]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/serial/jsm/jsm_tty.c
Merge branch 'master'
[mirror_ubuntu-eoan-kernel.git] / drivers / serial / jsm / jsm_tty.c
1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
3 *
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
20 *
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Ananda Venkatarman <mansarov@us.ibm.com>
24 * Modifications:
25 * 01/19/06: changed jsm_input routine to use the dynamically allocated
26 * tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27 ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h> /* For udelay */
32 #include <linux/pci.h>
33
34 #include "jsm.h"
35
36 static void jsm_carrier(struct jsm_channel *ch);
37
38 static inline int jsm_get_mstat(struct jsm_channel *ch)
39 {
40 unsigned char mstat;
41 unsigned result;
42
43 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
44
45 mstat = (ch->ch_mostat | ch->ch_mistat);
46
47 result = 0;
48
49 if (mstat & UART_MCR_DTR)
50 result |= TIOCM_DTR;
51 if (mstat & UART_MCR_RTS)
52 result |= TIOCM_RTS;
53 if (mstat & UART_MSR_CTS)
54 result |= TIOCM_CTS;
55 if (mstat & UART_MSR_DSR)
56 result |= TIOCM_DSR;
57 if (mstat & UART_MSR_RI)
58 result |= TIOCM_RI;
59 if (mstat & UART_MSR_DCD)
60 result |= TIOCM_CD;
61
62 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
63 return result;
64 }
65
66 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
67 {
68 return TIOCSER_TEMT;
69 }
70
71 /*
72 * Return modem signals to ld.
73 */
74 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
75 {
76 int result;
77 struct jsm_channel *channel = (struct jsm_channel *)port;
78
79 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
80
81 result = jsm_get_mstat(channel);
82
83 if (result < 0)
84 return -ENXIO;
85
86 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
87
88 return result;
89 }
90
91 /*
92 * jsm_set_modem_info()
93 *
94 * Set modem signals, called by ld.
95 */
96 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
97 {
98 struct jsm_channel *channel = (struct jsm_channel *)port;
99
100 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
101
102 if (mctrl & TIOCM_RTS)
103 channel->ch_mostat |= UART_MCR_RTS;
104 else
105 channel->ch_mostat &= ~UART_MCR_RTS;
106
107 if (mctrl & TIOCM_DTR)
108 channel->ch_mostat |= UART_MCR_DTR;
109 else
110 channel->ch_mostat &= ~UART_MCR_DTR;
111
112 channel->ch_bd->bd_ops->assert_modem_signals(channel);
113
114 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
115 udelay(10);
116 }
117
118 static void jsm_tty_start_tx(struct uart_port *port)
119 {
120 struct jsm_channel *channel = (struct jsm_channel *)port;
121
122 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
123
124 channel->ch_flags &= ~(CH_STOP);
125 jsm_tty_write(port);
126
127 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
128 }
129
130 static void jsm_tty_stop_tx(struct uart_port *port)
131 {
132 struct jsm_channel *channel = (struct jsm_channel *)port;
133
134 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
135
136 channel->ch_flags |= (CH_STOP);
137
138 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
139 }
140
141 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
142 {
143 unsigned long lock_flags;
144 struct jsm_channel *channel = (struct jsm_channel *)port;
145 struct termios *termios;
146
147 spin_lock_irqsave(&port->lock, lock_flags);
148 termios = port->info->tty->termios;
149 if (ch == termios->c_cc[VSTART])
150 channel->ch_bd->bd_ops->send_start_character(channel);
151
152 if (ch == termios->c_cc[VSTOP])
153 channel->ch_bd->bd_ops->send_stop_character(channel);
154 spin_unlock_irqrestore(&port->lock, lock_flags);
155 }
156
157 static void jsm_tty_stop_rx(struct uart_port *port)
158 {
159 struct jsm_channel *channel = (struct jsm_channel *)port;
160
161 channel->ch_bd->bd_ops->disable_receiver(channel);
162 }
163
164 static void jsm_tty_break(struct uart_port *port, int break_state)
165 {
166 unsigned long lock_flags;
167 struct jsm_channel *channel = (struct jsm_channel *)port;
168
169 spin_lock_irqsave(&port->lock, lock_flags);
170 if (break_state == -1)
171 channel->ch_bd->bd_ops->send_break(channel);
172 else
173 channel->ch_bd->bd_ops->clear_break(channel, 0);
174
175 spin_unlock_irqrestore(&port->lock, lock_flags);
176 }
177
178 static int jsm_tty_open(struct uart_port *port)
179 {
180 struct jsm_board *brd;
181 int rc = 0;
182 struct jsm_channel *channel = (struct jsm_channel *)port;
183 struct termios *termios;
184
185 /* Get board pointer from our array of majors we have allocated */
186 brd = channel->ch_bd;
187
188 /*
189 * Allocate channel buffers for read/write/error.
