]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/serial/jsm/jsm_tty.c
Linux-2.6.12-rc2
[mirror_ubuntu-zesty-kernel.git] / drivers / serial / jsm / jsm_tty.c
1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
3 *
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
20 *
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Wendy Xiong <wendyx@us.ltcfwd.linux.ibm.com>
24 *
25 ***********************************************************************/
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_reg.h>
29 #include <linux/delay.h> /* For udelay */
30 #include <linux/pci.h>
31
32 #include "jsm.h"
33
34 static inline int jsm_get_mstat(struct jsm_channel *ch)
35 {
36 unsigned char mstat;
37 unsigned result;
38
39 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
40
41 mstat = (ch->ch_mostat | ch->ch_mistat);
42
43 result = 0;
44
45 if (mstat & UART_MCR_DTR)
46 result |= TIOCM_DTR;
47 if (mstat & UART_MCR_RTS)
48 result |= TIOCM_RTS;
49 if (mstat & UART_MSR_CTS)
50 result |= TIOCM_CTS;
51 if (mstat & UART_MSR_DSR)
52 result |= TIOCM_DSR;
53 if (mstat & UART_MSR_RI)
54 result |= TIOCM_RI;
55 if (mstat & UART_MSR_DCD)
56 result |= TIOCM_CD;
57
58 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
59 return result;
60 }
61
62 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
63 {
64 return TIOCSER_TEMT;
65 }
66
67 /*
68 * Return modem signals to ld.
69 */
70 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
71 {
72 int result;
73 struct jsm_channel *channel = (struct jsm_channel *)port;
74
75 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
76
77 result = jsm_get_mstat(channel);
78
79 if (result < 0)
80 return -ENXIO;
81
82 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
83
84 return result;
85 }
86
87 /*
88 * jsm_set_modem_info()
89 *
90 * Set modem signals, called by ld.
91 */
92 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
93 {
94 struct jsm_channel *channel = (struct jsm_channel *)port;
95
96 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
97
98 if (mctrl & TIOCM_RTS)
99 channel->ch_mostat |= UART_MCR_RTS;
100 else
101 channel->ch_mostat &= ~UART_MCR_RTS;
102
103 if (mctrl & TIOCM_DTR)
104 channel->ch_mostat |= UART_MCR_DTR;
105 else
106 channel->ch_mostat &= ~UART_MCR_DTR;
107
108 channel->ch_bd->bd_ops->assert_modem_signals(channel);
109
110 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
111 udelay(10);
112 }
113
114 static void jsm_tty_start_tx(struct uart_port *port, unsigned int tty_start)
115 {
116 struct jsm_channel *channel = (struct jsm_channel *)port;
117
118 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
119
120 channel->ch_flags &= ~(CH_STOP);
121 jsm_tty_write(port);
122
123 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
124 }
125
126 static void jsm_tty_stop_tx(struct uart_port *port, unsigned int tty_stop)
127 {
128 struct jsm_channel *channel = (struct jsm_channel *)port;
129
130 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
131
132 channel->ch_flags |= (CH_STOP);
133
134 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
135 }
136
137 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
138 {
139 unsigned long lock_flags;
140 struct jsm_channel *channel = (struct jsm_channel *)port;
141
142 spin_lock_irqsave(&port->lock, lock_flags);
143 if (ch == port->info->tty->termios->c_cc[VSTART])
144 channel->ch_bd->bd_ops->send_start_character(channel);
145
146 if (ch == port->info->tty->termios->c_cc[VSTOP])
147 channel->ch_bd->bd_ops->send_stop_character(channel);
148 spin_unlock_irqrestore(&port->lock, lock_flags);
149 }
150
151 static void jsm_tty_stop_rx(struct uart_port *port)
152 {
153 struct jsm_channel *channel = (struct jsm_channel *)port;
154
155 channel->ch_bd->bd_ops->disable_receiver(channel);
156 }
157
158 static void jsm_tty_break(struct uart_port *port, int break_state)
159 {
160 unsigned long lock_flags;
161 struct jsm_channel *channel = (struct jsm_channel *)port;
162
163 spin_lock_irqsave(&port->lock, lock_flags);
164 if (break_state == -1)
165 channel->ch_bd->bd_ops->send_break(channel);
166 else
167 channel->ch_bd->bd_ops->clear_break(channel, 0);
168
169 spin_unlock_irqrestore(&port->lock, lock_flags);
170 }
171
172 static int jsm_tty_open(struct uart_port *port)
173 {
174 struct jsm_board *brd;
175 int rc = 0;
176 struct jsm_channel *channel = (struct jsm_channel *)port;
177
178 /* Get board pointer from our array of majors we have allocated */
179 brd = channel->ch_bd;
180
181 /*
182 * Allocate channel buffers for read/write/error.
