]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/serial/jsm/jsm_tty.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-eoan-kernel.git] / drivers / serial / jsm / jsm_tty.c
1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
3 *
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
20 *
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Ananda Venkatarman <mansarov@us.ibm.com>
24 * Modifications:
25 * 01/19/06: changed jsm_input routine to use the dynamically allocated
26 * tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27 ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h> /* For udelay */
32 #include <linux/pci.h>
33
34 #include "jsm.h"
35
36 static void jsm_carrier(struct jsm_channel *ch);
37
38 static inline int jsm_get_mstat(struct jsm_channel *ch)
39 {
40 unsigned char mstat;
41 unsigned result;
42
43 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
44
45 mstat = (ch->ch_mostat | ch->ch_mistat);
46
47 result = 0;
48
49 if (mstat & UART_MCR_DTR)
50 result |= TIOCM_DTR;
51 if (mstat & UART_MCR_RTS)
52 result |= TIOCM_RTS;
53 if (mstat & UART_MSR_CTS)
54 result |= TIOCM_CTS;
55 if (mstat & UART_MSR_DSR)
56 result |= TIOCM_DSR;
57 if (mstat & UART_MSR_RI)
58 result |= TIOCM_RI;
59 if (mstat & UART_MSR_DCD)
60 result |= TIOCM_CD;
61
62 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
63 return result;
64 }
65
66 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
67 {
68 return TIOCSER_TEMT;
69 }
70
71 /*
72 * Return modem signals to ld.
73 */
74 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
75 {
76 int result;
77 struct jsm_channel *channel = (struct jsm_channel *)port;
78
79 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
80
81 result = jsm_get_mstat(channel);
82
83 if (result < 0)
84 return -ENXIO;
85
86 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
87
88 return result;
89 }
90
91 /*
92 * jsm_set_modem_info()
93 *
94 * Set modem signals, called by ld.
95 */
96 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
97 {
98 struct jsm_channel *channel = (struct jsm_channel *)port;
99
100 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
101
102 if (mctrl & TIOCM_RTS)
103 channel->ch_mostat |= UART_MCR_RTS;
104 else
105 channel->ch_mostat &= ~UART_MCR_RTS;
106
107 if (mctrl & TIOCM_DTR)
108 channel->ch_mostat |= UART_MCR_DTR;
109 else
110 channel->ch_mostat &= ~UART_MCR_DTR;
111
112 channel->ch_bd->bd_ops->assert_modem_signals(channel);
113
114 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
115 udelay(10);
116 }
117
118 static void jsm_tty_start_tx(struct uart_port *port)
119 {
120 struct jsm_channel *channel = (struct jsm_channel *)port;
121
122 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
123
124 channel->ch_flags &= ~(CH_STOP);
125 jsm_tty_write(port);
126
127 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
128 }
129
130 static void jsm_tty_stop_tx(struct uart_port *port)
131 {
132 struct jsm_channel *channel = (struct jsm_channel *)port;
133
134 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
135
136 channel->ch_flags |= (CH_STOP);
137
138 jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
139 }
140
141 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
142 {
143 unsigned long lock_flags;
144 struct jsm_channel *channel = (struct jsm_channel *)port;
145
146 spin_lock_irqsave(&port->lock, lock_flags);
147 if (ch == port->info->tty->termios->c_cc[VSTART])
148 channel->ch_bd->bd_ops->send_start_character(channel);
149
150 if (ch == port->info->tty->termios->c_cc[VSTOP])
151 channel->ch_bd->bd_ops->send_stop_character(channel);
152 spin_unlock_irqrestore(&port->lock, lock_flags);
153 }
154
155 static void jsm_tty_stop_rx(struct uart_port *port)
156 {
157 struct jsm_channel *channel = (struct jsm_channel *)port;
158
159 channel->ch_bd->bd_ops->disable_receiver(channel);
160 }
161
162 static void jsm_tty_break(struct uart_port *port, int break_state)
163 {
164 unsigned long lock_flags;
165 struct jsm_channel *channel = (struct jsm_channel *)port;
166
167 spin_lock_irqsave(&port->lock, lock_flags);
168 if (break_state == -1)
169 channel->ch_bd->bd_ops->send_break(channel);
170 else
171 channel->ch_bd->bd_ops->clear_break(channel, 0);
172
173 spin_unlock_irqrestore(&port->lock, lock_flags);
174 }
175
176 static int jsm_tty_open(struct uart_port *port)
177 {
178 struct jsm_board *brd;
179 int rc = 0;
180 struct jsm_channel *channel = (struct jsm_channel *)port;
181
182 /* Get board pointer from our array of majors we have allocated */
183 brd = channel->ch_bd;
184
185 /*
186 * Allocate channel buffers for read/write/error.