190 * Set flag, so we don't get trounced on.
191 */
192 channel->ch_flags |= (CH_OPENING);
193
194 /* Drop locks, as malloc with GFP_KERNEL can sleep */
195
196 if (!channel->ch_rqueue) {
197 channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL);
198 if (!channel->ch_rqueue) {
199 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
200 "unable to allocate read queue buf");
201 return -ENOMEM;
202 }
203 memset(channel->ch_rqueue, 0, RQUEUESIZE);
204 }
205 if (!channel->ch_equeue) {
206 channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL);
207 if (!channel->ch_equeue) {
208 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
209 "unable to allocate error queue buf");
210 return -ENOMEM;
211 }
212 memset(channel->ch_equeue, 0, EQUEUESIZE);
213 }
214 if (!channel->ch_wqueue) {
215 channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL);
216 if (!channel->ch_wqueue) {
217 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
218 "unable to allocate write queue buf");
219 return -ENOMEM;
220 }
221 memset(channel->ch_wqueue, 0, WQUEUESIZE);
222 }
223
224 channel->ch_flags &= ~(CH_OPENING);
225 /*
226 * Initialize if neither terminal is open.
227 */
228 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
229 "jsm_open: initializing channel in open...\n");
230
231 /*
232 * Flush input queues.
233 */
234 channel->ch_r_head = channel->ch_r_tail = 0;
235 channel->ch_e_head = channel->ch_e_tail = 0;
236 channel->ch_w_head = channel->ch_w_tail = 0;
237
238 brd->bd_ops->flush_uart_write(channel);
239 brd->bd_ops->flush_uart_read(channel);
240
241 channel->ch_flags = 0;
242 channel->ch_cached_lsr = 0;
243 channel->ch_stops_sent = 0;
244
245 termios = port->info->tty->termios;
246 channel->ch_c_cflag = termios->c_cflag;
247 channel->ch_c_iflag = termios->c_iflag;
248 channel->ch_c_oflag = termios->c_oflag;
249 channel->ch_c_lflag = termios->c_lflag;
250 channel->ch_startc = termios->c_cc[VSTART];
251 channel->ch_stopc = termios->c_cc[VSTOP];
252
253 /* Tell UART to init itself */
254 brd->bd_ops->uart_init(channel);
255
256 /*
257 * Run param in case we changed anything
258 */
259 brd->bd_ops->param(channel);
260
261 jsm_carrier(channel);
262
263 channel->ch_open_count++;
264
265 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
266 return rc;
267 }
268
269 static void jsm_tty_close(struct uart_port *port)
270 {
271 struct jsm_board *bd;
272 struct termios *ts;
273 struct jsm_channel *channel = (struct jsm_channel *)port;
274
275 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
276
277 bd = channel->ch_bd;
278 ts = channel->uart_port.info->tty->termios;
279
280 channel->ch_flags &= ~(CH_STOPI);
281
282 channel->ch_open_count--;
283
284 /*
285 * If we have HUPCL set, lower DTR and RTS
286 */
287 if (channel->ch_c_cflag & HUPCL) {
288 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
289 "Close. HUPCL set, dropping DTR/RTS\n");
290
291 /* Drop RTS/DTR */
292 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
293 bd->bd_ops->assert_modem_signals(channel);
294 }
295
296 channel->ch_old_baud = 0;
297
298 /* Turn off UART interrupts for this port */
299 channel->ch_bd->bd_ops->uart_off(channel);
300
301 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
302 }
303
304 static void jsm_tty_set_termios(struct uart_port *port,
305 struct termios *termios,
306 struct termios *old_termios)
307 {
308 unsigned long lock_flags;
