]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/wd33c93.c
Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / wd33c93.c
1 /*
2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
3 * john@geolog.com
4 * jshiffle@netcom.com
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 /*
18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
19 * provided much of the inspiration and some of the code for this
20 * driver. Everything I know about Amiga DMA was gleaned from careful
21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
22 * borrowed shamelessly from all over that source. Thanks Hamish!
23 *
24 * _This_ driver is (I feel) an improvement over the old one in
25 * several respects:
26 *
27 * - Target Disconnection/Reconnection is now supported. Any
28 * system with more than one device active on the SCSI bus
29 * will benefit from this. The driver defaults to what I
30 * call 'adaptive disconnect' - meaning that each command
31 * is evaluated individually as to whether or not it should
32 * be run with the option to disconnect/reselect (if the
33 * device chooses), or as a "SCSI-bus-hog".
34 *
35 * - Synchronous data transfers are now supported. Because of
36 * a few devices that choke after telling the driver that
37 * they can do sync transfers, we don't automatically use
38 * this faster protocol - it can be enabled via the command-
39 * line on a device-by-device basis.
40 *
41 * - Runtime operating parameters can now be specified through
42 * the 'amiboot' or the 'insmod' command line. For amiboot do:
43 * "amiboot [usual stuff] wd33c93=blah,blah,blah"
44 * The defaults should be good for most people. See the comment
45 * for 'setup_strings' below for more details.
46 *
47 * - The old driver relied exclusively on what the Western Digital
48 * docs call "Combination Level 2 Commands", which are a great
49 * idea in that the CPU is relieved of a lot of interrupt
50 * overhead. However, by accepting a certain (user-settable)
51 * amount of additional interrupts, this driver achieves
52 * better control over the SCSI bus, and data transfers are
53 * almost as fast while being much easier to define, track,
54 * and debug.
55 *
56 *
57 * TODO:
58 * more speed. linked commands.
59 *
60 *
61 * People with bug reports, wish-lists, complaints, comments,
62 * or improvements are asked to pah-leeez email me (John Shifflett)
63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
64 * this thing into as good a shape as possible, and I'm positive
65 * there are lots of lurking bugs and "Stupid Places".
66 *
67 * Updates:
68 *
69 * Added support for pre -A chips, which don't have advanced features
70 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
71 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000
72 */
73
74 #include <linux/config.h>
75 #include <linux/module.h>
76
77 #include <linux/sched.h>
78 #include <linux/string.h>
79 #include <linux/delay.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/blkdev.h>
83
84 #include <scsi/scsi.h>
85 #include <scsi/scsi_cmnd.h>
86 #include <scsi/scsi_device.h>
87 #include <scsi/scsi_host.h>
88
89 #include "wd33c93.h"
90
91
92 #define WD33C93_VERSION "1.26"
93 #define WD33C93_DATE "22/Feb/2003"
94
95 MODULE_AUTHOR("John Shifflett");
96 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
97 MODULE_LICENSE("GPL");
98
99 /*
100 * 'setup_strings' is a single string used to pass operating parameters and
101 * settings from the kernel/module command-line to the driver. 'setup_args[]'
102 * is an array of strings that define the compile-time default values for
103 * these settings. If Linux boots with an amiboot or insmod command-line,
104 * those settings are combined with 'setup_args[]'. Note that amiboot
105 * command-lines are prefixed with "wd33c93=" while insmod uses a
106 * "setup_strings=" prefix. The driver recognizes the following keywords
107 * (lower case required) and arguments:
108 *
109 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
110 * the 7 possible SCSI devices. Set a bit to negotiate for
111 * asynchronous transfers on that device. To maintain
112 * backwards compatibility, a command-line such as
113 * "wd33c93=255" will be automatically translated to
114 * "wd33c93=nosync:0xff".
115 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
116 * optional - if not present, same as "nodma:1".
117 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
118 * period. Default is 500; acceptable values are 250 - 1000.
119 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
120 * x = 1 does 'adaptive' disconnects, which is the default
121 * and generally the best choice.
122 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
123 * various types of debug output to printed - see the DB_xxx
124 * defines in wd33c93.h
125 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
126 * would be from 8 through 20. Default is 8.
127 * - next -No argument. Used to separate blocks of keywords when
128 * there's more than one host adapter in the system.
129 *
130 * Syntax Notes:
131 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
132 * _must_ be a colon between a keyword and its numeric argument, with no
133 * spaces.
134 * - Keywords are separated by commas, no spaces, in the standard kernel
135 * command-line manner.
136 * - A keyword in the 'nth' comma-separated command-line member will overwrite
137 * the 'nth' element of setup_args[]. A blank command-line member (in
138 * other words, a comma with no preceding keyword) will _not_ overwrite
139 * the corresponding setup_args[] element.
140 * - If a keyword is used more than once, the first one applies to the first
141 * SCSI host found, the second to the second card, etc, unless the 'next'
142 * keyword is used to change the order.
143 *
144 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
145 * - wd33c93=nosync:255
146 * - wd33c93=nodma
147 * - wd33c93=nodma:1
148 * - wd33c93=disconnect:2,nosync:0x08,period:250
149 * - wd33c93=debug:0x1c
150 */
151
152 /* Normally, no defaults are specified */
153 static char *setup_args[] = { "", "", "", "", "", "", "", "", "" };
154
155 static char *setup_strings;
156 module_param(setup_strings, charp, 0);
157
158 static void wd33c93_execute(struct Scsi_Host *instance);
159
160 #ifdef CONFIG_WD33C93_PIO
161 static inline uchar
162 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
163 {
164 uchar data;
165
166 outb(reg_num, regs.SASR);
167 data = inb(regs.SCMD);
168 return data;
169 }
170
171 static inline unsigned long
172 read_wd33c93_count(const wd33c93_regs regs)
173 {
174 unsigned long value;
175
176 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
177 value = inb(regs.SCMD) << 16;
178 value |= inb(regs.SCMD) << 8;
179 value |= inb(regs.SCMD);
180 return value;
181 }
182
183 static inline uchar
184 read_aux_stat(const wd33c93_regs regs)
185 {
186 return inb(regs.SASR);
187 }
188
189 static inline void
190 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
191 {
192 outb(reg_num, regs.SASR);
193 outb(value, regs.SCMD);
194 }
195
196 static inline void
197 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
198 {
199 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
200 outb((value >> 16) & 0xff, regs.SCMD);
201 outb((value >> 8) & 0xff, regs.SCMD);
202 outb( value & 0xff, regs.SCMD);
203 }
204
205 #define write_wd33c93_cmd(regs, cmd) \
206 write_wd33c93((regs), WD_COMMAND, (cmd))
207
208 static inline void
209 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
210 {
211 int i;
212
213 outb(WD_CDB_1, regs.SASR);
214 for (i=0; i<len; i++)
215 outb(cmnd[i], regs.SCMD);
216 }
217
218 #else /* CONFIG_WD33C93_PIO */
219 static inline uchar
220 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
221 {
222 *regs.SASR = reg_num;
223 mb();
224 return (*regs.SCMD);
225 }
226
227 static unsigned long
228 read_wd33c93_count(const wd33c93_regs regs)
229 {
230 unsigned long value;
231
232 *regs.SASR = WD_TRANSFER_COUNT_MSB;
233 mb();
234 value = *regs.SCMD << 16;
235 value |= *regs.SCMD << 8;
236 value |= *regs.SCMD;
237 mb();
238 return value;
239 }
240
241 static inline uchar
242 read_aux_stat(const wd33c93_regs regs)
243 {
244 return *regs.SASR;
245 }
246
247 static inline void
248 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
249 {
250 *regs.SASR = reg_num;
251 mb();
252 *regs.SCMD = value;
253 mb();
254 }
255
256 static void
257 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
258 {
259 *regs.SASR = WD_TRANSFER_COUNT_MSB;
260 mb();
261 *regs.SCMD = value >> 16;
262 *regs.SCMD = value >> 8;
263 *regs.SCMD = value;
264 mb();
265 }
266
267 static inline void
268 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
269 {
270 *regs.SASR = WD_COMMAND;
271 mb();
272 *regs.SCMD = cmd;
273 mb();
274 }
275
276 static inline void
277 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
278 {
279 int i;
280
281 *regs.SASR = WD_CDB_1;
282 for (i = 0; i < len; i++)
283 *regs.SCMD = cmnd[i];
284 }
285 #endif /* CONFIG_WD33C93_PIO */
286
287 static inline uchar
288 read_1_byte(const wd33c93_regs regs)
289 {
290 uchar asr;
291 uchar x = 0;
292
293 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
294 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
295 do {
296 asr = read_aux_stat(regs);
