]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/soc/qcom/smem.c
Merge tag 'gvt-fixes-2018-12-04' of https://github.com/intel/gvt-linux into drm-intel...
[mirror_ubuntu-jammy-kernel.git] / drivers / soc / qcom / smem.c
1 /*
2 * Copyright (c) 2015, Sony Mobile Communications AB.
3 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 and
7 * only version 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <linux/hwspinlock.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 #include <linux/soc/qcom/smem.h>
24
25 /*
26 * The Qualcomm shared memory system is a allocate only heap structure that
27 * consists of one of more memory areas that can be accessed by the processors
28 * in the SoC.
29 *
30 * All systems contains a global heap, accessible by all processors in the SoC,
31 * with a table of contents data structure (@smem_header) at the beginning of
32 * the main shared memory block.
33 *
34 * The global header contains meta data for allocations as well as a fixed list
35 * of 512 entries (@smem_global_entry) that can be initialized to reference
36 * parts of the shared memory space.
37 *
38 *
39 * In addition to this global heap a set of "private" heaps can be set up at
40 * boot time with access restrictions so that only certain processor pairs can
41 * access the data.
42 *
43 * These partitions are referenced from an optional partition table
44 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
45 * partition table entries (@smem_ptable_entry) lists the involved processors
46 * (or hosts) and their location in the main shared memory region.
47 *
48 * Each partition starts with a header (@smem_partition_header) that identifies
49 * the partition and holds properties for the two internal memory regions. The
50 * two regions are cached and non-cached memory respectively. Each region
51 * contain a link list of allocation headers (@smem_private_entry) followed by
52 * their data.
53 *
54 * Items in the non-cached region are allocated from the start of the partition
55 * while items in the cached region are allocated from the end. The free area
56 * is hence the region between the cached and non-cached offsets. The header of
57 * cached items comes after the data.
58 *
59 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
60 * for the global heap. A new global partition is created from the global heap
61 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
62 * set by the bootloader.
63 *
64 * To synchronize allocations in the shared memory heaps a remote spinlock must
65 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
66 * platforms.
67 *
68 */
69
70 /*
71 * The version member of the smem header contains an array of versions for the
72 * various software components in the SoC. We verify that the boot loader
73 * version is a valid version as a sanity check.
74 */
75 #define SMEM_MASTER_SBL_VERSION_INDEX 7
76 #define SMEM_GLOBAL_HEAP_VERSION 11
77 #define SMEM_GLOBAL_PART_VERSION 12
78
79 /*
80 * The first 8 items are only to be allocated by the boot loader while
81 * initializing the heap.
82 */
83 #define SMEM_ITEM_LAST_FIXED 8
84
85 /* Highest accepted item number, for both global and private heaps */
86 #define SMEM_ITEM_COUNT 512
87
88 /* Processor/host identifier for the application processor */
89 #define SMEM_HOST_APPS 0
90
91 /* Processor/host identifier for the global partition */
92 #define SMEM_GLOBAL_HOST 0xfffe
93
94 /* Max number of processors/hosts in a system */
95 #define SMEM_HOST_COUNT 10
96
97 /**
98 * struct smem_proc_comm - proc_comm communication struct (legacy)
99 * @command: current command to be executed
100 * @status: status of the currently requested command
101 * @params: parameters to the command
102 */
103 struct smem_proc_comm {
104 __le32 command;
105 __le32 status;
106 __le32 params[2];
107 };
108
109 /**
110 * struct smem_global_entry - entry to reference smem items on the heap
111 * @allocated: boolean to indicate if this entry is used
112 * @offset: offset to the allocated space
113 * @size: size of the allocated space, 8 byte aligned
114 * @aux_base: base address for the memory region used by this unit, or 0 for
115 * the default region. bits 0,1 are reserved
116 */
117 struct smem_global_entry {
118 __le32 allocated;
119 __le32 offset;
120 __le32 size;
121 __le32 aux_base; /* bits 1:0 reserved */
122 };
123 #define AUX_BASE_MASK 0xfffffffc
124
125 /**
126 * struct smem_header - header found in beginning of primary smem region
127 * @proc_comm: proc_comm communication interface (legacy)
128 * @version: array of versions for the various subsystems
129 * @initialized: boolean to indicate that smem is initialized
130 * @free_offset: index of the first unallocated byte in smem
131 * @available: number of bytes available for allocation
132 * @reserved: reserved field, must be 0
133 * toc: array of references to items
134 */
135 struct smem_header {
136 struct smem_proc_comm proc_comm[4];
137 __le32 version[32];
138 __le32 initialized;
139 __le32 free_offset;
140 __le32 available;
