_native_capacity - unlock native capacity
2819 * @disk: struct gendisk to set capacity for
2820 *
2821 * Block layer calls this function if it detects that partitions
2822 * on @disk reach beyond the end of the device. If the SCSI host
2823 * implements ->unlock_native_capacity() method, it's invoked to
2824 * give it a chance to adjust the device capacity.
2825 *
2826 * CONTEXT:
2827 * Defined by block layer. Might sleep.
2828 */
2829 static void sd_unlock_native_capacity(struct gendisk *disk)
2830 {
2831 struct scsi_device *sdev = scsi_disk(disk)->device;
2832
2833 if (sdev->host->hostt->unlock_native_capacity)
2834 sdev->host->hostt->unlock_native_capacity(sdev);
2835 }
2836
2837 /**
2838 * sd_format_disk_name - format disk name
2839 * @prefix: name prefix - ie. "sd" for SCSI disks
2840 * @index: index of the disk to format name for
2841 * @buf: output buffer
2842 * @buflen: length of the output buffer
2843 *
2844 * SCSI disk names starts at sda. The 26th device is sdz and the
2845 * 27th is sdaa. The last one for two lettered suffix is sdzz
2846 * which is followed by sdaaa.
2847 *
2848 * This is basically 26 base counting with one extra 'nil' entry
2849 * at the beginning from the second digit on and can be
2850 * determined using similar method as 26 base conversion with the
2851 * index shifted -1 after each digit is computed.
2852 *
2853 * CONTEXT:
2854 * Don't care.
2855 *
2856 * RETURNS:
2857 * 0 on success, -errno on failure.
2858 */
2859 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2860 {
2861 const int base = 'z' - 'a' + 1;
2862 char *begin = buf + strlen(prefix);
2863 char *end = buf + buflen;
2864 char *p;
2865 int unit;
2866
2867 p = end - 1;
2868 *p = '\0';
2869 unit = base;
2870 do {
2871 if (p == begin)
2872 return -EINVAL;
2873 *--p = 'a' + (index % unit);
2874 index = (index / unit) - 1;
2875 } while (index >= 0);
2876
2877 memmove(begin, p, end - p);
2878 memcpy(buf, prefix, strlen(prefix));
2879
2880 return 0;
2881 }
2882
2883 /*
2884 * The asynchronous part of sd_probe
2885 */
2886 static void sd_probe_async(void *data, async_cookie_t cookie)
2887 {
2888 struct scsi_disk *sdkp = data;
2889 struct scsi_device *sdp;
2890 struct gendisk *gd;
2891 u32 index;
2892 struct device *dev;
2893
2894 sdp = sdkp->device;
2895 gd = sdkp->disk;
2896 index = sdkp->index;
2897 dev = &sdp->sdev_gendev;
2898
2899 gd->major = sd_major((index & 0xf0) >> 4);
2900 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2901 gd->minors = SD_MINORS;
2902
2903 gd->fops = &sd_fops;
2904 gd->private_data = &sdkp->driver;
2905 gd->queue = sdkp->device->request_queue;
2906
2907 /* defaults, until the device tells us otherwise */
2908 sdp->sector_size = 512;
2909 sdkp->capacity = 0;
2910 sdkp->media_present = 1;
2911 sdkp->write_prot = 0;
2912 sdkp->cache_override = 0;
2913 sdkp->WCE = 0;
2914 sdkp->RCD = 0;
2915 sdkp->ATO = 0;
2916 sdkp->first_scan = 1;
2917 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2918
2919 sd_revalidate_disk(gd);
2920
2921 gd->driverfs_dev = &sdp->sdev_gendev;
2922 gd->flags = GENHD_FL_EXT_DEVT;
2923 if (sdp->removable) {
2924 gd->flags |= GENHD_FL_REMOVABLE;
2925 gd->events |= DISK_EVENT_MEDIA_CHANGE;
2926 }
2927
2928 blk_pm_runtime_init(sdp->request_queue, dev);
2929 add_disk(gd);
2930 if (sdkp->capacity)
2931 sd_dif_config_host(sdkp);
2932
2933 sd_revalidate_disk(gd);
2934
2935 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
2936 sdp->removable ? "removable " : "");
2937 scsi_autopm_put_device(sdp);
2938 put_device(&sdkp->dev);
2939 }
2940
2941 /**
2942 * sd_probe - called during driver initialization and whenever a
2943 * new scsi device is attached to the system. It is called once
2944 * for each scsi device (not just disks) present.