187 * Set flag, so we don't get trounced on.
188 */
189 channel->ch_flags |= (CH_OPENING);
190
191 /* Drop locks, as malloc with GFP_KERNEL can sleep */
192
193 if (!channel->ch_rqueue) {
194 channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL);
195 if (!channel->ch_rqueue) {
196 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
197 "unable to allocate read queue buf");
198 return -ENOMEM;
199 }
200 memset(channel->ch_rqueue, 0, RQUEUESIZE);
201 }
202 if (!channel->ch_equeue) {
203 channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL);
204 if (!channel->ch_equeue) {
205 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
206 "unable to allocate error queue buf");
207 return -ENOMEM;
208 }
209 memset(channel->ch_equeue, 0, EQUEUESIZE);
210 }
211 if (!channel->ch_wqueue) {
212 channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL);
213 if (!channel->ch_wqueue) {
214 jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
215 "unable to allocate write queue buf");
216 return -ENOMEM;
217 }
218 memset(channel->ch_wqueue, 0, WQUEUESIZE);
219 }
220
221 channel->ch_flags &= ~(CH_OPENING);
222 /*
223 * Initialize if neither terminal is open.
224 */
225 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
226 "jsm_open: initializing channel in open...\n");
227
228 /*
229 * Flush input queues.
230 */
231 channel->ch_r_head = channel->ch_r_tail = 0;
232 channel->ch_e_head = channel->ch_e_tail = 0;
233 channel->ch_w_head = channel->ch_w_tail = 0;
234
235 brd->bd_ops->flush_uart_write(channel);
236 brd->bd_ops->flush_uart_read(channel);
237
238 channel->ch_flags = 0;
239 channel->ch_cached_lsr = 0;
240 channel->ch_stops_sent = 0;
241
242 channel->ch_c_cflag = port->info->tty->termios->c_cflag;
243 channel->ch_c_iflag = port->info->tty->termios->c_iflag;
244 channel->ch_c_oflag = port->info->tty->termios->c_oflag;
245 channel->ch_c_lflag = port->info->tty->termios->c_lflag;
246 channel->ch_startc = port->info->tty->termios->c_cc[VSTART];
247 channel->ch_stopc = port->info->tty->termios->c_cc[VSTOP];
248
249 /* Tell UART to init itself */
250 brd->bd_ops->uart_init(channel);
251
252 /*
253 * Run param in case we changed anything
254 */
255 brd->bd_ops->param(channel);
256
257 jsm_carrier(channel);
258
259 channel->ch_open_count++;
260
261 jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
262 return rc;
263 }
264
265 static void jsm_tty_close(struct uart_port *port)
266 {
267 struct jsm_board *bd;
268 struct termios *ts;
269 struct jsm_channel *channel = (struct jsm_channel *)port;
270
271 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
272
273 bd = channel->ch_bd;
274 ts = channel->uart_port.info->tty->termios;
275
276 channel->ch_flags &= ~(CH_STOPI);
277
278 channel->ch_open_count--;
279
280 /*
281 * If we have HUPCL set, lower DTR and RTS
282 */
283 if (channel->ch_c_cflag & HUPCL) {
284 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
285 "Close. HUPCL set, dropping DTR/RTS\n");
286
287 /* Drop RTS/DTR */
288 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
289 bd->bd_ops->assert_modem_signals(channel);
290 }
291
292 channel->ch_old_baud = 0;
293
294 /* Turn off UART interrupts for this port */
295 channel->ch_bd->bd_ops->uart_off(channel);
296
297 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
298 }
299
300 static void jsm_tty_set_termios(struct uart_port *port,
301 struct termios *termios,
302 struct termios *old_termios)