183 * Set flag, so we don't get trounced on.
184 */
185 channel->ch_flags |= (CH_OPENING);
186
187 /* Drop locks, as malloc with GFP_KERNEL can sleep */
188
189 if (!channel->ch_rqueue) {
190 channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL);
191 if (!channel->ch_rqueue) {
192 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
193 "unable to allocate read queue buf");
194 return -ENOMEM;
195 }
196 memset(channel->ch_rqueue, 0, RQUEUESIZE);
197 }
198 if (!channel->ch_equeue) {
199 channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL);
200 if (!channel->ch_equeue) {
201 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
202 "unable to allocate error queue buf");
203 return -ENOMEM;
204 }
205 memset(channel->ch_equeue, 0, EQUEUESIZE);
206 }
207 if (!channel->ch_wqueue) {
208 channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL);
209 if (!channel->ch_wqueue) {
210 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
211 "unable to allocate write queue buf");
212 return -ENOMEM;
213 }
214 memset(channel->ch_wqueue, 0, WQUEUESIZE);
215 }
216
217 channel->ch_flags &= ~(CH_OPENING);
218 /*
219 * Initialize if neither terminal is open.
220 */
221 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
222 "jsm_open: initializing channel in open...\n");
223
224 /*
225 * Flush input queues.
226 */
227 channel->ch_r_head = channel->ch_r_tail = 0;
228 channel->ch_e_head = channel->ch_e_tail = 0;
229 channel->ch_w_head = channel->ch_w_tail = 0;
230
231 brd->bd_ops->flush_uart_write(channel);
232 brd->bd_ops->flush_uart_read(channel);
233
234 channel->ch_flags = 0;
235 channel->ch_cached_lsr = 0;
236 channel->ch_stops_sent = 0;
237
238 channel->ch_c_cflag = port->info->tty->termios->c_cflag;
239 channel->ch_c_iflag = port->info->tty->termios->c_iflag;
240 channel->ch_c_oflag = port->info->tty->termios->c_oflag;
241 channel->ch_c_lflag = port->info->tty->termios->c_lflag;
242 channel->ch_startc = port->info->tty->termios->c_cc[VSTART];
243 channel->ch_stopc = port->info->tty->termios->c_cc[VSTOP];
244
245 /* Tell UART to init itself */
246 brd->bd_ops->uart_init(channel);
247
248 /*
249 * Run param in case we changed anything
250 */
251 brd->bd_ops->param(channel);
252
253 jsm_carrier(channel);
254
255 channel->ch_open_count++;
256
257 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
258 return rc;
259 }
260
261 static void jsm_tty_close(struct uart_port *port)
262 {
263 struct jsm_board *bd;
264 struct termios *ts;
265 struct jsm_channel *channel = (struct jsm_channel *)port;
266
267 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
268
269 bd = channel->ch_bd;
270 ts = channel->uart_port.info->tty->termios;
271
272 channel->ch_flags &= ~(CH_STOPI);
273
274 channel->ch_open_count--;
275
276 /*
277 * If we have HUPCL set, lower DTR and RTS
278 */
279 if (channel->ch_c_cflag & HUPCL) {
280 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
281 "Close. HUPCL set, dropping DTR/RTS\n");
282
283 /* Drop RTS/DTR */
284 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
285 bd->bd_ops->assert_modem_signals(channel);
286 }
287
288 channel->ch_old_baud = 0;
289
290 /* Turn off UART interrupts for this port */
291 channel->ch_bd->bd_ops->uart_off(channel);
292
293 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
294 }
295
296 static void jsm_tty_set_termios(struct uart_port *port,
297 struct termios *termios,
298 struct termios *old_termios)
299 {
300 unsigned long lock_flags;
301 struct jsm_channel *channel = (struct jsm_channel *)port;
302
303 spin_lock_irqsave(&port->lock, lock_flags);
304 channel->ch_c_cflag = termios->c_cflag;
305 channel->ch_c_iflag = termios->c_iflag;
306 channel->ch_c_oflag = termios->c_oflag;
307 channel->ch_c_lflag = termios->c_lflag;
308 channel->ch_startc = termios->c_cc[VSTART];
309 channel->ch_stopc = termios->c_cc[VSTOP];
310
311 channel->ch_bd->bd_ops->param(channel);
312 jsm_carrier(channel);
