]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/vmw_pvscsi.c
Merge tag 'regmap-v5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / vmw_pvscsi.c
1 /*
2 * Linux driver for VMware's para-virtualized SCSI HBA.
3 *
4 * Copyright (C) 2008-2014, VMware, Inc. All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; version 2 of the License and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more
14 * details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Maintained by: Jim Gill <jgill@vmware.com>
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/interrupt.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 #include <linux/pci.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_device.h>
35 #include <scsi/scsi_tcq.h>
36
37 #include "vmw_pvscsi.h"
38
39 #define PVSCSI_LINUX_DRIVER_DESC "VMware PVSCSI driver"
40
41 MODULE_DESCRIPTION(PVSCSI_LINUX_DRIVER_DESC);
42 MODULE_AUTHOR("VMware, Inc.");
43 MODULE_LICENSE("GPL");
44 MODULE_VERSION(PVSCSI_DRIVER_VERSION_STRING);
45
46 #define PVSCSI_DEFAULT_NUM_PAGES_PER_RING 8
47 #define PVSCSI_DEFAULT_NUM_PAGES_MSG_RING 1
48 #define PVSCSI_DEFAULT_QUEUE_DEPTH 254
49 #define SGL_SIZE PAGE_SIZE
50
51 struct pvscsi_sg_list {
52 struct PVSCSISGElement sge[PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT];
53 };
54
55 struct pvscsi_ctx {
56 /*
57 * The index of the context in cmd_map serves as the context ID for a
58 * 1-to-1 mapping completions back to requests.
59 */
60 struct scsi_cmnd *cmd;
61 struct pvscsi_sg_list *sgl;
62 struct list_head list;
63 dma_addr_t dataPA;
64 dma_addr_t sensePA;
65 dma_addr_t sglPA;
66 struct completion *abort_cmp;
67 };
68
69 struct pvscsi_adapter {
70 char *mmioBase;
71 u8 rev;
72 bool use_msg;
73 bool use_req_threshold;
74
75 spinlock_t hw_lock;
76
77 struct workqueue_struct *workqueue;
78 struct work_struct work;
79
80 struct PVSCSIRingReqDesc *req_ring;
81 unsigned req_pages;
82 unsigned req_depth;
83 dma_addr_t reqRingPA;
84
85 struct PVSCSIRingCmpDesc *cmp_ring;
86 unsigned cmp_pages;
87 dma_addr_t cmpRingPA;
88
89 struct PVSCSIRingMsgDesc *msg_ring;
90 unsigned msg_pages;
91 dma_addr_t msgRingPA;
92
93 struct PVSCSIRingsState *rings_state;
94 dma_addr_t ringStatePA;
95
96 struct pci_dev *dev;
97 struct Scsi_Host *host;
98
99 struct list_head cmd_pool;
100 struct pvscsi_ctx *cmd_map;
101 };
102
103
104 /* Command line parameters */
105 static int pvscsi_ring_pages;
106 static int pvscsi_msg_ring_pages = PVSCSI_DEFAULT_NUM_PAGES_MSG_RING;
107 static int pvscsi_cmd_per_lun = PVSCSI_DEFAULT_QUEUE_DEPTH;
108 static bool pvscsi_disable_msi;
109 static bool pvscsi_disable_msix;
110 static bool pvscsi_use_msg = true;
111 static bool pvscsi_use_req_threshold = true;
112
113 #define PVSCSI_RW (S_IRUSR | S_IWUSR)
114
115 module_param_named(ring_pages, pvscsi_ring_pages, int, PVSCSI_RW);
116 MODULE_PARM_DESC(ring_pages, "Number of pages per req/cmp ring - (default="
117 __stringify(PVSCSI_DEFAULT_NUM_PAGES_PER_RING)
118 "[up to 16 targets],"
119 __stringify(PVSCSI_SETUP_RINGS_MAX_NUM_PAGES)
120 "[for 16+ targets])");
121
122 module_param_named(msg_ring_pages, pvscsi_msg_ring_pages, int, PVSCSI_RW);
123 MODULE_PARM_DESC(msg_ring_pages, "Number of pages for the msg ring - (default="
124 __stringify(PVSCSI_DEFAULT_NUM_PAGES_MSG_RING) ")");
125
126 module_param_named(cmd_per_lun, pvscsi_cmd_per_lun, int, PVSCSI_RW);
127 MODULE_PARM_DESC(cmd_per_lun, "Maximum commands per lun - (default="
128 __stringify(PVSCSI_DEFAULT_QUEUE_DEPTH) ")");
129
130 module_param_named(disable_msi, pvscsi_disable_msi, bool, PVSCSI_RW);
131 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
132
133 module_param_named(disable_msix, pvscsi_disable_msix, bool, PVSCSI_RW);
134 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
135
136 module_param_named(use_msg, pvscsi_use_msg, bool, PVSCSI_RW);
137 MODULE_PARM_DESC(use_msg, "Use msg ring when available - (default=1)");
138
139 module_param_named(use_req_threshold, pvscsi_use_req_threshold,
140 bool, PVSCSI_RW);
141 MODULE_PARM_DESC(use_req_threshold, "Use driver-based request coalescing if configured - (default=1)");
142
143 static const struct pci_device_id pvscsi_pci_tbl[] = {
144 { PCI_VDEVICE(VMWARE, PCI_DEVICE_ID_VMWARE_PVSCSI) },
145 { 0 }
146 };
147
148 MODULE_DEVICE_TABLE(pci, pvscsi_pci_tbl);
149
150 static struct device *
151 pvscsi_dev(const struct pvscsi_adapter *adapter)
152 {
153 return &(adapter->dev->dev);
154 }
155
156 static struct pvscsi_ctx *
157 pvscsi_find_context(const struct pvscsi_adapter *adapter, struct scsi_cmnd *cmd)
158 {
159 struct pvscsi_ctx *ctx, *end;
160
161 end = &adapter->cmd_map[adapter->req_depth];
162 for (ctx = adapter->cmd_map; ctx < end; ctx++)
163 if (ctx->cmd == cmd)
164 return ctx;
165
166 return NULL;
167 }
168
169 static struct pvscsi_ctx *
170 pvscsi_acquire_context(struct pvscsi_adapter *adapter, struct scsi_cmnd *cmd)
171 {
172 struct pvscsi_ctx *ctx;
173
174 if (list_empty(&adapter->cmd_pool))
175 return NULL;
176
177 ctx = list_first_entry(&adapter->cmd_pool, struct pvscsi_ctx, list);
178 ctx->cmd = cmd;
179 list_del(&ctx->list);
180
181 return ctx;
182 }
183
184 static void pvscsi_release_context(struct pvscsi_adapter *adapter,
185 struct pvscsi_ctx *ctx)
186 {
187 ctx->cmd = NULL;
188 ctx->abort_cmp = NULL;
189 list_add(&ctx->list, &adapter->cmd_pool);
190 }
191
192 /*
193 * Map a pvscsi_ctx struct to a context ID field value; we map to a simple
194 * non-zero integer. ctx always points to an entry in cmd_map array, hence
195 * the return value is always >=1.