2945 * @dev: pointer to device object
2946 *
2947 * Returns 0 if successful (or not interested in this scsi device
2948 * (e.g. scanner)); 1 when there is an error.
2949 *
2950 * Note: this function is invoked from the scsi mid-level.
2951 * This function sets up the mapping between a given
2952 * <host,channel,id,lun> (found in sdp) and new device name
2953 * (e.g. /dev/sda). More precisely it is the block device major
2954 * and minor number that is chosen here.
2955 *
2956 * Assume sd_probe is not re-entrant (for time being)
2957 * Also think about sd_probe() and sd_remove() running coincidentally.
2958 **/
2959 static int sd_probe(struct device *dev)
2960 {
2961 struct scsi_device *sdp = to_scsi_device(dev);
2962 struct scsi_disk *sdkp;
2963 struct gendisk *gd;
2964 int index;
2965 int error;
2966
2967 scsi_autopm_get_device(sdp);
2968 error = -ENODEV;
2969 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
2970 goto out;
2971
2972 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
2973 "sd_probe\n"));
2974
2975 error = -ENOMEM;
2976 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
2977 if (!sdkp)
2978 goto out;
2979
2980 gd = alloc_disk(SD_MINORS);
2981 if (!gd)
2982 goto out_free;
2983
2984 do {
2985 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
2986 goto out_put;
2987
2988 spin_lock(&sd_index_lock);
2989 error = ida_get_new(&sd_index_ida, &index);
2990 spin_unlock(&sd_index_lock);
2991 } while (error == -EAGAIN);
2992
2993 if (error) {
2994 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
2995 goto out_put;
2996 }
2997
2998 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
2999 if (error) {
3000 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3001 goto out_free_index;
3002 }
3003
3004 sdkp->device = sdp;
3005 sdkp->driver = &sd_template;
3006 sdkp->disk = gd;
3007 sdkp->index = index;
3008 atomic_set(&sdkp->openers, 0);
3009 atomic_set(&sdkp->device->ioerr_cnt, 0);
3010
3011 if (!sdp->request_queue->rq_timeout) {
3012 if (sdp->type != TYPE_MOD)
3013 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3014 else
3015 blk_queue_rq_timeout(sdp->request_queue,
3016 SD_MOD_TIMEOUT);
3017 }
3018
3019 device_initialize(&sdkp->dev);
3020 sdkp->dev.parent = dev;
3021 sdkp->dev.class = &sd_disk_class;
3022 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3023
3024 if (device_add(&sdkp->dev))
3025 goto out_free_index;
3026
3027 get_device(dev);
3028 dev_set_drvdata(dev, sdkp);
3029
3030 get_device(&sdkp->dev); /* prevent release before async_schedule */
3031 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3032
3033 return 0;
3034
3035 out_free_index:
3036 spin_lock(&sd_index_lock);
3037 ida_remove(&sd_index_ida, index);
3038 spin_unlock(&sd_index_lock);
3039 out_put:
3040 put_disk(gd);
3041 out_free:
3042 kfree(sdkp);
3043 out:
3044 scsi_autopm_put_device(sdp);
3045 return error;
3046 }
3047
3048 /**
3049 * sd_remove - called whenever a scsi disk (previously recognized by
3050 * sd_probe) is detached from the system. It is called (potentially
3051 * multiple times) during sd module unload.
3052 * @sdp: pointer to mid level scsi device object
3053 *
3054 * Note: this function is invoked from the scsi mid-level.
3055 * This function potentially frees up a device name (e.g. /dev/sdc)
3056 * that could be re-used by a subsequent sd_probe().
3057 * This function is not called when the built-in sd driver is "exit-ed".