309 struct jsm_channel *channel = (struct jsm_channel *)port;
310
311 spin_lock_irqsave(&port->lock, lock_flags);
312 channel->ch_c_cflag = termios->c_cflag;
313 channel->ch_c_iflag = termios->c_iflag;
314 channel->ch_c_oflag = termios->c_oflag;
315 channel->ch_c_lflag = termios->c_lflag;
316 channel->ch_startc = termios->c_cc[VSTART];
317 channel->ch_stopc = termios->c_cc[VSTOP];
318
319 channel->ch_bd->bd_ops->param(channel);
320 jsm_carrier(channel);
321 spin_unlock_irqrestore(&port->lock, lock_flags);
322 }
323
324 static const char *jsm_tty_type(struct uart_port *port)
325 {
326 return "jsm";
327 }
328
329 static void jsm_tty_release_port(struct uart_port *port)
330 {
331 }
332
333 static int jsm_tty_request_port(struct uart_port *port)
334 {
335 return 0;
336 }
337
338 static void jsm_config_port(struct uart_port *port, int flags)
339 {
340 port->type = PORT_JSM;
341 }
342
343 static struct uart_ops jsm_ops = {
344 .tx_empty = jsm_tty_tx_empty,
345 .set_mctrl = jsm_tty_set_mctrl,
346 .get_mctrl = jsm_tty_get_mctrl,
347 .stop_tx = jsm_tty_stop_tx,
348 .start_tx = jsm_tty_start_tx,
349 .send_xchar = jsm_tty_send_xchar,
350 .stop_rx = jsm_tty_stop_rx,
351 .break_ctl = jsm_tty_break,
352 .startup = jsm_tty_open,
353 .shutdown = jsm_tty_close,
354 .set_termios = jsm_tty_set_termios,
355 .type = jsm_tty_type,
356 .release_port = jsm_tty_release_port,
357 .request_port = jsm_tty_request_port,
358 .config_port = jsm_config_port,
359 };
360
361 /*
362 * jsm_tty_init()
363 *
364 * Init the tty subsystem. Called once per board after board has been
365 * downloaded and init'ed.
366 */
367 int jsm_tty_init(struct jsm_board *brd)
368 {
369 int i;
370 void __iomem *vaddr;
371 struct jsm_channel *ch;
372
373 if (!brd)
374 return -ENXIO;
375
376 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
377
378 /*
379 * Initialize board structure elements.
380 */
381
382 brd->nasync = brd->maxports;
383
384 /*
385 * Allocate channel memory that might not have been allocated
386 * when the driver was first loaded.
387 */
388 for (i = 0; i < brd->nasync; i++) {
389 if (!brd->channels[i]) {
390
391 /*
392 * Okay to malloc with GFP_KERNEL, we are not at
393 * interrupt context, and there are no locks held.
394 */
395 brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL);
396 if (!brd->channels[i]) {
397 jsm_printk(CORE, ERR, &brd->pci_dev,
398 "%s:%d Unable to allocate memory for channel struct\n",
399 __FILE__, __LINE__);
400 }
401 memset(brd->channels[i], 0, sizeof(struct jsm_channel));
402 }
403 }
404
405 ch = brd->channels[0];
406 vaddr = brd->re_map_membase;
407
408 /* Set up channel variables */
409 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
410
411 if (!brd->channels[i])
412 continue;
413
414 spin_lock_init(&ch->ch_lock);
415
416 if (brd->bd_uart_offset == 0x200)
417 ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
418
419 ch->ch_bd = brd;
420 ch->ch_portnum = i;
421
422 /* .25 second delay */
423 ch->ch_close_delay = 250;
424
425 init_waitqueue_head(&ch->ch_flags_wait);
426 }
427
428 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
429 return 0;
430 }
431
432 int jsm_uart_port_init(struct jsm_board *brd)
433 {
434 int i;
435 struct jsm_channel *ch;
436
437 if (!brd)
438 return -ENXIO;
439
440 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
441
442 /*
443 * Initialize board structure elements.