196 */
197 static u64 pvscsi_map_context(const struct pvscsi_adapter *adapter,
198 const struct pvscsi_ctx *ctx)
199 {
200 return ctx - adapter->cmd_map + 1;
201 }
202
203 static struct pvscsi_ctx *
204 pvscsi_get_context(const struct pvscsi_adapter *adapter, u64 context)
205 {
206 return &adapter->cmd_map[context - 1];
207 }
208
209 static void pvscsi_reg_write(const struct pvscsi_adapter *adapter,
210 u32 offset, u32 val)
211 {
212 writel(val, adapter->mmioBase + offset);
213 }
214
215 static u32 pvscsi_reg_read(const struct pvscsi_adapter *adapter, u32 offset)
216 {
217 return readl(adapter->mmioBase + offset);
218 }
219
220 static u32 pvscsi_read_intr_status(const struct pvscsi_adapter *adapter)
221 {
222 return pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_INTR_STATUS);
223 }
224
225 static void pvscsi_write_intr_status(const struct pvscsi_adapter *adapter,
226 u32 val)
227 {
228 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_STATUS, val);
229 }
230
231 static void pvscsi_unmask_intr(const struct pvscsi_adapter *adapter)
232 {
233 u32 intr_bits;
234
235 intr_bits = PVSCSI_INTR_CMPL_MASK;
236 if (adapter->use_msg)
237 intr_bits |= PVSCSI_INTR_MSG_MASK;
238
239 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_MASK, intr_bits);
240 }
241
242 static void pvscsi_mask_intr(const struct pvscsi_adapter *adapter)
243 {
244 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_MASK, 0);
245 }
246
247 static void pvscsi_write_cmd_desc(const struct pvscsi_adapter *adapter,
248 u32 cmd, const void *desc, size_t len)
249 {
250 const u32 *ptr = desc;
251 size_t i;
252
253 len /= sizeof(*ptr);
254 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND, cmd);
255 for (i = 0; i < len; i++)
256 pvscsi_reg_write(adapter,
257 PVSCSI_REG_OFFSET_COMMAND_DATA, ptr[i]);
258 }
259
260 static void pvscsi_abort_cmd(const struct pvscsi_adapter *adapter,
261 const struct pvscsi_ctx *ctx)
262 {
263 struct PVSCSICmdDescAbortCmd cmd = { 0 };
264
265 cmd.target = ctx->cmd->device->id;
266 cmd.context = pvscsi_map_context(adapter, ctx);
267
268 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_ABORT_CMD, &cmd, sizeof(cmd));
269 }
270
271 static void pvscsi_kick_rw_io(const struct pvscsi_adapter *adapter)
272 {
273 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_KICK_RW_IO, 0);
274 }
275
276 static void pvscsi_process_request_ring(const struct pvscsi_adapter *adapter)
277 {
278 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_KICK_NON_RW_IO, 0);
279 }
280
281 static int scsi_is_rw(unsigned char op)
282 {
283 return op == READ_6 || op == WRITE_6 ||
284 op == READ_10 || op == WRITE_10 ||
285 op == READ_12 || op == WRITE_12 ||
286 op == READ_16 || op == WRITE_16;
287 }
288
289 static void pvscsi_kick_io(const struct pvscsi_adapter *adapter,
290 unsigned char op)
291 {
292 if (scsi_is_rw(op)) {
293 struct PVSCSIRingsState *s = adapter->rings_state;
294
295 if (!adapter->use_req_threshold ||
296 s->reqProdIdx - s->reqConsIdx >= s->reqCallThreshold)
297 pvscsi_kick_rw_io(adapter);
298 } else {
299 pvscsi_process_request_ring(adapter);
300 }
301 }
302
303 static void ll_adapter_reset(const struct pvscsi_adapter *adapter)
304 {
305 dev_dbg(pvscsi_dev(adapter), "Adapter Reset on %p\n", adapter);
306
307 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_ADAPTER_RESET, NULL, 0);
308 }
309
310 static void ll_bus_reset(const struct pvscsi_adapter *adapter)
311 {
312 dev_dbg(pvscsi_dev(adapter), "Resetting bus on %p\n", adapter);
313
314 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_RESET_BUS, NULL, 0);
315 }
316
317 static void ll_device_reset(const struct pvscsi_adapter *adapter, u32 target)
318 {
319 struct PVSCSICmdDescResetDevice cmd = { 0 };
320
321 dev_dbg(pvscsi_dev(adapter), "Resetting device: target=%u\n", target);
322
323 cmd.target = target;
324
325 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_RESET_DEVICE,
326 &cmd, sizeof(cmd));
327 }
328
329 static void pvscsi_create_sg(struct pvscsi_ctx *ctx,
330 struct scatterlist *sg, unsigned count)
331 {
332 unsigned i;
333 struct PVSCSISGElement *sge;
334
335 BUG_ON(count > PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT);
336
337 sge = &ctx->sgl->sge[0];
338 for (i = 0; i < count; i++, sg = sg_next(sg)) {
339 sge[i].addr = sg_dma_address(sg);
340 sge[i].length = sg_dma_len(sg);
341 sge[i].flags = 0;
342 }
343 }
344
345 /*
346 * Map all data buffers for a command into PCI space and
347 * setup the scatter/gather list if needed.
348 */
349 static int pvscsi_map_buffers(struct pvscsi_adapter *adapter,
350 struct pvscsi_ctx *ctx, struct scsi_cmnd *cmd,
351 struct PVSCSIRingReqDesc *e)
352 {
353 unsigned count;
354 unsigned bufflen = scsi_bufflen(cmd);
355 struct scatterlist *sg;
356
357 e->dataLen = bufflen;
358 e->dataAddr = 0;
359 if (bufflen == 0)
360 return 0;
361
362 sg = scsi_sglist(cmd);
363 count = scsi_sg_count(cmd);
364 if (count != 0) {
365 int segs = scsi_dma_map(cmd);
366
367 if (segs == -ENOMEM) {
368 scmd_printk(KERN_DEBUG, cmd,
369 "vmw_pvscsi: Failed to map cmd sglist for DMA.\n");
370 return -ENOMEM;
371 } else if (segs > 1) {
372 pvscsi_create_sg(ctx, sg, segs);
373
374 e->flags |= PVSCSI_FLAG_CMD_WITH_SG_LIST;
375 ctx->sglPA = dma_map_single(&adapter->dev->dev,
376 ctx->sgl, SGL_SIZE, DMA_TO_DEVICE);
377 if (dma_mapping_error(&adapter->dev->dev, ctx->sglPA)) {
378 scmd_printk(KERN_ERR, cmd,
379 "vmw_pvscsi: Failed to map ctx sglist for DMA.\n");
380 scsi_dma_unmap(cmd);
381 ctx->sglPA = 0;
382 return -ENOMEM;
383 }
384 e->dataAddr = ctx->sglPA;
385 } else
386 e->dataAddr = sg_dma_address(sg);
387 } else {
388 /*
389 * In case there is no S/G list, scsi_sglist points
390 * directly to the buffer.
391 */
392 ctx->dataPA = dma_map_single(&adapter->dev->dev, sg, bufflen,
393 cmd->sc_data_direction);
394 if (dma_mapping_error(&adapter->dev->dev, ctx->dataPA)) {
395 scmd_printk(KERN_DEBUG, cmd,
396 "vmw_pvscsi: Failed to map direct data buffer for DMA.\n");
397 return -ENOMEM;
398 }
399 e->dataAddr = ctx->dataPA;
400 }
401
402 return 0;
403 }
404
405 /*
406 * The device incorrectly doesn't clear the first byte of the sense
407 * buffer in some cases. We have to do it ourselves.
408 * Otherwise we run into trouble when SWIOTLB is forced.
