]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/scsi/sd.c
Merge tag 'riscv-for-linus-5.15-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS 16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int sd_probe(struct device *);
108 static int sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume(struct device *);
113 static int sd_resume_runtime(struct device *);
114 static void sd_rescan(struct device *);
115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122
123 static DEFINE_IDA(sd_index_ida);
124
125 /* This semaphore is used to mediate the 0->1 reference get in the
126 * face of object destruction (i.e. we can't allow a get on an
127 * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
129
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132 static mempool_t *sd_page_pool;
133 static struct lock_class_key sd_bio_compl_lkclass;
134
135 static const char *sd_cache_types[] = {
136 "write through", "none", "write back",
137 "write back, no read (daft)"
138 };
139
140 static void sd_set_flush_flag(struct scsi_disk *sdkp)
141 {
142 bool wc = false, fua = false;
143
144 if (sdkp->WCE) {
145 wc = true;
146 if (sdkp->DPOFUA)
147 fua = true;
148 }
149
150 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
151 }
152
153 static ssize_t
154 cache_type_store(struct device *dev, struct device_attribute *attr,
155 const char *buf, size_t count)
156 {
157 int ct, rcd, wce, sp;
158 struct scsi_disk *sdkp = to_scsi_disk(dev);
159 struct scsi_device *sdp = sdkp->device;
160 char buffer[64];
161 char *buffer_data;
162 struct scsi_mode_data data;
163 struct scsi_sense_hdr sshdr;
164 static const char temp[] = "temporary ";
165 int len;
166
167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
168 /* no cache control on RBC devices; theoretically they
169 * can do it, but there's probably so many exceptions
170 * it's not worth the risk */
171 return -EINVAL;
172
173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
174 buf += sizeof(temp) - 1;
175 sdkp->cache_override = 1;
176 } else {
177 sdkp->cache_override = 0;
178 }
179
180 ct = sysfs_match_string(sd_cache_types, buf);
181 if (ct < 0)
182 return -EINVAL;
183
184 rcd = ct & 0x01 ? 1 : 0;
185 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
186
187 if (sdkp->cache_override) {
188 sdkp->WCE = wce;
189 sdkp->RCD = rcd;
190 sd_set_flush_flag(sdkp);
191 return count;
192 }
193
194 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
195 sdkp->max_retries, &data, NULL))
196 return -EINVAL;
197 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
198 data.block_descriptor_length);
199 buffer_data = buffer + data.header_length +
200 data.block_descriptor_length;
201 buffer_data[2] &= ~0x05;
202 buffer_data[2] |= wce << 2 | rcd;
203 sp = buffer_data[0] & 0x80 ? 1 : 0;
204 buffer_data[0] &= ~0x80;
205
206 /*
207 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
208 * received mode parameter buffer before doing MODE SELECT.
209 */
210 data.device_specific = 0;
211
212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
213 sdkp->max_retries, &data, &sshdr)) {
214 if (scsi_sense_valid(&sshdr))
215 sd_print_sense_hdr(sdkp, &sshdr);
216 return -EINVAL;
217 }
218 sd_revalidate_disk(sdkp->disk);
219 return count;
220 }
221
222 static ssize_t
223 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
224 char *buf)
225 {
226 struct scsi_disk *sdkp = to_scsi_disk(dev);
227 struct scsi_device *sdp = sdkp->device;
228
229 return sprintf(buf, "%u\n", sdp->manage_start_stop);
230 }
231
232 static ssize_t
233 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
234 const char *buf, size_t count)
235 {
236 struct scsi_disk *sdkp = to_scsi_disk(dev);
237 struct scsi_device *sdp = sdkp->device;
238 bool v;
239
240 if (!capable(CAP_SYS_ADMIN))
241 return -EACCES;
242
243 if (kstrtobool(buf, &v))
244 return -EINVAL;
245
246 sdp->manage_start_stop = v;
247
248 return count;
249 }
250 static DEVICE_ATTR_RW(manage_start_stop);
251
252 static ssize_t
253 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
254 {
255 struct scsi_disk *sdkp = to_scsi_disk(dev);
256
257 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
258 }
259
260 static ssize_t
261 allow_restart_store(struct device *dev, struct device_attribute *attr,
262 const char *buf, size_t count)
263 {
264 bool v;
265 struct scsi_disk *sdkp = to_scsi_disk(dev);
266 struct scsi_device *sdp = sdkp->device;
267
268 if (!capable(CAP_SYS_ADMIN))
269 return -EACCES;
270
271 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
272 return -EINVAL;
273
274 if (kstrtobool(buf, &v))
275 return -EINVAL;
276
277 sdp->allow_restart = v;
278
279 return count;
280 }
281 static DEVICE_ATTR_RW(allow_restart);
282
283 static ssize_t
284 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
285 {
286 struct scsi_disk *sdkp = to_scsi_disk(dev);
287 int ct = sdkp->RCD + 2*sdkp->WCE;
288
289 return sprintf(buf, "%s\n", sd_cache_types[ct]);
290 }
291 static DEVICE_ATTR_RW(cache_type);
292
293 static ssize_t
294 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
295 {
296 struct scsi_disk *sdkp = to_scsi_disk(dev);
297
298 return sprintf(buf, "%u\n", sdkp->DPOFUA);
299 }
300 static DEVICE_ATTR_RO(FUA);
301
302 static ssize_t
303 protection_type_show(struct device *dev, struct device_attribute *attr,
304 char *buf)
305 {
306 struct scsi_disk *sdkp = to_scsi_disk(dev);
307
308 return sprintf(buf, "%u\n", sdkp->protection_type);
309 }
310
311 static ssize_t
312 protection_type_store(struct device *dev, struct device_attribute *attr,
313 const char *buf, size_t count)
314 {
315 struct scsi_disk *sdkp = to_scsi_disk(dev);
316 unsigned int val;
317 int err;
318
319 if (!capable(CAP_SYS_ADMIN))
320 return -EACCES;
321
322 err = kstrtouint(buf, 10, &val);
323
324 if (err)
325 return err;
326
327 if (val <= T10_PI_TYPE3_PROTECTION)
328 sdkp->protection_type = val;
329
330 return count;
331 }
332 static DEVICE_ATTR_RW(protection_type);
333
334 static ssize_t
335 protection_mode_show(struct device *dev, struct device_attribute *attr,
336 char *buf)
337 {
338 struct scsi_disk *sdkp = to_scsi_disk(dev);
339 struct scsi_device *sdp = sdkp->device;
340 unsigned int dif, dix;
341
342 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
343 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
344
345 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
346 dif = 0;
347 dix = 1;
348 }
349
350 if (!dif && !dix)
351 return sprintf(buf, "none\n");
352
353 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
354 }
355 static DEVICE_ATTR_RO(protection_mode);
356
357 static ssize_t
358 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
359 {
360 struct scsi_disk *sdkp = to_scsi_disk(dev);
361
362 return sprintf(buf, "%u\n", sdkp->ATO);
363 }
364 static DEVICE_ATTR_RO(app_tag_own);
365
366 static ssize_t
367 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
368 char *buf)
369 {
370 struct scsi_disk *sdkp = to_scsi_disk(dev);
371
372 return sprintf(buf, "%u\n", sdkp->lbpme);
373 }
374 static DEVICE_ATTR_RO(thin_provisioning);
375
376 /* sysfs_match_string() requires dense arrays */
377 static const char *lbp_mode[] = {
378 [SD_LBP_FULL] = "full",
379 [SD_LBP_UNMAP] = "unmap",
380 [SD_LBP_WS16] = "writesame_16",
381 [SD_LBP_WS10] = "writesame_10",
382 [SD_LBP_ZERO] = "writesame_zero",
383 [SD_LBP_DISABLE] = "disabled",
384 };
385
386 static ssize_t
387 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
388 char *buf)
389 {
390 struct scsi_disk *sdkp = to_scsi_disk(dev);
391
392 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
393 }
394
395 static ssize_t
396 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
397 const char *buf, size_t count)
398 {
399 struct scsi_disk *sdkp = to_scsi_disk(dev);
400 struct scsi_device *sdp = sdkp->device;
401 int mode;
402
403 if (!capable(CAP_SYS_ADMIN))
404 return -EACCES;
405
406 if (sd_is_zoned(sdkp)) {
407 sd_config_discard(sdkp, SD_LBP_DISABLE);
408 return count;
409 }
410
411 if (sdp->type != TYPE_DISK)
412 return -EINVAL;
413
414 mode = sysfs_match_string(lbp_mode, buf);
415 if (mode < 0)
416 return -EINVAL;
417
418 sd_config_discard(sdkp, mode);
419
420 return count;
421 }
422 static DEVICE_ATTR_RW(provisioning_mode);
423
424 /* sysfs_match_string() requires dense arrays */
425 static const char *zeroing_mode[] = {
426 [SD_ZERO_WRITE] = "write",
427 [SD_ZERO_WS] = "writesame",
428 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
429 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
430 };
431
432 static ssize_t
433 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
434 char *buf)
435 {
436 struct scsi_disk *sdkp = to_scsi_disk(dev);
437
438 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
439 }
440
441 static ssize_t
442 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
443 const char *buf, size_t count)
444 {
445 struct scsi_disk *sdkp = to_scsi_disk(dev);
446 int mode;
447
448 if (!capable(CAP_SYS_ADMIN))
449 return -EACCES;
450
451 mode = sysfs_match_string(zeroing_mode, buf);
452 if (mode < 0)
453 return -EINVAL;
454
455 sdkp->zeroing_mode = mode;
456
457 return count;
458 }
459 static DEVICE_ATTR_RW(zeroing_mode);
460
461 static ssize_t
462 max_medium_access_timeouts_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct scsi_disk *sdkp = to_scsi_disk(dev);
466
467 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
468 }
469
470 static ssize_t
471 max_medium_access_timeouts_store(struct device *dev,
472 struct device_attribute *attr, const char *buf,
473 size_t count)
474 {
475 struct scsi_disk *sdkp = to_scsi_disk(dev);
476 int err;
477
478 if (!capable(CAP_SYS_ADMIN))
479 return -EACCES;
480
481 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
482
483 return err ? err : count;
484 }
485 static DEVICE_ATTR_RW(max_medium_access_timeouts);
486
487 static ssize_t
488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
489 char *buf)
490 {
491 struct scsi_disk *sdkp = to_scsi_disk(dev);
492
493 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
494 }
495
496 static ssize_t
497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
498 const char *buf, size_t count)
499 {
500 struct scsi_disk *sdkp = to_scsi_disk(dev);
501 struct scsi_device *sdp = sdkp->device;
502 unsigned long max;
503 int err;
504
505 if (!capable(CAP_SYS_ADMIN))
506 return -EACCES;
507
508 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
509 return -EINVAL;
510
511 err = kstrtoul(buf, 10, &max);
512
513 if (err)
514 return err;
515
516 if (max == 0)
517 sdp->no_write_same = 1;
518 else if (max <= SD_MAX_WS16_BLOCKS) {
519 sdp->no_write_same = 0;
520 sdkp->max_ws_blocks = max;
521 }
522
523 sd_config_write_same(sdkp);
524
525 return count;
526 }
527 static DEVICE_ATTR_RW(max_write_same_blocks);
528
529 static ssize_t
530 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
531 {
532 struct scsi_disk *sdkp = to_scsi_disk(dev);
533
534 if (sdkp->device->type == TYPE_ZBC)
535 return sprintf(buf, "host-managed\n");
536 if (sdkp->zoned == 1)
537 return sprintf(buf, "host-aware\n");
538 if (sdkp->zoned == 2)
539 return sprintf(buf, "drive-managed\n");
540 return sprintf(buf, "none\n");
541 }
542 static DEVICE_ATTR_RO(zoned_cap);
543
544 static ssize_t
545 max_retries_store(struct device *dev, struct device_attribute *attr,
546 const char *buf, size_t count)
547 {
548 struct scsi_disk *sdkp = to_scsi_disk(dev);
549 struct scsi_device *sdev = sdkp->device;
550 int retries, err;
551
552 err = kstrtoint(buf, 10, &retries);
553 if (err)
554 return err;
555
556 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
557 sdkp->max_retries = retries;
558 return count;
559 }
560
561 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
562 SD_MAX_RETRIES);
563 return -EINVAL;
564 }
565
566 static ssize_t
567 max_retries_show(struct device *dev, struct device_attribute *attr,
568 char *buf)
569 {
570 struct scsi_disk *sdkp = to_scsi_disk(dev);
571
572 return sprintf(buf, "%d\n", sdkp->max_retries);
573 }
574
575 static DEVICE_ATTR_RW(max_retries);
576
577 static struct attribute *sd_disk_attrs[] = {
578 &dev_attr_cache_type.attr,
579 &dev_attr_FUA.attr,
580 &dev_attr_allow_restart.attr,
581 &dev_attr_manage_start_stop.attr,
582 &dev_attr_protection_type.attr,
583 &dev_attr_protection_mode.attr,
584 &dev_attr_app_tag_own.attr,
585 &dev_attr_thin_provisioning.attr,
586 &dev_attr_provisioning_mode.attr,
587 &dev_attr_zeroing_mode.attr,
588 &dev_attr_max_write_same_blocks.attr,
589 &dev_attr_max_medium_access_timeouts.attr,
590 &dev_attr_zoned_cap.attr,
591 &dev_attr_max_retries.attr,
592 NULL,
593 };
594 ATTRIBUTE_GROUPS(sd_disk);
595
596 static struct class sd_disk_class = {
597 .name = "scsi_disk",
598 .owner = THIS_MODULE,
599 .dev_release = scsi_disk_release,
600 .dev_groups = sd_disk_groups,
601 };
602
603 static const struct dev_pm_ops sd_pm_ops = {
604 .suspend = sd_suspend_system,
605 .resume = sd_resume,
606 .poweroff = sd_suspend_system,
607 .restore = sd_resume,
608 .runtime_suspend = sd_suspend_runtime,
609 .runtime_resume = sd_resume_runtime,
610 };
611
612 static struct scsi_driver sd_template = {
613 .gendrv = {
614 .name = "sd",
615 .owner = THIS_MODULE,
616 .probe = sd_probe,
617 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
618 .remove = sd_remove,
619 .shutdown = sd_shutdown,
620 .pm = &sd_pm_ops,
621 },
622 .rescan = sd_rescan,
623 .init_command = sd_init_command,
624 .uninit_command = sd_uninit_command,
625 .done = sd_done,
626 .eh_action = sd_eh_action,
627 .eh_reset = sd_eh_reset,
628 };
629
630 /*
631 * Don't request a new module, as that could deadlock in multipath
632 * environment.