444 */
445
446 brd->nasync = brd->maxports;
447
448 /* Set up channel variables */
449 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
450
451 if (!brd->channels[i])
452 continue;
453
454 brd->channels[i]->uart_port.irq = brd->irq;
455 brd->channels[i]->uart_port.type = PORT_JSM;
456 brd->channels[i]->uart_port.iotype = UPIO_MEM;
457 brd->channels[i]->uart_port.membase = brd->re_map_membase;
458 brd->channels[i]->uart_port.fifosize = 16;
459 brd->channels[i]->uart_port.ops = &jsm_ops;
460 brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
461 if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
462 printk(KERN_INFO "Added device failed\n");
463 else
464 printk(KERN_INFO "Added device \n");
465 }
466
467 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
468 return 0;
469 }
470
471 int jsm_remove_uart_port(struct jsm_board *brd)
472 {
473 int i;
474 struct jsm_channel *ch;
475
476 if (!brd)
477 return -ENXIO;
478
479 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
480
481 /*
482 * Initialize board structure elements.
483 */
484
485 brd->nasync = brd->maxports;
486
487 /* Set up channel variables */
488 for (i = 0; i < brd->nasync; i++) {
489
490 if (!brd->channels[i])
491 continue;
492
493 ch = brd->channels[i];
494
495 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
496 }
497
498 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
499 return 0;
500 }
501
502 void jsm_input(struct jsm_channel *ch)
503 {
504 struct jsm_board *bd;
505 struct tty_struct *tp;
506 struct tty_ldisc *ld;
507 u32 rmask;
508 u16 head;
509 u16 tail;
510 int data_len;
511 unsigned long lock_flags;
512 int flip_len = 0;
513 int len = 0;
514 int n = 0;
515 int s = 0;
516 int i = 0;
517
518 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
519
520 if (!ch)
521 return;
522
523 tp = ch->uart_port.info->tty;
524
525 bd = ch->ch_bd;
526 if(!bd)
527 return;
528
529 spin_lock_irqsave(&ch->ch_lock, lock_flags);
530
531 /*
532 *Figure the number of characters in the buffer.
533 *Exit immediately if none.
534 */
535
536 rmask = RQUEUEMASK;
537
538 head = ch->ch_r_head & rmask;
539 tail = ch->ch_r_tail & rmask;
540
541 data_len = (head - tail) & rmask;
542 if (data_len == 0) {
543 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
544 return;
545 }
546
547 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
548
549 /*
550 *If the device is not open, or CREAD is off, flush
551 *input data and return immediately.
552 */
553 if (!tp ||
554 !(tp->termios->c_cflag & CREAD) ) {
555
556 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
557 "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
558 ch->ch_r_head = tail;
559
560 /* Force queue flow control to be released, if needed */
561 jsm_check_queue_flow_control(ch);
562
563 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
564 return;
565 }
566
567 /*
568 * If we are throttled, simply don't read any data.
569 */
570 if (ch->ch_flags & CH_STOPI) {
571 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
572 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
573 "Port %d throttled, not reading any data. head: %x tail: %x\n",
574 ch->ch_portnum, head, tail);
575 return;
576 }
577
578 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
579
580 /*
581 * If the rxbuf is empty and we are not throttled, put as much
582 * as we can directly into the linux TTY buffer.
583 *
584 */
585 flip_len = TTY_FLIPBUF_SIZE;
586
587 len = min(data_len, flip_len);
588 len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
589 ld = tty_ldisc_ref(tp);
590
591 /*
592 * If the DONT_FLIP flag is on, don't flush our buffer, and act
593 * like the ld doesn't have any space to put the data right now.
594 */
595 if (test_bit(TTY_DONT_FLIP, &tp->flags))
596 len = 0;
597
598 /*
599 * If we were unable to get a reference to the ld,
600 * don't flush our buffer, and act like the ld doesn't
601 * have any space to put the data right now.
602 */
603 if (!ld) {
604 len = 0;
605 } else {
606 /*
607 * If ld doesn't have a pointer to a receive_buf function,
608 * flush the data, then act like the ld doesn't have any
609 * space to put the data right now.
610 */
611 if (!ld->receive_buf) {
612 ch->ch_r_head = ch->ch_r_tail;
613 len = 0;
614 }
615 }
616
617 if (len <= 0) {
618 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
619 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
620 if (ld)
621 tty_ldisc_deref(ld);
622 return;
623 }
624
625 len = tty_buffer_request_room(tp, len);
626 n = len;
627
628 /*
629 * n now contains the most amount of data we can copy,
630 * bounded either by the flip buffer size or the amount
631 * of data the card actually has pending...