141 __le32 reserved;
142 struct smem_global_entry toc[SMEM_ITEM_COUNT];
143 };
144
145 /**
146 * struct smem_ptable_entry - one entry in the @smem_ptable list
147 * @offset: offset, within the main shared memory region, of the partition
148 * @size: size of the partition
149 * @flags: flags for the partition (currently unused)
150 * @host0: first processor/host with access to this partition
151 * @host1: second processor/host with access to this partition
152 * @cacheline: alignment for "cached" entries
153 * @reserved: reserved entries for later use
154 */
155 struct smem_ptable_entry {
156 __le32 offset;
157 __le32 size;
158 __le32 flags;
159 __le16 host0;
160 __le16 host1;
161 __le32 cacheline;
162 __le32 reserved[7];
163 };
164
165 /**
166 * struct smem_ptable - partition table for the private partitions
167 * @magic: magic number, must be SMEM_PTABLE_MAGIC
168 * @version: version of the partition table
169 * @num_entries: number of partitions in the table
170 * @reserved: for now reserved entries
171 * @entry: list of @smem_ptable_entry for the @num_entries partitions
172 */
173 struct smem_ptable {
174 u8 magic[4];
175 __le32 version;
176 __le32 num_entries;
177 __le32 reserved[5];
178 struct smem_ptable_entry entry[];
179 };
180
181 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
182
183 /**
184 * struct smem_partition_header - header of the partitions
185 * @magic: magic number, must be SMEM_PART_MAGIC
186 * @host0: first processor/host with access to this partition
187 * @host1: second processor/host with access to this partition
188 * @size: size of the partition
189 * @offset_free_uncached: offset to the first free byte of uncached memory in
190 * this partition
191 * @offset_free_cached: offset to the first free byte of cached memory in this
192 * partition
193 * @reserved: for now reserved entries
194 */
195 struct smem_partition_header {
196 u8 magic[4];
197 __le16 host0;
198 __le16 host1;
199 __le32 size;
200 __le32 offset_free_uncached;
201 __le32 offset_free_cached;
202 __le32 reserved[3];
203 };
204
205 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
206
207 /**
208 * struct smem_private_entry - header of each item in the private partition
209 * @canary: magic number, must be SMEM_PRIVATE_CANARY
210 * @item: identifying number of the smem item
211 * @size: size of the data, including padding bytes
212 * @padding_data: number of bytes of padding of data
213 * @padding_hdr: number of bytes of padding between the header and the data
214 * @reserved: for now reserved entry
215 */
216 struct smem_private_entry {
217 u16 canary; /* bytes are the same so no swapping needed */
218 __le16 item;
219 __le32 size; /* includes padding bytes */
220 __le16 padding_data;
221 __le16 padding_hdr;
222 __le32 reserved;
223 };
224 #define SMEM_PRIVATE_CANARY 0xa5a5
225
226 /**
227 * struct smem_info - smem region info located after the table of contents
228 * @magic: magic number, must be SMEM_INFO_MAGIC
229 * @size: size of the smem region
230 * @base_addr: base address of the smem region
231 * @reserved: for now reserved entry
232 * @num_items: highest accepted item number
233 */
234 struct smem_info {
235 u8 magic[4];
236 __le32 size;
237 __le32 base_addr;
238 __le32 reserved;
239 __le16 num_items;
240 };
241
242 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
243
244 /**
245 * struct smem_region - representation of a chunk of memory used for smem
246 * @aux_base: identifier of aux_mem base
247 * @virt_base: virtual base address of memory with this aux_mem identifier
248 * @size: size of the memory region
249 */
250 struct smem_region {
251 u32 aux_base;
252 void __iomem *virt_base;
253 size_t size;
254 };
255
256 /**
257 * struct qcom_smem - device data for the smem device
258 * @dev: device pointer
259 * @hwlock: reference to a hwspinlock
260 * @global_partition: pointer to global partition when in use
261 * @global_cacheline: cacheline size for global partition
262 * @partitions: list of pointers to partitions affecting the current
263 * processor/host
264 * @cacheline: list of cacheline sizes for each host
265 * @item_count: max accepted item number
266 * @num_regions: number of @regions
267 * @regions: list of the memory regions defining the shared memory
268 */
269 struct qcom_smem {
270 struct device *dev;
271
272 struct hwspinlock *hwlock;
273
274 struct smem_partition_header *global_partition;
275 size_t global_cacheline;
276 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
277 size_t cacheline[SMEM_HOST_COUNT];
278 u32 item_count;
279
280 unsigned num_regions;
281 struct smem_region regions[];
282 };
283
284 static void *
285 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
286 {
287 void *p = phdr;
288
289 return p + le32_to_cpu(phdr->offset_free_uncached);
290 }
291
292 static struct smem_private_entry *
293 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
294 size_t cacheline)
295 {
296 void *p = phdr;
297 struct smem_private_entry *e;
298
299 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