297 if (asr & ASR_DBR)
298 x = read_wd33c93(regs, WD_DATA);
299 } while (!(asr & ASR_INT));
300 return x;
301 }
302
303 static struct sx_period sx_table[] = {
304 {1, 0x20},
305 {252, 0x20},
306 {376, 0x30},
307 {500, 0x40},
308 {624, 0x50},
309 {752, 0x60},
310 {876, 0x70},
311 {1000, 0x00},
312 {0, 0}
313 };
314
315 static int
316 round_period(unsigned int period)
317 {
318 int x;
319
320 for (x = 1; sx_table[x].period_ns; x++) {
321 if ((period <= sx_table[x - 0].period_ns) &&
322 (period > sx_table[x - 1].period_ns)) {
323 return x;
324 }
325 }
326 return 7;
327 }
328
329 static uchar
330 calc_sync_xfer(unsigned int period, unsigned int offset)
331 {
332 uchar result;
333
334 period *= 4; /* convert SDTR code to ns */
335 result = sx_table[round_period(period)].reg_value;
336 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
337 return result;
338 }
339
340 int
341 wd33c93_queuecommand(struct scsi_cmnd *cmd,
342 void (*done)(struct scsi_cmnd *))
343 {
344 struct WD33C93_hostdata *hostdata;
345 struct scsi_cmnd *tmp;
346
347 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
348
349 DB(DB_QUEUE_COMMAND,
350 printk("Q-%d-%02x-%ld( ", cmd->device->id, cmd->cmnd[0], cmd->pid))
351
352 /* Set up a few fields in the scsi_cmnd structure for our own use:
353 * - host_scribble is the pointer to the next cmd in the input queue
354 * - scsi_done points to the routine we call when a cmd is finished
355 * - result is what you'd expect
356 */
357 cmd->host_scribble = NULL;
358 cmd->scsi_done = done;
359 cmd->result = 0;
360
361 /* We use the Scsi_Pointer structure that's included with each command
362 * as a scratchpad (as it's intended to be used!). The handy thing about
363 * the SCp.xxx fields is that they're always associated with a given
364 * cmd, and are preserved across disconnect-reselect. This means we
365 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
366 * if we keep all the critical pointers and counters in SCp:
367 * - SCp.ptr is the pointer into the RAM buffer
368 * - SCp.this_residual is the size of that buffer
369 * - SCp.buffer points to the current scatter-gather buffer
370 * - SCp.buffers_residual tells us how many S.G. buffers there are
371 * - SCp.have_data_in is not used
372 * - SCp.sent_command is not used
373 * - SCp.phase records this command's SRCID_ER bit setting
374 */
375
376 if (cmd->use_sg) {
377 cmd->SCp.buffer = (struct scatterlist *) cmd->buffer;
378 cmd->SCp.buffers_residual = cmd->use_sg - 1;
379 cmd->SCp.ptr = page_address(cmd->SCp.buffer->page) +
380 cmd->SCp.buffer->offset;
381 cmd->SCp.this_residual = cmd->SCp.buffer->length;
382 } else {
383 cmd->SCp.buffer = NULL;
384 cmd->SCp.buffers_residual = 0;
385 cmd->SCp.ptr = (char *) cmd->request_buffer;
386 cmd->SCp.this_residual = cmd->request_bufflen;
387 }
388
389 /* WD docs state that at the conclusion of a "LEVEL2" command, the
390 * status byte can be retrieved from the LUN register. Apparently,
391 * this is the case only for *uninterrupted* LEVEL2 commands! If
392 * there are any unexpected phases entered, even if they are 100%
393 * legal (different devices may choose to do things differently),
394 * the LEVEL2 command sequence is exited. This often occurs prior
395 * to receiving the status byte, in which case the driver does a
396 * status phase interrupt and gets the status byte on its own.
397 * While such a command can then be "resumed" (ie restarted to
398 * finish up as a LEVEL2 command), the LUN register will NOT be
399 * a valid status byte at the command's conclusion, and we must
400 * use the byte obtained during the earlier interrupt. Here, we
401 * preset SCp.Status to an illegal value (0xff) so that when
402 * this command finally completes, we can tell where the actual
403 * status byte is stored.
404 */
405
406 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
407
408 /*
409 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
410 * commands are added to the head of the queue so that the desired
411 * sense data is not lost before REQUEST_SENSE executes.
412 */
413
414 spin_lock_irq(&hostdata->lock);
415
416 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
417 cmd->host_scribble = (uchar *) hostdata->input_Q;
418 hostdata->input_Q = cmd;
419 } else { /* find the end of the queue */
420 for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
421 tmp->host_scribble;
422 tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
423 tmp->host_scribble = (uchar *) cmd;
424 }
425
426 /* We know that there's at least one command in 'input_Q' now.
427 * Go see if any of them are runnable!
428 */
429
430 wd33c93_execute(cmd->device->host);
431
432 DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->pid))
433
434 spin_unlock_irq(&hostdata->lock);
435 return 0;
436 }
437
438 /*
439 * This routine attempts to start a scsi command. If the host_card is
440 * already connected, we give up immediately. Otherwise, look through
441 * the input_Q, using the first command we find that's intended
442 * for a currently non-busy target/lun.
443 *
444 * wd33c93_execute() is always called with interrupts disabled or from
445 * the wd33c93_intr itself, which means that a wd33c93 interrupt
446 * cannot occur while we are in here.
447 */
448 static void
449 wd33c93_execute(struct Scsi_Host *instance)
450 {
451 struct WD33C93_hostdata *hostdata =
452 (struct WD33C93_hostdata *) instance->hostdata;
453 const wd33c93_regs regs = hostdata->regs;
454 struct scsi_cmnd *cmd, *prev;
455
456 DB(DB_EXECUTE, printk("EX("))
457 if (hostdata->selecting || hostdata->connected) {
458 DB(DB_EXECUTE, printk(")EX-0 "))
459 return;
460 }
461
462 /*
463 * Search through the input_Q for a command destined
464 * for an idle target/lun.
465 */
466
467 cmd = (struct scsi_cmnd *) hostdata->input_Q;
468 prev = NULL;
469 while (cmd) {
470 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
471 break;
472 prev = cmd;
473 cmd = (struct scsi_cmnd *) cmd->host_scribble;
474 }
475
476 /* quit if queue empty or all possible targets are busy */
477
478 if (!cmd) {
479 DB(DB_EXECUTE, printk(")EX-1 "))
480 return;
481 }
482
483 /* remove command from queue */
484
485 if (prev)
486 prev->host_scribble = cmd->host_scribble;
487 else
488 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
489
490 #ifdef PROC_STATISTICS
491 hostdata->cmd_cnt[cmd->device->id]++;
492 #endif
493
494 /*
495 * Start the selection process
496 */
497
498 if (cmd->sc_data_direction == DMA_TO_DEVICE)
499 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
500 else
501 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
502
503 /* Now we need to figure out whether or not this command is a good
504 * candidate for disconnect/reselect. We guess to the best of our
505 * ability, based on a set of hierarchical rules. When several
506 * devices are operating simultaneously, disconnects are usually
507 * an advantage. In a single device system, or if only 1 device
508 * is being accessed, transfers usually go faster if disconnects
509 * are not allowed:
510 *
511 * + Commands should NEVER disconnect if hostdata->disconnect =
512 * DIS_NEVER (this holds for tape drives also), and ALWAYS
513 * disconnect if hostdata->disconnect = DIS_ALWAYS.
514 * + Tape drive commands should always be allowed to disconnect.
515 * + Disconnect should be allowed if disconnected_Q isn't empty.
516 * + Commands should NOT disconnect if input_Q is empty.
517 * + Disconnect should be allowed if there are commands in input_Q
518 * for a different target/lun. In this case, the other commands
519 * should be made disconnect-able, if not already.
520 *
521 * I know, I know - this code would flunk me out of any
522 * "C Programming 101" class ever offered. But it's easy
523 * to change around and experiment with for now.
524 */
525
526 cmd->SCp.phase = 0; /* assume no disconnect */
527 if (hostdata->disconnect == DIS_NEVER)
528 goto no;
529 if (hostdata->disconnect == DIS_ALWAYS)
530 goto yes;
531 if (cmd->device->type == 1) /* tape drive? */
532 goto yes;
533 if (hostdata->disconnected_Q) /* other commands disconnected? */
534 goto yes;
535 if (!(hostdata->input_Q)) /* input_Q empty? */
536 goto no;
537 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
538 prev = (struct scsi_cmnd *) prev->host_scribble) {
539 if ((prev->device->id != cmd->device->id) ||
540 (prev->device->lun != cmd->device->lun)) {
541 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
542 prev = (struct scsi_cmnd *) prev->host_scribble)
543 prev->SCp.phase = 1;
544 goto yes;
545 }
546 }
547
548 goto no;
549
550 yes:
551 cmd->SCp.phase = 1;
552
553 #ifdef PROC_STATISTICS
554 hostdata->disc_allowed_cnt[cmd->device->id]++;
555 #endif
556
557 no:
558
559 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
560
561 write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun);
562 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
563 hostdata->sync_xfer[cmd->device->id]);
564 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
565
566 if ((hostdata->level2 == L2_NONE) ||
567 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
568
569 /*
570 * Do a 'Select-With-ATN' command. This will end with
571 * one of the following interrupts:
572 * CSR_RESEL_AM: failure - can try again later.
