]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/serial/jsm/jsm_tty.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[mirror_ubuntu-eoan-kernel.git] / drivers / serial / jsm / jsm_tty.c
1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
3 *
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
20 *
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Ananda Venkatarman <mansarov@us.ibm.com>
24 * Modifications:
25 * 01/19/06: changed jsm_input routine to use the dynamically allocated
26 * tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27 ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h> /* For udelay */
32 #include <linux/pci.h>
33
34 #include "jsm.h"
35
36 static void jsm_carrier(struct jsm_channel *ch);
37
38 static inline int jsm_get_mstat(struct jsm_channel *ch)
39 {
40 unsigned char mstat;
41 unsigned result;
42
43 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
44
45 mstat = (ch->ch_mostat | ch->ch_mistat);
46
47 result = 0;
48
49 if (mstat & UART_MCR_DTR)
50 result |= TIOCM_DTR;
51 if (mstat & UART_MCR_RTS)
52 result |= TIOCM_RTS;
53 if (mstat & UART_MSR_CTS)
54 result |= TIOCM_CTS;
55 if (mstat & UART_MSR_DSR)
56 result |= TIOCM_DSR;
57 if (mstat & UART_MSR_RI)
58 result |= TIOCM_RI;
59 if (mstat & UART_MSR_DCD)
60 result |= TIOCM_CD;
61
62 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
63 return result;
64 }
65
66 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
67 {
68 return TIOCSER_TEMT;
69 }
70
71 /*
72 * Return modem signals to ld.
73 */
74 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
75 {
76 int result;
77 struct jsm_channel *channel = (struct jsm_channel *)port;
78
79 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
80
81 result = jsm_get_mstat(channel);
82
83 if (result < 0)
84 return -ENXIO;
85
86 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
87
88 return result;
89 }
90
91 /*
92 * jsm_set_modem_info()
93 *
94 * Set modem signals, called by ld.
95 */
96 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
97 {
98 struct jsm_channel *channel = (struct jsm_channel *)port;
99
100 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
101
102 if (mctrl & TIOCM_RTS)
103 channel->ch_mostat |= UART_MCR_RTS;
104 else
105 channel->ch_mostat &= ~UART_MCR_RTS;
106
107 if (mctrl & TIOCM_DTR)
108 channel->ch_mostat |= UART_MCR_DTR;
109 else
110 channel->ch_mostat &= ~UART_MCR_DTR;
111
112 channel->ch_bd->bd_ops->assert_modem_signals(channel);
113
114 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
115 udelay(10);
116 }
117
118 static void jsm_tty_start_tx(struct uart_port *port)
119 {
120 struct jsm_channel *channel = (struct jsm_channel *)port;
121
122 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
123
124 channel->ch_flags &= ~(CH_STOP);
125 jsm_tty_write(port);
126
127 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
128 }
129
130 static void jsm_tty_stop_tx(struct uart_port *port)
131 {
132 struct jsm_channel *channel = (struct jsm_channel *)port;
133
134 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
135
136 channel->ch_flags |= (CH_STOP);
137
138 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
139 }
140
141 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
142 {
143 unsigned long lock_flags;
144 struct jsm_channel *channel = (struct jsm_channel *)port;
145 struct termios *termios;
146
147 spin_lock_irqsave(&port->lock, lock_flags);
148 termios = port->info->tty->termios;
149 if (ch == termios->c_cc[VSTART])
150 channel->ch_bd->bd_ops->send_start_character(channel);
151
152 if (ch == termios->c_cc[VSTOP])
153 channel->ch_bd->bd_ops->send_stop_character(channel);
154 spin_unlock_irqrestore(&port->lock, lock_flags);
155 }
156
157 static void jsm_tty_stop_rx(struct uart_port *port)
158 {
159 struct jsm_channel *channel = (struct jsm_channel *)port;
160
161 channel->ch_bd->bd_ops->disable_receiver(channel);
162 }
163
164 static void jsm_tty_break(struct uart_port *port, int break_state)
165 {
166 unsigned long lock_flags;
167 struct jsm_channel *channel = (struct jsm_channel *)port;
168
169 spin_lock_irqsave(&port->lock, lock_flags);
170 if (break_state == -1)
171 channel->ch_bd->bd_ops->send_break(channel);
172 else
173 channel->ch_bd->bd_ops->clear_break(channel, 0);
174
175 spin_unlock_irqrestore(&port->lock, lock_flags);
176 }
177
178 static int jsm_tty_open(struct uart_port *port)
179 {
180 struct jsm_board *brd;
181 int rc = 0;
182 struct jsm_channel *channel = (struct jsm_channel *)port;
183 struct termios *termios;
184
185 /* Get board pointer from our array of majors we have allocated */
186 brd = channel->ch_bd;
187
188 /*
189 * Allocate channel buffers for read/write/error.