633 */
634 static void sd_default_probe(dev_t devt)
635 {
636 }
637
638 /*
639 * Device no to disk mapping:
640 *
641 * major disc2 disc p1
642 * |............|.............|....|....| <- dev_t
643 * 31 20 19 8 7 4 3 0
644 *
645 * Inside a major, we have 16k disks, however mapped non-
646 * contiguously. The first 16 disks are for major0, the next
647 * ones with major1, ... Disk 256 is for major0 again, disk 272
648 * for major1, ...
649 * As we stay compatible with our numbering scheme, we can reuse
650 * the well-know SCSI majors 8, 65--71, 136--143.
651 */
652 static int sd_major(int major_idx)
653 {
654 switch (major_idx) {
655 case 0:
656 return SCSI_DISK0_MAJOR;
657 case 1 ... 7:
658 return SCSI_DISK1_MAJOR + major_idx - 1;
659 case 8 ... 15:
660 return SCSI_DISK8_MAJOR + major_idx - 8;
661 default:
662 BUG();
663 return 0; /* shut up gcc */
664 }
665 }
666
667 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
668 {
669 struct scsi_disk *sdkp = NULL;
670
671 mutex_lock(&sd_ref_mutex);
672
673 if (disk->private_data) {
674 sdkp = scsi_disk(disk);
675 if (scsi_device_get(sdkp->device) == 0)
676 get_device(&sdkp->dev);
677 else
678 sdkp = NULL;
679 }
680 mutex_unlock(&sd_ref_mutex);
681 return sdkp;
682 }
683
684 static void scsi_disk_put(struct scsi_disk *sdkp)
685 {
686 struct scsi_device *sdev = sdkp->device;
687
688 mutex_lock(&sd_ref_mutex);
689 put_device(&sdkp->dev);
690 scsi_device_put(sdev);
691 mutex_unlock(&sd_ref_mutex);
692 }
693
694 #ifdef CONFIG_BLK_SED_OPAL
695 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
696 size_t len, bool send)
697 {
698 struct scsi_disk *sdkp = data;
699 struct scsi_device *sdev = sdkp->device;
700 u8 cdb[12] = { 0, };
701 int ret;
702
703 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
704 cdb[1] = secp;
705 put_unaligned_be16(spsp, &cdb[2]);
706 put_unaligned_be32(len, &cdb[6]);
707
708 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
709 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
710 RQF_PM, NULL);
711 return ret <= 0 ? ret : -EIO;
712 }
713 #endif /* CONFIG_BLK_SED_OPAL */
714
715 /*
716 * Look up the DIX operation based on whether the command is read or
717 * write and whether dix and dif are enabled.
718 */
719 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
720 {
721 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
722 static const unsigned int ops[] = { /* wrt dix dif */
723 SCSI_PROT_NORMAL, /* 0 0 0 */
724 SCSI_PROT_READ_STRIP, /* 0 0 1 */
725 SCSI_PROT_READ_INSERT, /* 0 1 0 */
726 SCSI_PROT_READ_PASS, /* 0 1 1 */
727 SCSI_PROT_NORMAL, /* 1 0 0 */
728 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
729 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
730 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
731 };
732
733 return ops[write << 2 | dix << 1 | dif];
734 }
735
736 /*
737 * Returns a mask of the protection flags that are valid for a given DIX
738 * operation.
739 */
740 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
741 {
742 static const unsigned int flag_mask[] = {
743 [SCSI_PROT_NORMAL] = 0,
744
745 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
746 SCSI_PROT_GUARD_CHECK |
747 SCSI_PROT_REF_CHECK |
748 SCSI_PROT_REF_INCREMENT,
749
750 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
751 SCSI_PROT_IP_CHECKSUM,
752
753 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
754 SCSI_PROT_GUARD_CHECK |
755 SCSI_PROT_REF_CHECK |
756 SCSI_PROT_REF_INCREMENT |
757 SCSI_PROT_IP_CHECKSUM,
758
759 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
760 SCSI_PROT_REF_INCREMENT,
761
762 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
763 SCSI_PROT_REF_CHECK |
764 SCSI_PROT_REF_INCREMENT |
765 SCSI_PROT_IP_CHECKSUM,
766
767 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
768 SCSI_PROT_GUARD_CHECK |
769 SCSI_PROT_REF_CHECK |
770 SCSI_PROT_REF_INCREMENT |
771 SCSI_PROT_IP_CHECKSUM,
772 };
773
774 return flag_mask[prot_op];
775 }
776
777 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
778 unsigned int dix, unsigned int dif)
779 {
780 struct request *rq = scsi_cmd_to_rq(scmd);
781 struct bio *bio = rq->bio;
782 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
783 unsigned int protect = 0;
784
785 if (dix) { /* DIX Type 0, 1, 2, 3 */
786 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
787 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
788
789 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
790 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
791 }
792
793 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
794 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
795
796 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
798 }
799
800 if (dif) { /* DIX/DIF Type 1, 2, 3 */
801 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
802
803 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
804 protect = 3 << 5; /* Disable target PI checking */
805 else
806 protect = 1 << 5; /* Enable target PI checking */
807 }
808
809 scsi_set_prot_op(scmd, prot_op);
810 scsi_set_prot_type(scmd, dif);
811 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
812
813 return protect;
814 }
815
816 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
817 {
818 struct request_queue *q = sdkp->disk->queue;
819 unsigned int logical_block_size = sdkp->device->sector_size;
820 unsigned int max_blocks = 0;
821
822 q->limits.discard_alignment =
823 sdkp->unmap_alignment * logical_block_size;
824 q->limits.discard_granularity =
825 max(sdkp->physical_block_size,
826 sdkp->unmap_granularity * logical_block_size);
827 sdkp->provisioning_mode = mode;
828
829 switch (mode) {
830
831 case SD_LBP_FULL:
832 case SD_LBP_DISABLE:
833 blk_queue_max_discard_sectors(q, 0);
834 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
835 return;
836
837 case SD_LBP_UNMAP:
838 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
839 (u32)SD_MAX_WS16_BLOCKS);
840 break;
841
842 case SD_LBP_WS16:
843 if (sdkp->device->unmap_limit_for_ws)
844 max_blocks = sdkp->max_unmap_blocks;
845 else
846 max_blocks = sdkp->max_ws_blocks;
847
848 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
849 break;
850
851 case SD_LBP_WS10:
852 if (sdkp->device->unmap_limit_for_ws)
853 max_blocks = sdkp->max_unmap_blocks;
854 else
855 max_blocks = sdkp->max_ws_blocks;
856
857 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
858 break;
859
860 case SD_LBP_ZERO:
861 max_blocks = min_not_zero(sdkp->max_ws_blocks,
862 (u32)SD_MAX_WS10_BLOCKS);
863 break;
864 }
865
866 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
867 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
868 }
869
870 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
871 {
872 struct scsi_device *sdp = cmd->device;
873 struct request *rq = scsi_cmd_to_rq(cmd);
874 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
877 unsigned int data_len = 24;
878 char *buf;
879
880 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881 if (!rq->special_vec.bv_page)
882 return BLK_STS_RESOURCE;
883 clear_highpage(rq->special_vec.bv_page);
884 rq->special_vec.bv_offset = 0;
885 rq->special_vec.bv_len = data_len;
886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887
888 cmd->cmd_len = 10;
889 cmd->cmnd[0] = UNMAP;
890 cmd->cmnd[8] = 24;
891
892 buf = bvec_virt(&rq->special_vec);
893 put_unaligned_be16(6 + 16, &buf[0]);
894 put_unaligned_be16(16, &buf[2]);
895 put_unaligned_be64(lba, &buf[8]);
896 put_unaligned_be32(nr_blocks, &buf[16]);
897
898 cmd->allowed = sdkp->max_retries;
899 cmd->transfersize = data_len;
900 rq->timeout = SD_TIMEOUT;
901
902 return scsi_alloc_sgtables(cmd);
903 }
904
905 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
906 bool unmap)
907 {
908 struct scsi_device *sdp = cmd->device;
909 struct request *rq = scsi_cmd_to_rq(cmd);
910 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
913 u32 data_len = sdp->sector_size;
914
915 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
916 if (!rq->special_vec.bv_page)
917 return BLK_STS_RESOURCE;
918 clear_highpage(rq->special_vec.bv_page);
919 rq->special_vec.bv_offset = 0;
920 rq->special_vec.bv_len = data_len;
921 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
922
923 cmd->cmd_len = 16;
924 cmd->cmnd[0] = WRITE_SAME_16;
925 if (unmap)
926 cmd->cmnd[1] = 0x8; /* UNMAP */
927 put_unaligned_be64(lba, &cmd->cmnd[2]);
928 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
929
930 cmd->allowed = sdkp->max_retries;
931 cmd->transfersize = data_len;
932 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
933
934 return scsi_alloc_sgtables(cmd);
935 }
936
937 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
938 bool unmap)
939 {
940 struct scsi_device *sdp = cmd->device;
941 struct request *rq = scsi_cmd_to_rq(cmd);
942 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
943 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
944 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
945 u32 data_len = sdp->sector_size;
946
947 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
948 if (!rq->special_vec.bv_page)
949 return BLK_STS_RESOURCE;
950 clear_highpage(rq->special_vec.bv_page);
951 rq->special_vec.bv_offset = 0;
952 rq->special_vec.bv_len = data_len;
953 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
954
955 cmd->cmd_len = 10;
956 cmd->cmnd[0] = WRITE_SAME;
957 if (unmap)
958 cmd->cmnd[1] = 0x8; /* UNMAP */
959 put_unaligned_be32(lba, &cmd->cmnd[2]);
960 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
961
962 cmd->allowed = sdkp->max_retries;
963 cmd->transfersize = data_len;
964 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
965
966 return scsi_alloc_sgtables(cmd);
967 }
968
969 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
970 {
971 struct request *rq = scsi_cmd_to_rq(cmd);
972 struct scsi_device *sdp = cmd->device;
973 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
974 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
975 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
976
977 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
978 switch (sdkp->zeroing_mode) {
979 case SD_ZERO_WS16_UNMAP:
980 return sd_setup_write_same16_cmnd(cmd, true);
981 case SD_ZERO_WS10_UNMAP:
982 return sd_setup_write_same10_cmnd(cmd, true);
983 }
984 }
985
986 if (sdp->no_write_same) {
987 rq->rq_flags |= RQF_QUIET;
988 return BLK_STS_TARGET;
989 }
990
991 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
992 return sd_setup_write_same16_cmnd(cmd, false);
993
994 return sd_setup_write_same10_cmnd(cmd, false);
995 }
996
997 static void sd_config_write_same(struct scsi_disk *sdkp)
998 {
999 struct request_queue *q = sdkp->disk->queue;
1000 unsigned int logical_block_size = sdkp->device->sector_size;
1001
1002 if (sdkp->device->no_write_same) {
1003 sdkp->max_ws_blocks = 0;
1004 goto out;
1005 }
1006
1007 /* Some devices can not handle block counts above 0xffff despite
1008 * supporting WRITE SAME(16). Consequently we default to 64k
1009 * blocks per I/O unless the device explicitly advertises a
1010 * bigger limit.
1011 */
1012 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1013 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1014 (u32)SD_MAX_WS16_BLOCKS);
1015 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 (u32)SD_MAX_WS10_BLOCKS);
1018 else {
1019 sdkp->device->no_write_same = 1;
1020 sdkp->max_ws_blocks = 0;
1021 }
1022
1023 if (sdkp->lbprz && sdkp->lbpws)
1024 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1025 else if (sdkp->lbprz && sdkp->lbpws10)
1026 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1027 else if (sdkp->max_ws_blocks)
1028 sdkp->zeroing_mode = SD_ZERO_WS;
1029 else
1030 sdkp->zeroing_mode = SD_ZERO_WRITE;
1031
1032 if (sdkp->max_ws_blocks &&
1033 sdkp->physical_block_size > logical_block_size) {
1034 /*
1035 * Reporting a maximum number of blocks that is not aligned
1036 * on the device physical size would cause a large write same
1037 * request to be split into physically unaligned chunks by
1038 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1039 * even if the caller of these functions took care to align the
1040 * large request. So make sure the maximum reported is aligned
1041 * to the device physical block size. This is only an optional
1042 * optimization for regular disks, but this is mandatory to
1043 * avoid failure of large write same requests directed at
1044 * sequential write required zones of host-managed ZBC disks.
1045 */
1046 sdkp->max_ws_blocks =
1047 round_down(sdkp->max_ws_blocks,
1048 bytes_to_logical(sdkp->device,
1049 sdkp->physical_block_size));
1050 }
1051
1052 out:
1053 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1054 (logical_block_size >> 9));
1055 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1056 (logical_block_size >> 9));
1057 }
1058
1059 /**
1060 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1061 * @cmd: command to prepare
1062 *
1063 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1064 * the preference indicated by the target device.