573 * CSR_TIMEOUT: failure - give up.
574 * CSR_SELECT: success - proceed.
575 */
576
577 hostdata->selecting = cmd;
578
579 /* Every target has its own synchronous transfer setting, kept in the
580 * sync_xfer array, and a corresponding status byte in sync_stat[].
581 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
582 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
583 * means that the parameters are undetermined as yet, and that we
584 * need to send an SDTR message to this device after selection is
585 * complete: We set SS_FIRST to tell the interrupt routine to do so.
586 * If we've been asked not to try synchronous transfers on this
587 * target (and _all_ luns within it), we'll still send the SDTR message
588 * later, but at that time we'll negotiate for async by specifying a
589 * sync fifo depth of 0.
590 */
591 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
592 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
593 hostdata->state = S_SELECTING;
594 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
595 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
596 } else {
597
598 /*
599 * Do a 'Select-With-ATN-Xfer' command. This will end with
600 * one of the following interrupts:
601 * CSR_RESEL_AM: failure - can try again later.
602 * CSR_TIMEOUT: failure - give up.
603 * anything else: success - proceed.
604 */
605
606 hostdata->connected = cmd;
607 write_wd33c93(regs, WD_COMMAND_PHASE, 0);
608
609 /* copy command_descriptor_block into WD chip
610 * (take advantage of auto-incrementing)
611 */
612
613 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
614
615 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
616 * it's doing a 'select-and-transfer'. To be safe, we write the
617 * size of the CDB into the OWN_ID register for every case. This
618 * way there won't be problems with vendor-unique, audio, etc.
619 */
620
621 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
622
623 /* When doing a non-disconnect command with DMA, we can save
624 * ourselves a DATA phase interrupt later by setting everything
625 * up ahead of time.
626 */
627
628 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
629 if (hostdata->dma_setup(cmd,
630 (cmd->sc_data_direction == DMA_TO_DEVICE) ?
631 DATA_OUT_DIR : DATA_IN_DIR))
632 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
633 else {
634 write_wd33c93_count(regs,
635 cmd->SCp.this_residual);
636 write_wd33c93(regs, WD_CONTROL,
637 CTRL_IDI | CTRL_EDI | CTRL_DMA);
638 hostdata->dma = D_DMA_RUNNING;
639 }
640 } else
641 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
642
643 hostdata->state = S_RUNNING_LEVEL2;
644 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
645 }
646
647 /*
648 * Since the SCSI bus can handle only 1 connection at a time,
649 * we get out of here now. If the selection fails, or when
650 * the command disconnects, we'll come back to this routine
651 * to search the input_Q again...
652 */
653
654 DB(DB_EXECUTE,
655 printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->pid))
656 }
657
658 static void
659 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
660 int data_in_dir, struct WD33C93_hostdata *hostdata)
661 {
662 uchar asr;
663
664 DB(DB_TRANSFER,
665 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
666
667 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
668 write_wd33c93_count(regs, cnt);
669 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
670 if (data_in_dir) {
671 do {
672 asr = read_aux_stat(regs);
673 if (asr & ASR_DBR)
674 *buf++ = read_wd33c93(regs, WD_DATA);
675 } while (!(asr & ASR_INT));
676 } else {
677 do {
678 asr = read_aux_stat(regs);
679 if (asr & ASR_DBR)
680 write_wd33c93(regs, WD_DATA, *buf++);
681 } while (!(asr & ASR_INT));
682 }
683
684 /* Note: we are returning with the interrupt UN-cleared.
685 * Since (presumably) an entire I/O operation has
686 * completed, the bus phase is probably different, and
687 * the interrupt routine will discover this when it
688 * responds to the uncleared int.
689 */
690
691 }
692
693 static void
694 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
695 int data_in_dir)
696 {
697 struct WD33C93_hostdata *hostdata;
698 unsigned long length;
699
700 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
701
702 /* Normally, you'd expect 'this_residual' to be non-zero here.
703 * In a series of scatter-gather transfers, however, this
704 * routine will usually be called with 'this_residual' equal
705 * to 0 and 'buffers_residual' non-zero. This means that a
706 * previous transfer completed, clearing 'this_residual', and
707 * now we need to setup the next scatter-gather buffer as the
708 * source or destination for THIS transfer.
709 */
710 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
711 ++cmd->SCp.buffer;
712 --cmd->SCp.buffers_residual;
713 cmd->SCp.this_residual = cmd->SCp.buffer->length;
714 cmd->SCp.ptr = page_address(cmd->SCp.buffer->page) +
715 cmd->SCp.buffer->offset;
716 }
717
718 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
719 hostdata->sync_xfer[cmd->device->id]);
720
721 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
722 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
723 */
724
725 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
726 #ifdef PROC_STATISTICS
727 hostdata->pio_cnt++;
728 #endif
729 transfer_pio(regs, (uchar *) cmd->SCp.ptr,
730 cmd->SCp.this_residual, data_in_dir, hostdata);
731 length = cmd->SCp.this_residual;
732 cmd->SCp.this_residual = read_wd33c93_count(regs);
733 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
734 }
735
736 /* We are able to do DMA (in fact, the Amiga hardware is
737 * already going!), so start up the wd33c93 in DMA mode.
738 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
739 * transfer completes and causes an interrupt, we're
740 * reminded to tell the Amiga to shut down its end. We'll
741 * postpone the updating of 'this_residual' and 'ptr'
742 * until then.
743 */
744
745 else {
746 #ifdef PROC_STATISTICS
747 hostdata->dma_cnt++;
748 #endif
749 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_DMA);
750 write_wd33c93_count(regs, cmd->SCp.this_residual);
751
752 if ((hostdata->level2 >= L2_DATA) ||
753 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
754 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
755 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
756 hostdata->state = S_RUNNING_LEVEL2;
757 } else
758 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
759
760 hostdata->dma = D_DMA_RUNNING;
761 }
762 }
763
764 void
765 wd33c93_intr(struct Scsi_Host *instance)
766 {
767 struct WD33C93_hostdata *hostdata =
768 (struct WD33C93_hostdata *) instance->hostdata;
769 const wd33c93_regs regs = hostdata->regs;
770 struct scsi_cmnd *patch, *cmd;
771 uchar asr, sr, phs, id, lun, *ucp, msg;
772 unsigned long length, flags;
773
774 asr = read_aux_stat(regs);
775 if (!(asr & ASR_INT) || (asr & ASR_BSY))
776 return;
777
778 spin_lock_irqsave(&hostdata->lock, flags);
779
780 #ifdef PROC_STATISTICS
781 hostdata->int_cnt++;
782 #endif
783
784 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
785 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
786 phs = read_wd33c93(regs, WD_COMMAND_PHASE);
787
788 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
789
790 /* After starting a DMA transfer, the next interrupt
791 * is guaranteed to be in response to completion of
792 * the transfer. Since the Amiga DMA hardware runs in
793 * in an open-ended fashion, it needs to be told when
794 * to stop; do that here if D_DMA_RUNNING is true.
795 * Also, we have to update 'this_residual' and 'ptr'
796 * based on the contents of the TRANSFER_COUNT register,
797 * in case the device decided to do an intermediate
798 * disconnect (a device may do this if it has to do a
799 * seek, or just to be nice and let other devices have
800 * some bus time during long transfers). After doing
801 * whatever is needed, we go on and service the WD3393
802 * interrupt normally.
803 */
804 if (hostdata->dma == D_DMA_RUNNING) {
805 DB(DB_TRANSFER,
806 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
807 hostdata->dma_stop(cmd->device->host, cmd, 1);
808 hostdata->dma = D_DMA_OFF;
809 length = cmd->SCp.this_residual;
810 cmd->SCp.this_residual = read_wd33c93_count(regs);
811 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
812 DB(DB_TRANSFER,
813 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
814 }
815
816 /* Respond to the specific WD3393 interrupt - there are quite a few! */
817 switch (sr) {
818 case CSR_TIMEOUT:
819 DB(DB_INTR, printk("TIMEOUT"))
820
821 if (hostdata->state == S_RUNNING_LEVEL2)
822 hostdata->connected = NULL;
823 else {
824 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
825 hostdata->selecting = NULL;
826 }
827
828 cmd->result = DID_NO_CONNECT << 16;
829 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
830 hostdata->state = S_UNCONNECTED;
831 cmd->scsi_done(cmd);
832
833 /* From esp.c:
834 * There is a window of time within the scsi_done() path
835 * of execution where interrupts are turned back on full
836 * blast and left that way. During that time we could
837 * reconnect to a disconnected command, then we'd bomb
838 * out below. We could also end up executing two commands
839 * at _once_. ...just so you know why the restore_flags()
840 * is here...