190 * Set flag, so we don't get trounced on.
191 */
192 channel->ch_flags |= (CH_OPENING);
193
194 /* Drop locks, as malloc with GFP_KERNEL can sleep */
195
196 if (!channel->ch_rqueue) {
197 channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL);
198 if (!channel->ch_rqueue) {
199 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
200 "unable to allocate read queue buf");
201 return -ENOMEM;
202 }
203 memset(channel->ch_rqueue, 0, RQUEUESIZE);
204 }
205 if (!channel->ch_equeue) {
206 channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL);
207 if (!channel->ch_equeue) {
208 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
209 "unable to allocate error queue buf");
210 return -ENOMEM;
211 }
212 memset(channel->ch_equeue, 0, EQUEUESIZE);
213 }
214 if (!channel->ch_wqueue) {
215 channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL);
216 if (!channel->ch_wqueue) {
217 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
218 "unable to allocate write queue buf");
219 return -ENOMEM;
220 }
221 memset(channel->ch_wqueue, 0, WQUEUESIZE);
222 }
223
224 channel->ch_flags &= ~(CH_OPENING);
225 /*
226 * Initialize if neither terminal is open.
227 */
228 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
229 "jsm_open: initializing channel in open...\n");
230
231 /*
232 * Flush input queues.
233 */
234 channel->ch_r_head = channel->ch_r_tail = 0;
235 channel->ch_e_head = channel->ch_e_tail = 0;
236 channel->ch_w_head = channel->ch_w_tail = 0;
237
238 brd->bd_ops->flush_uart_write(channel);
239 brd->bd_ops->flush_uart_read(channel);
240
241 channel->ch_flags = 0;
242 channel->ch_cached_lsr = 0;
243 channel->ch_stops_sent = 0;
244
245 termios = port->info->tty->termios;
246 channel->ch_c_cflag = termios->c_cflag;
247 channel->ch_c_iflag = termios->c_iflag;
248 channel->ch_c_oflag = termios->c_oflag;
249 channel->ch_c_lflag = termios->c_lflag;
250 channel->ch_startc = termios->c_cc[VSTART];
251 channel->ch_stopc = termios->c_cc[VSTOP];
252
253 /* Tell UART to init itself */
254 brd->bd_ops->uart_init(channel);
255
256 /*
257 * Run param in case we changed anything
258 */
259 brd->bd_ops->param(channel);
260
261 jsm_carrier(channel);
262
263 channel->ch_open_count++;
264
265 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
266 return rc;
267 }
268
269 static void jsm_tty_close(struct uart_port *port)
270 {
271 struct jsm_board *bd;
272 struct termios *ts;
273 struct jsm_channel *channel = (struct jsm_channel *)port;
274
275 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
276
277 bd = channel->ch_bd;
278 ts = channel->uart_port.info->tty->termios;
279
280 channel->ch_flags &= ~(CH_STOPI);
281
282 channel->ch_open_count--;
283
284 /*
285 * If we have HUPCL set, lower DTR and RTS
286 */
287 if (channel->ch_c_cflag & HUPCL) {
288 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
289 "Close. HUPCL set, dropping DTR/RTS\n");
290
291 /* Drop RTS/DTR */
292 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
293 bd->bd_ops->assert_modem_signals(channel);
294 }
295
296 channel->ch_old_baud = 0;
297
298 /* Turn off UART interrupts for this port */
299 channel->ch_bd->bd_ops->uart_off(channel);
300
301 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
302 }
303
304 static void jsm_tty_set_termios(struct uart_port *port,
305 struct termios *termios,
306 struct termios *old_termios)
307 {
308 unsigned long lock_flags;
