]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/sh/clk/cpg.c
Merge branch 'nfs-for-2.6.37' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6
[mirror_ubuntu-zesty-kernel.git] / drivers / sh / clk / cpg.c
1 /*
2 * Helper routines for SuperH Clock Pulse Generator blocks (CPG).
3 *
4 * Copyright (C) 2010 Magnus Damm
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10 #include <linux/clk.h>
11 #include <linux/compiler.h>
12 #include <linux/slab.h>
13 #include <linux/io.h>
14 #include <linux/sh_clk.h>
15
16 static int sh_clk_mstp32_enable(struct clk *clk)
17 {
18 __raw_writel(__raw_readl(clk->enable_reg) & ~(1 << clk->enable_bit),
19 clk->enable_reg);
20 return 0;
21 }
22
23 static void sh_clk_mstp32_disable(struct clk *clk)
24 {
25 __raw_writel(__raw_readl(clk->enable_reg) | (1 << clk->enable_bit),
26 clk->enable_reg);
27 }
28
29 static struct clk_ops sh_clk_mstp32_clk_ops = {
30 .enable = sh_clk_mstp32_enable,
31 .disable = sh_clk_mstp32_disable,
32 .recalc = followparent_recalc,
33 };
34
35 int __init sh_clk_mstp32_register(struct clk *clks, int nr)
36 {
37 struct clk *clkp;
38 int ret = 0;
39 int k;
40
41 for (k = 0; !ret && (k < nr); k++) {
42 clkp = clks + k;
43 clkp->ops = &sh_clk_mstp32_clk_ops;
44 ret |= clk_register(clkp);
45 }
46
47 return ret;
48 }
49
50 static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate)
51 {
52 return clk_rate_table_round(clk, clk->freq_table, rate);
53 }
54
55 static int sh_clk_div6_divisors[64] = {
56 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
57 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
58 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
59 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
60 };
61
62 static struct clk_div_mult_table sh_clk_div6_table = {
63 .divisors = sh_clk_div6_divisors,
64 .nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors),
65 };
66
67 static unsigned long sh_clk_div6_recalc(struct clk *clk)
68 {
69 struct clk_div_mult_table *table = &sh_clk_div6_table;
70 unsigned int idx;
71
72 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
73 table, NULL);
74
75 idx = __raw_readl(clk->enable_reg) & 0x003f;
76
77 return clk->freq_table[idx].frequency;
78 }
79
80 static int sh_clk_div6_set_parent(struct clk *clk, struct clk *parent)
81 {
82 struct clk_div_mult_table *table = &sh_clk_div6_table;
83 u32 value;
84 int ret, i;
85
86 if (!clk->parent_table || !clk->parent_num)
87 return -EINVAL;
88
89 /* Search the parent */
90 for (i = 0; i < clk->parent_num; i++)
91 if (clk->parent_table[i] == parent)
92 break;
93
94 if (i == clk->parent_num)
95 return -ENODEV;
96
97 ret = clk_reparent(clk, parent);
98 if (ret < 0)
99 return ret;
100
101 value = __raw_readl(clk->enable_reg) &
102 ~(((1 << clk->src_width) - 1) << clk->src_shift);
103
104 __raw_writel(value | (i << clk->src_shift), clk->enable_reg);
105
106 /* Rebuild the frequency table */
107 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
108 table, &clk->arch_flags);
109
110 return 0;
111 }
112
113 static int sh_clk_div6_set_rate(struct clk *clk,
114 unsigned long rate, int algo_id)
115 {
116 unsigned long value;
117 int idx;
118
119 idx = clk_rate_table_find(clk, clk->freq_table, rate);
120 if (idx < 0)
121 return idx;