1065 **/
1066 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1067 {
1068 struct request *rq = scsi_cmd_to_rq(cmd);
1069 struct scsi_device *sdp = cmd->device;
1070 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1071 struct bio *bio = rq->bio;
1072 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1073 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1074 blk_status_t ret;
1075
1076 if (sdkp->device->no_write_same)
1077 return BLK_STS_TARGET;
1078
1079 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1080
1081 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1082
1083 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1084 cmd->cmd_len = 16;
1085 cmd->cmnd[0] = WRITE_SAME_16;
1086 put_unaligned_be64(lba, &cmd->cmnd[2]);
1087 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1088 } else {
1089 cmd->cmd_len = 10;
1090 cmd->cmnd[0] = WRITE_SAME;
1091 put_unaligned_be32(lba, &cmd->cmnd[2]);
1092 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1093 }
1094
1095 cmd->transfersize = sdp->sector_size;
1096 cmd->allowed = sdkp->max_retries;
1097
1098 /*
1099 * For WRITE SAME the data transferred via the DATA OUT buffer is
1100 * different from the amount of data actually written to the target.
1101 *
1102 * We set up __data_len to the amount of data transferred via the
1103 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1104 * to transfer a single sector of data first, but then reset it to
1105 * the amount of data to be written right after so that the I/O path
1106 * knows how much to actually write.
1107 */
1108 rq->__data_len = sdp->sector_size;
1109 ret = scsi_alloc_sgtables(cmd);
1110 rq->__data_len = blk_rq_bytes(rq);
1111
1112 return ret;
1113 }
1114
1115 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1116 {
1117 struct request *rq = scsi_cmd_to_rq(cmd);
1118 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1119
1120 /* flush requests don't perform I/O, zero the S/G table */
1121 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1122
1123 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1124 cmd->cmd_len = 10;
1125 cmd->transfersize = 0;
1126 cmd->allowed = sdkp->max_retries;
1127
1128 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1129 return BLK_STS_OK;
1130 }
1131
1132 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1133 sector_t lba, unsigned int nr_blocks,
1134 unsigned char flags)
1135 {
1136 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1137 if (unlikely(cmd->cmnd == NULL))
1138 return BLK_STS_RESOURCE;
1139
1140 cmd->cmd_len = SD_EXT_CDB_SIZE;
1141 memset(cmd->cmnd, 0, cmd->cmd_len);
1142
1143 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1144 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1145 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1146 cmd->cmnd[10] = flags;
1147 put_unaligned_be64(lba, &cmd->cmnd[12]);
1148 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1149 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1150
1151 return BLK_STS_OK;
1152 }
1153
1154 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1155 sector_t lba, unsigned int nr_blocks,
1156 unsigned char flags)
1157 {
1158 cmd->cmd_len = 16;
1159 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1160 cmd->cmnd[1] = flags;
1161 cmd->cmnd[14] = 0;
1162 cmd->cmnd[15] = 0;
1163 put_unaligned_be64(lba, &cmd->cmnd[2]);
1164 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1165
1166 return BLK_STS_OK;
1167 }
1168
1169 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1170 sector_t lba, unsigned int nr_blocks,
1171 unsigned char flags)
1172 {
1173 cmd->cmd_len = 10;
1174 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1175 cmd->cmnd[1] = flags;
1176 cmd->cmnd[6] = 0;
1177 cmd->cmnd[9] = 0;
1178 put_unaligned_be32(lba, &cmd->cmnd[2]);
1179 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1180
1181 return BLK_STS_OK;
1182 }
1183
1184 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1185 sector_t lba, unsigned int nr_blocks,
1186 unsigned char flags)
1187 {
1188 /* Avoid that 0 blocks gets translated into 256 blocks. */
1189 if (WARN_ON_ONCE(nr_blocks == 0))
1190 return BLK_STS_IOERR;
1191
1192 if (unlikely(flags & 0x8)) {
1193 /*
1194 * This happens only if this drive failed 10byte rw
1195 * command with ILLEGAL_REQUEST during operation and
1196 * thus turned off use_10_for_rw.
1197 */
1198 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1199 return BLK_STS_IOERR;
1200 }
1201
1202 cmd->cmd_len = 6;
1203 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1204 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1205 cmd->cmnd[2] = (lba >> 8) & 0xff;
1206 cmd->cmnd[3] = lba & 0xff;
1207 cmd->cmnd[4] = nr_blocks;
1208 cmd->cmnd[5] = 0;
1209
1210 return BLK_STS_OK;
1211 }
1212
1213 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1214 {
1215 struct request *rq = scsi_cmd_to_rq(cmd);
1216 struct scsi_device *sdp = cmd->device;
1217 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1218 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1219 sector_t threshold;
1220 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1221 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1222 bool write = rq_data_dir(rq) == WRITE;
1223 unsigned char protect, fua;
1224 blk_status_t ret;
1225 unsigned int dif;
1226 bool dix;
1227
1228 ret = scsi_alloc_sgtables(cmd);
1229 if (ret != BLK_STS_OK)
1230 return ret;
1231
1232 ret = BLK_STS_IOERR;
1233 if (!scsi_device_online(sdp) || sdp->changed) {
1234 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1235 goto fail;
1236 }
1237
1238 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1239 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1240 goto fail;
1241 }
1242
1243 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1244 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1245 goto fail;
1246 }
1247
1248 /*
1249 * Some SD card readers can't handle accesses which touch the
1250 * last one or two logical blocks. Split accesses as needed.
1251 */
1252 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1253
1254 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1255 if (lba < threshold) {
1256 /* Access up to the threshold but not beyond */
1257 nr_blocks = threshold - lba;
1258 } else {
1259 /* Access only a single logical block */
1260 nr_blocks = 1;
1261 }
1262 }
1263
1264 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1265 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1266 if (ret)
1267 goto fail;
1268 }
1269
1270 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1271 dix = scsi_prot_sg_count(cmd);
1272 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1273
1274 if (dif || dix)
1275 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1276 else
1277 protect = 0;
1278
1279 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1280 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1281 protect | fua);
1282 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1283 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1284 protect | fua);
1285 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1286 sdp->use_10_for_rw || protect) {
1287 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1288 protect | fua);
1289 } else {
1290 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1291 protect | fua);
1292 }
1293
1294 if (unlikely(ret != BLK_STS_OK))
1295 goto fail;
1296
1297 /*
1298 * We shouldn't disconnect in the middle of a sector, so with a dumb
1299 * host adapter, it's safe to assume that we can at least transfer
1300 * this many bytes between each connect / disconnect.
1301 */
1302 cmd->transfersize = sdp->sector_size;
1303 cmd->underflow = nr_blocks << 9;
1304 cmd->allowed = sdkp->max_retries;
1305 cmd->sdb.length = nr_blocks * sdp->sector_size;
1306
1307 SCSI_LOG_HLQUEUE(1,
1308 scmd_printk(KERN_INFO, cmd,
1309 "%s: block=%llu, count=%d\n", __func__,
1310 (unsigned long long)blk_rq_pos(rq),
1311 blk_rq_sectors(rq)));
1312 SCSI_LOG_HLQUEUE(2,
1313 scmd_printk(KERN_INFO, cmd,
1314 "%s %d/%u 512 byte blocks.\n",
1315 write ? "writing" : "reading", nr_blocks,
1316 blk_rq_sectors(rq)));
1317
1318 /*
1319 * This indicates that the command is ready from our end to be queued.
1320 */
1321 return BLK_STS_OK;
1322 fail:
1323 scsi_free_sgtables(cmd);
1324 return ret;
1325 }
1326
1327 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1328 {
1329 struct request *rq = scsi_cmd_to_rq(cmd);
1330
1331 switch (req_op(rq)) {
1332 case REQ_OP_DISCARD:
1333 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1334 case SD_LBP_UNMAP:
1335 return sd_setup_unmap_cmnd(cmd);
1336 case SD_LBP_WS16:
1337 return sd_setup_write_same16_cmnd(cmd, true);
1338 case SD_LBP_WS10:
1339 return sd_setup_write_same10_cmnd(cmd, true);
1340 case SD_LBP_ZERO:
1341 return sd_setup_write_same10_cmnd(cmd, false);
1342 default:
1343 return BLK_STS_TARGET;
1344 }
1345 case REQ_OP_WRITE_ZEROES:
1346 return sd_setup_write_zeroes_cmnd(cmd);
1347 case REQ_OP_WRITE_SAME:
1348 return sd_setup_write_same_cmnd(cmd);
1349 case REQ_OP_FLUSH:
1350 return sd_setup_flush_cmnd(cmd);
1351 case REQ_OP_READ:
1352 case REQ_OP_WRITE:
1353 case REQ_OP_ZONE_APPEND:
1354 return sd_setup_read_write_cmnd(cmd);
1355 case REQ_OP_ZONE_RESET:
1356 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1357 false);
1358 case REQ_OP_ZONE_RESET_ALL:
1359 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1360 true);
1361 case REQ_OP_ZONE_OPEN:
1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1363 case REQ_OP_ZONE_CLOSE:
1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1365 case REQ_OP_ZONE_FINISH:
1366 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1367 default:
1368 WARN_ON_ONCE(1);
1369 return BLK_STS_NOTSUPP;
1370 }
1371 }
1372
1373 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1374 {
1375 struct request *rq = scsi_cmd_to_rq(SCpnt);
1376 u8 *cmnd;
1377
1378 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1379 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1380
1381 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1382 cmnd = SCpnt->cmnd;
1383 SCpnt->cmnd = NULL;
1384 SCpnt->cmd_len = 0;
1385 mempool_free(cmnd, sd_cdb_pool);
1386 }
1387 }
1388
1389 static bool sd_need_revalidate(struct block_device *bdev,
1390 struct scsi_disk *sdkp)
1391 {
1392 if (sdkp->device->removable || sdkp->write_prot) {
1393 if (bdev_check_media_change(bdev))
1394 return true;
1395 }
1396
1397 /*
1398 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1399 * nothing to do with partitions, BLKRRPART is used to force a full
1400 * revalidate after things like a format for historical reasons.
1401 */
1402 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1403 }
1404
1405 /**
1406 * sd_open - open a scsi disk device
1407 * @bdev: Block device of the scsi disk to open
1408 * @mode: FMODE_* mask
1409 *
1410 * Returns 0 if successful. Returns a negated errno value in case
1411 * of error.
1412 *
1413 * Note: This can be called from a user context (e.g. fsck(1) )
1414 * or from within the kernel (e.g. as a result of a mount(1) ).
1415 * In the latter case @inode and @filp carry an abridged amount
1416 * of information as noted above.
1417 *
1418 * Locking: called with bdev->bd_disk->open_mutex held.
1419 **/
1420 static int sd_open(struct block_device *bdev, fmode_t mode)
1421 {
1422 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1423 struct scsi_device *sdev;
1424 int retval;
1425
1426 if (!sdkp)
1427 return -ENXIO;
1428
1429 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1430
1431 sdev = sdkp->device;
1432
1433 /*
1434 * If the device is in error recovery, wait until it is done.
1435 * If the device is offline, then disallow any access to it.
1436 */
1437 retval = -ENXIO;
1438 if (!scsi_block_when_processing_errors(sdev))
1439 goto error_out;
1440
1441 if (sd_need_revalidate(bdev, sdkp))
1442 sd_revalidate_disk(bdev->bd_disk);
1443
1444 /*
1445 * If the drive is empty, just let the open fail.
1446 */
1447 retval = -ENOMEDIUM;
1448 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1449 goto error_out;
1450
1451 /*
1452 * If the device has the write protect tab set, have the open fail
1453 * if the user expects to be able to write to the thing.
1454 */
1455 retval = -EROFS;
1456 if (sdkp->write_prot && (mode & FMODE_WRITE))
1457 goto error_out;
1458
1459 /*
1460 * It is possible that the disk changing stuff resulted in
1461 * the device being taken offline. If this is the case,
1462 * report this to the user, and don't pretend that the
1463 * open actually succeeded.
1464 */
1465 retval = -ENXIO;
1466 if (!scsi_device_online(sdev))
1467 goto error_out;
1468
1469 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1470 if (scsi_block_when_processing_errors(sdev))
1471 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1472 }
1473
1474 return 0;
1475
1476 error_out:
1477 scsi_disk_put(sdkp);
1478 return retval;
1479 }
1480
1481 /**
1482 * sd_release - invoked when the (last) close(2) is called on this
1483 * scsi disk.
1484 * @disk: disk to release
1485 * @mode: FMODE_* mask
1486 *
1487 * Returns 0.
1488 *
1489 * Note: may block (uninterruptible) if error recovery is underway
1490 * on this disk.
1491 *
1492 * Locking: called with bdev->bd_disk->open_mutex held.
1493 **/
1494 static void sd_release(struct gendisk *disk, fmode_t mode)
1495 {
1496 struct scsi_disk *sdkp = scsi_disk(disk);
1497 struct scsi_device *sdev = sdkp->device;
1498
1499 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1500
1501 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1502 if (scsi_block_when_processing_errors(sdev))
1503 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1504 }
1505
1506 scsi_disk_put(sdkp);
1507 }
1508
1509 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1510 {
1511 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1512 struct scsi_device *sdp = sdkp->device;
1513 struct Scsi_Host *host = sdp->host;
1514 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1515 int diskinfo[4];
1516
1517 /* default to most commonly used values */
1518 diskinfo[0] = 0x40; /* 1 << 6 */
1519 diskinfo[1] = 0x20; /* 1 << 5 */
1520 diskinfo[2] = capacity >> 11;
1521
1522 /* override with calculated, extended default, or driver values */
1523 if (host->hostt->bios_param)
1524 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1525 else
1526 scsicam_bios_param(bdev, capacity, diskinfo);
1527
1528 geo->heads = diskinfo[0];
1529 geo->sectors = diskinfo[1];
1530 geo->cylinders = diskinfo[2];
1531 return 0;
1532 }
1533
1534 /**
1535 * sd_ioctl - process an ioctl
1536 * @bdev: target block device
1537 * @mode: FMODE_* mask
1538 * @cmd: ioctl command number
1539 * @arg: this is third argument given to ioctl(2) system call.