409 */
410 static void pvscsi_patch_sense(struct scsi_cmnd *cmd)
411 {
412 if (cmd->sense_buffer)
413 cmd->sense_buffer[0] = 0;
414 }
415
416 static void pvscsi_unmap_buffers(const struct pvscsi_adapter *adapter,
417 struct pvscsi_ctx *ctx)
418 {
419 struct scsi_cmnd *cmd;
420 unsigned bufflen;
421
422 cmd = ctx->cmd;
423 bufflen = scsi_bufflen(cmd);
424
425 if (bufflen != 0) {
426 unsigned count = scsi_sg_count(cmd);
427
428 if (count != 0) {
429 scsi_dma_unmap(cmd);
430 if (ctx->sglPA) {
431 dma_unmap_single(&adapter->dev->dev, ctx->sglPA,
432 SGL_SIZE, DMA_TO_DEVICE);
433 ctx->sglPA = 0;
434 }
435 } else
436 dma_unmap_single(&adapter->dev->dev, ctx->dataPA,
437 bufflen, cmd->sc_data_direction);
438 }
439 if (cmd->sense_buffer)
440 dma_unmap_single(&adapter->dev->dev, ctx->sensePA,
441 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
442 }
443
444 static int pvscsi_allocate_rings(struct pvscsi_adapter *adapter)
445 {
446 adapter->rings_state = dma_alloc_coherent(&adapter->dev->dev, PAGE_SIZE,
447 &adapter->ringStatePA, GFP_KERNEL);
448 if (!adapter->rings_state)
449 return -ENOMEM;
450
451 adapter->req_pages = min(PVSCSI_MAX_NUM_PAGES_REQ_RING,
452 pvscsi_ring_pages);
453 adapter->req_depth = adapter->req_pages
454 * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
455 adapter->req_ring = dma_alloc_coherent(&adapter->dev->dev,
456 adapter->req_pages * PAGE_SIZE, &adapter->reqRingPA,
457 GFP_KERNEL);
458 if (!adapter->req_ring)
459 return -ENOMEM;
460
461 adapter->cmp_pages = min(PVSCSI_MAX_NUM_PAGES_CMP_RING,
462 pvscsi_ring_pages);
463 adapter->cmp_ring = dma_alloc_coherent(&adapter->dev->dev,
464 adapter->cmp_pages * PAGE_SIZE, &adapter->cmpRingPA,
465 GFP_KERNEL);
466 if (!adapter->cmp_ring)
467 return -ENOMEM;
468
469 BUG_ON(!IS_ALIGNED(adapter->ringStatePA, PAGE_SIZE));
470 BUG_ON(!IS_ALIGNED(adapter->reqRingPA, PAGE_SIZE));
471 BUG_ON(!IS_ALIGNED(adapter->cmpRingPA, PAGE_SIZE));
472
473 if (!adapter->use_msg)
474 return 0;
475
476 adapter->msg_pages = min(PVSCSI_MAX_NUM_PAGES_MSG_RING,
477 pvscsi_msg_ring_pages);
478 adapter->msg_ring = dma_alloc_coherent(&adapter->dev->dev,
479 adapter->msg_pages * PAGE_SIZE, &adapter->msgRingPA,
480 GFP_KERNEL);
481 if (!adapter->msg_ring)
482 return -ENOMEM;
483 BUG_ON(!IS_ALIGNED(adapter->msgRingPA, PAGE_SIZE));
484
485 return 0;
486 }
487
488 static void pvscsi_setup_all_rings(const struct pvscsi_adapter *adapter)
489 {
490 struct PVSCSICmdDescSetupRings cmd = { 0 };
491 dma_addr_t base;
492 unsigned i;
493
494 cmd.ringsStatePPN = adapter->ringStatePA >> PAGE_SHIFT;
495 cmd.reqRingNumPages = adapter->req_pages;
496 cmd.cmpRingNumPages = adapter->cmp_pages;
497
498 base = adapter->reqRingPA;
499 for (i = 0; i < adapter->req_pages; i++) {
500 cmd.reqRingPPNs[i] = base >> PAGE_SHIFT;
501 base += PAGE_SIZE;
502 }
503
504 base = adapter->cmpRingPA;
505 for (i = 0; i < adapter->cmp_pages; i++) {
506 cmd.cmpRingPPNs[i] = base >> PAGE_SHIFT;
507 base += PAGE_SIZE;
508 }
509
510 memset(adapter->rings_state, 0, PAGE_SIZE);
511 memset(adapter->req_ring, 0, adapter->req_pages * PAGE_SIZE);
512 memset(adapter->cmp_ring, 0, adapter->cmp_pages * PAGE_SIZE);
513
514 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_SETUP_RINGS,
515 &cmd, sizeof(cmd));
516
517 if (adapter->use_msg) {
518 struct PVSCSICmdDescSetupMsgRing cmd_msg = { 0 };
519
520 cmd_msg.numPages = adapter->msg_pages;
521
522 base = adapter->msgRingPA;
523 for (i = 0; i < adapter->msg_pages; i++) {
524 cmd_msg.ringPPNs[i] = base >> PAGE_SHIFT;
525 base += PAGE_SIZE;
526 }
527 memset(adapter->msg_ring, 0, adapter->msg_pages * PAGE_SIZE);
528
529 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_SETUP_MSG_RING,
530 &cmd_msg, sizeof(cmd_msg));
531 }
532 }
533
534 static int pvscsi_change_queue_depth(struct scsi_device *sdev, int qdepth)
535 {
536 if (!sdev->tagged_supported)
537 qdepth = 1;
538 return scsi_change_queue_depth(sdev, qdepth);
539 }
540
541 /*
542 * Pull a completion descriptor off and pass the completion back
543 * to the SCSI mid layer.
544 */
545 static void pvscsi_complete_request(struct pvscsi_adapter *adapter,
546 const struct PVSCSIRingCmpDesc *e)
547 {
548 struct pvscsi_ctx *ctx;
549 struct scsi_cmnd *cmd;
550 struct completion *abort_cmp;
551 u32 btstat = e->hostStatus;
552 u32 sdstat = e->scsiStatus;
553
554 ctx = pvscsi_get_context(adapter, e->context);
555 cmd = ctx->cmd;
556 abort_cmp = ctx->abort_cmp;
557 pvscsi_unmap_buffers(adapter, ctx);
558 if (sdstat != SAM_STAT_CHECK_CONDITION)
559 pvscsi_patch_sense(cmd);
560 pvscsi_release_context(adapter, ctx);
561 if (abort_cmp) {
562 /*
563 * The command was requested to be aborted. Just signal that
564 * the request completed and swallow the actual cmd completion
565 * here. The abort handler will post a completion for this
566 * command indicating that it got successfully aborted.
567 */
568 complete(abort_cmp);
569 return;
570 }
571
572 cmd->result = 0;
573 if (sdstat != SAM_STAT_GOOD &&
574 (btstat == BTSTAT_SUCCESS ||
575 btstat == BTSTAT_LINKED_COMMAND_COMPLETED ||
576 btstat == BTSTAT_LINKED_COMMAND_COMPLETED_WITH_FLAG)) {
577 if (sdstat == SAM_STAT_COMMAND_TERMINATED) {
578 cmd->result = (DID_RESET << 16);
579 } else {
580 cmd->result = (DID_OK << 16) | sdstat;
581 if (sdstat == SAM_STAT_CHECK_CONDITION &&
582 cmd->sense_buffer)
583 cmd->result |= (DRIVER_SENSE << 24);
584 }
585 } else
586 switch (btstat) {
587 case BTSTAT_SUCCESS:
588 case BTSTAT_LINKED_COMMAND_COMPLETED:
589 case BTSTAT_LINKED_COMMAND_COMPLETED_WITH_FLAG:
590 /* If everything went fine, let's move on.. */
591 cmd->result = (DID_OK << 16);
592 break;
593
594 case BTSTAT_DATARUN:
595 case BTSTAT_DATA_UNDERRUN:
596 /* Report residual data in underruns */
597 scsi_set_resid(cmd, scsi_bufflen(cmd) - e->dataLen);
598 cmd->result = (DID_ERROR << 16);
599 break;
600
601 case BTSTAT_SELTIMEO:
602 /* Our emulation returns this for non-connected devs */
603 cmd->result = (DID_BAD_TARGET << 16);
604 break;
605
606 case BTSTAT_LUNMISMATCH:
607 case BTSTAT_TAGREJECT:
608 case BTSTAT_BADMSG:
609 cmd->result = (DRIVER_INVALID << 24);
610 /* fall through */
611
612 case BTSTAT_HAHARDWARE:
613 case BTSTAT_INVPHASE:
614 case BTSTAT_HATIMEOUT:
615 case BTSTAT_NORESPONSE:
616 case BTSTAT_DISCONNECT:
617 case BTSTAT_HASOFTWARE:
618 case BTSTAT_BUSFREE:
619 case BTSTAT_SENSFAILED:
620 cmd->result |= (DID_ERROR << 16);
621 break;
622
623 case BTSTAT_SENTRST:
624 case BTSTAT_RECVRST:
625 case BTSTAT_BUSRESET:
626 cmd->result = (DID_RESET << 16);
627 break;
628
629 case BTSTAT_ABORTQUEUE:
630 cmd->result = (DID_BUS_BUSY << 16);
631 break;
632
633 case BTSTAT_SCSIPARITY:
634 cmd->result = (DID_PARITY << 16);
635 break;
636
637 default:
638 cmd->result = (DID_ERROR << 16);
639 scmd_printk(KERN_DEBUG, cmd,
640 "Unknown completion status: 0x%x\n",
641 btstat);
642 }
643
644 dev_dbg(&cmd->device->sdev_gendev,
645 "cmd=%p %x ctx=%p result=0x%x status=0x%x,%x\n",
646 cmd, cmd->cmnd[0], ctx, cmd->result, btstat, sdstat);
647
648 cmd->scsi_done(cmd);
649 }
650
651 /*
652 * barrier usage : Since the PVSCSI device is emulated, there could be cases
653 * where we may want to serialize some accesses between the driver and the
654 * emulation layer. We use compiler barriers instead of the more expensive
655 * memory barriers because PVSCSI is only supported on X86 which has strong
656 * memory access ordering.