632 */
633 while (n) {
634 s = ((head >= tail) ? head : RQUEUESIZE) - tail;
635 s = min(s, n);
636
637 if (s <= 0)
638 break;
639
640 /*
641 * If conditions are such that ld needs to see all
642 * UART errors, we will have to walk each character
643 * and error byte and send them to the buffer one at
644 * a time.
645 */
646
647 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
648 for (i = 0; i < s; i++) {
649 /*
650 * Give the Linux ld the flags in the
651 * format it likes.
652 */
653 if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
654 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_BREAK);
655 else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
656 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
657 else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
658 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
659 else
660 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
661 }
662 } else {
663 tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
664 }
665 tail += s;
666 n -= s;
667 /* Flip queue if needed */
668 tail &= rmask;
669 }
670
671 ch->ch_r_tail = tail & rmask;
672 ch->ch_e_tail = tail & rmask;
673 jsm_check_queue_flow_control(ch);
674 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
675
676 /* Tell the tty layer its okay to "eat" the data now */
677 tty_flip_buffer_push(tp);
678
679 if (ld)
680 tty_ldisc_deref(ld);
681
682 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
683 }
684
685 static void jsm_carrier(struct jsm_channel *ch)
686 {
687 struct jsm_board *bd;
688
689 int virt_carrier = 0;
690 int phys_carrier = 0;
691
692 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
693 if (!ch)
694 return;
695
696 bd = ch->ch_bd;
697
698 if (!bd)
699 return;
700
701 if (ch->ch_mistat & UART_MSR_DCD) {
702 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
703 "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
704 phys_carrier = 1;
705 }
706
707 if (ch->ch_c_cflag & CLOCAL)
708 virt_carrier = 1;
709
710 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
711 "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
712
713 /*
714 * Test for a VIRTUAL carrier transition to HIGH.
715 */
716 if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
717
718 /*
719 * When carrier rises, wake any threads waiting
720 * for carrier in the open routine.
721 */
722
723 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
724 "carrier: virt DCD rose\n");
725
726 if (waitqueue_active(&(ch->ch_flags_wait)))
727 wake_up_interruptible(&ch->ch_flags_wait);
728 }
729
730 /*
731 * Test for a PHYSICAL carrier transition to HIGH.
732 */
733 if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
734
735 /*
736 * When carrier rises, wake any threads waiting
737 * for carrier in the open routine.
738 */
739
740 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
741 "carrier: physical DCD rose\n");
742
743 if (waitqueue_active(&(ch->ch_flags_wait)))
744 wake_up_interruptible(&ch->ch_flags_wait);
745 }
746
747 /*
748 * Test for a PHYSICAL transition to low, so long as we aren't
749 * currently ignoring physical transitions (which is what "virtual
750 * carrier" indicates).
751 *
752 * The transition of the virtual carrier to low really doesn't
753 * matter... it really only means "ignore carrier state", not
754 * "make pretend that carrier is there".
755 */
756 if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
757 && (phys_carrier == 0)) {
758 /*
759 * When carrier drops:
760 *
761 * Drop carrier on all open units.
762 *
763 * Flush queues, waking up any task waiting in the
764 * line discipline.
765 *
766 * Send a hangup to the control terminal.
767 *
768 * Enable all select calls.
769 */
770 if (waitqueue_active(&(ch->ch_flags_wait)))
771 wake_up_interruptible(&ch->ch_flags_wait);
772 }
773
774 /*
775 * Make sure that our cached values reflect the current reality.
776 */
777 if (virt_carrier == 1)
778 ch->ch_flags |= CH_FCAR;
779 else
780 ch->ch_flags &= ~CH_FCAR;
781
782 if (phys_carrier == 1)
783 ch->ch_flags |= CH_CD;
784 else
785 ch->ch_flags &= ~CH_CD;
786 }
787
788
789 void jsm_check_queue_flow_control(struct jsm_channel *ch)
790 {
791 struct board_ops *bd_ops = ch->ch_bd->bd_ops;
792 int qleft = 0;
793
794 /* Store how much space we have left in the queue */
795 if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
796 qleft += RQUEUEMASK + 1;
797
798 /*
799 * Check to see if we should enforce flow control on our queue because
800 * the ld (or user) isn't reading data out of our queue fast enuf.