1540 * Often contains a pointer.
1541 *
1542 * Returns 0 if successful (some ioctls return positive numbers on
1543 * success as well). Returns a negated errno value in case of error.
1544 *
1545 * Note: most ioctls are forward onto the block subsystem or further
1546 * down in the scsi subsystem.
1547 **/
1548 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1549 unsigned int cmd, unsigned long arg)
1550 {
1551 struct gendisk *disk = bdev->bd_disk;
1552 struct scsi_disk *sdkp = scsi_disk(disk);
1553 struct scsi_device *sdp = sdkp->device;
1554 void __user *p = (void __user *)arg;
1555 int error;
1556
1557 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1558 "cmd=0x%x\n", disk->disk_name, cmd));
1559
1560 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1561 return -ENOIOCTLCMD;
1562
1563 /*
1564 * If we are in the middle of error recovery, don't let anyone
1565 * else try and use this device. Also, if error recovery fails, it
1566 * may try and take the device offline, in which case all further
1567 * access to the device is prohibited.
1568 */
1569 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1570 (mode & FMODE_NDELAY) != 0);
1571 if (error)
1572 return error;
1573
1574 if (is_sed_ioctl(cmd))
1575 return sed_ioctl(sdkp->opal_dev, cmd, p);
1576 return scsi_ioctl(sdp, disk, mode, cmd, p);
1577 }
1578
1579 static void set_media_not_present(struct scsi_disk *sdkp)
1580 {
1581 if (sdkp->media_present)
1582 sdkp->device->changed = 1;
1583
1584 if (sdkp->device->removable) {
1585 sdkp->media_present = 0;
1586 sdkp->capacity = 0;
1587 }
1588 }
1589
1590 static int media_not_present(struct scsi_disk *sdkp,
1591 struct scsi_sense_hdr *sshdr)
1592 {
1593 if (!scsi_sense_valid(sshdr))
1594 return 0;
1595
1596 /* not invoked for commands that could return deferred errors */
1597 switch (sshdr->sense_key) {
1598 case UNIT_ATTENTION:
1599 case NOT_READY:
1600 /* medium not present */
1601 if (sshdr->asc == 0x3A) {
1602 set_media_not_present(sdkp);
1603 return 1;
1604 }
1605 }
1606 return 0;
1607 }
1608
1609 /**
1610 * sd_check_events - check media events
1611 * @disk: kernel device descriptor
1612 * @clearing: disk events currently being cleared
1613 *
1614 * Returns mask of DISK_EVENT_*.
1615 *
1616 * Note: this function is invoked from the block subsystem.
1617 **/
1618 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1619 {
1620 struct scsi_disk *sdkp = scsi_disk_get(disk);
1621 struct scsi_device *sdp;
1622 int retval;
1623 bool disk_changed;
1624
1625 if (!sdkp)
1626 return 0;
1627
1628 sdp = sdkp->device;
1629 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1630
1631 /*
1632 * If the device is offline, don't send any commands - just pretend as
1633 * if the command failed. If the device ever comes back online, we
1634 * can deal with it then. It is only because of unrecoverable errors
1635 * that we would ever take a device offline in the first place.
1636 */
1637 if (!scsi_device_online(sdp)) {
1638 set_media_not_present(sdkp);
1639 goto out;
1640 }
1641
1642 /*
1643 * Using TEST_UNIT_READY enables differentiation between drive with
1644 * no cartridge loaded - NOT READY, drive with changed cartridge -
1645 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1646 *
1647 * Drives that auto spin down. eg iomega jaz 1G, will be started
1648 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1649 * sd_revalidate() is called.
1650 */
1651 if (scsi_block_when_processing_errors(sdp)) {
1652 struct scsi_sense_hdr sshdr = { 0, };
1653
1654 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1655 &sshdr);
1656
1657 /* failed to execute TUR, assume media not present */
1658 if (retval < 0 || host_byte(retval)) {
1659 set_media_not_present(sdkp);
1660 goto out;
1661 }
1662
1663 if (media_not_present(sdkp, &sshdr))
1664 goto out;
1665 }
1666
1667 /*
1668 * For removable scsi disk we have to recognise the presence
1669 * of a disk in the drive.
1670 */
1671 if (!sdkp->media_present)
1672 sdp->changed = 1;
1673 sdkp->media_present = 1;
1674 out:
1675 /*
1676 * sdp->changed is set under the following conditions:
1677 *
1678 * Medium present state has changed in either direction.
1679 * Device has indicated UNIT_ATTENTION.
1680 */
1681 disk_changed = sdp->changed;
1682 sdp->changed = 0;
1683 scsi_disk_put(sdkp);
1684 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1685 }
1686
1687 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1688 {
1689 int retries, res;
1690 struct scsi_device *sdp = sdkp->device;
1691 const int timeout = sdp->request_queue->rq_timeout
1692 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1693 struct scsi_sense_hdr my_sshdr;
1694
1695 if (!scsi_device_online(sdp))
1696 return -ENODEV;
1697
1698 /* caller might not be interested in sense, but we need it */
1699 if (!sshdr)
1700 sshdr = &my_sshdr;
1701
1702 for (retries = 3; retries > 0; --retries) {
1703 unsigned char cmd[10] = { 0 };
1704
1705 cmd[0] = SYNCHRONIZE_CACHE;
1706 /*
1707 * Leave the rest of the command zero to indicate
1708 * flush everything.
1709 */
1710 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1711 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1712 if (res == 0)
1713 break;
1714 }
1715
1716 if (res) {
1717 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1718
1719 if (res < 0)
1720 return res;
1721
1722 if (scsi_status_is_check_condition(res) &&
1723 scsi_sense_valid(sshdr)) {
1724 sd_print_sense_hdr(sdkp, sshdr);
1725
1726 /* we need to evaluate the error return */
1727 if (sshdr->asc == 0x3a || /* medium not present */
1728 sshdr->asc == 0x20 || /* invalid command */
1729 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1730 /* this is no error here */
1731 return 0;
1732 }
1733
1734 switch (host_byte(res)) {
1735 /* ignore errors due to racing a disconnection */
1736 case DID_BAD_TARGET:
1737 case DID_NO_CONNECT:
1738 return 0;
1739 /* signal the upper layer it might try again */
1740 case DID_BUS_BUSY:
1741 case DID_IMM_RETRY:
1742 case DID_REQUEUE:
1743 case DID_SOFT_ERROR:
1744 return -EBUSY;
1745 default:
1746 return -EIO;
1747 }
1748 }
1749 return 0;
1750 }
1751
1752 static void sd_rescan(struct device *dev)
1753 {
1754 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1755
1756 sd_revalidate_disk(sdkp->disk);
1757 }
1758
1759 static char sd_pr_type(enum pr_type type)
1760 {
1761 switch (type) {
1762 case PR_WRITE_EXCLUSIVE:
1763 return 0x01;
1764 case PR_EXCLUSIVE_ACCESS:
1765 return 0x03;
1766 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1767 return 0x05;
1768 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1769 return 0x06;
1770 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1771 return 0x07;
1772 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1773 return 0x08;
1774 default:
1775 return 0;
1776 }
1777 };
1778
1779 static int sd_pr_command(struct block_device *bdev, u8 sa,
1780 u64 key, u64 sa_key, u8 type, u8 flags)
1781 {
1782 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1783 struct scsi_device *sdev = sdkp->device;
1784 struct scsi_sense_hdr sshdr;
1785 int result;
1786 u8 cmd[16] = { 0, };
1787 u8 data[24] = { 0, };
1788
1789 cmd[0] = PERSISTENT_RESERVE_OUT;
1790 cmd[1] = sa;
1791 cmd[2] = type;
1792 put_unaligned_be32(sizeof(data), &cmd[5]);
1793
1794 put_unaligned_be64(key, &data[0]);
1795 put_unaligned_be64(sa_key, &data[8]);
1796 data[20] = flags;
1797
1798 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1799 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1800
1801 if (scsi_status_is_check_condition(result) &&
1802 scsi_sense_valid(&sshdr)) {
1803 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1804 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1805 }
1806
1807 return result;
1808 }
1809
1810 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1811 u32 flags)
1812 {
1813 if (flags & ~PR_FL_IGNORE_KEY)
1814 return -EOPNOTSUPP;
1815 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1816 old_key, new_key, 0,
1817 (1 << 0) /* APTPL */);
1818 }
1819
1820 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1821 u32 flags)
1822 {
1823 if (flags)
1824 return -EOPNOTSUPP;
1825 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1826 }
1827
1828 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1829 {
1830 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1831 }
1832
1833 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1834 enum pr_type type, bool abort)
1835 {
1836 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1837 sd_pr_type(type), 0);
1838 }
1839
1840 static int sd_pr_clear(struct block_device *bdev, u64 key)
1841 {
1842 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1843 }
1844
1845 static const struct pr_ops sd_pr_ops = {
1846 .pr_register = sd_pr_register,
1847 .pr_reserve = sd_pr_reserve,
1848 .pr_release = sd_pr_release,
1849 .pr_preempt = sd_pr_preempt,
1850 .pr_clear = sd_pr_clear,
1851 };
1852
1853 static const struct block_device_operations sd_fops = {
1854 .owner = THIS_MODULE,
1855 .open = sd_open,
1856 .release = sd_release,
1857 .ioctl = sd_ioctl,
1858 .getgeo = sd_getgeo,
1859 .compat_ioctl = blkdev_compat_ptr_ioctl,
1860 .check_events = sd_check_events,
1861 .unlock_native_capacity = sd_unlock_native_capacity,
1862 .report_zones = sd_zbc_report_zones,
1863 .pr_ops = &sd_pr_ops,
1864 };
1865
1866 /**
1867 * sd_eh_reset - reset error handling callback
1868 * @scmd: sd-issued command that has failed
1869 *
1870 * This function is called by the SCSI midlayer before starting
1871 * SCSI EH. When counting medium access failures we have to be
1872 * careful to register it only only once per device and SCSI EH run;
1873 * there might be several timed out commands which will cause the
1874 * 'max_medium_access_timeouts' counter to trigger after the first
1875 * SCSI EH run already and set the device to offline.
1876 * So this function resets the internal counter before starting SCSI EH.
1877 **/
1878 static void sd_eh_reset(struct scsi_cmnd *scmd)
1879 {
1880 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1881
1882 /* New SCSI EH run, reset gate variable */
1883 sdkp->ignore_medium_access_errors = false;
1884 }
1885
1886 /**
1887 * sd_eh_action - error handling callback
1888 * @scmd: sd-issued command that has failed
1889 * @eh_disp: The recovery disposition suggested by the midlayer
1890 *
1891 * This function is called by the SCSI midlayer upon completion of an
1892 * error test command (currently TEST UNIT READY). The result of sending
1893 * the eh command is passed in eh_disp. We're looking for devices that
1894 * fail medium access commands but are OK with non access commands like
1895 * test unit ready (so wrongly see the device as having a successful
1896 * recovery)
1897 **/
1898 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1899 {
1900 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1901 struct scsi_device *sdev = scmd->device;
1902
1903 if (!scsi_device_online(sdev) ||
1904 !scsi_medium_access_command(scmd) ||
1905 host_byte(scmd->result) != DID_TIME_OUT ||
1906 eh_disp != SUCCESS)
1907 return eh_disp;
1908
1909 /*
1910 * The device has timed out executing a medium access command.
1911 * However, the TEST UNIT READY command sent during error
1912 * handling completed successfully. Either the device is in the
1913 * process of recovering or has it suffered an internal failure
1914 * that prevents access to the storage medium.
1915 */
1916 if (!sdkp->ignore_medium_access_errors) {
1917 sdkp->medium_access_timed_out++;
1918 sdkp->ignore_medium_access_errors = true;
1919 }
1920
1921 /*
1922 * If the device keeps failing read/write commands but TEST UNIT
1923 * READY always completes successfully we assume that medium
1924 * access is no longer possible and take the device offline.
1925 */
1926 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1927 scmd_printk(KERN_ERR, scmd,
1928 "Medium access timeout failure. Offlining disk!\n");
1929 mutex_lock(&sdev->state_mutex);
1930 scsi_device_set_state(sdev, SDEV_OFFLINE);
1931 mutex_unlock(&sdev->state_mutex);
1932
1933 return SUCCESS;
1934 }
1935
1936 return eh_disp;
1937 }
1938
1939 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1940 {
1941 struct request *req = scsi_cmd_to_rq(scmd);
1942 struct scsi_device *sdev = scmd->device;
1943 unsigned int transferred, good_bytes;
1944 u64 start_lba, end_lba, bad_lba;
1945
1946 /*
1947 * Some commands have a payload smaller than the device logical
1948 * block size (e.g. INQUIRY on a 4K disk).
1949 */
1950 if (scsi_bufflen(scmd) <= sdev->sector_size)
1951 return 0;
1952
1953 /* Check if we have a 'bad_lba' information */
1954 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1955 SCSI_SENSE_BUFFERSIZE,
1956 &bad_lba))
1957 return 0;
1958
1959 /*
1960 * If the bad lba was reported incorrectly, we have no idea where
1961 * the error is.
1962 */
1963 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1964 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1965 if (bad_lba < start_lba || bad_lba >= end_lba)
1966 return 0;
1967
1968 /*
1969 * resid is optional but mostly filled in. When it's unused,
1970 * its value is zero, so we assume the whole buffer transferred
1971 */
1972 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1973
1974 /* This computation should always be done in terms of the
1975 * resolution of the device's medium.
1976 */
1977 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1978
1979 return min(good_bytes, transferred);
1980 }
1981
1982 /**
1983 * sd_done - bottom half handler: called when the lower level
1984 * driver has completed (successfully or otherwise) a scsi command.
1985 * @SCpnt: mid-level's per command structure.
1986 *
1987 * Note: potentially run from within an ISR. Must not block.