657 */
658 static void pvscsi_process_completion_ring(struct pvscsi_adapter *adapter)
659 {
660 struct PVSCSIRingsState *s = adapter->rings_state;
661 struct PVSCSIRingCmpDesc *ring = adapter->cmp_ring;
662 u32 cmp_entries = s->cmpNumEntriesLog2;
663
664 while (s->cmpConsIdx != s->cmpProdIdx) {
665 struct PVSCSIRingCmpDesc *e = ring + (s->cmpConsIdx &
666 MASK(cmp_entries));
667 /*
668 * This barrier() ensures that *e is not dereferenced while
669 * the device emulation still writes data into the slot.
670 * Since the device emulation advances s->cmpProdIdx only after
671 * updating the slot we want to check it first.
672 */
673 barrier();
674 pvscsi_complete_request(adapter, e);
675 /*
676 * This barrier() ensures that compiler doesn't reorder write
677 * to s->cmpConsIdx before the read of (*e) inside
678 * pvscsi_complete_request. Otherwise, device emulation may
679 * overwrite *e before we had a chance to read it.
680 */
681 barrier();
682 s->cmpConsIdx++;
683 }
684 }
685
686 /*
687 * Translate a Linux SCSI request into a request ring entry.
688 */
689 static int pvscsi_queue_ring(struct pvscsi_adapter *adapter,
690 struct pvscsi_ctx *ctx, struct scsi_cmnd *cmd)
691 {
692 struct PVSCSIRingsState *s;
693 struct PVSCSIRingReqDesc *e;
694 struct scsi_device *sdev;
695 u32 req_entries;
696
697 s = adapter->rings_state;
698 sdev = cmd->device;
699 req_entries = s->reqNumEntriesLog2;
700
701 /*
702 * If this condition holds, we might have room on the request ring, but
703 * we might not have room on the completion ring for the response.
704 * However, we have already ruled out this possibility - we would not
705 * have successfully allocated a context if it were true, since we only
706 * have one context per request entry. Check for it anyway, since it
707 * would be a serious bug.
708 */
709 if (s->reqProdIdx - s->cmpConsIdx >= 1 << req_entries) {
710 scmd_printk(KERN_ERR, cmd, "vmw_pvscsi: "
711 "ring full: reqProdIdx=%d cmpConsIdx=%d\n",
712 s->reqProdIdx, s->cmpConsIdx);
713 return -1;
714 }
715
716 e = adapter->req_ring + (s->reqProdIdx & MASK(req_entries));
717
718 e->bus = sdev->channel;
719 e->target = sdev->id;
720 memset(e->lun, 0, sizeof(e->lun));
721 e->lun[1] = sdev->lun;
722
723 if (cmd->sense_buffer) {
724 ctx->sensePA = dma_map_single(&adapter->dev->dev,
725 cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE,
726 DMA_FROM_DEVICE);
727 if (dma_mapping_error(&adapter->dev->dev, ctx->sensePA)) {
728 scmd_printk(KERN_DEBUG, cmd,
729 "vmw_pvscsi: Failed to map sense buffer for DMA.\n");
730 ctx->sensePA = 0;
731 return -ENOMEM;
732 }
733 e->senseAddr = ctx->sensePA;
734 e->senseLen = SCSI_SENSE_BUFFERSIZE;
735 } else {
736 e->senseLen = 0;
737 e->senseAddr = 0;
738 }
739 e->cdbLen = cmd->cmd_len;
740 e->vcpuHint = smp_processor_id();
741 memcpy(e->cdb, cmd->cmnd, e->cdbLen);
742
743 e->tag = SIMPLE_QUEUE_TAG;
744
745 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
746 e->flags = PVSCSI_FLAG_CMD_DIR_TOHOST;
747 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
748 e->flags = PVSCSI_FLAG_CMD_DIR_TODEVICE;
749 else if (cmd->sc_data_direction == DMA_NONE)
750 e->flags = PVSCSI_FLAG_CMD_DIR_NONE;
751 else
752 e->flags = 0;
753
754 if (pvscsi_map_buffers(adapter, ctx, cmd, e) != 0) {
755 if (cmd->sense_buffer) {
756 dma_unmap_single(&adapter->dev->dev, ctx->sensePA,
757 SCSI_SENSE_BUFFERSIZE,
758 DMA_FROM_DEVICE);
759 ctx->sensePA = 0;
760 }
761 return -ENOMEM;
762 }
763
764 e->context = pvscsi_map_context(adapter, ctx);
765
766 barrier();
767
768 s->reqProdIdx++;
769
770 return 0;
771 }
772
773 static int pvscsi_queue_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
774 {
775 struct Scsi_Host *host = cmd->device->host;
776 struct pvscsi_adapter *adapter = shost_priv(host);
777 struct pvscsi_ctx *ctx;
778 unsigned long flags;
779 unsigned char op;
780
781 spin_lock_irqsave(&adapter->hw_lock, flags);
782
783 ctx = pvscsi_acquire_context(adapter, cmd);
784 if (!ctx || pvscsi_queue_ring(adapter, ctx, cmd) != 0) {
785 if (ctx)
786 pvscsi_release_context(adapter, ctx);
787 spin_unlock_irqrestore(&adapter->hw_lock, flags);
788 return SCSI_MLQUEUE_HOST_BUSY;
789 }
790
791 cmd->scsi_done = done;
792 op = cmd->cmnd[0];
793
794 dev_dbg(&cmd->device->sdev_gendev,
795 "queued cmd %p, ctx %p, op=%x\n", cmd, ctx, op);
796
797 spin_unlock_irqrestore(&adapter->hw_lock, flags);
798
799 pvscsi_kick_io(adapter, op);
800
801 return 0;
802 }
803
804 static DEF_SCSI_QCMD(pvscsi_queue)
805
806 static int pvscsi_abort(struct scsi_cmnd *cmd)
807 {
808 struct pvscsi_adapter *adapter = shost_priv(cmd->device->host);
809 struct pvscsi_ctx *ctx;
810 unsigned long flags;
811 int result = SUCCESS;
812 DECLARE_COMPLETION_ONSTACK(abort_cmp);
813 int done;
814
815 scmd_printk(KERN_DEBUG, cmd, "task abort on host %u, %p\n",
816 adapter->host->host_no, cmd);
817
818 spin_lock_irqsave(&adapter->hw_lock, flags);
819
820 /*
821 * Poll the completion ring first - we might be trying to abort
822 * a command that is waiting to be dispatched in the completion ring.