303 {
304 unsigned long lock_flags;
305 struct jsm_channel *channel = (struct jsm_channel *)port;
306
307 spin_lock_irqsave(&port->lock, lock_flags);
308 channel->ch_c_cflag = termios->c_cflag;
309 channel->ch_c_iflag = termios->c_iflag;
310 channel->ch_c_oflag = termios->c_oflag;
311 channel->ch_c_lflag = termios->c_lflag;
312 channel->ch_startc = termios->c_cc[VSTART];
313 channel->ch_stopc = termios->c_cc[VSTOP];
314
315 channel->ch_bd->bd_ops->param(channel);
316 jsm_carrier(channel);
317 spin_unlock_irqrestore(&port->lock, lock_flags);
318 }
319
320 static const char *jsm_tty_type(struct uart_port *port)
321 {
322 return "jsm";
323 }
324
325 static void jsm_tty_release_port(struct uart_port *port)
326 {
327 }
328
329 static int jsm_tty_request_port(struct uart_port *port)
330 {
331 return 0;
332 }
333
334 static void jsm_config_port(struct uart_port *port, int flags)
335 {
336 port->type = PORT_JSM;
337 }
338
339 static struct uart_ops jsm_ops = {
340 .tx_empty = jsm_tty_tx_empty,
341 .set_mctrl = jsm_tty_set_mctrl,
342 .get_mctrl = jsm_tty_get_mctrl,
343 .stop_tx = jsm_tty_stop_tx,
344 .start_tx = jsm_tty_start_tx,
345 .send_xchar = jsm_tty_send_xchar,
346 .stop_rx = jsm_tty_stop_rx,
347 .break_ctl = jsm_tty_break,
348 .startup = jsm_tty_open,
349 .shutdown = jsm_tty_close,
350 .set_termios = jsm_tty_set_termios,
351 .type = jsm_tty_type,
352 .release_port = jsm_tty_release_port,
353 .request_port = jsm_tty_request_port,
354 .config_port = jsm_config_port,
355 };
356
357 /*
358 * jsm_tty_init()
359 *
360 * Init the tty subsystem. Called once per board after board has been
361 * downloaded and init'ed.
362 */
363 int jsm_tty_init(struct jsm_board *brd)
364 {
365 int i;
366 void __iomem *vaddr;
367 struct jsm_channel *ch;
368
369 if (!brd)
370 return -ENXIO;
371
372 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
373
374 /*
375 * Initialize board structure elements.
376 */
377
378 brd->nasync = brd->maxports;
379
380 /*
381 * Allocate channel memory that might not have been allocated
382 * when the driver was first loaded.
383 */
384 for (i = 0; i < brd->nasync; i++) {
385 if (!brd->channels[i]) {
386
387 /*
388 * Okay to malloc with GFP_KERNEL, we are not at
389 * interrupt context, and there are no locks held.
390 */
391 brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL);
392 if (!brd->channels[i]) {
393 jsm_printk(CORE, ERR, &brd->pci_dev,
394 "%s:%d Unable to allocate memory for channel struct\n",
395 __FILE__, __LINE__);
396 }
397 memset(brd->channels[i], 0, sizeof(struct jsm_channel));
398 }
399 }
400
401 ch = brd->channels[0];
402 vaddr = brd->re_map_membase;
403
404 /* Set up channel variables */
405 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
406
407 if (!brd->channels[i])
408 continue;
409
410 spin_lock_init(&ch->ch_lock);
411
412 if (brd->bd_uart_offset == 0x200)
413 ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
414
415 ch->ch_bd = brd;
416 ch->ch_portnum = i;
417
418 /* .25 second delay */
419 ch->ch_close_delay = 250;
420
421 init_waitqueue_head(&ch->ch_flags_wait);
422 }
423
424 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
425 return 0;
426 }
427
428 int jsm_uart_port_init(struct jsm_board *brd)
429 {
430 int i;
431 struct jsm_channel *ch;
432
433 if (!brd)
434 return -ENXIO;
435
436 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
437
438 /*
439 * Initialize board structure elements.