1988 **/
1989 static int sd_done(struct scsi_cmnd *SCpnt)
1990 {
1991 int result = SCpnt->result;
1992 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1993 unsigned int sector_size = SCpnt->device->sector_size;
1994 unsigned int resid;
1995 struct scsi_sense_hdr sshdr;
1996 struct request *req = scsi_cmd_to_rq(SCpnt);
1997 struct scsi_disk *sdkp = scsi_disk(req->rq_disk);
1998 int sense_valid = 0;
1999 int sense_deferred = 0;
2000
2001 switch (req_op(req)) {
2002 case REQ_OP_DISCARD:
2003 case REQ_OP_WRITE_ZEROES:
2004 case REQ_OP_WRITE_SAME:
2005 case REQ_OP_ZONE_RESET:
2006 case REQ_OP_ZONE_RESET_ALL:
2007 case REQ_OP_ZONE_OPEN:
2008 case REQ_OP_ZONE_CLOSE:
2009 case REQ_OP_ZONE_FINISH:
2010 if (!result) {
2011 good_bytes = blk_rq_bytes(req);
2012 scsi_set_resid(SCpnt, 0);
2013 } else {
2014 good_bytes = 0;
2015 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2016 }
2017 break;
2018 default:
2019 /*
2020 * In case of bogus fw or device, we could end up having
2021 * an unaligned partial completion. Check this here and force
2022 * alignment.
2023 */
2024 resid = scsi_get_resid(SCpnt);
2025 if (resid & (sector_size - 1)) {
2026 sd_printk(KERN_INFO, sdkp,
2027 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2028 resid, sector_size);
2029 scsi_print_command(SCpnt);
2030 resid = min(scsi_bufflen(SCpnt),
2031 round_up(resid, sector_size));
2032 scsi_set_resid(SCpnt, resid);
2033 }
2034 }
2035
2036 if (result) {
2037 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2038 if (sense_valid)
2039 sense_deferred = scsi_sense_is_deferred(&sshdr);
2040 }
2041 sdkp->medium_access_timed_out = 0;
2042
2043 if (!scsi_status_is_check_condition(result) &&
2044 (!sense_valid || sense_deferred))
2045 goto out;
2046
2047 switch (sshdr.sense_key) {
2048 case HARDWARE_ERROR:
2049 case MEDIUM_ERROR:
2050 good_bytes = sd_completed_bytes(SCpnt);
2051 break;
2052 case RECOVERED_ERROR:
2053 good_bytes = scsi_bufflen(SCpnt);
2054 break;
2055 case NO_SENSE:
2056 /* This indicates a false check condition, so ignore it. An
2057 * unknown amount of data was transferred so treat it as an
2058 * error.
2059 */
2060 SCpnt->result = 0;
2061 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2062 break;
2063 case ABORTED_COMMAND:
2064 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2065 good_bytes = sd_completed_bytes(SCpnt);
2066 break;
2067 case ILLEGAL_REQUEST:
2068 switch (sshdr.asc) {
2069 case 0x10: /* DIX: Host detected corruption */
2070 good_bytes = sd_completed_bytes(SCpnt);
2071 break;
2072 case 0x20: /* INVALID COMMAND OPCODE */
2073 case 0x24: /* INVALID FIELD IN CDB */
2074 switch (SCpnt->cmnd[0]) {
2075 case UNMAP:
2076 sd_config_discard(sdkp, SD_LBP_DISABLE);
2077 break;
2078 case WRITE_SAME_16:
2079 case WRITE_SAME:
2080 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2081 sd_config_discard(sdkp, SD_LBP_DISABLE);
2082 } else {
2083 sdkp->device->no_write_same = 1;
2084 sd_config_write_same(sdkp);
2085 req->rq_flags |= RQF_QUIET;
2086 }
2087 break;
2088 }
2089 }
2090 break;
2091 default:
2092 break;
2093 }
2094
2095 out:
2096 if (sd_is_zoned(sdkp))
2097 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2098
2099 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2100 "sd_done: completed %d of %d bytes\n",
2101 good_bytes, scsi_bufflen(SCpnt)));
2102
2103 return good_bytes;
2104 }
2105
2106 /*
2107 * spinup disk - called only in sd_revalidate_disk()
2108 */
2109 static void
2110 sd_spinup_disk(struct scsi_disk *sdkp)
2111 {
2112 unsigned char cmd[10];
2113 unsigned long spintime_expire = 0;
2114 int retries, spintime;
2115 unsigned int the_result;
2116 struct scsi_sense_hdr sshdr;
2117 int sense_valid = 0;
2118
2119 spintime = 0;
2120
2121 /* Spin up drives, as required. Only do this at boot time */
2122 /* Spinup needs to be done for module loads too. */
2123 do {
2124 retries = 0;
2125
2126 do {
2127 bool media_was_present = sdkp->media_present;
2128
2129 cmd[0] = TEST_UNIT_READY;
2130 memset((void *) &cmd[1], 0, 9);
2131
2132 the_result = scsi_execute_req(sdkp->device, cmd,
2133 DMA_NONE, NULL, 0,
2134 &sshdr, SD_TIMEOUT,
2135 sdkp->max_retries, NULL);
2136
2137 /*
2138 * If the drive has indicated to us that it
2139 * doesn't have any media in it, don't bother
2140 * with any more polling.
2141 */
2142 if (media_not_present(sdkp, &sshdr)) {
2143 if (media_was_present)
2144 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2145 return;
2146 }
2147
2148 if (the_result)
2149 sense_valid = scsi_sense_valid(&sshdr);
2150 retries++;
2151 } while (retries < 3 &&
2152 (!scsi_status_is_good(the_result) ||
2153 (scsi_status_is_check_condition(the_result) &&
2154 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2155
2156 if (!scsi_status_is_check_condition(the_result)) {
2157 /* no sense, TUR either succeeded or failed
2158 * with a status error */
2159 if(!spintime && !scsi_status_is_good(the_result)) {
2160 sd_print_result(sdkp, "Test Unit Ready failed",
2161 the_result);
2162 }
2163 break;
2164 }
2165
2166 /*
2167 * The device does not want the automatic start to be issued.
2168 */
2169 if (sdkp->device->no_start_on_add)
2170 break;
2171
2172 if (sense_valid && sshdr.sense_key == NOT_READY) {
2173 if (sshdr.asc == 4 && sshdr.ascq == 3)
2174 break; /* manual intervention required */
2175 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2176 break; /* standby */
2177 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2178 break; /* unavailable */
2179 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2180 break; /* sanitize in progress */
2181 /*
2182 * Issue command to spin up drive when not ready
2183 */
2184 if (!spintime) {
2185 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2186 cmd[0] = START_STOP;
2187 cmd[1] = 1; /* Return immediately */
2188 memset((void *) &cmd[2], 0, 8);
2189 cmd[4] = 1; /* Start spin cycle */
2190 if (sdkp->device->start_stop_pwr_cond)
2191 cmd[4] |= 1 << 4;
2192 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2193 NULL, 0, &sshdr,
2194 SD_TIMEOUT, sdkp->max_retries,
2195 NULL);
2196 spintime_expire = jiffies + 100 * HZ;
2197 spintime = 1;
2198 }
2199 /* Wait 1 second for next try */
2200 msleep(1000);
2201 printk(KERN_CONT ".");
2202
2203 /*
2204 * Wait for USB flash devices with slow firmware.
2205 * Yes, this sense key/ASC combination shouldn't
2206 * occur here. It's characteristic of these devices.
2207 */
2208 } else if (sense_valid &&
2209 sshdr.sense_key == UNIT_ATTENTION &&
2210 sshdr.asc == 0x28) {
2211 if (!spintime) {
2212 spintime_expire = jiffies + 5 * HZ;
2213 spintime = 1;
2214 }
2215 /* Wait 1 second for next try */
2216 msleep(1000);
2217 } else {
2218 /* we don't understand the sense code, so it's
2219 * probably pointless to loop */
2220 if(!spintime) {
2221 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2222 sd_print_sense_hdr(sdkp, &sshdr);
2223 }
2224 break;
2225 }
2226
2227 } while (spintime && time_before_eq(jiffies, spintime_expire));
2228
2229 if (spintime) {
2230 if (scsi_status_is_good(the_result))
2231 printk(KERN_CONT "ready\n");
2232 else
2233 printk(KERN_CONT "not responding...\n");
2234 }
2235 }
2236
2237 /*
2238 * Determine whether disk supports Data Integrity Field.
2239 */
2240 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2241 {
2242 struct scsi_device *sdp = sdkp->device;
2243 u8 type;
2244 int ret = 0;
2245
2246 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2247 sdkp->protection_type = 0;
2248 return ret;
2249 }
2250
2251 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2252
2253 if (type > T10_PI_TYPE3_PROTECTION)
2254 ret = -ENODEV;
2255 else if (scsi_host_dif_capable(sdp->host, type))
2256 ret = 1;
2257
2258 if (sdkp->first_scan || type != sdkp->protection_type)
2259 switch (ret) {
2260 case -ENODEV:
2261 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2262 " protection type %u. Disabling disk!\n",
2263 type);
2264 break;
2265 case 1:
2266 sd_printk(KERN_NOTICE, sdkp,
2267 "Enabling DIF Type %u protection\n", type);
2268 break;
2269 case 0:
2270 sd_printk(KERN_NOTICE, sdkp,
2271 "Disabling DIF Type %u protection\n", type);
2272 break;
2273 }
2274
2275 sdkp->protection_type = type;
2276
2277 return ret;
2278 }
2279
2280 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2281 struct scsi_sense_hdr *sshdr, int sense_valid,
2282 int the_result)
2283 {
2284 if (sense_valid)
2285 sd_print_sense_hdr(sdkp, sshdr);
2286 else
2287 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2288
2289 /*
2290 * Set dirty bit for removable devices if not ready -
2291 * sometimes drives will not report this properly.
2292 */
2293 if (sdp->removable &&
2294 sense_valid && sshdr->sense_key == NOT_READY)
2295 set_media_not_present(sdkp);
2296
2297 /*
2298 * We used to set media_present to 0 here to indicate no media
2299 * in the drive, but some drives fail read capacity even with
2300 * media present, so we can't do that.
2301 */
2302 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2303 }
2304
2305 #define RC16_LEN 32
2306 #if RC16_LEN > SD_BUF_SIZE
2307 #error RC16_LEN must not be more than SD_BUF_SIZE
2308 #endif
2309
2310 #define READ_CAPACITY_RETRIES_ON_RESET 10
2311
2312 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2313 unsigned char *buffer)
2314 {
2315 unsigned char cmd[16];
2316 struct scsi_sense_hdr sshdr;
2317 int sense_valid = 0;
2318 int the_result;
2319 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2320 unsigned int alignment;
2321 unsigned long long lba;
2322 unsigned sector_size;
2323
2324 if (sdp->no_read_capacity_16)
2325 return -EINVAL;
2326
2327 do {
2328 memset(cmd, 0, 16);
2329 cmd[0] = SERVICE_ACTION_IN_16;
2330 cmd[1] = SAI_READ_CAPACITY_16;
2331 cmd[13] = RC16_LEN;
2332 memset(buffer, 0, RC16_LEN);
2333
2334 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2335 buffer, RC16_LEN, &sshdr,
2336 SD_TIMEOUT, sdkp->max_retries, NULL);
2337
2338 if (media_not_present(sdkp, &sshdr))
2339 return -ENODEV;
2340
2341 if (the_result > 0) {
2342 sense_valid = scsi_sense_valid(&sshdr);
2343 if (sense_valid &&
2344 sshdr.sense_key == ILLEGAL_REQUEST &&
2345 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2346 sshdr.ascq == 0x00)
2347 /* Invalid Command Operation Code or
2348 * Invalid Field in CDB, just retry
2349 * silently with RC10 */
2350 return -EINVAL;
2351 if (sense_valid &&
2352 sshdr.sense_key == UNIT_ATTENTION &&
2353 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2354 /* Device reset might occur several times,
2355 * give it one more chance */
2356 if (--reset_retries > 0)
2357 continue;
2358 }
2359 retries--;
2360
2361 } while (the_result && retries);
2362
2363 if (the_result) {
2364 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2365 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2366 return -EINVAL;
2367 }
2368
2369 sector_size = get_unaligned_be32(&buffer[8]);
2370 lba = get_unaligned_be64(&buffer[0]);
2371
2372 if (sd_read_protection_type(sdkp, buffer) < 0) {
2373 sdkp->capacity = 0;
2374 return -ENODEV;
2375 }
2376
2377 /* Logical blocks per physical block exponent */
2378 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2379
2380 /* RC basis */
2381 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2382
2383 /* Lowest aligned logical block */
2384 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2385 blk_queue_alignment_offset(sdp->request_queue, alignment);
2386 if (alignment && sdkp->first_scan)
2387 sd_printk(KERN_NOTICE, sdkp,
2388 "physical block alignment offset: %u\n", alignment);
2389
2390 if (buffer[14] & 0x80) { /* LBPME */
2391 sdkp->lbpme = 1;
2392
2393 if (buffer[14] & 0x40) /* LBPRZ */
2394 sdkp->lbprz = 1;
2395
2396 sd_config_discard(sdkp, SD_LBP_WS16);
2397 }
2398
2399 sdkp->capacity = lba + 1;
2400 return sector_size;
2401 }
2402
2403 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2404 unsigned char *buffer)
2405 {
2406 unsigned char cmd[16];
2407 struct scsi_sense_hdr sshdr;
2408 int sense_valid = 0;
2409 int the_result;
2410 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2411 sector_t lba;
2412 unsigned sector_size;
2413
2414 do {
2415 cmd[0] = READ_CAPACITY;
2416 memset(&cmd[1], 0, 9);
2417 memset(buffer, 0, 8);
2418
2419 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2420 buffer, 8, &sshdr,
2421 SD_TIMEOUT, sdkp->max_retries, NULL);
2422
2423 if (media_not_present(sdkp, &sshdr))
2424 return -ENODEV;
2425
2426 if (the_result > 0) {
2427 sense_valid = scsi_sense_valid(&sshdr);
2428 if (sense_valid &&
2429 sshdr.sense_key == UNIT_ATTENTION &&
2430 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2431 /* Device reset might occur several times,
2432 * give it one more chance */
2433 if (--reset_retries > 0)
2434 continue;
2435 }
2436 retries--;
2437
2438 } while (the_result && retries);
2439
2440 if (the_result) {
2441 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2442 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2443 return -EINVAL;
2444 }
2445
2446 sector_size = get_unaligned_be32(&buffer[4]);
2447 lba = get_unaligned_be32(&buffer[0]);
2448
2449 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2450 /* Some buggy (usb cardreader) devices return an lba of
2451 0xffffffff when the want to report a size of 0 (with
2452 which they really mean no media is present) */
2453 sdkp->capacity = 0;
2454 sdkp->physical_block_size = sector_size;
2455 return sector_size;
2456 }
2457
2458 sdkp->capacity = lba + 1;
2459 sdkp->physical_block_size = sector_size;
2460 return sector_size;
2461 }
2462
2463 static int sd_try_rc16_first(struct scsi_device *sdp)
2464 {
2465 if (sdp->host->max_cmd_len < 16)
2466 return 0;
2467 if (sdp->try_rc_10_first)
2468 return 0;
2469 if (sdp->scsi_level > SCSI_SPC_2)
2470 return 1;
2471 if (scsi_device_protection(sdp))
2472 return 1;
2473 return 0;
2474 }
2475
2476 /*
2477 * read disk capacity
2478 */
2479 static void
2480 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2481 {
2482 int sector_size;
2483 struct scsi_device *sdp = sdkp->device;
2484
2485 if (sd_try_rc16_first(sdp)) {
2486 sector_size = read_capacity_16(sdkp, sdp, buffer);
2487 if (sector_size == -EOVERFLOW)
2488 goto got_data;
2489 if (sector_size == -ENODEV)
2490 return;
2491 if (sector_size < 0)
2492 sector_size = read_capacity_10(sdkp, sdp, buffer);
2493 if (sector_size < 0)
2494 return;
2495 } else {
2496 sector_size = read_capacity_10(sdkp, sdp, buffer);
2497 if (sector_size == -EOVERFLOW)
2498 goto got_data;
2499 if (sector_size < 0)
2500 return;
2501 if ((sizeof(sdkp->capacity) > 4) &&
2502 (sdkp->capacity > 0xffffffffULL)) {
2503 int old_sector_size = sector_size;
2504 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2505 "Trying to use READ CAPACITY(16).\n");
2506 sector_size = read_capacity_16(sdkp, sdp, buffer);
2507 if (sector_size < 0) {
2508 sd_printk(KERN_NOTICE, sdkp,
2509 "Using 0xffffffff as device size\n");
2510 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2511 sector_size = old_sector_size;
2512 goto got_data;
2513 }
2514 /* Remember that READ CAPACITY(16) succeeded */
2515 sdp->try_rc_10_first = 0;
2516 }
2517 }
2518
2519 /* Some devices are known to return the total number of blocks,
2520 * not the highest block number. Some devices have versions
2521 * which do this and others which do not. Some devices we might
2522 * suspect of doing this but we don't know for certain.