823 */
824 pvscsi_process_completion_ring(adapter);
825
826 /*
827 * If there is no context for the command, it either already succeeded
828 * or else was never properly issued. Not our problem.
829 */
830 ctx = pvscsi_find_context(adapter, cmd);
831 if (!ctx) {
832 scmd_printk(KERN_DEBUG, cmd, "Failed to abort cmd %p\n", cmd);
833 goto out;
834 }
835
836 /*
837 * Mark that the command has been requested to be aborted and issue
838 * the abort.
839 */
840 ctx->abort_cmp = &abort_cmp;
841
842 pvscsi_abort_cmd(adapter, ctx);
843 spin_unlock_irqrestore(&adapter->hw_lock, flags);
844 /* Wait for 2 secs for the completion. */
845 done = wait_for_completion_timeout(&abort_cmp, msecs_to_jiffies(2000));
846 spin_lock_irqsave(&adapter->hw_lock, flags);
847
848 if (!done) {
849 /*
850 * Failed to abort the command, unmark the fact that it
851 * was requested to be aborted.
852 */
853 ctx->abort_cmp = NULL;
854 result = FAILED;
855 scmd_printk(KERN_DEBUG, cmd,
856 "Failed to get completion for aborted cmd %p\n",
857 cmd);
858 goto out;
859 }
860
861 /*
862 * Successfully aborted the command.
863 */
864 cmd->result = (DID_ABORT << 16);
865 cmd->scsi_done(cmd);
866
867 out:
868 spin_unlock_irqrestore(&adapter->hw_lock, flags);
869 return result;
870 }
871
872 /*
873 * Abort all outstanding requests. This is only safe to use if the completion
874 * ring will never be walked again or the device has been reset, because it
875 * destroys the 1-1 mapping between context field passed to emulation and our
876 * request structure.
877 */
878 static void pvscsi_reset_all(struct pvscsi_adapter *adapter)
879 {
880 unsigned i;
881
882 for (i = 0; i < adapter->req_depth; i++) {
883 struct pvscsi_ctx *ctx = &adapter->cmd_map[i];
884 struct scsi_cmnd *cmd = ctx->cmd;
885 if (cmd) {
886 scmd_printk(KERN_ERR, cmd,
887 "Forced reset on cmd %p\n", cmd);
888 pvscsi_unmap_buffers(adapter, ctx);
889 pvscsi_patch_sense(cmd);
890 pvscsi_release_context(adapter, ctx);
891 cmd->result = (DID_RESET << 16);
892 cmd->scsi_done(cmd);
893 }
894 }
895 }
896
897 static int pvscsi_host_reset(struct scsi_cmnd *cmd)
898 {
899 struct Scsi_Host *host = cmd->device->host;
900 struct pvscsi_adapter *adapter = shost_priv(host);
901 unsigned long flags;
902 bool use_msg;
903
904 scmd_printk(KERN_INFO, cmd, "SCSI Host reset\n");
905
906 spin_lock_irqsave(&adapter->hw_lock, flags);
907
908 use_msg = adapter->use_msg;
909
910 if (use_msg) {
911 adapter->use_msg = 0;
912 spin_unlock_irqrestore(&adapter->hw_lock, flags);
913
914 /*
915 * Now that we know that the ISR won't add more work on the
916 * workqueue we can safely flush any outstanding work.
917 */
918 flush_workqueue(adapter->workqueue);
919 spin_lock_irqsave(&adapter->hw_lock, flags);
920 }
921
922 /*
923 * We're going to tear down the entire ring structure and set it back
924 * up, so stalling new requests until all completions are flushed and
925 * the rings are back in place.
926 */
927
928 pvscsi_process_request_ring(adapter);
929
930 ll_adapter_reset(adapter);
931
932 /*
933 * Now process any completions. Note we do this AFTER adapter reset,
934 * which is strange, but stops races where completions get posted
935 * between processing the ring and issuing the reset. The backend will
936 * not touch the ring memory after reset, so the immediately pre-reset
937 * completion ring state is still valid.
938 */
939 pvscsi_process_completion_ring(adapter);
940
941 pvscsi_reset_all(adapter);
942 adapter->use_msg = use_msg;
943 pvscsi_setup_all_rings(adapter);
944 pvscsi_unmask_intr(adapter);
945
946 spin_unlock_irqrestore(&adapter->hw_lock, flags);
947
948 return SUCCESS;
949 }
950
951 static int pvscsi_bus_reset(struct scsi_cmnd *cmd)
952 {
953 struct Scsi_Host *host = cmd->device->host;
954 struct pvscsi_adapter *adapter = shost_priv(host);
955 unsigned long flags;
956
957 scmd_printk(KERN_INFO, cmd, "SCSI Bus reset\n");
958
959 /*
960 * We don't want to queue new requests for this bus after
961 * flushing all pending requests to emulation, since new
962 * requests could then sneak in during this bus reset phase,
963 * so take the lock now.
964 */
965 spin_lock_irqsave(&adapter->hw_lock, flags);
966
967 pvscsi_process_request_ring(adapter);
968 ll_bus_reset(adapter);
969 pvscsi_process_completion_ring(adapter);
970
971 spin_unlock_irqrestore(&adapter->hw_lock, flags);
972
973 return SUCCESS;
974 }
975
976 static int pvscsi_device_reset(struct scsi_cmnd *cmd)
977 {
978 struct Scsi_Host *host = cmd->device->host;
979 struct pvscsi_adapter *adapter = shost_priv(host);
980 unsigned long flags;
981
982 scmd_printk(KERN_INFO, cmd, "SCSI device reset on scsi%u:%u\n",
983 host->host_no, cmd->device->id);
984
985 /*
986 * We don't want to queue new requests for this device after flushing
987 * all pending requests to emulation, since new requests could then
988 * sneak in during this device reset phase, so take the lock now.