309 struct jsm_channel *channel = (struct jsm_channel *)port;
310
311 spin_lock_irqsave(&port->lock, lock_flags);
312 channel->ch_c_cflag = termios->c_cflag;
313 channel->ch_c_iflag = termios->c_iflag;
314 channel->ch_c_oflag = termios->c_oflag;
315 channel->ch_c_lflag = termios->c_lflag;
316 channel->ch_startc = termios->c_cc[VSTART];
317 channel->ch_stopc = termios->c_cc[VSTOP];
318
319 channel->ch_bd->bd_ops->param(channel);
320 jsm_carrier(channel);
321 spin_unlock_irqrestore(&port->lock, lock_flags);
322 }
323
324 static const char *jsm_tty_type(struct uart_port *port)
325 {
326 return "jsm";
327 }
328
329 static void jsm_tty_release_port(struct uart_port *port)
330 {
331 }
332
333 static int jsm_tty_request_port(struct uart_port *port)
334 {
335 return 0;
336 }
337
338 static void jsm_config_port(struct uart_port *port, int flags)
339 {
340 port->type = PORT_JSM;
341 }
342
343 static struct uart_ops jsm_ops = {
344 .tx_empty = jsm_tty_tx_empty,
345 .set_mctrl = jsm_tty_set_mctrl,
346 .get_mctrl = jsm_tty_get_mctrl,
347 .stop_tx = jsm_tty_stop_tx,
348 .start_tx = jsm_tty_start_tx,
349 .send_xchar = jsm_tty_send_xchar,
350 .stop_rx = jsm_tty_stop_rx,
351 .break_ctl = jsm_tty_break,
352 .startup = jsm_tty_open,
353 .shutdown = jsm_tty_close,
354 .set_termios = jsm_tty_set_termios,
355 .type = jsm_tty_type,
356 .release_port = jsm_tty_release_port,
357 .request_port = jsm_tty_request_port,
358 .config_port = jsm_config_port,
359 };
360
361 /*
362 * jsm_tty_init()
363 *
364 * Init the tty subsystem. Called once per board after board has been
365 * downloaded and init'ed.
366 */
367 int jsm_tty_init(struct jsm_board *brd)
368 {
369 int i;
370 void __iomem *vaddr;
371 struct jsm_channel *ch;
372
373 if (!brd)
374 return -ENXIO;
375
376 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
377
378 /*
379 * Initialize board structure elements.
380 */
381
382 brd->nasync = brd->maxports;
383
384 /*
385 * Allocate channel memory that might not have been allocated
386 * when the driver was first loaded.
387 */
388 for (i = 0; i < brd->nasync; i++) {
389 if (!brd->channels[i]) {
390
391 /*
392 * Okay to malloc with GFP_KERNEL, we are not at
393 * interrupt context, and there are no locks held.
394 */
395 brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL);
396 if (!brd->channels[i]) {
397 jsm_printk(CORE, ERR, &brd->pci_dev,
398 "%s:%d Unable to allocate memory for channel struct\n",
399 __FILE__, __LINE__);
400 }
401 memset(brd->channels[i], 0, sizeof(struct jsm_channel));
402 }
403 }
404
405 ch = brd->channels[0];
406 vaddr = brd->re_map_membase;
407
408 /* Set up channel variables */
409 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
410
411 if (!brd->channels[i])
412 continue;
413
414 spin_lock_init(&ch->ch_lock);
415
416 if (brd->bd_uart_offset == 0x200)
417 ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
418
419 ch->ch_bd = brd;
420 ch->ch_portnum = i;
421
422 /* .25 second delay */
423 ch->ch_close_delay = 250;
424
425 init_waitqueue_head(&ch->ch_flags_wait);
426 }
427
428 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
429 return 0;
430 }
431
432 int jsm_uart_port_init(struct jsm_board *brd)
433 {
434 int i;
435 struct jsm_channel *ch;
436
437 if (!brd)
438 return -ENXIO;
439
440 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
441
442 /*
443 * Initialize board structure elements.