2523 *
2524 * If we know the reported capacity is wrong, decrement it. If
2525 * we can only guess, then assume the number of blocks is even
2526 * (usually true but not always) and err on the side of lowering
2527 * the capacity.
2528 */
2529 if (sdp->fix_capacity ||
2530 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2531 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2532 "from its reported value: %llu\n",
2533 (unsigned long long) sdkp->capacity);
2534 --sdkp->capacity;
2535 }
2536
2537 got_data:
2538 if (sector_size == 0) {
2539 sector_size = 512;
2540 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2541 "assuming 512.\n");
2542 }
2543
2544 if (sector_size != 512 &&
2545 sector_size != 1024 &&
2546 sector_size != 2048 &&
2547 sector_size != 4096) {
2548 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2549 sector_size);
2550 /*
2551 * The user might want to re-format the drive with
2552 * a supported sectorsize. Once this happens, it
2553 * would be relatively trivial to set the thing up.
2554 * For this reason, we leave the thing in the table.
2555 */
2556 sdkp->capacity = 0;
2557 /*
2558 * set a bogus sector size so the normal read/write
2559 * logic in the block layer will eventually refuse any
2560 * request on this device without tripping over power
2561 * of two sector size assumptions
2562 */
2563 sector_size = 512;
2564 }
2565 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2566 blk_queue_physical_block_size(sdp->request_queue,
2567 sdkp->physical_block_size);
2568 sdkp->device->sector_size = sector_size;
2569
2570 if (sdkp->capacity > 0xffffffff)
2571 sdp->use_16_for_rw = 1;
2572
2573 }
2574
2575 /*
2576 * Print disk capacity
2577 */
2578 static void
2579 sd_print_capacity(struct scsi_disk *sdkp,
2580 sector_t old_capacity)
2581 {
2582 int sector_size = sdkp->device->sector_size;
2583 char cap_str_2[10], cap_str_10[10];
2584
2585 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2586 return;
2587
2588 string_get_size(sdkp->capacity, sector_size,
2589 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2590 string_get_size(sdkp->capacity, sector_size,
2591 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2592
2593 sd_printk(KERN_NOTICE, sdkp,
2594 "%llu %d-byte logical blocks: (%s/%s)\n",
2595 (unsigned long long)sdkp->capacity,
2596 sector_size, cap_str_10, cap_str_2);
2597
2598 if (sdkp->physical_block_size != sector_size)
2599 sd_printk(KERN_NOTICE, sdkp,
2600 "%u-byte physical blocks\n",
2601 sdkp->physical_block_size);
2602 }
2603
2604 /* called with buffer of length 512 */
2605 static inline int
2606 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2607 unsigned char *buffer, int len, struct scsi_mode_data *data,
2608 struct scsi_sense_hdr *sshdr)
2609 {
2610 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2611 SD_TIMEOUT, sdkp->max_retries, data,
2612 sshdr);
2613 }
2614
2615 /*
2616 * read write protect setting, if possible - called only in sd_revalidate_disk()
2617 * called with buffer of length SD_BUF_SIZE
2618 */
2619 static void
2620 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2621 {
2622 int res;
2623 struct scsi_device *sdp = sdkp->device;
2624 struct scsi_mode_data data;
2625 int old_wp = sdkp->write_prot;
2626
2627 set_disk_ro(sdkp->disk, 0);
2628 if (sdp->skip_ms_page_3f) {
2629 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2630 return;
2631 }
2632
2633 if (sdp->use_192_bytes_for_3f) {
2634 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2635 } else {
2636 /*
2637 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2638 * We have to start carefully: some devices hang if we ask
2639 * for more than is available.
2640 */
2641 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2642
2643 /*
2644 * Second attempt: ask for page 0 When only page 0 is
2645 * implemented, a request for page 3F may return Sense Key
2646 * 5: Illegal Request, Sense Code 24: Invalid field in
2647 * CDB.
2648 */
2649 if (res < 0)
2650 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2651
2652 /*
2653 * Third attempt: ask 255 bytes, as we did earlier.
2654 */
2655 if (res < 0)
2656 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2657 &data, NULL);
2658 }
2659
2660 if (res < 0) {
2661 sd_first_printk(KERN_WARNING, sdkp,
2662 "Test WP failed, assume Write Enabled\n");
2663 } else {
2664 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2665 set_disk_ro(sdkp->disk, sdkp->write_prot);
2666 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2667 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2668 sdkp->write_prot ? "on" : "off");
2669 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2670 }
2671 }
2672 }
2673
2674 /*
2675 * sd_read_cache_type - called only from sd_revalidate_disk()
2676 * called with buffer of length SD_BUF_SIZE
2677 */
2678 static void
2679 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2680 {
2681 int len = 0, res;
2682 struct scsi_device *sdp = sdkp->device;
2683
2684 int dbd;
2685 int modepage;
2686 int first_len;
2687 struct scsi_mode_data data;
2688 struct scsi_sense_hdr sshdr;
2689 int old_wce = sdkp->WCE;
2690 int old_rcd = sdkp->RCD;
2691 int old_dpofua = sdkp->DPOFUA;
2692
2693
2694 if (sdkp->cache_override)
2695 return;
2696
2697 first_len = 4;
2698 if (sdp->skip_ms_page_8) {
2699 if (sdp->type == TYPE_RBC)
2700 goto defaults;
2701 else {
2702 if (sdp->skip_ms_page_3f)
2703 goto defaults;
2704 modepage = 0x3F;
2705 if (sdp->use_192_bytes_for_3f)
2706 first_len = 192;
2707 dbd = 0;
2708 }
2709 } else if (sdp->type == TYPE_RBC) {
2710 modepage = 6;
2711 dbd = 8;
2712 } else {
2713 modepage = 8;
2714 dbd = 0;
2715 }
2716
2717 /* cautiously ask */
2718 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2719 &data, &sshdr);
2720
2721 if (res < 0)
2722 goto bad_sense;
2723
2724 if (!data.header_length) {
2725 modepage = 6;
2726 first_len = 0;
2727 sd_first_printk(KERN_ERR, sdkp,
2728 "Missing header in MODE_SENSE response\n");
2729 }
2730
2731 /* that went OK, now ask for the proper length */
2732 len = data.length;
2733
2734 /*
2735 * We're only interested in the first three bytes, actually.
2736 * But the data cache page is defined for the first 20.
2737 */
2738 if (len < 3)
2739 goto bad_sense;
2740 else if (len > SD_BUF_SIZE) {
2741 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2742 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2743 len = SD_BUF_SIZE;
2744 }
2745 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2746 len = 192;
2747
2748 /* Get the data */
2749 if (len > first_len)
2750 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2751 &data, &sshdr);
2752
2753 if (!res) {
2754 int offset = data.header_length + data.block_descriptor_length;
2755
2756 while (offset < len) {
2757 u8 page_code = buffer[offset] & 0x3F;
2758 u8 spf = buffer[offset] & 0x40;
2759
2760 if (page_code == 8 || page_code == 6) {
2761 /* We're interested only in the first 3 bytes.
2762 */
2763 if (len - offset <= 2) {
2764 sd_first_printk(KERN_ERR, sdkp,
2765 "Incomplete mode parameter "
2766 "data\n");
2767 goto defaults;
2768 } else {
2769 modepage = page_code;
2770 goto Page_found;
2771 }
2772 } else {
2773 /* Go to the next page */
2774 if (spf && len - offset > 3)
2775 offset += 4 + (buffer[offset+2] << 8) +
2776 buffer[offset+3];
2777 else if (!spf && len - offset > 1)
2778 offset += 2 + buffer[offset+1];
2779 else {
2780 sd_first_printk(KERN_ERR, sdkp,
2781 "Incomplete mode "
2782 "parameter data\n");
2783 goto defaults;
2784 }
2785 }
2786 }
2787
2788 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2789 goto defaults;
2790
2791 Page_found:
2792 if (modepage == 8) {
2793 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2794 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2795 } else {
2796 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2797 sdkp->RCD = 0;
2798 }
2799
2800 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2801 if (sdp->broken_fua) {
2802 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2803 sdkp->DPOFUA = 0;
2804 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2805 !sdkp->device->use_16_for_rw) {
2806 sd_first_printk(KERN_NOTICE, sdkp,
2807 "Uses READ/WRITE(6), disabling FUA\n");
2808 sdkp->DPOFUA = 0;
2809 }
2810
2811 /* No cache flush allowed for write protected devices */
2812 if (sdkp->WCE && sdkp->write_prot)
2813 sdkp->WCE = 0;
2814
2815 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2816 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2817 sd_printk(KERN_NOTICE, sdkp,
2818 "Write cache: %s, read cache: %s, %s\n",
2819 sdkp->WCE ? "enabled" : "disabled",
2820 sdkp->RCD ? "disabled" : "enabled",
2821 sdkp->DPOFUA ? "supports DPO and FUA"
2822 : "doesn't support DPO or FUA");
2823
2824 return;
2825 }
2826
2827 bad_sense:
2828 if (scsi_sense_valid(&sshdr) &&
2829 sshdr.sense_key == ILLEGAL_REQUEST &&
2830 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2831 /* Invalid field in CDB */
2832 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2833 else
2834 sd_first_printk(KERN_ERR, sdkp,
2835 "Asking for cache data failed\n");
2836
2837 defaults:
2838 if (sdp->wce_default_on) {
2839 sd_first_printk(KERN_NOTICE, sdkp,
2840 "Assuming drive cache: write back\n");
2841 sdkp->WCE = 1;
2842 } else {
2843 sd_first_printk(KERN_ERR, sdkp,
2844 "Assuming drive cache: write through\n");
2845 sdkp->WCE = 0;
2846 }
2847 sdkp->RCD = 0;
2848 sdkp->DPOFUA = 0;
2849 }
2850
2851 /*
2852 * The ATO bit indicates whether the DIF application tag is available
2853 * for use by the operating system.