440 */
441
442 brd->nasync = brd->maxports;
443
444 /* Set up channel variables */
445 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
446
447 if (!brd->channels[i])
448 continue;
449
450 brd->channels[i]->uart_port.irq = brd->irq;
451 brd->channels[i]->uart_port.type = PORT_JSM;
452 brd->channels[i]->uart_port.iotype = UPIO_MEM;
453 brd->channels[i]->uart_port.membase = brd->re_map_membase;
454 brd->channels[i]->uart_port.fifosize = 16;
455 brd->channels[i]->uart_port.ops = &jsm_ops;
456 brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
457 if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
458 printk(KERN_INFO "Added device failed\n");
459 else
460 printk(KERN_INFO "Added device \n");
461 }
462
463 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
464 return 0;
465 }
466
467 int jsm_remove_uart_port(struct jsm_board *brd)
468 {
469 int i;
470 struct jsm_channel *ch;
471
472 if (!brd)
473 return -ENXIO;
474
475 jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
476
477 /*
478 * Initialize board structure elements.
479 */
480
481 brd->nasync = brd->maxports;
482
483 /* Set up channel variables */
484 for (i = 0; i < brd->nasync; i++) {
485
486 if (!brd->channels[i])
487 continue;
488
489 ch = brd->channels[i];
490
491 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
492 }
493
494 jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
495 return 0;
496 }
497
498 void jsm_input(struct jsm_channel *ch)
499 {
500 struct jsm_board *bd;
501 struct tty_struct *tp;
502 struct tty_ldisc *ld;
503 u32 rmask;
504 u16 head;
505 u16 tail;
506 int data_len;
507 unsigned long lock_flags;
508 int flip_len = 0;
509 int len = 0;
510 int n = 0;
511 int s = 0;
512 int i = 0;
513
514 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
515
516 if (!ch)
517 return;
518
519 tp = ch->uart_port.info->tty;
520
521 bd = ch->ch_bd;
522 if(!bd)
523 return;
524
525 spin_lock_irqsave(&ch->ch_lock, lock_flags);
526
527 /*
528 *Figure the number of characters in the buffer.
529 *Exit immediately if none.
530 */
531
532 rmask = RQUEUEMASK;
533
534 head = ch->ch_r_head & rmask;
535 tail = ch->ch_r_tail & rmask;
536
537 data_len = (head - tail) & rmask;
538 if (data_len == 0) {
539 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
540 return;
541 }
542
543 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
544
545 /*
546 *If the device is not open, or CREAD is off, flush
547 *input data and return immediately.
548 */
549 if (!tp ||
550 !(tp->termios->c_cflag & CREAD) ) {
551
552 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
553 "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
554 ch->ch_r_head = tail;
555
556 /* Force queue flow control to be released, if needed */
557 jsm_check_queue_flow_control(ch);
558
559 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
560 return;
561 }
562
563 /*
564 * If we are throttled, simply don't read any data.
565 */
566 if (ch->ch_flags & CH_STOPI) {
567 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
568 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
569 "Port %d throttled, not reading any data. head: %x tail: %x\n",
570 ch->ch_portnum, head, tail);
571 return;
572 }
573
574 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
575
576 /*
577 * If the rxbuf is empty and we are not throttled, put as much
578 * as we can directly into the linux TTY buffer.
579 *
580 */
581 flip_len = TTY_FLIPBUF_SIZE;
582
583 len = min(data_len, flip_len);
584 len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
585 ld = tty_ldisc_ref(tp);
586
587 /*
588 * If the DONT_FLIP flag is on, don't flush our buffer, and act
589 * like the ld doesn't have any space to put the data right now.
590 */
591 if (test_bit(TTY_DONT_FLIP, &tp->flags))
592 len = 0;
593
594 /*
595 * If we were unable to get a reference to the ld,
596 * don't flush our buffer, and act like the ld doesn't
597 * have any space to put the data right now.
598 */
599 if (!ld) {
600 len = 0;
601 } else {
602 /*
603 * If ld doesn't have a pointer to a receive_buf function,
604 * flush the data, then act like the ld doesn't have any
605 * space to put the data right now.
606 */
607 if (!ld->receive_buf) {
608 ch->ch_r_head = ch->ch_r_tail;
609 len = 0;
610 }
611 }
612
613 if (len <= 0) {
614 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
615 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
616 if (ld)
617 tty_ldisc_deref(ld);
618 return;
619 }
620
621 len = tty_buffer_request_room(tp, len);
622 n = len;
623
624 /*
625 * n now contains the most amount of data we can copy,
626 * bounded either by the flip buffer size or the amount
627 * of data the card actually has pending...