841 */
842
843 spin_unlock_irqrestore(&hostdata->lock, flags);
844
845 /* We are not connected to a target - check to see if there
846 * are commands waiting to be executed.
847 */
848
849 wd33c93_execute(instance);
850 break;
851
852 /* Note: this interrupt should not occur in a LEVEL2 command */
853
854 case CSR_SELECT:
855 DB(DB_INTR, printk("SELECT"))
856 hostdata->connected = cmd =
857 (struct scsi_cmnd *) hostdata->selecting;
858 hostdata->selecting = NULL;
859
860 /* construct an IDENTIFY message with correct disconnect bit */
861
862 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
863 if (cmd->SCp.phase)
864 hostdata->outgoing_msg[0] |= 0x40;
865
866 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
867 #ifdef SYNC_DEBUG
868 printk(" sending SDTR ");
869 #endif
870
871 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
872
873 /* Tack on a 2nd message to ask about synchronous transfers. If we've
874 * been asked to do only asynchronous transfers on this device, we
875 * request a fifo depth of 0, which is equivalent to async - should
876 * solve the problems some people have had with GVP's Guru ROM.
877 */
878
879 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
880 hostdata->outgoing_msg[2] = 3;
881 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
882 if (hostdata->no_sync & (1 << cmd->device->id)) {
883 hostdata->outgoing_msg[4] =
884 hostdata->default_sx_per / 4;
885 hostdata->outgoing_msg[5] = 0;
886 } else {
887 hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4;
888 hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
889 }
890 hostdata->outgoing_len = 6;
891 } else
892 hostdata->outgoing_len = 1;
893
894 hostdata->state = S_CONNECTED;
895 spin_unlock_irqrestore(&hostdata->lock, flags);
896 break;
897
898 case CSR_XFER_DONE | PHS_DATA_IN:
899 case CSR_UNEXP | PHS_DATA_IN:
900 case CSR_SRV_REQ | PHS_DATA_IN:
901 DB(DB_INTR,
902 printk("IN-%d.%d", cmd->SCp.this_residual,
903 cmd->SCp.buffers_residual))
904 transfer_bytes(regs, cmd, DATA_IN_DIR);
905 if (hostdata->state != S_RUNNING_LEVEL2)
906 hostdata->state = S_CONNECTED;
907 spin_unlock_irqrestore(&hostdata->lock, flags);
908 break;
909
910 case CSR_XFER_DONE | PHS_DATA_OUT:
911 case CSR_UNEXP | PHS_DATA_OUT:
912 case CSR_SRV_REQ | PHS_DATA_OUT:
913 DB(DB_INTR,
914 printk("OUT-%d.%d", cmd->SCp.this_residual,
915 cmd->SCp.buffers_residual))
916 transfer_bytes(regs, cmd, DATA_OUT_DIR);
917 if (hostdata->state != S_RUNNING_LEVEL2)
918 hostdata->state = S_CONNECTED;
919 spin_unlock_irqrestore(&hostdata->lock, flags);
920 break;
921
922 /* Note: this interrupt should not occur in a LEVEL2 command */
923
924 case CSR_XFER_DONE | PHS_COMMAND:
925 case CSR_UNEXP | PHS_COMMAND:
926 case CSR_SRV_REQ | PHS_COMMAND:
927 DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->pid))
928 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
929 hostdata);
930 hostdata->state = S_CONNECTED;
931 spin_unlock_irqrestore(&hostdata->lock, flags);
932 break;
933
934 case CSR_XFER_DONE | PHS_STATUS:
935 case CSR_UNEXP | PHS_STATUS:
936 case CSR_SRV_REQ | PHS_STATUS:
937 DB(DB_INTR, printk("STATUS="))
938 cmd->SCp.Status = read_1_byte(regs);
939 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
940 if (hostdata->level2 >= L2_BASIC) {
941 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
942 hostdata->state = S_RUNNING_LEVEL2;
943 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
944 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
945 } else {
946 hostdata->state = S_CONNECTED;
947 }
948 spin_unlock_irqrestore(&hostdata->lock, flags);
949 break;
950
951 case CSR_XFER_DONE | PHS_MESS_IN:
952 case CSR_UNEXP | PHS_MESS_IN:
953 case CSR_SRV_REQ | PHS_MESS_IN:
954 DB(DB_INTR, printk("MSG_IN="))
955
956 msg = read_1_byte(regs);
957 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
958
959 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
960 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
961 msg = EXTENDED_MESSAGE;
962 else
963 hostdata->incoming_ptr = 0;
964
965 cmd->SCp.Message = msg;
966 switch (msg) {
967
968 case COMMAND_COMPLETE:
969 DB(DB_INTR, printk("CCMP-%ld", cmd->pid))
970 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
971 hostdata->state = S_PRE_CMP_DISC;
972 break;
973
974 case SAVE_POINTERS:
975 DB(DB_INTR, printk("SDP"))
976 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
977 hostdata->state = S_CONNECTED;
978 break;
979
980 case RESTORE_POINTERS:
981 DB(DB_INTR, printk("RDP"))
982 if (hostdata->level2 >= L2_BASIC) {
983 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
984 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
985 hostdata->state = S_RUNNING_LEVEL2;
986 } else {
987 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
988 hostdata->state = S_CONNECTED;
989 }
990 break;
991
992 case DISCONNECT:
993 DB(DB_INTR, printk("DIS"))
994 cmd->device->disconnect = 1;
995 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
996 hostdata->state = S_PRE_TMP_DISC;
997 break;
998
999 case MESSAGE_REJECT:
1000 DB(DB_INTR, printk("REJ"))
1001 #ifdef SYNC_DEBUG
1002 printk("-REJ-");
1003 #endif
1004 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING)
1005 hostdata->sync_stat[cmd->device->id] = SS_SET;
1006 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1007 hostdata->state = S_CONNECTED;
1008 break;
1009
1010 case EXTENDED_MESSAGE:
1011 DB(DB_INTR, printk("EXT"))
1012
1013 ucp = hostdata->incoming_msg;
1014
1015 #ifdef SYNC_DEBUG
1016 printk("%02x", ucp[hostdata->incoming_ptr]);
1017 #endif
1018 /* Is this the last byte of the extended message? */
1019
1020 if ((hostdata->incoming_ptr >= 2) &&
1021 (hostdata->incoming_ptr == (ucp[1] + 1))) {
1022
1023 switch (ucp[2]) { /* what's the EXTENDED code? */
1024 case EXTENDED_SDTR:
1025 id = calc_sync_xfer(ucp[3], ucp[4]);
1026 if (hostdata->sync_stat[cmd->device->id] !=
1027 SS_WAITING) {
1028
1029 /* A device has sent an unsolicited SDTR message; rather than go
1030 * through the effort of decoding it and then figuring out what
1031 * our reply should be, we're just gonna say that we have a
1032 * synchronous fifo depth of 0. This will result in asynchronous
1033 * transfers - not ideal but so much easier.
1034 * Actually, this is OK because it assures us that if we don't
1035 * specifically ask for sync transfers, we won't do any.