313 spin_unlock_irqrestore(&port->lock, lock_flags);
314 }
315
316 static const char *jsm_tty_type(struct uart_port *port)
317 {
318 return "jsm";
319 }
320
321 static void jsm_tty_release_port(struct uart_port *port)
322 {
323 }
324
325 static int jsm_tty_request_port(struct uart_port *port)
326 {
327 return 0;
328 }
329
330 static void jsm_config_port(struct uart_port *port, int flags)
331 {
332 port->type = PORT_JSM;
333 }
334
335 static struct uart_ops jsm_ops = {
336 .tx_empty = jsm_tty_tx_empty,
337 .set_mctrl = jsm_tty_set_mctrl,
338 .get_mctrl = jsm_tty_get_mctrl,
339 .stop_tx = jsm_tty_stop_tx,
340 .start_tx = jsm_tty_start_tx,
341 .send_xchar = jsm_tty_send_xchar,
342 .stop_rx = jsm_tty_stop_rx,
343 .break_ctl = jsm_tty_break,
344 .startup = jsm_tty_open,
345 .shutdown = jsm_tty_close,
346 .set_termios = jsm_tty_set_termios,
347 .type = jsm_tty_type,
348 .release_port = jsm_tty_release_port,
349 .request_port = jsm_tty_request_port,
350 .config_port = jsm_config_port,
351 };
352
353 /*
354 * jsm_tty_init()
355 *
356 * Init the tty subsystem. Called once per board after board has been
357 * downloaded and init'ed.
358 */
359 int jsm_tty_init(struct jsm_board *brd)
360 {
361 int i;
362 void __iomem *vaddr;
363 struct jsm_channel *ch;
364
365 if (!brd)
366 return -ENXIO;
367
368 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
369
370 /*
371 * Initialize board structure elements.
372 */
373
374 brd->nasync = brd->maxports;
375
376 /*
377 * Allocate channel memory that might not have been allocated
378 * when the driver was first loaded.
379 */
380 for (i = 0; i < brd->nasync; i++) {
381 if (!brd->channels[i]) {
382
383 /*
384 * Okay to malloc with GFP_KERNEL, we are not at
385 * interrupt context, and there are no locks held.
386 */
387 brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL);
388 if (!brd->channels[i]) {
389 jsm_printk(CORE, ERR, &brd->pci_dev,
390 "%s:%d Unable to allocate memory for channel struct\n",
391 __FILE__, __LINE__);
392 }
393 memset(brd->channels[i], 0, sizeof(struct jsm_channel));
394 }
395 }
396
397 ch = brd->channels[0];
398 vaddr = brd->re_map_membase;
399
400 /* Set up channel variables */
401 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
402
403 if (!brd->channels[i])
404 continue;
405
406 spin_lock_init(&ch->ch_lock);
407
408 if (brd->bd_uart_offset == 0x200)
409 ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
410
411 ch->ch_bd = brd;
412 ch->ch_portnum = i;
413
414 /* .25 second delay */
415 ch->ch_close_delay = 250;
416
417 init_waitqueue_head(&ch->ch_flags_wait);
418 }
419
420 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
421 return 0;
422 }
423
424 int jsm_uart_port_init(struct jsm_board *brd)
425 {
426 int i;
427 struct jsm_channel *ch;
428
429 if (!brd)
430 return -ENXIO;
431
432 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
433
434 /*
435 * Initialize board structure elements.
436 */
437
438 brd->nasync = brd->maxports;
439
440 /* Set up channel variables */
441 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
442
443 if (!brd->channels[i])
444 continue;
445
446 brd->channels[i]->uart_port.irq = brd->irq;
447 brd->channels[i]->uart_port.type = PORT_JSM;
448 brd->channels[i]->uart_port.iotype = UPIO_MEM;
449 brd->channels[i]->uart_port.membase = brd->re_map_membase;
450 brd->channels[i]->uart_port.fifosize = 16;
451 brd->channels[i]->uart_port.ops = &jsm_ops;
452 brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
453 if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
454 printk(KERN_INFO "Added device failed\n");
455 else
456 printk(KERN_INFO "Added device \n");
457 }
458
459 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
460 return 0;
461 }
462
463 int jsm_remove_uart_port(struct jsm_board *brd)
464 {
465 int i;
466 struct jsm_channel *ch;
467
468 if (!brd)
469 return -ENXIO;
470
471 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
472
473 /*
474 * Initialize board structure elements.