989 */
990 spin_lock_irqsave(&adapter->hw_lock, flags);
991
992 pvscsi_process_request_ring(adapter);
993 ll_device_reset(adapter, cmd->device->id);
994 pvscsi_process_completion_ring(adapter);
995
996 spin_unlock_irqrestore(&adapter->hw_lock, flags);
997
998 return SUCCESS;
999 }
1000
1001 static struct scsi_host_template pvscsi_template;
1002
1003 static const char *pvscsi_info(struct Scsi_Host *host)
1004 {
1005 struct pvscsi_adapter *adapter = shost_priv(host);
1006 static char buf[256];
1007
1008 sprintf(buf, "VMware PVSCSI storage adapter rev %d, req/cmp/msg rings: "
1009 "%u/%u/%u pages, cmd_per_lun=%u", adapter->rev,
1010 adapter->req_pages, adapter->cmp_pages, adapter->msg_pages,
1011 pvscsi_template.cmd_per_lun);
1012
1013 return buf;
1014 }
1015
1016 static struct scsi_host_template pvscsi_template = {
1017 .module = THIS_MODULE,
1018 .name = "VMware PVSCSI Host Adapter",
1019 .proc_name = "vmw_pvscsi",
1020 .info = pvscsi_info,
1021 .queuecommand = pvscsi_queue,
1022 .this_id = -1,
1023 .sg_tablesize = PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT,
1024 .dma_boundary = UINT_MAX,
1025 .max_sectors = 0xffff,
1026 .change_queue_depth = pvscsi_change_queue_depth,
1027 .eh_abort_handler = pvscsi_abort,
1028 .eh_device_reset_handler = pvscsi_device_reset,
1029 .eh_bus_reset_handler = pvscsi_bus_reset,
1030 .eh_host_reset_handler = pvscsi_host_reset,
1031 };
1032
1033 static void pvscsi_process_msg(const struct pvscsi_adapter *adapter,
1034 const struct PVSCSIRingMsgDesc *e)
1035 {
1036 struct PVSCSIRingsState *s = adapter->rings_state;
1037 struct Scsi_Host *host = adapter->host;
1038 struct scsi_device *sdev;
1039
1040 printk(KERN_INFO "vmw_pvscsi: msg type: 0x%x - MSG RING: %u/%u (%u) \n",
1041 e->type, s->msgProdIdx, s->msgConsIdx, s->msgNumEntriesLog2);
1042
1043 BUILD_BUG_ON(PVSCSI_MSG_LAST != 2);
1044
1045 if (e->type == PVSCSI_MSG_DEV_ADDED) {
1046 struct PVSCSIMsgDescDevStatusChanged *desc;
1047 desc = (struct PVSCSIMsgDescDevStatusChanged *)e;
1048
1049 printk(KERN_INFO
1050 "vmw_pvscsi: msg: device added at scsi%u:%u:%u\n",
1051 desc->bus, desc->target, desc->lun[1]);
1052
1053 if (!scsi_host_get(host))
1054 return;
1055
1056 sdev = scsi_device_lookup(host, desc->bus, desc->target,
1057 desc->lun[1]);
1058 if (sdev) {
1059 printk(KERN_INFO "vmw_pvscsi: device already exists\n");
1060 scsi_device_put(sdev);
1061 } else
1062 scsi_add_device(adapter->host, desc->bus,
1063 desc->target, desc->lun[1]);
1064
1065 scsi_host_put(host);
1066 } else if (e->type == PVSCSI_MSG_DEV_REMOVED) {
1067 struct PVSCSIMsgDescDevStatusChanged *desc;
1068 desc = (struct PVSCSIMsgDescDevStatusChanged *)e;
1069
1070 printk(KERN_INFO
1071 "vmw_pvscsi: msg: device removed at scsi%u:%u:%u\n",
1072 desc->bus, desc->target, desc->lun[1]);
1073
1074 if (!scsi_host_get(host))
1075 return;
1076
1077 sdev = scsi_device_lookup(host, desc->bus, desc->target,
1078 desc->lun[1]);
1079 if (sdev) {
1080 scsi_remove_device(sdev);
1081 scsi_device_put(sdev);
1082 } else
1083 printk(KERN_INFO
1084 "vmw_pvscsi: failed to lookup scsi%u:%u:%u\n",
1085 desc->bus, desc->target, desc->lun[1]);
1086
1087 scsi_host_put(host);
1088 }
1089 }
1090
1091 static int pvscsi_msg_pending(const struct pvscsi_adapter *adapter)
1092 {
1093 struct PVSCSIRingsState *s = adapter->rings_state;
1094
1095 return s->msgProdIdx != s->msgConsIdx;
1096 }
1097
1098 static void pvscsi_process_msg_ring(const struct pvscsi_adapter *adapter)
1099 {
1100 struct PVSCSIRingsState *s = adapter->rings_state;
1101 struct PVSCSIRingMsgDesc *ring = adapter->msg_ring;
1102 u32 msg_entries = s->msgNumEntriesLog2;
1103
1104 while (pvscsi_msg_pending(adapter)) {
1105 struct PVSCSIRingMsgDesc *e = ring + (s->msgConsIdx &
1106 MASK(msg_entries));
1107
1108 barrier();
1109 pvscsi_process_msg(adapter, e);
1110 barrier();
1111 s->msgConsIdx++;
1112 }
1113 }
1114
1115 static void pvscsi_msg_workqueue_handler(struct work_struct *data)
1116 {
1117 struct pvscsi_adapter *adapter;
1118
1119 adapter = container_of(data, struct pvscsi_adapter, work);
1120
1121 pvscsi_process_msg_ring(adapter);
1122 }
1123
1124 static int pvscsi_setup_msg_workqueue(struct pvscsi_adapter *adapter)
1125 {
1126 char name[32];
1127
1128 if (!pvscsi_use_msg)
1129 return 0;
1130
1131 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND,
1132 PVSCSI_CMD_SETUP_MSG_RING);
1133
1134 if (pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_COMMAND_STATUS) == -1)
1135 return 0;
1136
1137 snprintf(name, sizeof(name),
1138 "vmw_pvscsi_wq_%u", adapter->host->host_no);
1139
1140 adapter->workqueue = create_singlethread_workqueue(name);
1141 if (!adapter->workqueue) {
1142 printk(KERN_ERR "vmw_pvscsi: failed to create work queue\n");
1143 return 0;
1144 }
1145 INIT_WORK(&adapter->work, pvscsi_msg_workqueue_handler);
1146
1147 return 1;
1148 }
1149
1150 static bool pvscsi_setup_req_threshold(struct pvscsi_adapter *adapter,
1151 bool enable)
1152 {
1153 u32 val;
1154
1155 if (!pvscsi_use_req_threshold)
1156 return false;
1157
1158 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND,
1159 PVSCSI_CMD_SETUP_REQCALLTHRESHOLD);
1160 val = pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_COMMAND_STATUS);
1161 if (val == -1) {
1162 printk(KERN_INFO "vmw_pvscsi: device does not support req_threshold\n");
1163 return false;
1164 } else {
1165 struct PVSCSICmdDescSetupReqCall cmd_msg = { 0 };
1166 cmd_msg.enable = enable;
1167 printk(KERN_INFO
1168 "vmw_pvscsi: %sabling reqCallThreshold\n",
1169 enable ? "en" : "dis");
1170 pvscsi_write_cmd_desc(adapter,
1171 PVSCSI_CMD_SETUP_REQCALLTHRESHOLD,
1172 &cmd_msg, sizeof(cmd_msg));
1173 return pvscsi_reg_read(adapter,
1174 PVSCSI_REG_OFFSET_COMMAND_STATUS) != 0;
1175 }
1176 }
1177
1178 static irqreturn_t pvscsi_isr(int irq, void *devp)
1179 {
1180 struct pvscsi_adapter *adapter = devp;
1181 unsigned long flags;
1182
1183 spin_lock_irqsave(&adapter->hw_lock, flags);
1184 pvscsi_process_completion_ring(adapter);
1185 if (adapter->use_msg && pvscsi_msg_pending(adapter))
1186 queue_work(adapter->workqueue, &adapter->work);
1187 spin_unlock_irqrestore(&adapter->hw_lock, flags);
1188
1189 return IRQ_HANDLED;
1190 }
1191
1192 static irqreturn_t pvscsi_shared_isr(int irq, void *devp)
1193 {
1194 struct pvscsi_adapter *adapter = devp;
1195 u32 val = pvscsi_read_intr_status(adapter);
1196
1197 if (!(val & PVSCSI_INTR_ALL_SUPPORTED))
1198 return IRQ_NONE;
1199 pvscsi_write_intr_status(devp, val);
1200 return pvscsi_isr(irq, devp);
1201 }
1202
1203 static void pvscsi_free_sgls(const struct pvscsi_adapter *adapter)
1204 {
1205 struct pvscsi_ctx *ctx = adapter->cmd_map;
1206 unsigned i;
1207
1208 for (i = 0; i < adapter->req_depth; ++i, ++ctx)
1209 free_pages((unsigned long)ctx->sgl, get_order(SGL_SIZE));
1210 }
1211
1212 static void pvscsi_shutdown_intr(struct pvscsi_adapter *adapter)
1213 {
1214 free_irq(pci_irq_vector(adapter->dev, 0), adapter);
1215 pci_free_irq_vectors(adapter->dev);
1216 }
1217
1218 static void pvscsi_release_resources(struct pvscsi_adapter *adapter)
1219 {
1220 if (adapter->workqueue)
1221 destroy_workqueue(adapter->workqueue);
1222
1223 if (adapter->mmioBase)
1224 pci_iounmap(adapter->dev, adapter->mmioBase);
1225
1226 pci_release_regions(adapter->dev);
1227
1228 if (adapter->cmd_map) {
1229 pvscsi_free_sgls(adapter);
1230 kfree(adapter->cmd_map);
1231 }
1232
1233 if (adapter->rings_state)
1234 dma_free_coherent(&adapter->dev->dev, PAGE_SIZE,
1235 adapter->rings_state, adapter->ringStatePA);
1236
1237 if (adapter->req_ring)
1238 dma_free_coherent(&adapter->dev->dev,
1239 adapter->req_pages * PAGE_SIZE,
1240 adapter->req_ring, adapter->reqRingPA);
1241
1242 if (adapter->cmp_ring)
1243 dma_free_coherent(&adapter->dev->dev,
1244 adapter->cmp_pages * PAGE_SIZE,
1245 adapter->cmp_ring, adapter->cmpRingPA);
1246
1247 if (adapter->msg_ring)
1248 dma_free_coherent(&adapter->dev->dev,
1249 adapter->msg_pages * PAGE_SIZE,
1250 adapter->msg_ring, adapter->msgRingPA);
1251 }
1252
1253 /*
1254 * Allocate scatter gather lists.