628 */
629 while (n) {
630 s = ((head >= tail) ? head : RQUEUESIZE) - tail;
631 s = min(s, n);
632
633 if (s <= 0)
634 break;
635
636 /*
637 * If conditions are such that ld needs to see all
638 * UART errors, we will have to walk each character
639 * and error byte and send them to the buffer one at
640 * a time.
641 */
642
643 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
644 for (i = 0; i < s; i++) {
645 /*
646 * Give the Linux ld the flags in the
647 * format it likes.
648 */
649 if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
650 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_BREAK);
651 else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
652 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
653 else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
654 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
655 else
656 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
657 }
658 } else {
659 tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
660 }
661 tail += s;
662 n -= s;
663 /* Flip queue if needed */
664 tail &= rmask;
665 }
666
667 ch->ch_r_tail = tail & rmask;
668 ch->ch_e_tail = tail & rmask;
669 jsm_check_queue_flow_control(ch);
670 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
671
672 /* Tell the tty layer its okay to "eat" the data now */
673 tty_flip_buffer_push(tp);
674
675 if (ld)
676 tty_ldisc_deref(ld);
677
678 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
679 }
680
681 static void jsm_carrier(struct jsm_channel *ch)
682 {
683 struct jsm_board *bd;
684
685 int virt_carrier = 0;
686 int phys_carrier = 0;
687
688 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
689 if (!ch)
690 return;
691
692 bd = ch->ch_bd;
693
694 if (!bd)
695 return;
696
697 if (ch->ch_mistat & UART_MSR_DCD) {
698 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
699 "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
700 phys_carrier = 1;
701 }
702
703 if (ch->ch_c_cflag & CLOCAL)
704 virt_carrier = 1;
705
706 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
707 "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
708
709 /*
710 * Test for a VIRTUAL carrier transition to HIGH.
711 */
712 if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
713
714 /*
715 * When carrier rises, wake any threads waiting
716 * for carrier in the open routine.
717 */
718
719 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
720 "carrier: virt DCD rose\n");
721
722 if (waitqueue_active(&(ch->ch_flags_wait)))
723 wake_up_interruptible(&ch->ch_flags_wait);
724 }
725
726 /*
727 * Test for a PHYSICAL carrier transition to HIGH.
728 */
729 if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
730
731 /*
732 * When carrier rises, wake any threads waiting
733 * for carrier in the open routine.
734 */
735
736 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
737 "carrier: physical DCD rose\n");
738
739 if (waitqueue_active(&(ch->ch_flags_wait)))
740 wake_up_interruptible(&ch->ch_flags_wait);
741 }
742
743 /*
744 * Test for a PHYSICAL transition to low, so long as we aren't
745 * currently ignoring physical transitions (which is what "virtual
746 * carrier" indicates).
747 *
748 * The transition of the virtual carrier to low really doesn't
749 * matter... it really only means "ignore carrier state", not
750 * "make pretend that carrier is there".
751 */
752 if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
753 && (phys_carrier == 0)) {
754 /*
755 * When carrier drops:
756 *
757 * Drop carrier on all open units.
758 *
759 * Flush queues, waking up any task waiting in the
760 * line discipline.
761 *
762 * Send a hangup to the control terminal.
763 *
764 * Enable all select calls.
765 */
766 if (waitqueue_active(&(ch->ch_flags_wait)))
767 wake_up_interruptible(&ch->ch_flags_wait);
768 }
769
770 /*
771 * Make sure that our cached values reflect the current reality.
772 */
773 if (virt_carrier == 1)
774 ch->ch_flags |= CH_FCAR;
775 else
776 ch->ch_flags &= ~CH_FCAR;
777
778 if (phys_carrier == 1)
779 ch->ch_flags |= CH_CD;
780 else
781 ch->ch_flags &= ~CH_CD;
782 }
783
784
785 void jsm_check_queue_flow_control(struct jsm_channel *ch)
786 {
787 int qleft = 0;
788
789 /* Store how much space we have left in the queue */
790 if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
791 qleft += RQUEUEMASK + 1;
792
793 /*
794 * Check to see if we should enforce flow control on our queue because
795 * the ld (or user) isn't reading data out of our queue fast enuf.