475 */
476
477 brd->nasync = brd->maxports;
478
479 /* Set up channel variables */
480 for (i = 0; i < brd->nasync; i++) {
481
482 if (!brd->channels[i])
483 continue;
484
485 ch = brd->channels[i];
486
487 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
488 }
489
490 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
491 return 0;
492 }
493
494 void jsm_input(struct jsm_channel *ch)
495 {
496 struct jsm_board *bd;
497 struct tty_struct *tp;
498 u32 rmask;
499 u16 head;
500 u16 tail;
501 int data_len;
502 unsigned long lock_flags;
503 int flip_len;
504 int len = 0;
505 int n = 0;
506 char *buf = NULL;
507 char *buf2 = NULL;
508 int s = 0;
509 int i = 0;
510
511 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
512
513 if (!ch)
514 return;
515
516 tp = ch->uart_port.info->tty;
517
518 bd = ch->ch_bd;
519 if(!bd)
520 return;
521
522 spin_lock_irqsave(&ch->ch_lock, lock_flags);
523
524 /*
525 *Figure the number of characters in the buffer.
526 *Exit immediately if none.
527 */
528
529 rmask = RQUEUEMASK;
530
531 head = ch->ch_r_head & rmask;
532 tail = ch->ch_r_tail & rmask;
533
534 data_len = (head - tail) & rmask;
535 if (data_len == 0) {
536 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
537 return;
538 }
539
540 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
541
542 /*
543 *If the device is not open, or CREAD is off, flush
544 *input data and return immediately.
545 */
546 if (!tp ||
547 !(tp->termios->c_cflag & CREAD) ) {
548
549 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
550 "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
551 ch->ch_r_head = tail;
552
553 /* Force queue flow control to be released, if needed */
554 jsm_check_queue_flow_control(ch);
555
556 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
557 return;
558 }
559
560 /*
561 * If we are throttled, simply don't read any data.
562 */
563 if (ch->ch_flags & CH_STOPI) {
564 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
565 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
566 "Port %d throttled, not reading any data. head: %x tail: %x\n",
567 ch->ch_portnum, head, tail);
568 return;
569 }
570
571 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
572
573 /*
574 * If the rxbuf is empty and we are not throttled, put as much
575 * as we can directly into the linux TTY flip buffer.
576 * The jsm_rawreadok case takes advantage of carnal knowledge that
577 * the char_buf and the flag_buf are next to each other and
578 * are each of (2 * TTY_FLIPBUF_SIZE) size.
579 *
580 * NOTE: if(!tty->real_raw), the call to ldisc.receive_buf
581 *actually still uses the flag buffer, so you can't
582 *use it for input data
583 */
584 if (jsm_rawreadok) {
585 if (tp->real_raw)
586 flip_len = MYFLIPLEN;
587 else
588 flip_len = 2 * TTY_FLIPBUF_SIZE;
589 } else
590 flip_len = TTY_FLIPBUF_SIZE - tp->flip.count;
591
592 len = min(data_len, flip_len);
593 len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
594
595 if (len <= 0) {
596 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
597 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
598 return;
599 }
600
601 /*
602 * If we're bypassing flip buffers on rx, we can blast it
603 * right into the beginning of the buffer.
604 */
605 if (jsm_rawreadok) {
606 if (tp->real_raw) {
607 if (ch->ch_flags & CH_FLIPBUF_IN_USE) {
608 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
609 "JSM - FLIPBUF in use. delaying input\n");
610 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
611 return;
612 }
613 ch->ch_flags |= CH_FLIPBUF_IN_USE;
614 buf = ch->ch_bd->flipbuf;
615 buf2 = NULL;
616 } else {
617 buf = tp->flip.char_buf;
618 buf2 = tp->flip.flag_buf;
619 }
620 } else {
621 buf = tp->flip.char_buf_ptr;
622 buf2 = tp->flip.flag_buf_ptr;
623 }
624
625 n = len;
626
627 /*
628 * n now contains the most amount of data we can copy,
629 * bounded either by the flip buffer size or the amount
630 * of data the card actually has pending...