122
123 value = __raw_readl(clk->enable_reg);
124 value &= ~0x3f;
125 value |= idx;
126 __raw_writel(value, clk->enable_reg);
127 return 0;
128 }
129
130 static int sh_clk_div6_enable(struct clk *clk)
131 {
132 unsigned long value;
133 int ret;
134
135 ret = sh_clk_div6_set_rate(clk, clk->rate, 0);
136 if (ret == 0) {
137 value = __raw_readl(clk->enable_reg);
138 value &= ~0x100; /* clear stop bit to enable clock */
139 __raw_writel(value, clk->enable_reg);
140 }
141 return ret;
142 }
143
144 static void sh_clk_div6_disable(struct clk *clk)
145 {
146 unsigned long value;
147
148 value = __raw_readl(clk->enable_reg);
149 value |= 0x100; /* stop clock */
150 value |= 0x3f; /* VDIV bits must be non-zero, overwrite divider */
151 __raw_writel(value, clk->enable_reg);
152 }
153
154 static struct clk_ops sh_clk_div6_clk_ops = {
155 .recalc = sh_clk_div6_recalc,
156 .round_rate = sh_clk_div_round_rate,
157 .set_rate = sh_clk_div6_set_rate,
158 .enable = sh_clk_div6_enable,
159 .disable = sh_clk_div6_disable,
160 };
161
162 static struct clk_ops sh_clk_div6_reparent_clk_ops = {
163 .recalc = sh_clk_div6_recalc,
164 .round_rate = sh_clk_div_round_rate,
165 .set_rate = sh_clk_div6_set_rate,
166 .enable = sh_clk_div6_enable,
167 .disable = sh_clk_div6_disable,
168 .set_parent = sh_clk_div6_set_parent,
169 };
170
171 static int __init sh_clk_div6_register_ops(struct clk *clks, int nr,
172 struct clk_ops *ops)
173 {
174 struct clk *clkp;
175 void *freq_table;
176 int nr_divs = sh_clk_div6_table.nr_divisors;
177 int freq_table_size = sizeof(struct cpufreq_frequency_table);
178 int ret = 0;
179 int k;
180
181 freq_table_size *= (nr_divs + 1);
182 freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
183 if (!freq_table) {
184 pr_err("sh_clk_div6_register: unable to alloc memory\n");
185 return -ENOMEM;
186 }
187
188 for (k = 0; !ret && (k < nr); k++) {
189 clkp = clks + k;
190
191 clkp->ops = ops;
192 clkp->freq_table = freq_table + (k * freq_table_size);
193 clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
194
195 ret = clk_register(clkp);
196 }
197
198 return ret;
199 }
200
201 int __init sh_clk_div6_register(struct clk *clks, int nr)
202 {
203 return sh_clk_div6_register_ops(clks, nr, &sh_clk_div6_clk_ops);
204 }
205
206 int __init sh_clk_div6_reparent_register(struct clk *clks, int nr)
207 {
208 return sh_clk_div6_register_ops(clks, nr,
209 &sh_clk_div6_reparent_clk_ops);
210 }
211
212 static unsigned long sh_clk_div4_recalc(struct clk *clk)
213 {
214 struct clk_div4_table *d4t = clk->priv;
215 struct clk_div_mult_table *table = d4t->div_mult_table;
216 unsigned int idx;
217
218 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
219 table, &clk->arch_flags);
220
221 idx = (__raw_readl(clk->enable_reg) >> clk->enable_bit) & 0x000f;
222
223 return clk->freq_table[idx].frequency;
224 }
225
226 static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent)
227 {
228 struct clk_div4_table *d4t = clk->priv;
229 struct clk_div_mult_table *table = d4t->div_mult_table;
230 u32 value;
231 int ret;
232
233 /* we really need a better way to determine parent index, but for
234 * now assume internal parent comes with CLK_ENABLE_ON_INIT set,
235 * no CLK_ENABLE_ON_INIT means external clock...