3058 **/
3059 static int sd_remove(struct device *dev)
3060 {
3061 struct scsi_disk *sdkp;
3062 dev_t devt;
3063
3064 sdkp = dev_get_drvdata(dev);
3065 devt = disk_devt(sdkp->disk);
3066 scsi_autopm_get_device(sdkp->device);
3067
3068 async_synchronize_full_domain(&scsi_sd_pm_domain);
3069 async_synchronize_full_domain(&scsi_sd_probe_domain);
3070 device_del(&sdkp->dev);
3071 del_gendisk(sdkp->disk);
3072 sd_shutdown(dev);
3073
3074 blk_register_region(devt, SD_MINORS, NULL,
3075 sd_default_probe, NULL, NULL);
3076
3077 mutex_lock(&sd_ref_mutex);
3078 dev_set_drvdata(dev, NULL);
3079 put_device(&sdkp->dev);
3080 mutex_unlock(&sd_ref_mutex);
3081
3082 return 0;
3083 }
3084
3085 /**
3086 * scsi_disk_release - Called to free the scsi_disk structure
3087 * @dev: pointer to embedded class device
3088 *
3089 * sd_ref_mutex must be held entering this routine. Because it is
3090 * called on last put, you should always use the scsi_disk_get()
3091 * scsi_disk_put() helpers which manipulate the semaphore directly
3092 * and never do a direct put_device.
3093 **/
3094 static void scsi_disk_release(struct device *dev)
3095 {
3096 struct scsi_disk *sdkp = to_scsi_disk(dev);
3097 struct gendisk *disk = sdkp->disk;
3098
3099 spin_lock(&sd_index_lock);
3100 ida_remove(&sd_index_ida, sdkp->index);
3101 spin_unlock(&sd_index_lock);
3102
3103 disk->private_data = NULL;
3104 put_disk(disk);
3105 put_device(&sdkp->device->sdev_gendev);
3106
3107 kfree(sdkp);
3108 }
3109
3110 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3111 {
3112 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3113 struct scsi_sense_hdr sshdr;
3114 struct scsi_device *sdp = sdkp->device;
3115 int res;
3116
3117 if (start)
3118 cmd[4] |= 1; /* START */
3119
3120 if (sdp->start_stop_pwr_cond)
3121 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3122
3123 if (!scsi_device_online(sdp))
3124 return -ENODEV;
3125
3126 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3127 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3128 if (res) {
3129 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3130 if (driver_byte(res) & DRIVER_SENSE)
3131 sd_print_sense_hdr(sdkp, &sshdr);
3132 if (scsi_sense_valid(&sshdr) &&
3133 /* 0x3a is medium not present */
3134 sshdr.asc == 0x3a)
3135 res = 0;
3136 }
3137
3138 /* SCSI error codes must not go to the generic layer */
3139 if (res)
3140 return -EIO;
3141
3142 return 0;
3143 }
3144
3145 /*
3146 * Send a SYNCHRONIZE CACHE instruction down to the device through
3147 * the normal SCSI command structure. Wait for the command to
3148 * complete.
3149 */
3150 static void sd_shutdown(struct device *dev)
3151 {
3152 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3153
3154 if (!sdkp)
3155 return; /* this can happen */
3156
3157 if (pm_runtime_suspended(dev))
3158 goto exit;
3159
3160 if (sdkp->WCE && sdkp->media_present) {
3161 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3162 sd_sync_cache(sdkp);
3163 }
3164
3165 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3166 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3167 sd_start_stop_device(sdkp, 0);
3168 }
3169
3170 exit:
3171 scsi_disk_put(sdkp);
3172 }
3173
3174 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3175 {
3176 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3177 int ret = 0;
3178
3179 if (!sdkp)
3180 return 0; /* this can happen */
3181
3182 if (sdkp->WCE && sdkp->media_present) {
3183 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3184 ret = sd_sync_cache(sdkp);
3185 if (ret) {
3186 /* ignore OFFLINE device */
3187 if (ret == -ENODEV)
3188 ret = 0;
3189 goto done;
3190 }
3191 }
3192
3193 if (sdkp->device->manage_start_stop) {
3194 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3195 /* an error is not worth aborting a system sleep */
3196 ret = sd_start_stop_device(sdkp, 0);
3197 if (ignore_stop_errors)
3198 ret = 0;
3199 }
3200
3201 done:
3202 scsi_disk_put(sdkp);
3203 return ret;
3204 }
3205
3206 static int sd_suspend_system(struct device *dev)
3207 {
3208 return sd_suspend_common(dev, true);
3209 }
3210
3211 static int sd_suspend_runtime(struct device *dev)
3212 {
3213 return sd_suspend_common(dev, false);
3214 }
3215
3216 static int sd_resume(struct device *dev)
3217 {
3218 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3219 int ret = 0;
3220
3221 if (!sdkp->device->manage_start_stop)
3222 goto done;
3223
3224 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3225 ret = sd_start_stop_device(sdkp, 1);
3226
3227 done:
3228 scsi_disk_put(sdkp);
3229 return ret;
3230 }
3231
3232 /**
3233 * init_sd - entry point for this driver (both when built in or when
3234 * a module).