2854 */
2855 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2856 {
2857 int res, offset;
2858 struct scsi_device *sdp = sdkp->device;
2859 struct scsi_mode_data data;
2860 struct scsi_sense_hdr sshdr;
2861
2862 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2863 return;
2864
2865 if (sdkp->protection_type == 0)
2866 return;
2867
2868 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2869 sdkp->max_retries, &data, &sshdr);
2870
2871 if (res < 0 || !data.header_length ||
2872 data.length < 6) {
2873 sd_first_printk(KERN_WARNING, sdkp,
2874 "getting Control mode page failed, assume no ATO\n");
2875
2876 if (scsi_sense_valid(&sshdr))
2877 sd_print_sense_hdr(sdkp, &sshdr);
2878
2879 return;
2880 }
2881
2882 offset = data.header_length + data.block_descriptor_length;
2883
2884 if ((buffer[offset] & 0x3f) != 0x0a) {
2885 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2886 return;
2887 }
2888
2889 if ((buffer[offset + 5] & 0x80) == 0)
2890 return;
2891
2892 sdkp->ATO = 1;
2893
2894 return;
2895 }
2896
2897 /**
2898 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2899 * @sdkp: disk to query
2900 */
2901 static void sd_read_block_limits(struct scsi_disk *sdkp)
2902 {
2903 unsigned int sector_sz = sdkp->device->sector_size;
2904 const int vpd_len = 64;
2905 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2906
2907 if (!buffer ||
2908 /* Block Limits VPD */
2909 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2910 goto out;
2911
2912 blk_queue_io_min(sdkp->disk->queue,
2913 get_unaligned_be16(&buffer[6]) * sector_sz);
2914
2915 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2916 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2917
2918 if (buffer[3] == 0x3c) {
2919 unsigned int lba_count, desc_count;
2920
2921 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2922
2923 if (!sdkp->lbpme)
2924 goto out;
2925
2926 lba_count = get_unaligned_be32(&buffer[20]);
2927 desc_count = get_unaligned_be32(&buffer[24]);
2928
2929 if (lba_count && desc_count)
2930 sdkp->max_unmap_blocks = lba_count;
2931
2932 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2933
2934 if (buffer[32] & 0x80)
2935 sdkp->unmap_alignment =
2936 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2937
2938 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2939
2940 if (sdkp->max_unmap_blocks)
2941 sd_config_discard(sdkp, SD_LBP_UNMAP);
2942 else
2943 sd_config_discard(sdkp, SD_LBP_WS16);
2944
2945 } else { /* LBP VPD page tells us what to use */
2946 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2947 sd_config_discard(sdkp, SD_LBP_UNMAP);
2948 else if (sdkp->lbpws)
2949 sd_config_discard(sdkp, SD_LBP_WS16);
2950 else if (sdkp->lbpws10)
2951 sd_config_discard(sdkp, SD_LBP_WS10);
2952 else
2953 sd_config_discard(sdkp, SD_LBP_DISABLE);
2954 }
2955 }
2956
2957 out:
2958 kfree(buffer);
2959 }
2960
2961 /**
2962 * sd_read_block_characteristics - Query block dev. characteristics
2963 * @sdkp: disk to query
2964 */
2965 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2966 {
2967 struct request_queue *q = sdkp->disk->queue;
2968 unsigned char *buffer;
2969 u16 rot;
2970 const int vpd_len = 64;
2971
2972 buffer = kmalloc(vpd_len, GFP_KERNEL);
2973
2974 if (!buffer ||
2975 /* Block Device Characteristics VPD */
2976 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2977 goto out;
2978
2979 rot = get_unaligned_be16(&buffer[4]);
2980
2981 if (rot == 1) {
2982 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2983 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2984 }
2985
2986 if (sdkp->device->type == TYPE_ZBC) {
2987 /* Host-managed */
2988 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2989 } else {
2990 sdkp->zoned = (buffer[8] >> 4) & 3;
2991 if (sdkp->zoned == 1) {
2992 /* Host-aware */
2993 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2994 } else {
2995 /* Regular disk or drive managed disk */
2996 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2997 }
2998 }
2999
3000 if (!sdkp->first_scan)
3001 goto out;
3002
3003 if (blk_queue_is_zoned(q)) {
3004 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3005 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3006 } else {
3007 if (sdkp->zoned == 1)
3008 sd_printk(KERN_NOTICE, sdkp,
3009 "Host-aware SMR disk used as regular disk\n");
3010 else if (sdkp->zoned == 2)
3011 sd_printk(KERN_NOTICE, sdkp,
3012 "Drive-managed SMR disk\n");
3013 }
3014
3015 out:
3016 kfree(buffer);
3017 }
3018
3019 /**
3020 * sd_read_block_provisioning - Query provisioning VPD page
3021 * @sdkp: disk to query
3022 */
3023 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3024 {
3025 unsigned char *buffer;
3026 const int vpd_len = 8;
3027
3028 if (sdkp->lbpme == 0)
3029 return;
3030
3031 buffer = kmalloc(vpd_len, GFP_KERNEL);
3032
3033 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3034 goto out;
3035
3036 sdkp->lbpvpd = 1;
3037 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3038 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3039 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3040
3041 out:
3042 kfree(buffer);
3043 }
3044
3045 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3046 {
3047 struct scsi_device *sdev = sdkp->device;
3048
3049 if (sdev->host->no_write_same) {
3050 sdev->no_write_same = 1;
3051
3052 return;
3053 }
3054
3055 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3056 /* too large values might cause issues with arcmsr */
3057 int vpd_buf_len = 64;
3058
3059 sdev->no_report_opcodes = 1;
3060
3061 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3062 * CODES is unsupported and the device has an ATA
3063 * Information VPD page (SAT).
3064 */
3065 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3066 sdev->no_write_same = 1;
3067 }
3068
3069 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3070 sdkp->ws16 = 1;
3071
3072 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3073 sdkp->ws10 = 1;
3074 }
3075
3076 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3077 {
3078 struct scsi_device *sdev = sdkp->device;
3079
3080 if (!sdev->security_supported)
3081 return;
3082
3083 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3084 SECURITY_PROTOCOL_IN) == 1 &&
3085 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3086 SECURITY_PROTOCOL_OUT) == 1)
3087 sdkp->security = 1;
3088 }
3089
3090 /*
3091 * Determine the device's preferred I/O size for reads and writes
3092 * unless the reported value is unreasonably small, large, not a
3093 * multiple of the physical block size, or simply garbage.
3094 */
3095 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3096 unsigned int dev_max)
3097 {
3098 struct scsi_device *sdp = sdkp->device;
3099 unsigned int opt_xfer_bytes =
3100 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3101
3102 if (sdkp->opt_xfer_blocks == 0)
3103 return false;
3104
3105 if (sdkp->opt_xfer_blocks > dev_max) {
3106 sd_first_printk(KERN_WARNING, sdkp,
3107 "Optimal transfer size %u logical blocks " \
3108 "> dev_max (%u logical blocks)\n",
3109 sdkp->opt_xfer_blocks, dev_max);
3110 return false;
3111 }
3112
3113 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3114 sd_first_printk(KERN_WARNING, sdkp,
3115 "Optimal transfer size %u logical blocks " \
3116 "> sd driver limit (%u logical blocks)\n",
3117 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3118 return false;
3119 }
3120
3121 if (opt_xfer_bytes < PAGE_SIZE) {
3122 sd_first_printk(KERN_WARNING, sdkp,
3123 "Optimal transfer size %u bytes < " \
3124 "PAGE_SIZE (%u bytes)\n",
3125 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3126 return false;
3127 }
3128
3129 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3130 sd_first_printk(KERN_WARNING, sdkp,
3131 "Optimal transfer size %u bytes not a " \
3132 "multiple of physical block size (%u bytes)\n",
3133 opt_xfer_bytes, sdkp->physical_block_size);
3134 return false;
3135 }
3136
3137 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3138 opt_xfer_bytes);
3139 return true;
3140 }
3141
3142 /**
3143 * sd_revalidate_disk - called the first time a new disk is seen,
3144 * performs disk spin up, read_capacity, etc.
3145 * @disk: struct gendisk we care about
3146 **/
3147 static int sd_revalidate_disk(struct gendisk *disk)
3148 {
3149 struct scsi_disk *sdkp = scsi_disk(disk);
3150 struct scsi_device *sdp = sdkp->device;
3151 struct request_queue *q = sdkp->disk->queue;
3152 sector_t old_capacity = sdkp->capacity;
3153 unsigned char *buffer;
3154 unsigned int dev_max, rw_max;
3155
3156 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3157 "sd_revalidate_disk\n"));
3158
3159 /*
3160 * If the device is offline, don't try and read capacity or any
3161 * of the other niceties.
3162 */
3163 if (!scsi_device_online(sdp))
3164 goto out;
3165
3166 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3167 if (!buffer) {
3168 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3169 "allocation failure.\n");
3170 goto out;
3171 }
3172
3173 sd_spinup_disk(sdkp);
3174
3175 /*
3176 * Without media there is no reason to ask; moreover, some devices
3177 * react badly if we do.
3178 */
3179 if (sdkp->media_present) {
3180 sd_read_capacity(sdkp, buffer);
3181
3182 /*
3183 * set the default to rotational. All non-rotational devices
3184 * support the block characteristics VPD page, which will
3185 * cause this to be updated correctly and any device which
3186 * doesn't support it should be treated as rotational.
3187 */
3188 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3189 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3190
3191 if (scsi_device_supports_vpd(sdp)) {
3192 sd_read_block_provisioning(sdkp);
3193 sd_read_block_limits(sdkp);
3194 sd_read_block_characteristics(sdkp);
3195 sd_zbc_read_zones(sdkp, buffer);
3196 }
3197
3198 sd_print_capacity(sdkp, old_capacity);
3199
3200 sd_read_write_protect_flag(sdkp, buffer);
3201 sd_read_cache_type(sdkp, buffer);
3202 sd_read_app_tag_own(sdkp, buffer);
3203 sd_read_write_same(sdkp, buffer);
3204 sd_read_security(sdkp, buffer);
3205 }
3206
3207 /*
3208 * We now have all cache related info, determine how we deal
3209 * with flush requests.
3210 */
3211 sd_set_flush_flag(sdkp);
3212
3213 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3214 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3215
3216 /* Some devices report a maximum block count for READ/WRITE requests. */
3217 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3218 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3219
3220 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3221 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3222 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3223 } else {
3224 q->limits.io_opt = 0;
3225 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3226 (sector_t)BLK_DEF_MAX_SECTORS);
3227 }
3228
3229 /* Do not exceed controller limit */
3230 rw_max = min(rw_max, queue_max_hw_sectors(q));
3231
3232 /*
3233 * Only update max_sectors if previously unset or if the current value
3234 * exceeds the capabilities of the hardware.
3235 */
3236 if (sdkp->first_scan ||
3237 q->limits.max_sectors > q->limits.max_dev_sectors ||
3238 q->limits.max_sectors > q->limits.max_hw_sectors)
3239 q->limits.max_sectors = rw_max;
3240
3241 sdkp->first_scan = 0;
3242
3243 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3244 sd_config_write_same(sdkp);
3245 kfree(buffer);
3246
3247 /*
3248 * For a zoned drive, revalidating the zones can be done only once
3249 * the gendisk capacity is set. So if this fails, set back the gendisk
3250 * capacity to 0.
3251 */
3252 if (sd_zbc_revalidate_zones(sdkp))
3253 set_capacity_and_notify(disk, 0);
3254
3255 out:
3256 return 0;
3257 }
3258
3259 /**
3260 * sd_unlock_native_capacity - unlock native capacity
3261 * @disk: struct gendisk to set capacity for
3262 *
3263 * Block layer calls this function if it detects that partitions
3264 * on @disk reach beyond the end of the device. If the SCSI host
3265 * implements ->unlock_native_capacity() method, it's invoked to
3266 * give it a chance to adjust the device capacity.
3267 *
3268 * CONTEXT:
3269 * Defined by block layer. Might sleep.
3270 */
3271 static void sd_unlock_native_capacity(struct gendisk *disk)
3272 {
3273 struct scsi_device *sdev = scsi_disk(disk)->device;
3274
3275 if (sdev->host->hostt->unlock_native_capacity)
3276 sdev->host->hostt->unlock_native_capacity(sdev);
3277 }
3278
3279 /**
3280 * sd_format_disk_name - format disk name
3281 * @prefix: name prefix - ie. "sd" for SCSI disks
3282 * @index: index of the disk to format name for
3283 * @buf: output buffer
3284 * @buflen: length of the output buffer
3285 *
3286 * SCSI disk names starts at sda. The 26th device is sdz and the
3287 * 27th is sdaa. The last one for two lettered suffix is sdzz
3288 * which is followed by sdaaa.
3289 *
3290 * This is basically 26 base counting with one extra 'nil' entry
3291 * at the beginning from the second digit on and can be
3292 * determined using similar method as 26 base conversion with the
3293 * index shifted -1 after each digit is computed.
3294 *
3295 * CONTEXT:
3296 * Don't care.
3297 *
3298 * RETURNS:
3299 * 0 on success, -errno on failure.
3300 */
3301 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3302 {
3303 const int base = 'z' - 'a' + 1;
3304 char *begin = buf + strlen(prefix);
3305 char *end = buf + buflen;
3306 char *p;
3307 int unit;
3308
3309 p = end - 1;
3310 *p = '\0';
3311 unit = base;
3312 do {
3313 if (p == begin)
3314 return -EINVAL;
3315 *--p = 'a' + (index % unit);
3316 index = (index / unit) - 1;
3317 } while (index >= 0);
3318
3319 memmove(begin, p, end - p);
3320 memcpy(buf, prefix, strlen(prefix));
3321
3322 return 0;
3323 }
3324
3325 /**
3326 * sd_probe - called during driver initialization and whenever a
3327 * new scsi device is attached to the system. It is called once
3328 * for each scsi device (not just disks) present.
3329 * @dev: pointer to device object
3330 *
3331 * Returns 0 if successful (or not interested in this scsi device
3332 * (e.g. scanner)); 1 when there is an error.
3333 *
3334 * Note: this function is invoked from the scsi mid-level.
3335 * This function sets up the mapping between a given
3336 * <host,channel,id,lun> (found in sdp) and new device name
3337 * (e.g. /dev/sda). More precisely it is the block device major
3338 * and minor number that is chosen here.
3339 *
3340 * Assume sd_probe is not re-entrant (for time being)
3341 * Also think about sd_probe() and sd_remove() running coincidentally.