801 *
802 * NOTE: This is done based on what the current flow control of the
803 * port is set for.
804 *
805 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
806 * This will cause the UART's FIFO to back up, and force
807 * the RTS signal to be dropped.
808 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
809 * the other side, in hopes it will stop sending data to us.
810 * 3) NONE - Nothing we can do. We will simply drop any extra data
811 * that gets sent into us when the queue fills up.
812 */
813 if (qleft < 256) {
814 /* HWFLOW */
815 if (ch->ch_c_cflag & CRTSCTS) {
816 if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
817 bd_ops->disable_receiver(ch);
818 ch->ch_flags |= (CH_RECEIVER_OFF);
819 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
820 "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
821 qleft);
822 }
823 }
824 /* SWFLOW */
825 else if (ch->ch_c_iflag & IXOFF) {
826 if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
827 bd_ops->send_stop_character(ch);
828 ch->ch_stops_sent++;
829 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
830 "Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
831 }
832 }
833 }
834
835 /*
836 * Check to see if we should unenforce flow control because
837 * ld (or user) finally read enuf data out of our queue.
838 *
839 * NOTE: This is done based on what the current flow control of the
840 * port is set for.
841 *
842 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
843 * This will cause the UART's FIFO to raise RTS back up,
844 * which will allow the other side to start sending data again.
845 * 2) SWFLOW (IXOFF) - Send a start character to
846 * the other side, so it will start sending data to us again.
847 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
848 * other side, we don't need to do anything now.
849 */
850 if (qleft > (RQUEUESIZE / 2)) {
851 /* HWFLOW */
852 if (ch->ch_c_cflag & CRTSCTS) {
853 if (ch->ch_flags & CH_RECEIVER_OFF) {
854 bd_ops->enable_receiver(ch);
855 ch->ch_flags &= ~(CH_RECEIVER_OFF);
856 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
857 "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
858 qleft);
859 }
860 }
861 /* SWFLOW */
862 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
863 ch->ch_stops_sent = 0;
864 bd_ops->send_start_character(ch);
865 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
866 }
867 }
868 }
869
870 /*
871 * jsm_tty_write()
872 *
873 * Take data from the user or kernel and send it out to the FEP.
874 * In here exists all the Transparent Print magic as well.
875 */
876 int jsm_tty_write(struct uart_port *port)
877 {
878 int bufcount = 0, n = 0;
879 int data_count = 0,data_count1 =0;
880 u16 head;
881 u16 tail;
882 u16 tmask;
883 u32 remain;
884 int temp_tail = port->info->xmit.tail;
885 struct jsm_channel *channel = (struct jsm_channel *)port;
886
887 tmask = WQUEUEMASK;
888 head = (channel->ch_w_head) & tmask;
889 tail = (channel->ch_w_tail) & tmask;
890
891 if ((bufcount = tail - head - 1) < 0)
892 bufcount += WQUEUESIZE;
893
894 n = bufcount;
895
896 n = min(n, 56);
897 remain = WQUEUESIZE - head;
898
899 data_count = 0;
900 if (n >= remain) {
901 n -= remain;
902 while ((port->info->xmit.head != temp_tail) &&
903 (data_count < remain)) {
904 channel->ch_wqueue[head++] =
905 port->info->xmit.buf[temp_tail];
906
907 temp_tail++;
908 temp_tail &= (UART_XMIT_SIZE - 1);
909 data_count++;
910 }
911 if (data_count == remain) head = 0;
912 }
913
914 data_count1 = 0;
915 if (n > 0) {
916 remain = n;
917 while ((port->info->xmit.head != temp_tail) &&
918 (data_count1 < remain)) {
919 channel->ch_wqueue[head++] =
920 port->info->xmit.buf[temp_tail];
921
922 temp_tail++;
923 temp_tail &= (UART_XMIT_SIZE - 1);
924 data_count1++;
925
926 }
927 }
928
929 port->info->xmit.tail = temp_tail;
930
931 data_count += data_count1;
932 if (data_count) {
933 head &= tmask;
934 channel->ch_w_head = head;
935 }
936
937 if (data_count) {
938 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
939 }
940
941 return data_count;
942 }