631 */
632 while (n) {
633 s = ((head >= tail) ? head : RQUEUESIZE) - tail;
634 s = min(s, n);
635
636 if (s <= 0)
637 break;
638
639 memcpy(buf, ch->ch_rqueue + tail, s);
640
641 /* buf2 is only set when port isn't raw */
642 if (buf2)
643 memcpy(buf2, ch->ch_equeue + tail, s);
644
645 tail += s;
646 buf += s;
647 if (buf2)
648 buf2 += s;
649 n -= s;
650 /* Flip queue if needed */
651 tail &= rmask;
652 }
653
654 /*
655 * In high performance mode, we don't have to update
656 * flag_buf or any of the counts or pointers into flip buf.
657 */
658 if (!jsm_rawreadok) {
659 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
660 for (i = 0; i < len; i++) {
661 /*
662 * Give the Linux ld the flags in the
663 * format it likes.
664 */
665 if (tp->flip.flag_buf_ptr[i] & UART_LSR_BI)
666 tp->flip.flag_buf_ptr[i] = TTY_BREAK;
667 else if (tp->flip.flag_buf_ptr[i] & UART_LSR_PE)
668 tp->flip.flag_buf_ptr[i] = TTY_PARITY;
669 else if (tp->flip.flag_buf_ptr[i] & UART_LSR_FE)
670 tp->flip.flag_buf_ptr[i] = TTY_FRAME;
671 else
672 tp->flip.flag_buf_ptr[i] = TTY_NORMAL;
673 }
674 } else {
675 memset(tp->flip.flag_buf_ptr, 0, len);
676 }
677
678 tp->flip.char_buf_ptr += len;
679 tp->flip.flag_buf_ptr += len;
680 tp->flip.count += len;
681 }
682 else if (!tp->real_raw) {
683 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
684 for (i = 0; i < len; i++) {
685 /*
686 * Give the Linux ld the flags in the
687 * format it likes.
688 */
689 if (tp->flip.flag_buf_ptr[i] & UART_LSR_BI)
690 tp->flip.flag_buf_ptr[i] = TTY_BREAK;
691 else if (tp->flip.flag_buf_ptr[i] & UART_LSR_PE)
692 tp->flip.flag_buf_ptr[i] = TTY_PARITY;
693 else if (tp->flip.flag_buf_ptr[i] & UART_LSR_FE)
694 tp->flip.flag_buf_ptr[i] = TTY_FRAME;
695 else
696 tp->flip.flag_buf_ptr[i] = TTY_NORMAL;
697 }
698 } else
699 memset(tp->flip.flag_buf, 0, len);
700 }
701
702 /*
703 * If we're doing raw reads, jam it right into the
704 * line disc bypassing the flip buffers.
705 */
706 if (jsm_rawreadok) {
707 if (tp->real_raw) {
708 ch->ch_r_tail = tail & rmask;
709 ch->ch_e_tail = tail & rmask;
710
711 jsm_check_queue_flow_control(ch);
712
713 /* !!! WE *MUST* LET GO OF ALL LOCKS BEFORE CALLING RECEIVE BUF !!! */
714
715 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
716
717 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
718 "jsm_input. %d real_raw len:%d calling receive_buf for board %d\n",
719 __LINE__, len, ch->ch_bd->boardnum);
720 tp->ldisc.receive_buf(tp, ch->ch_bd->flipbuf, NULL, len);
721
722 /* Allow use of channel flip buffer again */
723 spin_lock_irqsave(&ch->ch_lock, lock_flags);
724 ch->ch_flags &= ~CH_FLIPBUF_IN_USE;
725 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
726
727 } else {
728 ch->ch_r_tail = tail & rmask;
729 ch->ch_e_tail = tail & rmask;
730
731 jsm_check_queue_flow_control(ch);
732
733 /* !!! WE *MUST* LET GO OF ALL LOCKS BEFORE CALLING RECEIVE BUF !!! */
734 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
735
736 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
737 "jsm_input. %d not real_raw len:%d calling receive_buf for board %d\n",
738 __LINE__, len, ch->ch_bd->boardnum);
739
740 tp->ldisc.receive_buf(tp, tp->flip.char_buf, tp->flip.flag_buf, len);
741 }
742 } else {
743 ch->ch_r_tail = tail & rmask;
744 ch->ch_e_tail = tail & rmask;
745
746 jsm_check_queue_flow_control(ch);
747
748 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
749
750 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
751 "jsm_input. %d not jsm_read raw okay scheduling flip\n", __LINE__);
752 tty_schedule_flip(tp);
753 }
754
755 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
756 }
757
758 void jsm_carrier(struct jsm_channel *ch)
759 {
760 struct jsm_board *bd;
761
762 int virt_carrier = 0;
763 int phys_carrier = 0;
764
765 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
766 if (!ch)
767 return;
768
769 bd = ch->ch_bd;
770
771 if (!bd)
772 return;
773
774 if (ch->ch_mistat & UART_MSR_DCD) {
775 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
776 "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
777 phys_carrier = 1;
778 }
779
780 if (ch->ch_c_cflag & CLOCAL)
781 virt_carrier = 1;
782
783 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
784 "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
785
786 /*
787 * Test for a VIRTUAL carrier transition to HIGH.