1036 */
1037
1038 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1039 hostdata->outgoing_msg[0] =
1040 EXTENDED_MESSAGE;
1041 hostdata->outgoing_msg[1] = 3;
1042 hostdata->outgoing_msg[2] =
1043 EXTENDED_SDTR;
1044 hostdata->outgoing_msg[3] =
1045 hostdata->default_sx_per /
1046 4;
1047 hostdata->outgoing_msg[4] = 0;
1048 hostdata->outgoing_len = 5;
1049 hostdata->sync_xfer[cmd->device->id] =
1050 calc_sync_xfer(hostdata->
1051 default_sx_per
1052 / 4, 0);
1053 } else {
1054 hostdata->sync_xfer[cmd->device->id] = id;
1055 }
1056 #ifdef SYNC_DEBUG
1057 printk("sync_xfer=%02x",
1058 hostdata->sync_xfer[cmd->device->id]);
1059 #endif
1060 hostdata->sync_stat[cmd->device->id] =
1061 SS_SET;
1062 write_wd33c93_cmd(regs,
1063 WD_CMD_NEGATE_ACK);
1064 hostdata->state = S_CONNECTED;
1065 break;
1066 case EXTENDED_WDTR:
1067 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1068 printk("sending WDTR ");
1069 hostdata->outgoing_msg[0] =
1070 EXTENDED_MESSAGE;
1071 hostdata->outgoing_msg[1] = 2;
1072 hostdata->outgoing_msg[2] =
1073 EXTENDED_WDTR;
1074 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1075 hostdata->outgoing_len = 4;
1076 write_wd33c93_cmd(regs,
1077 WD_CMD_NEGATE_ACK);
1078 hostdata->state = S_CONNECTED;
1079 break;
1080 default:
1081 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1082 printk
1083 ("Rejecting Unknown Extended Message(%02x). ",
1084 ucp[2]);
1085 hostdata->outgoing_msg[0] =
1086 MESSAGE_REJECT;
1087 hostdata->outgoing_len = 1;
1088 write_wd33c93_cmd(regs,
1089 WD_CMD_NEGATE_ACK);
1090 hostdata->state = S_CONNECTED;
1091 break;
1092 }
1093 hostdata->incoming_ptr = 0;
1094 }
1095
1096 /* We need to read more MESS_IN bytes for the extended message */
1097
1098 else {
1099 hostdata->incoming_ptr++;
1100 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1101 hostdata->state = S_CONNECTED;
1102 }
1103 break;
1104
1105 default:
1106 printk("Rejecting Unknown Message(%02x) ", msg);
1107 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1108 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1109 hostdata->outgoing_len = 1;
1110 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1111 hostdata->state = S_CONNECTED;
1112 }
1113 spin_unlock_irqrestore(&hostdata->lock, flags);
1114 break;
1115
1116 /* Note: this interrupt will occur only after a LEVEL2 command */
1117
1118 case CSR_SEL_XFER_DONE:
1119
1120 /* Make sure that reselection is enabled at this point - it may
1121 * have been turned off for the command that just completed.
1122 */
1123
1124 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1125 if (phs == 0x60) {
1126 DB(DB_INTR, printk("SX-DONE-%ld", cmd->pid))
1127 cmd->SCp.Message = COMMAND_COMPLETE;
1128 lun = read_wd33c93(regs, WD_TARGET_LUN);
1129 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1130 hostdata->connected = NULL;
1131 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1132 hostdata->state = S_UNCONNECTED;
1133 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1134 cmd->SCp.Status = lun;
1135 if (cmd->cmnd[0] == REQUEST_SENSE
1136 && cmd->SCp.Status != GOOD)
1137 cmd->result =
1138 (cmd->
1139 result & 0x00ffff) | (DID_ERROR << 16);
1140 else
1141 cmd->result =
1142 cmd->SCp.Status | (cmd->SCp.Message << 8);
1143 cmd->scsi_done(cmd);
1144
1145 /* We are no longer connected to a target - check to see if
1146 * there are commands waiting to be executed.
1147 */
1148 spin_unlock_irqrestore(&hostdata->lock, flags);
1149 wd33c93_execute(instance);
1150 } else {
1151 printk
1152 ("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",
1153 asr, sr, phs, cmd->pid);
1154 spin_unlock_irqrestore(&hostdata->lock, flags);
1155 }
1156 break;
1157
1158 /* Note: this interrupt will occur only after a LEVEL2 command */
1159
1160 case CSR_SDP:
1161 DB(DB_INTR, printk("SDP"))
1162 hostdata->state = S_RUNNING_LEVEL2;
1163 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1164 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1165 spin_unlock_irqrestore(&hostdata->lock, flags);
1166 break;
1167
1168 case CSR_XFER_DONE | PHS_MESS_OUT:
1169 case CSR_UNEXP | PHS_MESS_OUT:
1170 case CSR_SRV_REQ | PHS_MESS_OUT:
1171 DB(DB_INTR, printk("MSG_OUT="))
1172
1173 /* To get here, we've probably requested MESSAGE_OUT and have
1174 * already put the correct bytes in outgoing_msg[] and filled
1175 * in outgoing_len. We simply send them out to the SCSI bus.
1176 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1177 * it - like when our SDTR message is rejected by a target. Some
1178 * targets send the REJECT before receiving all of the extended
1179 * message, and then seem to go back to MESSAGE_OUT for a byte
1180 * or two. Not sure why, or if I'm doing something wrong to
1181 * cause this to happen. Regardless, it seems that sending
1182 * NOP messages in these situations results in no harm and
1183 * makes everyone happy.
1184 */
1185 if (hostdata->outgoing_len == 0) {
1186 hostdata->outgoing_len = 1;
1187 hostdata->outgoing_msg[0] = NOP;
1188 }
1189 transfer_pio(regs, hostdata->outgoing_msg,
1190 hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1191 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1192 hostdata->outgoing_len = 0;
1193 hostdata->state = S_CONNECTED;
1194 spin_unlock_irqrestore(&hostdata->lock, flags);
1195 break;
1196
1197 case CSR_UNEXP_DISC:
1198
1199 /* I think I've seen this after a request-sense that was in response
1200 * to an error condition, but not sure. We certainly need to do
1201 * something when we get this interrupt - the question is 'what?'.
1202 * Let's think positively, and assume some command has finished
1203 * in a legal manner (like a command that provokes a request-sense),
1204 * so we treat it as a normal command-complete-disconnect.
1205 */
1206
1207 /* Make sure that reselection is enabled at this point - it may
1208 * have been turned off for the command that just completed.
1209 */
1210
1211 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1212 if (cmd == NULL) {
1213 printk(" - Already disconnected! ");
1214 hostdata->state = S_UNCONNECTED;
1215 spin_unlock_irqrestore(&hostdata->lock, flags);
1216 return;
1217 }
1218 DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->pid))
1219 hostdata->connected = NULL;
1220 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1221 hostdata->state = S_UNCONNECTED;
1222 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1223 cmd->result =
1224 (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1225 else
1226 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1227 cmd->scsi_done(cmd);
1228
1229 /* We are no longer connected to a target - check to see if
1230 * there are commands waiting to be executed.
1231 */
1232 /* look above for comments on scsi_done() */
1233 spin_unlock_irqrestore(&hostdata->lock, flags);
1234 wd33c93_execute(instance);
1235 break;
1236
1237 case CSR_DISC:
1238
1239 /* Make sure that reselection is enabled at this point - it may
1240 * have been turned off for the command that just completed.
1241 */
1242
1243 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1244 DB(DB_INTR, printk("DISC-%ld", cmd->pid))
1245 if (cmd == NULL) {
1246 printk(" - Already disconnected! ");
1247 hostdata->state = S_UNCONNECTED;
1248 }
1249 switch (hostdata->state) {
1250 case S_PRE_CMP_DISC:
1251 hostdata->connected = NULL;
1252 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1253 hostdata->state = S_UNCONNECTED;
1254 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1255 if (cmd->cmnd[0] == REQUEST_SENSE
1256 && cmd->SCp.Status != GOOD)
1257 cmd->result =
1258 (cmd->
1259 result & 0x00ffff) | (DID_ERROR << 16);
1260 else
1261 cmd->result =
1262 cmd->SCp.Status | (cmd->SCp.Message << 8);
1263 cmd->scsi_done(cmd);
1264 break;
1265 case S_PRE_TMP_DISC:
1266 case S_RUNNING_LEVEL2:
1267 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1268 hostdata->disconnected_Q = cmd;
1269 hostdata->connected = NULL;
1270 hostdata->state = S_UNCONNECTED;
1271
1272 #ifdef PROC_STATISTICS
1273 hostdata->disc_done_cnt[cmd->device->id]++;
1274 #endif
1275
1276 break;
1277 default:
1278 printk("*** Unexpected DISCONNECT interrupt! ***");
1279 hostdata->state = S_UNCONNECTED;
1280 }
1281
1282 /* We are no longer connected to a target - check to see if
1283 * there are commands waiting to be executed.
1284 */
1285 spin_unlock_irqrestore(&hostdata->lock, flags);
1286 wd33c93_execute(instance);
1287 break;
1288
1289 case CSR_RESEL_AM:
1290 case CSR_RESEL:
1291 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1292
1293 /* Old chips (pre -A ???) don't have advanced features and will
1294 * generate CSR_RESEL. In that case we have to extract the LUN the
1295 * hard way (see below).
1296 * First we have to make sure this reselection didn't
1297 * happen during Arbitration/Selection of some other device.
1298 * If yes, put losing command back on top of input_Q.