444 */
445
446 brd->nasync = brd->maxports;
447
448 /* Set up channel variables */
449 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
450
451 if (!brd->channels[i])
452 continue;
453
454 brd->channels[i]->uart_port.irq = brd->irq;
455 brd->channels[i]->uart_port.type = PORT_JSM;
456 brd->channels[i]->uart_port.iotype = UPIO_MEM;
457 brd->channels[i]->uart_port.membase = brd->re_map_membase;
458 brd->channels[i]->uart_port.fifosize = 16;
459 brd->channels[i]->uart_port.ops = &jsm_ops;
460 brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
461 if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
462 printk(KERN_INFO "Added device failed\n");
463 else
464 printk(KERN_INFO "Added device \n");
465 }
466
467 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
468 return 0;
469 }
470
471 int jsm_remove_uart_port(struct jsm_board *brd)
472 {
473 int i;
474 struct jsm_channel *ch;
475
476 if (!brd)
477 return -ENXIO;
478
479 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
480
481 /*
482 * Initialize board structure elements.
483 */
484
485 brd->nasync = brd->maxports;
486
487 /* Set up channel variables */
488 for (i = 0; i < brd->nasync; i++) {
489
490 if (!brd->channels[i])
491 continue;
492
493 ch = brd->channels[i];
494
495 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
496 }
497
498 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
499 return 0;
500 }
501
502 void jsm_input(struct jsm_channel *ch)
503 {
504 struct jsm_board *bd;
505 struct tty_struct *tp;
506 struct tty_ldisc *ld;
507 u32 rmask;
508 u16 head;
509 u16 tail;
510 int data_len;
511 unsigned long lock_flags;
512 int flip_len = 0;
513 int len = 0;
514 int n = 0;
515 int s = 0;
516 int i = 0;
517
518 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
519
520 if (!ch)
521 return;
522
523 tp = ch->uart_port.info->tty;
524
525 bd = ch->ch_bd;
526 if(!bd)
527 return;
528
529 spin_lock_irqsave(&ch->ch_lock, lock_flags);
530
531 /*
532 *Figure the number of characters in the buffer.
533 *Exit immediately if none.
534 */
535
536 rmask = RQUEUEMASK;
537
538 head = ch->ch_r_head & rmask;
539 tail = ch->ch_r_tail & rmask;
540
541 data_len = (head - tail) & rmask;
542 if (data_len == 0) {
543 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
544 return;
545 }
546
547 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
548
549 /*
550 *If the device is not open, or CREAD is off, flush
551 *input data and return immediately.
552 */
553 if (!tp ||
554 !(tp->termios->c_cflag & CREAD) ) {
555
556 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
557 "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
558 ch->ch_r_head = tail;
559
560 /* Force queue flow control to be released, if needed */
561 jsm_check_queue_flow_control(ch);
562
563 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
564 return;
565 }
566
567 /*
568 * If we are throttled, simply don't read any data.
569 */
570 if (ch->ch_flags & CH_STOPI) {
571 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
572 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
573 "Port %d throttled, not reading any data. head: %x tail: %x\n",
574 ch->ch_portnum, head, tail);
575 return;
576 }
577
578 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
579
580 /*
581 * If the rxbuf is empty and we are not throttled, put as much
582 * as we can directly into the linux TTY buffer.
583 *
584 */
585 flip_len = TTY_FLIPBUF_SIZE;
586
587 len = min(data_len, flip_len);
588 len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
589 ld = tty_ldisc_ref(tp);
590
591 /*
592 * If we were unable to get a reference to the ld,
593 * don't flush our buffer, and act like the ld doesn't
594 * have any space to put the data right now.
595 */
596 if (!ld) {
597 len = 0;
598 } else {
599 /*
600 * If ld doesn't have a pointer to a receive_buf function,
601 * flush the data, then act like the ld doesn't have any
602 * space to put the data right now.
603 */
604 if (!ld->receive_buf) {
605 ch->ch_r_head = ch->ch_r_tail;
606 len = 0;
607 }
608 }
609
610 if (len <= 0) {
611 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
612 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
613 if (ld)
614 tty_ldisc_deref(ld);
615 return;
616 }
617
618 len = tty_buffer_request_room(tp, len);
619 n = len;
620
621 /*
622 * n now contains the most amount of data we can copy,
623 * bounded either by the flip buffer size or the amount
624 * of data the card actually has pending...