788 */
789 if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
790
791 /*
792 * When carrier rises, wake any threads waiting
793 * for carrier in the open routine.
794 */
795
796 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
797 "carrier: virt DCD rose\n");
798
799 if (waitqueue_active(&(ch->ch_flags_wait)))
800 wake_up_interruptible(&ch->ch_flags_wait);
801 }
802
803 /*
804 * Test for a PHYSICAL carrier transition to HIGH.
805 */
806 if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
807
808 /*
809 * When carrier rises, wake any threads waiting
810 * for carrier in the open routine.
811 */
812
813 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
814 "carrier: physical DCD rose\n");
815
816 if (waitqueue_active(&(ch->ch_flags_wait)))
817 wake_up_interruptible(&ch->ch_flags_wait);
818 }
819
820 /*
821 * Test for a PHYSICAL transition to low, so long as we aren't
822 * currently ignoring physical transitions (which is what "virtual
823 * carrier" indicates).
824 *
825 * The transition of the virtual carrier to low really doesn't
826 * matter... it really only means "ignore carrier state", not
827 * "make pretend that carrier is there".
828 */
829 if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
830 && (phys_carrier == 0)) {
831 /*
832 * When carrier drops:
833 *
834 * Drop carrier on all open units.
835 *
836 * Flush queues, waking up any task waiting in the
837 * line discipline.
838 *
839 * Send a hangup to the control terminal.
840 *
841 * Enable all select calls.
842 */
843 if (waitqueue_active(&(ch->ch_flags_wait)))
844 wake_up_interruptible(&ch->ch_flags_wait);
845 }
846
847 /*
848 * Make sure that our cached values reflect the current reality.
849 */
850 if (virt_carrier == 1)
851 ch->ch_flags |= CH_FCAR;
852 else
853 ch->ch_flags &= ~CH_FCAR;
854
855 if (phys_carrier == 1)
856 ch->ch_flags |= CH_CD;
857 else
858 ch->ch_flags &= ~CH_CD;
859 }
860
861
862 void jsm_check_queue_flow_control(struct jsm_channel *ch)
863 {
864 int qleft = 0;
865
866 /* Store how much space we have left in the queue */
867 if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
868 qleft += RQUEUEMASK + 1;
869
870 /*
871 * Check to see if we should enforce flow control on our queue because
872 * the ld (or user) isn't reading data out of our queue fast enuf.
873 *
874 * NOTE: This is done based on what the current flow control of the
875 * port is set for.
876 *
877 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
878 * This will cause the UART's FIFO to back up, and force
879 * the RTS signal to be dropped.
880 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
881 * the other side, in hopes it will stop sending data to us.
882 * 3) NONE - Nothing we can do. We will simply drop any extra data
883 * that gets sent into us when the queue fills up.
884 */
885 if (qleft < 256) {
886 /* HWFLOW */
887 if (ch->ch_c_cflag & CRTSCTS) {
888 if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
889 ch->ch_bd->bd_ops->disable_receiver(ch);
890 ch->ch_flags |= (CH_RECEIVER_OFF);
891 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
892 "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
893 qleft);
894 }
895 }
896 /* SWFLOW */
897 else if (ch->ch_c_iflag & IXOFF) {
898 if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
899 ch->ch_bd->bd_ops->send_stop_character(ch);
900 ch->ch_stops_sent++;
901 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
902 "Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
903 }
904 }
905 }
906
907 /*
908 * Check to see if we should unenforce flow control because
909 * ld (or user) finally read enuf data out of our queue.