1255 *
1256 * These are statically allocated. Trying to be clever was not worth it.
1257 *
1258 * Dynamic allocation can fail, and we can't go deep into the memory
1259 * allocator, since we're a SCSI driver, and trying too hard to allocate
1260 * memory might generate disk I/O. We also don't want to fail disk I/O
1261 * in that case because we can't get an allocation - the I/O could be
1262 * trying to swap out data to free memory. Since that is pathological,
1263 * just use a statically allocated scatter list.
1264 *
1265 */
1266 static int pvscsi_allocate_sg(struct pvscsi_adapter *adapter)
1267 {
1268 struct pvscsi_ctx *ctx;
1269 int i;
1270
1271 ctx = adapter->cmd_map;
1272 BUILD_BUG_ON(sizeof(struct pvscsi_sg_list) > SGL_SIZE);
1273
1274 for (i = 0; i < adapter->req_depth; ++i, ++ctx) {
1275 ctx->sgl = (void *)__get_free_pages(GFP_KERNEL,
1276 get_order(SGL_SIZE));
1277 ctx->sglPA = 0;
1278 BUG_ON(!IS_ALIGNED(((unsigned long)ctx->sgl), PAGE_SIZE));
1279 if (!ctx->sgl) {
1280 for (; i >= 0; --i, --ctx) {
1281 free_pages((unsigned long)ctx->sgl,
1282 get_order(SGL_SIZE));
1283 ctx->sgl = NULL;
1284 }
1285 return -ENOMEM;
1286 }
1287 }
1288
1289 return 0;
1290 }
1291
1292 /*
1293 * Query the device, fetch the config info and return the
1294 * maximum number of targets on the adapter. In case of
1295 * failure due to any reason return default i.e. 16.
1296 */
1297 static u32 pvscsi_get_max_targets(struct pvscsi_adapter *adapter)
1298 {
1299 struct PVSCSICmdDescConfigCmd cmd;
1300 struct PVSCSIConfigPageHeader *header;
1301 struct device *dev;
1302 dma_addr_t configPagePA;
1303 void *config_page;
1304 u32 numPhys = 16;
1305
1306 dev = pvscsi_dev(adapter);
1307 config_page = dma_alloc_coherent(&adapter->dev->dev, PAGE_SIZE,
1308 &configPagePA, GFP_KERNEL);
1309 if (!config_page) {
1310 dev_warn(dev, "vmw_pvscsi: failed to allocate memory for config page\n");
1311 goto exit;
1312 }
1313 BUG_ON(configPagePA & ~PAGE_MASK);
1314
1315 /* Fetch config info from the device. */
1316 cmd.configPageAddress = ((u64)PVSCSI_CONFIG_CONTROLLER_ADDRESS) << 32;
1317 cmd.configPageNum = PVSCSI_CONFIG_PAGE_CONTROLLER;
1318 cmd.cmpAddr = configPagePA;
1319 cmd._pad = 0;
1320
1321 /*
1322 * Mark the completion page header with error values. If the device
1323 * completes the command successfully, it sets the status values to
1324 * indicate success.
1325 */
1326 header = config_page;
1327 memset(header, 0, sizeof *header);
1328 header->hostStatus = BTSTAT_INVPARAM;
1329 header->scsiStatus = SDSTAT_CHECK;
1330
1331 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_CONFIG, &cmd, sizeof cmd);
1332
1333 if (header->hostStatus == BTSTAT_SUCCESS &&
1334 header->scsiStatus == SDSTAT_GOOD) {
1335 struct PVSCSIConfigPageController *config;
1336
1337 config = config_page;
1338 numPhys = config->numPhys;
1339 } else
1340 dev_warn(dev, "vmw_pvscsi: PVSCSI_CMD_CONFIG failed. hostStatus = 0x%x, scsiStatus = 0x%x\n",
1341 header->hostStatus, header->scsiStatus);
1342 dma_free_coherent(&adapter->dev->dev, PAGE_SIZE, config_page,
1343 configPagePA);
1344 exit:
1345 return numPhys;
1346 }
1347
1348 static int pvscsi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1349 {
1350 unsigned int irq_flag = PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY;
1351 struct pvscsi_adapter *adapter;
1352 struct pvscsi_adapter adapter_temp;
1353 struct Scsi_Host *host = NULL;
1354 unsigned int i;
1355 int error;
1356 u32 max_id;
1357
1358 error = -ENODEV;
1359
1360 if (pci_enable_device(pdev))
1361 return error;
1362
1363 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1364 printk(KERN_INFO "vmw_pvscsi: using 64bit dma\n");
1365 } else if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
1366 printk(KERN_INFO "vmw_pvscsi: using 32bit dma\n");
1367 } else {
1368 printk(KERN_ERR "vmw_pvscsi: failed to set DMA mask\n");
1369 goto out_disable_device;
1370 }
1371
1372 /*
1373 * Let's use a temp pvscsi_adapter struct until we find the number of
1374 * targets on the adapter, after that we will switch to the real
1375 * allocated struct.
1376 */
1377 adapter = &adapter_temp;
1378 memset(adapter, 0, sizeof(*adapter));
1379 adapter->dev = pdev;
1380 adapter->rev = pdev->revision;
1381
1382 if (pci_request_regions(pdev, "vmw_pvscsi")) {
1383 printk(KERN_ERR "vmw_pvscsi: pci memory selection failed\n");
1384 goto out_disable_device;
1385 }
1386
1387 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1388 if ((pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO))
1389 continue;
1390
1391 if (pci_resource_len(pdev, i) < PVSCSI_MEM_SPACE_SIZE)
1392 continue;
1393
1394 break;
1395 }
1396
1397 if (i == DEVICE_COUNT_RESOURCE) {
1398 printk(KERN_ERR
1399 "vmw_pvscsi: adapter has no suitable MMIO region\n");
1400 goto out_release_resources_and_disable;
1401 }
1402
1403 adapter->mmioBase = pci_iomap(pdev, i, PVSCSI_MEM_SPACE_SIZE);
1404
1405 if (!adapter->mmioBase) {
1406 printk(KERN_ERR
1407 "vmw_pvscsi: can't iomap for BAR %d memsize %lu\n",
1408 i, PVSCSI_MEM_SPACE_SIZE);
1409 goto out_release_resources_and_disable;
1410 }
1411
1412 pci_set_master(pdev);
1413
1414 /*
1415 * Ask the device for max number of targets before deciding the
1416 * default pvscsi_ring_pages value.
1417 */
1418 max_id = pvscsi_get_max_targets(adapter);
1419 printk(KERN_INFO "vmw_pvscsi: max_id: %u\n", max_id);
1420
1421 if (pvscsi_ring_pages == 0)
1422 /*
1423 * Set the right default value. Up to 16 it is 8, above it is
1424 * max.