625 */
626 while (n) {
627 s = ((head >= tail) ? head : RQUEUESIZE) - tail;
628 s = min(s, n);
629
630 if (s <= 0)
631 break;
632
633 /*
634 * If conditions are such that ld needs to see all
635 * UART errors, we will have to walk each character
636 * and error byte and send them to the buffer one at
637 * a time.
638 */
639
640 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
641 for (i = 0; i < s; i++) {
642 /*
643 * Give the Linux ld the flags in the
644 * format it likes.
645 */
646 if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
647 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_BREAK);
648 else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
649 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
650 else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
651 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
652 else
653 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
654 }
655 } else {
656 tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
657 }
658 tail += s;
659 n -= s;
660 /* Flip queue if needed */
661 tail &= rmask;
662 }
663
664 ch->ch_r_tail = tail & rmask;
665 ch->ch_e_tail = tail & rmask;
666 jsm_check_queue_flow_control(ch);
667 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
668
669 /* Tell the tty layer its okay to "eat" the data now */
670 tty_flip_buffer_push(tp);
671
672 if (ld)
673 tty_ldisc_deref(ld);
674
675 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
676 }
677
678 static void jsm_carrier(struct jsm_channel *ch)
679 {
680 struct jsm_board *bd;
681
682 int virt_carrier = 0;
683 int phys_carrier = 0;
684
685 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
686 if (!ch)
687 return;
688
689 bd = ch->ch_bd;
690
691 if (!bd)
692 return;
693
694 if (ch->ch_mistat & UART_MSR_DCD) {
695 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
696 "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
697 phys_carrier = 1;
698 }
699
700 if (ch->ch_c_cflag & CLOCAL)
701 virt_carrier = 1;
702
703 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
704 "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
705
706 /*
707 * Test for a VIRTUAL carrier transition to HIGH.
708 */
709 if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
710
711 /*
712 * When carrier rises, wake any threads waiting
713 * for carrier in the open routine.
714 */
715
716 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
717 "carrier: virt DCD rose\n");
718
719 if (waitqueue_active(&(ch->ch_flags_wait)))
720 wake_up_interruptible(&ch->ch_flags_wait);
721 }
722
723 /*
724 * Test for a PHYSICAL carrier transition to HIGH.
725 */
726 if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
727
728 /*
729 * When carrier rises, wake any threads waiting
730 * for carrier in the open routine.
731 */
732
733 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
734 "carrier: physical DCD rose\n");
735
736 if (waitqueue_active(&(ch->ch_flags_wait)))
737 wake_up_interruptible(&ch->ch_flags_wait);
738 }
739
740 /*
741 * Test for a PHYSICAL transition to low, so long as we aren't
742 * currently ignoring physical transitions (which is what "virtual
743 * carrier" indicates).
744 *
745 * The transition of the virtual carrier to low really doesn't
746 * matter... it really only means "ignore carrier state", not
747 * "make pretend that carrier is there".
748 */
749 if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
750 && (phys_carrier == 0)) {
751 /*
752 * When carrier drops:
753 *
754 * Drop carrier on all open units.
755 *
756 * Flush queues, waking up any task waiting in the
757 * line discipline.
758 *
759 * Send a hangup to the control terminal.
760 *
761 * Enable all select calls.
762 */
763 if (waitqueue_active(&(ch->ch_flags_wait)))
764 wake_up_interruptible(&ch->ch_flags_wait);
765 }
766
767 /*
768 * Make sure that our cached values reflect the current reality.
769 */
770 if (virt_carrier == 1)
771 ch->ch_flags |= CH_FCAR;
772 else
773 ch->ch_flags &= ~CH_FCAR;
774
775 if (phys_carrier == 1)
776 ch->ch_flags |= CH_CD;
777 else
778 ch->ch_flags &= ~CH_CD;
779 }
780
781
782 void jsm_check_queue_flow_control(struct jsm_channel *ch)
783 {
784 struct board_ops *bd_ops = ch->ch_bd->bd_ops;
785 int qleft = 0;
786
787 /* Store how much space we have left in the queue */
788 if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
789 qleft += RQUEUEMASK + 1;
790
791 /*
792 * Check to see if we should enforce flow control on our queue because
793 * the ld (or user) isn't reading data out of our queue fast enuf.