236 */
237
238 if (parent->flags & CLK_ENABLE_ON_INIT)
239 value = __raw_readl(clk->enable_reg) & ~(1 << 7);
240 else
241 value = __raw_readl(clk->enable_reg) | (1 << 7);
242
243 ret = clk_reparent(clk, parent);
244 if (ret < 0)
245 return ret;
246
247 __raw_writel(value, clk->enable_reg);
248
249 /* Rebiuld the frequency table */
250 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
251 table, &clk->arch_flags);
252
253 return 0;
254 }
255
256 static int sh_clk_div4_set_rate(struct clk *clk, unsigned long rate, int algo_id)
257 {
258 struct clk_div4_table *d4t = clk->priv;
259 unsigned long value;
260 int idx = clk_rate_table_find(clk, clk->freq_table, rate);
261 if (idx < 0)
262 return idx;
263
264 value = __raw_readl(clk->enable_reg);
265 value &= ~(0xf << clk->enable_bit);
266 value |= (idx << clk->enable_bit);
267 __raw_writel(value, clk->enable_reg);
268
269 if (d4t->kick)
270 d4t->kick(clk);
271
272 return 0;
273 }
274
275 static int sh_clk_div4_enable(struct clk *clk)
276 {
277 __raw_writel(__raw_readl(clk->enable_reg) & ~(1 << 8), clk->enable_reg);
278 return 0;
279 }
280
281 static void sh_clk_div4_disable(struct clk *clk)
282 {
283 __raw_writel(__raw_readl(clk->enable_reg) | (1 << 8), clk->enable_reg);
284 }
285
286 static struct clk_ops sh_clk_div4_clk_ops = {
287 .recalc = sh_clk_div4_recalc,
288 .set_rate = sh_clk_div4_set_rate,
289 .round_rate = sh_clk_div_round_rate,
290 };
291
292 static struct clk_ops sh_clk_div4_enable_clk_ops = {
293 .recalc = sh_clk_div4_recalc,
294 .set_rate = sh_clk_div4_set_rate,
295 .round_rate = sh_clk_div_round_rate,
296 .enable = sh_clk_div4_enable,
297 .disable = sh_clk_div4_disable,
298 };
299
300 static struct clk_ops sh_clk_div4_reparent_clk_ops = {
301 .recalc = sh_clk_div4_recalc,
302 .set_rate = sh_clk_div4_set_rate,
303 .round_rate = sh_clk_div_round_rate,
304 .enable = sh_clk_div4_enable,
305 .disable = sh_clk_div4_disable,
306 .set_parent = sh_clk_div4_set_parent,
307 };
308
309 static int __init sh_clk_div4_register_ops(struct clk *clks, int nr,
310 struct clk_div4_table *table, struct clk_ops *ops)
311 {
312 struct clk *clkp;
313 void *freq_table;
314 int nr_divs = table->div_mult_table->nr_divisors;
315 int freq_table_size = sizeof(struct cpufreq_frequency_table);
316 int ret = 0;
317 int k;
318
319 freq_table_size *= (nr_divs + 1);
320 freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
321 if (!freq_table) {
322 pr_err("sh_clk_div4_register: unable to alloc memory\n");
323 return -ENOMEM;
324 }
325
326 for (k = 0; !ret && (k < nr); k++) {
327 clkp = clks + k;
328
329 clkp->ops = ops;
330 clkp->priv = table;
331
332 clkp->freq_table = freq_table + (k * freq_table_size);
333 clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
334
335 ret = clk_register(clkp);
336 }
337
338 return ret;
339 }
340
341 int __init sh_clk_div4_register(struct clk *clks, int nr,
342 struct clk_div4_table *table)
343 {
344 return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_clk_ops);
345 }
346
347 int __init sh_clk_div4_enable_register(struct clk *clks, int nr,
348 struct clk_div4_table *table)
349 {
350 return sh_clk_div4_register_ops(clks, nr, table,
351 &sh_clk_div4_enable_clk_ops);
352 }
353
354 int __init sh_clk_div4_reparent_register(struct clk *clks, int nr,
355 struct clk_div4_table *table)
356 {
357 return sh_clk_div4_register_ops(clks, nr, table,
358 &sh_clk_div4_reparent_clk_ops);
359 }