3342 **/
3343 static int sd_probe(struct device *dev)
3344 {
3345 struct scsi_device *sdp = to_scsi_device(dev);
3346 struct scsi_disk *sdkp;
3347 struct gendisk *gd;
3348 int index;
3349 int error;
3350
3351 scsi_autopm_get_device(sdp);
3352 error = -ENODEV;
3353 if (sdp->type != TYPE_DISK &&
3354 sdp->type != TYPE_ZBC &&
3355 sdp->type != TYPE_MOD &&
3356 sdp->type != TYPE_RBC)
3357 goto out;
3358
3359 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3360 sdev_printk(KERN_WARNING, sdp,
3361 "Unsupported ZBC host-managed device.\n");
3362 goto out;
3363 }
3364
3365 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3366 "sd_probe\n"));
3367
3368 error = -ENOMEM;
3369 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3370 if (!sdkp)
3371 goto out;
3372
3373 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3374 &sd_bio_compl_lkclass);
3375 if (!gd)
3376 goto out_free;
3377
3378 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3379 if (index < 0) {
3380 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3381 goto out_put;
3382 }
3383
3384 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3385 if (error) {
3386 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3387 goto out_free_index;
3388 }
3389
3390 sdkp->device = sdp;
3391 sdkp->driver = &sd_template;
3392 sdkp->disk = gd;
3393 sdkp->index = index;
3394 sdkp->max_retries = SD_MAX_RETRIES;
3395 atomic_set(&sdkp->openers, 0);
3396 atomic_set(&sdkp->device->ioerr_cnt, 0);
3397
3398 if (!sdp->request_queue->rq_timeout) {
3399 if (sdp->type != TYPE_MOD)
3400 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3401 else
3402 blk_queue_rq_timeout(sdp->request_queue,
3403 SD_MOD_TIMEOUT);
3404 }
3405
3406 device_initialize(&sdkp->dev);
3407 sdkp->dev.parent = get_device(dev);
3408 sdkp->dev.class = &sd_disk_class;
3409 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3410
3411 error = device_add(&sdkp->dev);
3412 if (error) {
3413 put_device(&sdkp->dev);
3414 goto out;
3415 }
3416
3417 dev_set_drvdata(dev, sdkp);
3418
3419 gd->major = sd_major((index & 0xf0) >> 4);
3420 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3421 gd->minors = SD_MINORS;
3422
3423 gd->fops = &sd_fops;
3424 gd->private_data = &sdkp->driver;
3425
3426 /* defaults, until the device tells us otherwise */
3427 sdp->sector_size = 512;
3428 sdkp->capacity = 0;
3429 sdkp->media_present = 1;
3430 sdkp->write_prot = 0;
3431 sdkp->cache_override = 0;
3432 sdkp->WCE = 0;
3433 sdkp->RCD = 0;
3434 sdkp->ATO = 0;
3435 sdkp->first_scan = 1;
3436 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3437
3438 sd_revalidate_disk(gd);
3439
3440 gd->flags = GENHD_FL_EXT_DEVT;
3441 if (sdp->removable) {
3442 gd->flags |= GENHD_FL_REMOVABLE;
3443 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3444 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3445 }
3446
3447 blk_pm_runtime_init(sdp->request_queue, dev);
3448 if (sdp->rpm_autosuspend) {
3449 pm_runtime_set_autosuspend_delay(dev,
3450 sdp->host->hostt->rpm_autosuspend_delay);
3451 }
3452 device_add_disk(dev, gd, NULL);
3453 if (sdkp->capacity)
3454 sd_dif_config_host(sdkp);
3455
3456 sd_revalidate_disk(gd);
3457
3458 if (sdkp->security) {
3459 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3460 if (sdkp->opal_dev)
3461 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3462 }
3463
3464 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3465 sdp->removable ? "removable " : "");
3466 scsi_autopm_put_device(sdp);
3467
3468 return 0;
3469
3470 out_free_index:
3471 ida_free(&sd_index_ida, index);
3472 out_put:
3473 put_disk(gd);
3474 out_free:
3475 sd_zbc_release_disk(sdkp);
3476 kfree(sdkp);
3477 out:
3478 scsi_autopm_put_device(sdp);
3479 return error;
3480 }
3481
3482 /**
3483 * sd_remove - called whenever a scsi disk (previously recognized by
3484 * sd_probe) is detached from the system. It is called (potentially
3485 * multiple times) during sd module unload.
3486 * @dev: pointer to device object
3487 *
3488 * Note: this function is invoked from the scsi mid-level.
3489 * This function potentially frees up a device name (e.g. /dev/sdc)
3490 * that could be re-used by a subsequent sd_probe().
3491 * This function is not called when the built-in sd driver is "exit-ed".
3492 **/
3493 static int sd_remove(struct device *dev)
3494 {
3495 struct scsi_disk *sdkp;
3496
3497 sdkp = dev_get_drvdata(dev);
3498 scsi_autopm_get_device(sdkp->device);
3499
3500 async_synchronize_full_domain(&scsi_sd_pm_domain);
3501 device_del(&sdkp->dev);
3502 del_gendisk(sdkp->disk);
3503 sd_shutdown(dev);
3504
3505 free_opal_dev(sdkp->opal_dev);
3506
3507 mutex_lock(&sd_ref_mutex);
3508 dev_set_drvdata(dev, NULL);
3509 put_device(&sdkp->dev);
3510 mutex_unlock(&sd_ref_mutex);
3511
3512 return 0;
3513 }
3514
3515 /**
3516 * scsi_disk_release - Called to free the scsi_disk structure
3517 * @dev: pointer to embedded class device
3518 *
3519 * sd_ref_mutex must be held entering this routine. Because it is
3520 * called on last put, you should always use the scsi_disk_get()
3521 * scsi_disk_put() helpers which manipulate the semaphore directly
3522 * and never do a direct put_device.
3523 **/
3524 static void scsi_disk_release(struct device *dev)
3525 {
3526 struct scsi_disk *sdkp = to_scsi_disk(dev);
3527 struct gendisk *disk = sdkp->disk;
3528 struct request_queue *q = disk->queue;
3529
3530 ida_free(&sd_index_ida, sdkp->index);
3531
3532 /*
3533 * Wait until all requests that are in progress have completed.
3534 * This is necessary to avoid that e.g. scsi_end_request() crashes
3535 * due to clearing the disk->private_data pointer. Wait from inside
3536 * scsi_disk_release() instead of from sd_release() to avoid that
3537 * freezing and unfreezing the request queue affects user space I/O
3538 * in case multiple processes open a /dev/sd... node concurrently.
3539 */
3540 blk_mq_freeze_queue(q);
3541 blk_mq_unfreeze_queue(q);
3542
3543 disk->private_data = NULL;
3544 put_disk(disk);
3545 put_device(&sdkp->device->sdev_gendev);
3546
3547 sd_zbc_release_disk(sdkp);
3548
3549 kfree(sdkp);
3550 }
3551
3552 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3553 {
3554 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3555 struct scsi_sense_hdr sshdr;
3556 struct scsi_device *sdp = sdkp->device;
3557 int res;
3558
3559 if (start)
3560 cmd[4] |= 1; /* START */
3561
3562 if (sdp->start_stop_pwr_cond)
3563 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3564
3565 if (!scsi_device_online(sdp))
3566 return -ENODEV;
3567
3568 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3569 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3570 if (res) {
3571 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3572 if (res > 0 && scsi_sense_valid(&sshdr)) {
3573 sd_print_sense_hdr(sdkp, &sshdr);
3574 /* 0x3a is medium not present */
3575 if (sshdr.asc == 0x3a)
3576 res = 0;
3577 }
3578 }
3579
3580 /* SCSI error codes must not go to the generic layer */
3581 if (res)
3582 return -EIO;
3583
3584 return 0;
3585 }
3586
3587 /*
3588 * Send a SYNCHRONIZE CACHE instruction down to the device through
3589 * the normal SCSI command structure. Wait for the command to
3590 * complete.
3591 */
3592 static void sd_shutdown(struct device *dev)
3593 {
3594 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3595
3596 if (!sdkp)
3597 return; /* this can happen */
3598
3599 if (pm_runtime_suspended(dev))
3600 return;
3601
3602 if (sdkp->WCE && sdkp->media_present) {
3603 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3604 sd_sync_cache(sdkp, NULL);
3605 }
3606
3607 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3608 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3609 sd_start_stop_device(sdkp, 0);
3610 }
3611 }
3612
3613 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3614 {
3615 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3616 struct scsi_sense_hdr sshdr;
3617 int ret = 0;
3618
3619 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3620 return 0;
3621
3622 if (sdkp->WCE && sdkp->media_present) {
3623 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3624 ret = sd_sync_cache(sdkp, &sshdr);
3625
3626 if (ret) {
3627 /* ignore OFFLINE device */
3628 if (ret == -ENODEV)
3629 return 0;
3630
3631 if (!scsi_sense_valid(&sshdr) ||
3632 sshdr.sense_key != ILLEGAL_REQUEST)
3633 return ret;
3634
3635 /*
3636 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3637 * doesn't support sync. There's not much to do and
3638 * suspend shouldn't fail.
3639 */
3640 ret = 0;
3641 }
3642 }
3643
3644 if (sdkp->device->manage_start_stop) {
3645 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3646 /* an error is not worth aborting a system sleep */
3647 ret = sd_start_stop_device(sdkp, 0);
3648 if (ignore_stop_errors)
3649 ret = 0;
3650 }
3651
3652 return ret;
3653 }
3654
3655 static int sd_suspend_system(struct device *dev)
3656 {
3657 return sd_suspend_common(dev, true);
3658 }
3659
3660 static int sd_suspend_runtime(struct device *dev)
3661 {
3662 return sd_suspend_common(dev, false);
3663 }
3664
3665 static int sd_resume(struct device *dev)
3666 {
3667 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3668 int ret;
3669
3670 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3671 return 0;
3672
3673 if (!sdkp->device->manage_start_stop)
3674 return 0;
3675
3676 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3677 ret = sd_start_stop_device(sdkp, 1);
3678 if (!ret)
3679 opal_unlock_from_suspend(sdkp->opal_dev);
3680 return ret;
3681 }
3682
3683 static int sd_resume_runtime(struct device *dev)
3684 {
3685 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3686 struct scsi_device *sdp;
3687
3688 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3689 return 0;
3690
3691 sdp = sdkp->device;
3692
3693 if (sdp->ignore_media_change) {
3694 /* clear the device's sense data */
3695 static const u8 cmd[10] = { REQUEST_SENSE };
3696
3697 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3698 NULL, sdp->request_queue->rq_timeout, 1, 0,
3699 RQF_PM, NULL))
3700 sd_printk(KERN_NOTICE, sdkp,
3701 "Failed to clear sense data\n");
3702 }
3703
3704 return sd_resume(dev);
3705 }
3706
3707 /**
3708 * init_sd - entry point for this driver (both when built in or when
3709 * a module).
3710 *
3711 * Note: this function registers this driver with the scsi mid-level.
3712 **/
3713 static int __init init_sd(void)
3714 {
3715 int majors = 0, i, err;
3716
3717 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3718
3719 for (i = 0; i < SD_MAJORS; i++) {
3720 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3721 continue;
3722 majors++;
3723 }
3724
3725 if (!majors)
3726 return -ENODEV;
3727
3728 err = class_register(&sd_disk_class);
3729 if (err)
3730 goto err_out;
3731
3732 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3733 0, 0, NULL);
3734 if (!sd_cdb_cache) {
3735 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3736 err = -ENOMEM;
3737 goto err_out_class;
3738 }
3739
3740 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3741 if (!sd_cdb_pool) {
3742 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3743 err = -ENOMEM;
3744 goto err_out_cache;
3745 }
3746
3747 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3748 if (!sd_page_pool) {
3749 printk(KERN_ERR "sd: can't init discard page pool\n");
3750 err = -ENOMEM;
3751 goto err_out_ppool;
3752 }
3753
3754 err = scsi_register_driver(&sd_template.gendrv);
3755 if (err)
3756 goto err_out_driver;
3757
3758 return 0;
3759
3760 err_out_driver:
3761 mempool_destroy(sd_page_pool);
3762
3763 err_out_ppool:
3764 mempool_destroy(sd_cdb_pool);
3765
3766 err_out_cache:
3767 kmem_cache_destroy(sd_cdb_cache);
3768
3769 err_out_class:
3770 class_unregister(&sd_disk_class);
3771 err_out:
3772 for (i = 0; i < SD_MAJORS; i++)
3773 unregister_blkdev(sd_major(i), "sd");
3774 return err;
3775 }
3776
3777 /**
3778 * exit_sd - exit point for this driver (when it is a module).
3779 *
3780 * Note: this function unregisters this driver from the scsi mid-level.
3781 **/
3782 static void __exit exit_sd(void)
3783 {
3784 int i;
3785
3786 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3787
3788 scsi_unregister_driver(&sd_template.gendrv);
3789 mempool_destroy(sd_cdb_pool);
3790 mempool_destroy(sd_page_pool);
3791 kmem_cache_destroy(sd_cdb_cache);
3792
3793 class_unregister(&sd_disk_class);
3794
3795 for (i = 0; i < SD_MAJORS; i++)
3796 unregister_blkdev(sd_major(i), "sd");
3797 }
3798
3799 module_init(init_sd);
3800 module_exit(exit_sd);
3801
3802 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3803 {
3804 scsi_print_sense_hdr(sdkp->device,
3805 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3806 }
3807
3808 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3809 {
3810 const char *hb_string = scsi_hostbyte_string(result);
3811
3812 if (hb_string)
3813 sd_printk(KERN_INFO, sdkp,
3814 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3815 hb_string ? hb_string : "invalid",
3816 "DRIVER_OK");
3817 else
3818 sd_printk(KERN_INFO, sdkp,
3819 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3820 msg, host_byte(result), "DRIVER_OK");
3821 }