796 *
797 * NOTE: This is done based on what the current flow control of the
798 * port is set for.
799 *
800 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
801 * This will cause the UART's FIFO to back up, and force
802 * the RTS signal to be dropped.
803 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
804 * the other side, in hopes it will stop sending data to us.
805 * 3) NONE - Nothing we can do. We will simply drop any extra data
806 * that gets sent into us when the queue fills up.
807 */
808 if (qleft < 256) {
809 /* HWFLOW */
810 if (ch->ch_c_cflag & CRTSCTS) {
811 if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
812 ch->ch_bd->bd_ops->disable_receiver(ch);
813 ch->ch_flags |= (CH_RECEIVER_OFF);
814 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
815 "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
816 qleft);
817 }
818 }
819 /* SWFLOW */
820 else if (ch->ch_c_iflag & IXOFF) {
821 if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
822 ch->ch_bd->bd_ops->send_stop_character(ch);
823 ch->ch_stops_sent++;
824 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
825 "Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
826 }
827 }
828 }
829
830 /*
831 * Check to see if we should unenforce flow control because
832 * ld (or user) finally read enuf data out of our queue.
833 *
834 * NOTE: This is done based on what the current flow control of the
835 * port is set for.
836 *
837 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
838 * This will cause the UART's FIFO to raise RTS back up,
839 * which will allow the other side to start sending data again.
840 * 2) SWFLOW (IXOFF) - Send a start character to
841 * the other side, so it will start sending data to us again.
842 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
843 * other side, we don't need to do anything now.
844 */
845 if (qleft > (RQUEUESIZE / 2)) {
846 /* HWFLOW */
847 if (ch->ch_c_cflag & CRTSCTS) {
848 if (ch->ch_flags & CH_RECEIVER_OFF) {
849 ch->ch_bd->bd_ops->enable_receiver(ch);
850 ch->ch_flags &= ~(CH_RECEIVER_OFF);
851 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
852 "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
853 qleft);
854 }
855 }
856 /* SWFLOW */
857 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
858 ch->ch_stops_sent = 0;
859 ch->ch_bd->bd_ops->send_start_character(ch);
860 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
861 }
862 }
863 }
864
865 /*
866 * jsm_tty_write()
867 *
868 * Take data from the user or kernel and send it out to the FEP.
869 * In here exists all the Transparent Print magic as well.
870 */
871 int jsm_tty_write(struct uart_port *port)
872 {
873 int bufcount = 0, n = 0;
874 int data_count = 0,data_count1 =0;
875 u16 head;
876 u16 tail;
877 u16 tmask;
878 u32 remain;
879 int temp_tail = port->info->xmit.tail;
880 struct jsm_channel *channel = (struct jsm_channel *)port;
881
882 tmask = WQUEUEMASK;
883 head = (channel->ch_w_head) & tmask;
884 tail = (channel->ch_w_tail) & tmask;
885
886 if ((bufcount = tail - head - 1) < 0)
887 bufcount += WQUEUESIZE;
888
889 n = bufcount;
890
891 n = min(n, 56);
892 remain = WQUEUESIZE - head;
893
894 data_count = 0;
895 if (n >= remain) {
896 n -= remain;
897 while ((port->info->xmit.head != temp_tail) &&
898 (data_count < remain)) {
899 channel->ch_wqueue[head++] =
900 port->info->xmit.buf[temp_tail];
901
902 temp_tail++;
903 temp_tail &= (UART_XMIT_SIZE - 1);
904 data_count++;
905 }
906 if (data_count == remain) head = 0;
907 }
908
909 data_count1 = 0;
910 if (n > 0) {
911 remain = n;
912 while ((port->info->xmit.head != temp_tail) &&
913 (data_count1 < remain)) {
914 channel->ch_wqueue[head++] =
915 port->info->xmit.buf[temp_tail];
916
917 temp_tail++;
918 temp_tail &= (UART_XMIT_SIZE - 1);
919 data_count1++;
920
921 }
922 }
923
924 port->info->xmit.tail = temp_tail;
925
926 data_count += data_count1;
927 if (data_count) {
928 head &= tmask;
929 channel->ch_w_head = head;
930 }
931
932 if (data_count) {
933 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
934 }
935
936 return data_count;
937 }