1299 */
1300 if (hostdata->level2 <= L2_NONE) {
1301
1302 if (hostdata->selecting) {
1303 cmd = (struct scsi_cmnd *) hostdata->selecting;
1304 hostdata->selecting = NULL;
1305 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1306 cmd->host_scribble =
1307 (uchar *) hostdata->input_Q;
1308 hostdata->input_Q = cmd;
1309 }
1310 }
1311
1312 else {
1313
1314 if (cmd) {
1315 if (phs == 0x00) {
1316 hostdata->busy[cmd->device->id] &=
1317 ~(1 << cmd->device->lun);
1318 cmd->host_scribble =
1319 (uchar *) hostdata->input_Q;
1320 hostdata->input_Q = cmd;
1321 } else {
1322 printk
1323 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1324 asr, sr, phs);
1325 while (1)
1326 printk("\r");
1327 }
1328 }
1329
1330 }
1331
1332 /* OK - find out which device reselected us. */
1333
1334 id = read_wd33c93(regs, WD_SOURCE_ID);
1335 id &= SRCID_MASK;
1336
1337 /* and extract the lun from the ID message. (Note that we don't
1338 * bother to check for a valid message here - I guess this is
1339 * not the right way to go, but...)
1340 */
1341
1342 if (sr == CSR_RESEL_AM) {
1343 lun = read_wd33c93(regs, WD_DATA);
1344 if (hostdata->level2 < L2_RESELECT)
1345 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1346 lun &= 7;
1347 } else {
1348 /* Old chip; wait for msgin phase to pick up the LUN. */
1349 for (lun = 255; lun; lun--) {
1350 if ((asr = read_aux_stat(regs)) & ASR_INT)
1351 break;
1352 udelay(10);
1353 }
1354 if (!(asr & ASR_INT)) {
1355 printk
1356 ("wd33c93: Reselected without IDENTIFY\n");
1357 lun = 0;
1358 } else {
1359 /* Verify this is a change to MSG_IN and read the message */
1360 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1361 if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1362 sr == (CSR_UNEXP | PHS_MESS_IN) ||
1363 sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1364 /* Got MSG_IN, grab target LUN */
1365 lun = read_1_byte(regs);
1366 /* Now we expect a 'paused with ACK asserted' int.. */
1367 asr = read_aux_stat(regs);
1368 if (!(asr & ASR_INT)) {
1369 udelay(10);
1370 asr = read_aux_stat(regs);
1371 if (!(asr & ASR_INT))
1372 printk
1373 ("wd33c93: No int after LUN on RESEL (%02x)\n",
1374 asr);
1375 }
1376 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1377 if (sr != CSR_MSGIN)
1378 printk
1379 ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1380 sr);
1381 lun &= 7;
1382 write_wd33c93_cmd(regs,
1383 WD_CMD_NEGATE_ACK);
1384 } else {
1385 printk
1386 ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1387 sr);
1388 lun = 0;
1389 }
1390 }
1391 }
1392
1393 /* Now we look for the command that's reconnecting. */
1394
1395 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1396 patch = NULL;
1397 while (cmd) {
1398 if (id == cmd->device->id && lun == cmd->device->lun)
1399 break;
1400 patch = cmd;
1401 cmd = (struct scsi_cmnd *) cmd->host_scribble;
1402 }
1403
1404 /* Hmm. Couldn't find a valid command.... What to do? */
1405
1406 if (!cmd) {
1407 printk
1408 ("---TROUBLE: target %d.%d not in disconnect queue---",
1409 id, lun);
1410 spin_unlock_irqrestore(&hostdata->lock, flags);
1411 return;
1412 }
1413
1414 /* Ok, found the command - now start it up again. */
1415
1416 if (patch)
1417 patch->host_scribble = cmd->host_scribble;
1418 else
1419 hostdata->disconnected_Q =
1420 (struct scsi_cmnd *) cmd->host_scribble;
1421 hostdata->connected = cmd;
1422
1423 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1424 * because these things are preserved over a disconnect.
1425 * But we DO need to fix the DPD bit so it's correct for this command.
1426 */
1427
1428 if (cmd->sc_data_direction == DMA_TO_DEVICE)
1429 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1430 else
1431 write_wd33c93(regs, WD_DESTINATION_ID,
1432 cmd->device->id | DSTID_DPD);
1433 if (hostdata->level2 >= L2_RESELECT) {
1434 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
1435 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1436 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1437 hostdata->state = S_RUNNING_LEVEL2;
1438 } else
1439 hostdata->state = S_CONNECTED;
1440
1441 DB(DB_INTR, printk("-%ld", cmd->pid))
1442 spin_unlock_irqrestore(&hostdata->lock, flags);
1443 break;
1444
1445 default:
1446 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1447 spin_unlock_irqrestore(&hostdata->lock, flags);
1448 }
1449
1450 DB(DB_INTR, printk("} "))
1451
1452 }
1453
1454 static void
1455 reset_wd33c93(struct Scsi_Host *instance)
1456 {
1457 struct WD33C93_hostdata *hostdata =
1458 (struct WD33C93_hostdata *) instance->hostdata;
1459 const wd33c93_regs regs = hostdata->regs;
1460 uchar sr;
1461
1462 #ifdef CONFIG_SGI_IP22
1463 {
1464 int busycount = 0;
1465 extern void sgiwd93_reset(unsigned long);
1466 /* wait 'til the chip gets some time for us */
1467 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1468 udelay (10);
1469 /*
1470 * there are scsi devices out there, which manage to lock up
1471 * the wd33c93 in a busy condition. In this state it won't
1472 * accept the reset command. The only way to solve this is to
1473 * give the chip a hardware reset (if possible). The code below
1474 * does this for the SGI Indy, where this is possible
1475 */
1476 /* still busy ? */
1477 if (read_aux_stat(regs) & ASR_BSY)
1478 sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1479 }
1480 #endif
1481
1482 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1483 instance->this_id | hostdata->clock_freq);
1484 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1485 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1486 calc_sync_xfer(hostdata->default_sx_per / 4,
1487 DEFAULT_SX_OFF));
1488 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1489
1490
1491 #ifdef CONFIG_MVME147_SCSI
1492 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
1493 #endif
1494
1495 while (!(read_aux_stat(regs) & ASR_INT))
1496 ;
1497 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1498
1499 hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1500 if (sr == 0x00)
1501 hostdata->chip = C_WD33C93;
1502 else if (sr == 0x01) {
1503 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
1504 sr = read_wd33c93(regs, WD_QUEUE_TAG);
1505 if (sr == 0xa5) {
1506 hostdata->chip = C_WD33C93B;
1507 write_wd33c93(regs, WD_QUEUE_TAG, 0);
1508 } else
1509 hostdata->chip = C_WD33C93A;
1510 } else
1511 hostdata->chip = C_UNKNOWN_CHIP;
1512
1513 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1514 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1515 }
1516
1517 int
1518 wd33c93_host_reset(struct scsi_cmnd * SCpnt)
1519 {
1520 struct Scsi_Host *instance;
1521 struct WD33C93_hostdata *hostdata;
1522 int i;
1523
1524 instance = SCpnt->device->host;
1525 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1526
1527 printk("scsi%d: reset. ", instance->host_no);
1528 disable_irq(instance->irq);
1529
1530 hostdata->dma_stop(instance, NULL, 0);
1531 for (i = 0; i < 8; i++) {
1532 hostdata->busy[i] = 0;
1533 hostdata->sync_xfer[i] =
1534 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1535 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1536 }
1537 hostdata->input_Q = NULL;
1538 hostdata->selecting = NULL;
1539 hostdata->connected = NULL;
1540 hostdata->disconnected_Q = NULL;
1541 hostdata->state = S_UNCONNECTED;
1542 hostdata->dma = D_DMA_OFF;
1543 hostdata->incoming_ptr = 0;
1544 hostdata->outgoing_len = 0;
1545
1546 reset_wd33c93(instance);
1547 SCpnt->result = DID_RESET << 16;
1548 enable_irq(instance->irq);
1549 return SUCCESS;
1550 }
1551
1552 int
1553 wd33c93_abort(struct scsi_cmnd * cmd)
1554 {
1555 struct Scsi_Host *instance;
1556 struct WD33C93_hostdata *hostdata;
1557 wd33c93_regs regs;
1558 struct scsi_cmnd *tmp, *prev;
1559
1560 disable_irq(cmd->device->host->irq);
1561
1562 instance = cmd->device->host;
1563 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1564 regs = hostdata->regs;
1565
1566 /*
1567 * Case 1 : If the command hasn't been issued yet, we simply remove it
1568 * from the input_Q.