1425 */
1426 pvscsi_ring_pages = (max_id > 16) ?
1427 PVSCSI_SETUP_RINGS_MAX_NUM_PAGES :
1428 PVSCSI_DEFAULT_NUM_PAGES_PER_RING;
1429 printk(KERN_INFO
1430 "vmw_pvscsi: setting ring_pages to %d\n",
1431 pvscsi_ring_pages);
1432
1433 pvscsi_template.can_queue =
1434 min(PVSCSI_MAX_NUM_PAGES_REQ_RING, pvscsi_ring_pages) *
1435 PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
1436 pvscsi_template.cmd_per_lun =
1437 min(pvscsi_template.can_queue, pvscsi_cmd_per_lun);
1438 host = scsi_host_alloc(&pvscsi_template, sizeof(struct pvscsi_adapter));
1439 if (!host) {
1440 printk(KERN_ERR "vmw_pvscsi: failed to allocate host\n");
1441 goto out_release_resources_and_disable;
1442 }
1443
1444 /*
1445 * Let's use the real pvscsi_adapter struct here onwards.
1446 */
1447 adapter = shost_priv(host);
1448 memset(adapter, 0, sizeof(*adapter));
1449 adapter->dev = pdev;
1450 adapter->host = host;
1451 /*
1452 * Copy back what we already have to the allocated adapter struct.
1453 */
1454 adapter->rev = adapter_temp.rev;
1455 adapter->mmioBase = adapter_temp.mmioBase;
1456
1457 spin_lock_init(&adapter->hw_lock);
1458 host->max_channel = 0;
1459 host->max_lun = 1;
1460 host->max_cmd_len = 16;
1461 host->max_id = max_id;
1462
1463 pci_set_drvdata(pdev, host);
1464
1465 ll_adapter_reset(adapter);
1466
1467 adapter->use_msg = pvscsi_setup_msg_workqueue(adapter);
1468
1469 error = pvscsi_allocate_rings(adapter);
1470 if (error) {
1471 printk(KERN_ERR "vmw_pvscsi: unable to allocate ring memory\n");
1472 goto out_release_resources;
1473 }
1474
1475 /*
1476 * From this point on we should reset the adapter if anything goes
1477 * wrong.
1478 */
1479 pvscsi_setup_all_rings(adapter);
1480
1481 adapter->cmd_map = kcalloc(adapter->req_depth,
1482 sizeof(struct pvscsi_ctx), GFP_KERNEL);
1483 if (!adapter->cmd_map) {
1484 printk(KERN_ERR "vmw_pvscsi: failed to allocate memory.\n");
1485 error = -ENOMEM;
1486 goto out_reset_adapter;
1487 }
1488
1489 INIT_LIST_HEAD(&adapter->cmd_pool);
1490 for (i = 0; i < adapter->req_depth; i++) {
1491 struct pvscsi_ctx *ctx = adapter->cmd_map + i;
1492 list_add(&ctx->list, &adapter->cmd_pool);
1493 }
1494
1495 error = pvscsi_allocate_sg(adapter);
1496 if (error) {
1497 printk(KERN_ERR "vmw_pvscsi: unable to allocate s/g table\n");
1498 goto out_reset_adapter;
1499 }
1500
1501 if (pvscsi_disable_msix)
1502 irq_flag &= ~PCI_IRQ_MSIX;
1503 if (pvscsi_disable_msi)
1504 irq_flag &= ~PCI_IRQ_MSI;
1505
1506 error = pci_alloc_irq_vectors(adapter->dev, 1, 1, irq_flag);
1507 if (error < 0)
1508 goto out_reset_adapter;
1509
1510 adapter->use_req_threshold = pvscsi_setup_req_threshold(adapter, true);
1511 printk(KERN_DEBUG "vmw_pvscsi: driver-based request coalescing %sabled\n",
1512 adapter->use_req_threshold ? "en" : "dis");
1513
1514 if (adapter->dev->msix_enabled || adapter->dev->msi_enabled) {
1515 printk(KERN_INFO "vmw_pvscsi: using MSI%s\n",
1516 adapter->dev->msix_enabled ? "-X" : "");
1517 error = request_irq(pci_irq_vector(pdev, 0), pvscsi_isr,
1518 0, "vmw_pvscsi", adapter);
1519 } else {
1520 printk(KERN_INFO "vmw_pvscsi: using INTx\n");
1521 error = request_irq(pci_irq_vector(pdev, 0), pvscsi_shared_isr,
1522 IRQF_SHARED, "vmw_pvscsi", adapter);
1523 }
1524
1525 if (error) {
1526 printk(KERN_ERR
1527 "vmw_pvscsi: unable to request IRQ: %d\n", error);
1528 goto out_reset_adapter;
1529 }
1530
1531 error = scsi_add_host(host, &pdev->dev);
1532 if (error) {
1533 printk(KERN_ERR
1534 "vmw_pvscsi: scsi_add_host failed: %d\n", error);
1535 goto out_reset_adapter;
1536 }
1537
1538 dev_info(&pdev->dev, "VMware PVSCSI rev %d host #%u\n",
1539 adapter->rev, host->host_no);
1540
1541 pvscsi_unmask_intr(adapter);
1542
1543 scsi_scan_host(host);
1544
1545 return 0;
1546
1547 out_reset_adapter:
1548 ll_adapter_reset(adapter);
1549 out_release_resources:
1550 pvscsi_shutdown_intr(adapter);
1551 pvscsi_release_resources(adapter);
1552 scsi_host_put(host);
1553 out_disable_device:
1554 pci_disable_device(pdev);
1555
1556 return error;
1557
1558 out_release_resources_and_disable:
1559 pvscsi_shutdown_intr(adapter);
1560 pvscsi_release_resources(adapter);
1561 goto out_disable_device;
1562 }
1563
1564 static void __pvscsi_shutdown(struct pvscsi_adapter *adapter)
1565 {
1566 pvscsi_mask_intr(adapter);
1567
1568 if (adapter->workqueue)
1569 flush_workqueue(adapter->workqueue);
1570
1571 pvscsi_shutdown_intr(adapter);
1572
1573 pvscsi_process_request_ring(adapter);
1574 pvscsi_process_completion_ring(adapter);
1575 ll_adapter_reset(adapter);
1576 }
1577
1578 static void pvscsi_shutdown(struct pci_dev *dev)
1579 {
1580 struct Scsi_Host *host = pci_get_drvdata(dev);
1581 struct pvscsi_adapter *adapter = shost_priv(host);
1582
1583 __pvscsi_shutdown(adapter);
1584 }
1585
1586 static void pvscsi_remove(struct pci_dev *pdev)
1587 {
1588 struct Scsi_Host *host = pci_get_drvdata(pdev);
1589 struct pvscsi_adapter *adapter = shost_priv(host);
1590
1591 scsi_remove_host(host);
1592
1593 __pvscsi_shutdown(adapter);
1594 pvscsi_release_resources(adapter);
1595
1596 scsi_host_put(host);
1597
1598 pci_disable_device(pdev);
1599 }
1600
1601 static struct pci_driver pvscsi_pci_driver = {
1602 .name = "vmw_pvscsi",
1603 .id_table = pvscsi_pci_tbl,
1604 .probe = pvscsi_probe,
1605 .remove = pvscsi_remove,
1606 .shutdown = pvscsi_shutdown,
1607 };
1608
1609 static int __init pvscsi_init(void)
1610 {
1611 pr_info("%s - version %s\n",
1612 PVSCSI_LINUX_DRIVER_DESC, PVSCSI_DRIVER_VERSION_STRING);
1613 return pci_register_driver(&pvscsi_pci_driver);
1614 }
1615
1616 static void __exit pvscsi_exit(void)
1617 {
1618 pci_unregister_driver(&pvscsi_pci_driver);
1619 }
1620
1621 module_init(pvscsi_init);
1622 module_exit(pvscsi_exit);