3235 *
3236 * Note: this function registers this driver with the scsi mid-level.
3237 **/
3238 static int __init init_sd(void)
3239 {
3240 int majors = 0, i, err;
3241
3242 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3243
3244 for (i = 0; i < SD_MAJORS; i++) {
3245 if (register_blkdev(sd_major(i), "sd") != 0)
3246 continue;
3247 majors++;
3248 blk_register_region(sd_major(i), SD_MINORS, NULL,
3249 sd_default_probe, NULL, NULL);
3250 }
3251
3252 if (!majors)
3253 return -ENODEV;
3254
3255 err = class_register(&sd_disk_class);
3256 if (err)
3257 goto err_out;
3258
3259 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3260 0, 0, NULL);
3261 if (!sd_cdb_cache) {
3262 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3263 err = -ENOMEM;
3264 goto err_out_class;
3265 }
3266
3267 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3268 if (!sd_cdb_pool) {
3269 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3270 err = -ENOMEM;
3271 goto err_out_cache;
3272 }
3273
3274 err = scsi_register_driver(&sd_template.gendrv);
3275 if (err)
3276 goto err_out_driver;
3277
3278 return 0;
3279
3280 err_out_driver:
3281 mempool_destroy(sd_cdb_pool);
3282
3283 err_out_cache:
3284 kmem_cache_destroy(sd_cdb_cache);
3285
3286 err_out_class:
3287 class_unregister(&sd_disk_class);
3288 err_out:
3289 for (i = 0; i < SD_MAJORS; i++)
3290 unregister_blkdev(sd_major(i), "sd");
3291 return err;
3292 }
3293
3294 /**
3295 * exit_sd - exit point for this driver (when it is a module).
3296 *
3297 * Note: this function unregisters this driver from the scsi mid-level.
3298 **/
3299 static void __exit exit_sd(void)
3300 {
3301 int i;
3302
3303 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3304
3305 scsi_unregister_driver(&sd_template.gendrv);
3306 mempool_destroy(sd_cdb_pool);
3307 kmem_cache_destroy(sd_cdb_cache);
3308
3309 class_unregister(&sd_disk_class);
3310
3311 for (i = 0; i < SD_MAJORS; i++) {
3312 blk_unregister_region(sd_major(i), SD_MINORS);
3313 unregister_blkdev(sd_major(i), "sd");
3314 }
3315 }
3316
3317 module_init(init_sd);
3318 module_exit(exit_sd);
3319
3320 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3321 struct scsi_sense_hdr *sshdr)
3322 {
3323 scsi_print_sense_hdr(sdkp->device,
3324 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3325 }
3326
3327 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3328 int result)
3329 {
3330 const char *hb_string = scsi_hostbyte_string(result);
3331 const char *db_string = scsi_driverbyte_string(result);
3332
3333 if (hb_string || db_string)
3334 sd_printk(KERN_INFO, sdkp,
3335 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3336 hb_string ? hb_string : "invalid",
3337 db_string ? db_string : "invalid");
3338 else
3339 sd_printk(KERN_INFO, sdkp,
3340 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3341 msg, host_byte(result), driver_byte(result));
3342 }
3343