1569 */
1570
1571 tmp = (struct scsi_cmnd *) hostdata->input_Q;
1572 prev = NULL;
1573 while (tmp) {
1574 if (tmp == cmd) {
1575 if (prev)
1576 prev->host_scribble = cmd->host_scribble;
1577 else
1578 hostdata->input_Q =
1579 (struct scsi_cmnd *) cmd->host_scribble;
1580 cmd->host_scribble = NULL;
1581 cmd->result = DID_ABORT << 16;
1582 printk
1583 ("scsi%d: Abort - removing command %ld from input_Q. ",
1584 instance->host_no, cmd->pid);
1585 enable_irq(cmd->device->host->irq);
1586 cmd->scsi_done(cmd);
1587 return SUCCESS;
1588 }
1589 prev = tmp;
1590 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1591 }
1592
1593 /*
1594 * Case 2 : If the command is connected, we're going to fail the abort
1595 * and let the high level SCSI driver retry at a later time or
1596 * issue a reset.
1597 *
1598 * Timeouts, and therefore aborted commands, will be highly unlikely
1599 * and handling them cleanly in this situation would make the common
1600 * case of noresets less efficient, and would pollute our code. So,
1601 * we fail.
1602 */
1603
1604 if (hostdata->connected == cmd) {
1605 uchar sr, asr;
1606 unsigned long timeout;
1607
1608 printk("scsi%d: Aborting connected command %ld - ",
1609 instance->host_no, cmd->pid);
1610
1611 printk("stopping DMA - ");
1612 if (hostdata->dma == D_DMA_RUNNING) {
1613 hostdata->dma_stop(instance, cmd, 0);
1614 hostdata->dma = D_DMA_OFF;
1615 }
1616
1617 printk("sending wd33c93 ABORT command - ");
1618 write_wd33c93(regs, WD_CONTROL,
1619 CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1620 write_wd33c93_cmd(regs, WD_CMD_ABORT);
1621
1622 /* Now we have to attempt to flush out the FIFO... */
1623
1624 printk("flushing fifo - ");
1625 timeout = 1000000;
1626 do {
1627 asr = read_aux_stat(regs);
1628 if (asr & ASR_DBR)
1629 read_wd33c93(regs, WD_DATA);
1630 } while (!(asr & ASR_INT) && timeout-- > 0);
1631 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1632 printk
1633 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1634 asr, sr, read_wd33c93_count(regs), timeout);
1635
1636 /*
1637 * Abort command processed.
1638 * Still connected.
1639 * We must disconnect.
1640 */
1641
1642 printk("sending wd33c93 DISCONNECT command - ");
1643 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1644
1645 timeout = 1000000;
1646 asr = read_aux_stat(regs);
1647 while ((asr & ASR_CIP) && timeout-- > 0)
1648 asr = read_aux_stat(regs);
1649 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1650 printk("asr=%02x, sr=%02x.", asr, sr);
1651
1652 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1653 hostdata->connected = NULL;
1654 hostdata->state = S_UNCONNECTED;
1655 cmd->result = DID_ABORT << 16;
1656
1657 /* sti();*/
1658 wd33c93_execute(instance);
1659
1660 enable_irq(cmd->device->host->irq);
1661 cmd->scsi_done(cmd);
1662 return SUCCESS;
1663 }
1664
1665 /*
1666 * Case 3: If the command is currently disconnected from the bus,
1667 * we're not going to expend much effort here: Let's just return
1668 * an ABORT_SNOOZE and hope for the best...
1669 */
1670
1671 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1672 while (tmp) {
1673 if (tmp == cmd) {
1674 printk
1675 ("scsi%d: Abort - command %ld found on disconnected_Q - ",
1676 instance->host_no, cmd->pid);
1677 printk("Abort SNOOZE. ");
1678 enable_irq(cmd->device->host->irq);
1679 return FAILED;
1680 }
1681 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1682 }
1683
1684 /*
1685 * Case 4 : If we reached this point, the command was not found in any of
1686 * the queues.
1687 *
1688 * We probably reached this point because of an unlikely race condition
1689 * between the command completing successfully and the abortion code,
1690 * so we won't panic, but we will notify the user in case something really
1691 * broke.
1692 */
1693
1694 /* sti();*/
1695 wd33c93_execute(instance);
1696
1697 enable_irq(cmd->device->host->irq);
1698 printk("scsi%d: warning : SCSI command probably completed successfully"
1699 " before abortion. ", instance->host_no);
1700 return FAILED;
1701 }
1702
1703 #define MAX_WD33C93_HOSTS 4
1704 #define MAX_SETUP_ARGS ((int)(sizeof(setup_args) / sizeof(char *)))
1705 #define SETUP_BUFFER_SIZE 200
1706 static char setup_buffer[SETUP_BUFFER_SIZE];
1707 static char setup_used[MAX_SETUP_ARGS];
1708 static int done_setup = 0;
1709
1710 int
1711 wd33c93_setup(char *str)
1712 {
1713 int i;
1714 char *p1, *p2;
1715
1716 /* The kernel does some processing of the command-line before calling
1717 * this function: If it begins with any decimal or hex number arguments,
1718 * ints[0] = how many numbers found and ints[1] through [n] are the values
1719 * themselves. str points to where the non-numeric arguments (if any)
1720 * start: We do our own parsing of those. We construct synthetic 'nosync'
1721 * keywords out of numeric args (to maintain compatibility with older
1722 * versions) and then add the rest of the arguments.
1723 */
1724
1725 p1 = setup_buffer;
1726 *p1 = '\0';
1727 if (str)
1728 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
1729 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1730 p1 = setup_buffer;
1731 i = 0;
1732 while (*p1 && (i < MAX_SETUP_ARGS)) {
1733 p2 = strchr(p1, ',');
1734 if (p2) {
1735 *p2 = '\0';
1736 if (p1 != p2)
1737 setup_args[i] = p1;
1738 p1 = p2 + 1;
1739 i++;
1740 } else {
1741 setup_args[i] = p1;
1742 break;
1743 }
1744 }
1745 for (i = 0; i < MAX_SETUP_ARGS; i++)
1746 setup_used[i] = 0;
1747 done_setup = 1;
1748
1749 return 1;
1750 }
1751 __setup("wd33c93=", wd33c93_setup);
1752
1753 /* check_setup_args() returns index if key found, 0 if not
1754 */
1755 static int
1756 check_setup_args(char *key, int *flags, int *val, char *buf)
1757 {
1758 int x;
1759 char *cp;
1760
1761 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1762 if (setup_used[x])
1763 continue;
1764 if (!strncmp(setup_args[x], key, strlen(key)))
1765 break;
1766 if (!strncmp(setup_args[x], "next", strlen("next")))
1767 return 0;
1768 }
1769 if (x == MAX_SETUP_ARGS)
1770 return 0;
1771 setup_used[x] = 1;
1772 cp = setup_args[x] + strlen(key);
1773 *val = -1;
1774 if (*cp != ':')
1775 return ++x;
1776 cp++;
1777 if ((*cp >= '0') && (*cp <= '9')) {
1778 *val = simple_strtoul(cp, NULL, 0);
1779 }
1780 return ++x;
1781 }
1782
1783 void
1784 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1785 dma_setup_t setup, dma_stop_t stop, int clock_freq)
1786 {
1787 struct WD33C93_hostdata *hostdata;
1788 int i;
1789 int flags;
1790 int val;
1791 char buf[32];
1792
1793 if (!done_setup && setup_strings)
1794 wd33c93_setup(setup_strings);
1795
1796 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1797
1798 hostdata->regs = regs;
1799 hostdata->clock_freq = clock_freq;
1800 hostdata->dma_setup = setup;
1801 hostdata->dma_stop = stop;
1802 hostdata->dma_bounce_buffer = NULL;
1803 hostdata->dma_bounce_len = 0;
1804 for (i = 0; i < 8; i++) {
1805 hostdata->busy[i] = 0;
1806 hostdata->sync_xfer[i] =
1807 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1808 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1809 #ifdef PROC_STATISTICS
1810 hostdata->cmd_cnt[i] = 0;
1811 hostdata->disc_allowed_cnt[i] = 0;
1812 hostdata->disc_done_cnt[i] = 0;
1813 #endif
1814 }
1815 hostdata->input_Q = NULL;
1816 hostdata->selecting = NULL;
1817 hostdata->connected = NULL;
1818 hostdata->disconnected_Q = NULL;
1819 hostdata->state = S_UNCONNECTED;
1820 hostdata->dma = D_DMA_OFF;
1821 hostdata->level2 = L2_BASIC;
1822 hostdata->disconnect = DIS_ADAPTIVE;
1823 hostdata->args = DEBUG_DEFAULTS;
1824 hostdata->incoming_ptr = 0;
1825 hostdata->outgoing_len = 0;
1826 hostdata->default_sx_per = DEFAULT_SX_PER;
1827 hostdata->no_sync = 0xff; /* sync defaults to off */
1828 hostdata->no_dma = 0; /* default is DMA enabled */
1829
1830 #ifdef PROC_INTERFACE
1831 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1832 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
1833 #ifdef PROC_STATISTICS
1834 hostdata->dma_cnt = 0;
1835 hostdata->pio_cnt = 0;
1836 hostdata->int_cnt = 0;
1837 #endif
1838 #endif
1839
1840 if (check_setup_args("nosync", &flags, &val, buf))
1841 hostdata->no_sync = val;
1842
1843 if (check_setup_args("nodma", &flags, &val, buf))
1844 hostdata->no_dma = (val == -1) ? 1 : val;
1845
1846 if (check_setup_args("period", &flags, &val, buf))
1847 hostdata->default_sx_per =
1848 sx_table[round_period((unsigned int) val)].period_ns;
1849
1850 if (check_setup_args("disconnect", &flags, &val, buf)) {
1851 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
1852 hostdata->disconnect = val;
1853 else
1854 hostdata->disconnect = DIS_ADAPTIVE;
1855 }
1856
1857 if (check_setup_args("level2", &flags, &val, buf))
1858 hostdata->level2 = val;
1859
1860 if (check_setup_args("debug", &flags, &val, buf))
1861 hostdata->args = val & DB_MASK;
1862
1863 if (check_setup_args("clock", &flags, &val, buf)) {
1864 if (val > 7 && val < 11)
1865 val = WD33C93_FS_8_10;
1866 else if (val > 11 && val < 16)
1867 val = WD33C93_FS_12_15;
1868 else if (val > 15 && val < 21)
1869 val = WD33C93_FS_16_20;
1870 else
1871 val = WD33C93_FS_8_10;
1872 hostdata->clock_freq = val;
1873 }
1874
1875 if ((i = check_setup_args("next", &flags, &val, buf))) {
1876 while (i)
1877 setup_used[--i] = 1;
1878 }
1879 #ifdef PROC_INTERFACE
1880 if (check_setup_args("proc", &flags, &val, buf))
1881 hostdata->proc = val;
1882 #endif
1883
1884 spin_lock_irq(&hostdata->lock);
1885 reset_wd33c93(instance);
1886 spin_unlock_irq(&hostdata->lock);