910 *
911 * NOTE: This is done based on what the current flow control of the
912 * port is set for.
913 *
914 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
915 * This will cause the UART's FIFO to raise RTS back up,
916 * which will allow the other side to start sending data again.
917 * 2) SWFLOW (IXOFF) - Send a start character to
918 * the other side, so it will start sending data to us again.
919 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
920 * other side, we don't need to do anything now.
921 */
922 if (qleft > (RQUEUESIZE / 2)) {
923 /* HWFLOW */
924 if (ch->ch_c_cflag & CRTSCTS) {
925 if (ch->ch_flags & CH_RECEIVER_OFF) {
926 ch->ch_bd->bd_ops->enable_receiver(ch);
927 ch->ch_flags &= ~(CH_RECEIVER_OFF);
928 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
929 "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
930 qleft);
931 }
932 }
933 /* SWFLOW */
934 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
935 ch->ch_stops_sent = 0;
936 ch->ch_bd->bd_ops->send_start_character(ch);
937 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
938 }
939 }
940 }
941
942 /*
943 * jsm_tty_write()
944 *
945 * Take data from the user or kernel and send it out to the FEP.
946 * In here exists all the Transparent Print magic as well.
947 */
948 int jsm_tty_write(struct uart_port *port)
949 {
950 int bufcount = 0, n = 0;
951 int data_count = 0,data_count1 =0;
952 u16 head;
953 u16 tail;
954 u16 tmask;
955 u32 remain;
956 int temp_tail = port->info->xmit.tail;
957 struct jsm_channel *channel = (struct jsm_channel *)port;
958
959 tmask = WQUEUEMASK;
960 head = (channel->ch_w_head) & tmask;
961 tail = (channel->ch_w_tail) & tmask;
962
963 if ((bufcount = tail - head - 1) < 0)
964 bufcount += WQUEUESIZE;
965
966 n = bufcount;
967
968 n = min(n, 56);
969 remain = WQUEUESIZE - head;
970
971 data_count = 0;
972 if (n >= remain) {
973 n -= remain;
974 while ((port->info->xmit.head != temp_tail) &&
975 (data_count < remain)) {
976 channel->ch_wqueue[head++] =
977 port->info->xmit.buf[temp_tail];
978
979 temp_tail++;
980 temp_tail &= (UART_XMIT_SIZE - 1);
981 data_count++;
982 }
983 if (data_count == remain) head = 0;
984 }
985
986 data_count1 = 0;
987 if (n > 0) {
988 remain = n;
989 while ((port->info->xmit.head != temp_tail) &&
990 (data_count1 < remain)) {
991 channel->ch_wqueue[head++] =
992 port->info->xmit.buf[temp_tail];
993
994 temp_tail++;
995 temp_tail &= (UART_XMIT_SIZE - 1);
996 data_count1++;
997
998 }
999 }
1000
1001 port->info->xmit.tail = temp_tail;
1002
1003 data_count += data_count1;
1004 if (data_count) {
1005 head &= tmask;
1006 channel->ch_w_head = head;
1007 }
1008
1009 if (data_count) {
1010 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
1011 }
1012
1013 return data_count;
1014 }
1015
1016 static ssize_t jsm_driver_version_show(struct device_driver *ddp, char *buf)
1017 {
1018 return snprintf(buf, PAGE_SIZE, "%s\n", JSM_VERSION);
1019 }
1020 static DRIVER_ATTR(version, S_IRUSR, jsm_driver_version_show, NULL);
1021
1022 static ssize_t jsm_driver_state_show(struct device_driver *ddp, char *buf)
1023 {
1024 return snprintf(buf, PAGE_SIZE, "%s\n", jsm_driver_state_text[jsm_driver_state]);
1025 }
1026 static DRIVER_ATTR(state, S_IRUSR, jsm_driver_state_show, NULL);
1027
1028 void jsm_create_driver_sysfiles(struct device_driver *driverfs)
1029 {
1030 driver_create_file(driverfs, &driver_attr_version);
1031 driver_create_file(driverfs, &driver_attr_state);
1032 }
1033
1034 void jsm_remove_driver_sysfiles(struct device_driver *driverfs)
1035 {
1036 driver_remove_file(driverfs, &driver_attr_version);
1037 driver_remove_file(driverfs, &driver_attr_state);
1038 }