794 *
795 * NOTE: This is done based on what the current flow control of the
796 * port is set for.
797 *
798 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
799 * This will cause the UART's FIFO to back up, and force
800 * the RTS signal to be dropped.
801 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
802 * the other side, in hopes it will stop sending data to us.
803 * 3) NONE - Nothing we can do. We will simply drop any extra data
804 * that gets sent into us when the queue fills up.
805 */
806 if (qleft < 256) {
807 /* HWFLOW */
808 if (ch->ch_c_cflag & CRTSCTS) {
809 if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
810 bd_ops->disable_receiver(ch);
811 ch->ch_flags |= (CH_RECEIVER_OFF);
812 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
813 "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
814 qleft);
815 }
816 }
817 /* SWFLOW */
818 else if (ch->ch_c_iflag & IXOFF) {
819 if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
820 bd_ops->send_stop_character(ch);
821 ch->ch_stops_sent++;
822 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
823 "Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
824 }
825 }
826 }
827
828 /*
829 * Check to see if we should unenforce flow control because
830 * ld (or user) finally read enuf data out of our queue.
831 *
832 * NOTE: This is done based on what the current flow control of the
833 * port is set for.
834 *
835 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
836 * This will cause the UART's FIFO to raise RTS back up,
837 * which will allow the other side to start sending data again.
838 * 2) SWFLOW (IXOFF) - Send a start character to
839 * the other side, so it will start sending data to us again.
840 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
841 * other side, we don't need to do anything now.
842 */
843 if (qleft > (RQUEUESIZE / 2)) {
844 /* HWFLOW */
845 if (ch->ch_c_cflag & CRTSCTS) {
846 if (ch->ch_flags & CH_RECEIVER_OFF) {
847 bd_ops->enable_receiver(ch);
848 ch->ch_flags &= ~(CH_RECEIVER_OFF);
849 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
850 "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
851 qleft);
852 }
853 }
854 /* SWFLOW */
855 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
856 ch->ch_stops_sent = 0;
857 bd_ops->send_start_character(ch);
858 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
859 }
860 }
861 }
862
863 /*
864 * jsm_tty_write()
865 *
866 * Take data from the user or kernel and send it out to the FEP.
867 * In here exists all the Transparent Print magic as well.
868 */
869 int jsm_tty_write(struct uart_port *port)
870 {
871 int bufcount = 0, n = 0;
872 int data_count = 0,data_count1 =0;
873 u16 head;
874 u16 tail;
875 u16 tmask;
876 u32 remain;
877 int temp_tail = port->info->xmit.tail;
878 struct jsm_channel *channel = (struct jsm_channel *)port;
879
880 tmask = WQUEUEMASK;
881 head = (channel->ch_w_head) & tmask;
882 tail = (channel->ch_w_tail) & tmask;
883
884 if ((bufcount = tail - head - 1) < 0)
885 bufcount += WQUEUESIZE;
886
887 n = bufcount;
888
889 n = min(n, 56);
890 remain = WQUEUESIZE - head;
891
892 data_count = 0;
893 if (n >= remain) {
894 n -= remain;
895 while ((port->info->xmit.head != temp_tail) &&
896 (data_count < remain)) {
897 channel->ch_wqueue[head++] =
898 port->info->xmit.buf[temp_tail];
899
900 temp_tail++;
901 temp_tail &= (UART_XMIT_SIZE - 1);
902 data_count++;
903 }
904 if (data_count == remain) head = 0;
905 }
906
907 data_count1 = 0;
908 if (n > 0) {
909 remain = n;
910 while ((port->info->xmit.head != temp_tail) &&
911 (data_count1 < remain)) {
912 channel->ch_wqueue[head++] =
913 port->info->xmit.buf[temp_tail];
914
915 temp_tail++;
916 temp_tail &= (UART_XMIT_SIZE - 1);
917 data_count1++;
918
919 }
920 }
921
922 port->info->xmit.tail = temp_tail;
923
924 data_count += data_count1;
925 if (data_count) {
926 head &= tmask;
927 channel->ch_w_head = head;
928 }
929
930 if (data_count) {
931 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
932 }
933
934 return data_count;
935 }