1887
1888 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
1889 instance->host_no,
1890 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
1891 C_WD33C93A) ?
1892 "WD33c93A" : (hostdata->chip ==
1893 C_WD33C93B) ? "WD33c93B" : "unknown",
1894 hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
1895 #ifdef DEBUGGING_ON
1896 printk(" debug_flags=0x%02x\n", hostdata->args);
1897 #else
1898 printk(" debugging=OFF\n");
1899 #endif
1900 printk(" setup_args=");
1901 for (i = 0; i < MAX_SETUP_ARGS; i++)
1902 printk("%s,", setup_args[i]);
1903 printk("\n");
1904 printk(" Version %s - %s, Compiled %s at %s\n",
1905 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
1906 }
1907
1908 int
1909 wd33c93_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
1910 {
1911
1912 #ifdef PROC_INTERFACE
1913
1914 char *bp;
1915 char tbuf[128];
1916 struct WD33C93_hostdata *hd;
1917 struct scsi_cmnd *cmd;
1918 int x, i;
1919 static int stop = 0;
1920
1921 hd = (struct WD33C93_hostdata *) instance->hostdata;
1922
1923 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following
1924 * keywords (same format as command-line, but only ONE per read):
1925 * debug
1926 * disconnect
1927 * period
1928 * resync
1929 * proc
1930 * nodma
1931 */
1932
1933 if (in) {
1934 buf[len] = '\0';
1935 bp = buf;
1936 if (!strncmp(bp, "debug:", 6)) {
1937 bp += 6;
1938 hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK;
1939 } else if (!strncmp(bp, "disconnect:", 11)) {
1940 bp += 11;
1941 x = simple_strtoul(bp, NULL, 0);
1942 if (x < DIS_NEVER || x > DIS_ALWAYS)
1943 x = DIS_ADAPTIVE;
1944 hd->disconnect = x;
1945 } else if (!strncmp(bp, "period:", 7)) {
1946 bp += 7;
1947 x = simple_strtoul(bp, NULL, 0);
1948 hd->default_sx_per =
1949 sx_table[round_period((unsigned int) x)].period_ns;
1950 } else if (!strncmp(bp, "resync:", 7)) {
1951 bp += 7;
1952 x = simple_strtoul(bp, NULL, 0);
1953 for (i = 0; i < 7; i++)
1954 if (x & (1 << i))
1955 hd->sync_stat[i] = SS_UNSET;
1956 } else if (!strncmp(bp, "proc:", 5)) {
1957 bp += 5;
1958 hd->proc = simple_strtoul(bp, NULL, 0);
1959 } else if (!strncmp(bp, "nodma:", 6)) {
1960 bp += 6;
1961 hd->no_dma = simple_strtoul(bp, NULL, 0);
1962 } else if (!strncmp(bp, "level2:", 7)) {
1963 bp += 7;
1964 hd->level2 = simple_strtoul(bp, NULL, 0);
1965 }
1966 return len;
1967 }
1968
1969 spin_lock_irq(&hd->lock);
1970 bp = buf;
1971 *bp = '\0';
1972 if (hd->proc & PR_VERSION) {
1973 sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s",
1974 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
1975 strcat(bp, tbuf);
1976 }
1977 if (hd->proc & PR_INFO) {
1978 sprintf(tbuf, "\nclock_freq=%02x no_sync=%02x no_dma=%d",
1979 hd->clock_freq, hd->no_sync, hd->no_dma);
1980 strcat(bp, tbuf);
1981 strcat(bp, "\nsync_xfer[] = ");
1982 for (x = 0; x < 7; x++) {
1983 sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
1984 strcat(bp, tbuf);
1985 }
1986 strcat(bp, "\nsync_stat[] = ");
1987 for (x = 0; x < 7; x++) {
1988 sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
1989 strcat(bp, tbuf);
1990 }
1991 }
1992 #ifdef PROC_STATISTICS
1993 if (hd->proc & PR_STATISTICS) {
1994 strcat(bp, "\ncommands issued: ");
1995 for (x = 0; x < 7; x++) {
1996 sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
1997 strcat(bp, tbuf);
1998 }
1999 strcat(bp, "\ndisconnects allowed:");
2000 for (x = 0; x < 7; x++) {
2001 sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
2002 strcat(bp, tbuf);
2003 }
2004 strcat(bp, "\ndisconnects done: ");
2005 for (x = 0; x < 7; x++) {
2006 sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
2007 strcat(bp, tbuf);
2008 }
2009 sprintf(tbuf,
2010 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2011 hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
2012 strcat(bp, tbuf);
2013 }
2014 #endif
2015 if (hd->proc & PR_CONNECTED) {
2016 strcat(bp, "\nconnected: ");
2017 if (hd->connected) {
2018 cmd = (struct scsi_cmnd *) hd->connected;
2019 sprintf(tbuf, " %ld-%d:%d(%02x)",
2020 cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2021 strcat(bp, tbuf);
2022 }
2023 }
2024 if (hd->proc & PR_INPUTQ) {
2025 strcat(bp, "\ninput_Q: ");
2026 cmd = (struct scsi_cmnd *) hd->input_Q;
2027 while (cmd) {
2028 sprintf(tbuf, " %ld-%d:%d(%02x)",
2029 cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2030 strcat(bp, tbuf);
2031 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2032 }
2033 }
2034 if (hd->proc & PR_DISCQ) {
2035 strcat(bp, "\ndisconnected_Q:");
2036 cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2037 while (cmd) {
2038 sprintf(tbuf, " %ld-%d:%d(%02x)",
2039 cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2040 strcat(bp, tbuf);
2041 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2042 }
2043 }
2044 strcat(bp, "\n");
2045 spin_unlock_irq(&hd->lock);
2046 *start = buf;
2047 if (stop) {
2048 stop = 0;
2049 return 0;
2050 }
2051 if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
2052 stop = 1;
2053 if (hd->proc & PR_STOP) /* stop every other time */
2054 stop = 1;
2055 return strlen(bp);
2056
2057 #else /* PROC_INTERFACE */
2058
2059 return 0;
2060
2061 #endif /* PROC_INTERFACE */
2062
2063 }
2064
2065 void
2066 wd33c93_release(void)
2067 {
2068 }
2069
2070 EXPORT_SYMBOL(wd33c93_host_reset);
2071 EXPORT_SYMBOL(wd33c93_init);
2072 EXPORT_SYMBOL(wd33c93_release);
2073 EXPORT_SYMBOL(wd33c93_abort);
2074 EXPORT_SYMBOL(wd33c93_queuecommand);
2075 EXPORT_SYMBOL(wd33c93_intr);
2076 EXPORT_SYMBOL(wd33c93_proc_info);