300 }
301
302 static void *
303 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
304 {
305 void *p = phdr;
306
307 return p + le32_to_cpu(phdr->offset_free_cached);
308 }
309
310 static struct smem_private_entry *
311 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
312 {
313 void *p = phdr;
314
315 return p + sizeof(*phdr);
316 }
317
318 static struct smem_private_entry *
319 uncached_entry_next(struct smem_private_entry *e)
320 {
321 void *p = e;
322
323 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
324 le32_to_cpu(e->size);
325 }
326
327 static struct smem_private_entry *
328 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
329 {
330 void *p = e;
331
332 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
333 }
334
335 static void *uncached_entry_to_item(struct smem_private_entry *e)
336 {
337 void *p = e;
338
339 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
340 }
341
342 static void *cached_entry_to_item(struct smem_private_entry *e)
343 {
344 void *p = e;
345
346 return p - le32_to_cpu(e->size);
347 }
348
349 /* Pointer to the one and only smem handle */
350 static struct qcom_smem *__smem;
351
352 /* Timeout (ms) for the trylock of remote spinlocks */
353 #define HWSPINLOCK_TIMEOUT 1000
354
355 static int qcom_smem_alloc_private(struct qcom_smem *smem,
356 struct smem_partition_header *phdr,
357 unsigned item,
358 size_t size)
359 {
360 struct smem_private_entry *hdr, *end;
361 size_t alloc_size;
362 void *cached;
363
364 hdr = phdr_to_first_uncached_entry(phdr);
365 end = phdr_to_last_uncached_entry(phdr);
366 cached = phdr_to_last_cached_entry(phdr);
367
368 while (hdr < end) {
369 if (hdr->canary != SMEM_PRIVATE_CANARY)
370 goto bad_canary;
371 if (le16_to_cpu(hdr->item) == item)
372 return -EEXIST;
373
374 hdr = uncached_entry_next(hdr);
375 }
376
377 /* Check that we don't grow into the cached region */
378 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
379 if ((void *)hdr + alloc_size > cached) {
380 dev_err(smem->dev, "Out of memory\n");
381 return -ENOSPC;
382 }
383
384 hdr->canary = SMEM_PRIVATE_CANARY;
385 hdr->item = cpu_to_le16(item);
386 hdr->size = cpu_to_le32(ALIGN(size, 8));
387 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
388 hdr->padding_hdr = 0;
389
390 /*
391 * Ensure the header is written before we advance the free offset, so
392 * that remote processors that does not take the remote spinlock still
393 * gets a consistent view of the linked list.
394 */
395 wmb();
396 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
397
398 return 0;
399 bad_canary:
400 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
401 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
402
403 return -EINVAL;
404 }
405
406 static int qcom_smem_alloc_global(struct qcom_smem *smem,
407 unsigned item,
408 size_t size)
409 {
410 struct smem_global_entry *entry;
411 struct smem_header *header;
412
413 header = smem->regions[0].virt_base;
414 entry = &header->toc[item];
415 if (entry->allocated)
416 return -EEXIST;
417
418 size = ALIGN(size, 8);
419 if (WARN_ON(size > le32_to_cpu(header->available)))
420 return -ENOMEM;
421
422 entry->offset = header->free_offset;
423 entry->size = cpu_to_le32(size);
424
425 /*
426 * Ensure the header is consistent before we mark the item allocated,
427 * so that remote processors will get a consistent view of the item
428 * even though they do not take the spinlock on read.
429 */
430 wmb();
431 entry->allocated = cpu_to_le32(1);
432
433 le32_add_cpu(&header->free_offset, size);
434 le32_add_cpu(&header->available, -size);
435
436 return 0;
437 }
438
439 /**
440 * qcom_smem_alloc() - allocate space for a smem item
441 * @host: remote processor id, or -1
442 * @item: smem item handle
443 * @size: number of bytes to be allocated
444 *
445 * Allocate space for a given smem item of size @size, given that the item is
446 * not yet allocated.
447 */
448 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
449 {
450 struct smem_partition_header *phdr;
451 unsigned long flags;
452 int ret;
453
454 if (!__smem)
455 return -EPROBE_DEFER;
456
457 if (item < SMEM_ITEM_LAST_FIXED) {
458 dev_err(__smem->dev,
459 "Rejecting allocation of static entry %d\n", item);
460 return -EINVAL;
461 }
462
463 if (WARN_ON(item >= __smem->item_count))
464 return -EINVAL;
465
466 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
467 HWSPINLOCK_TIMEOUT,
468 &flags);
469 if (ret)
470 return ret;
471
472 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
473 phdr = __smem->partitions[host];
474 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
475 } else if (__smem->global_partition) {
476 phdr = __smem->global_partition;
477 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
478 } else {
479 ret = qcom_smem_alloc_global(__smem, item, size);
480 }
481
482 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
483
484 return ret;
485 }
486 EXPORT_SYMBOL(qcom_smem_alloc);
487
488 static void *qcom_smem_get_global(struct qcom_smem *smem,
489 unsigned item,
490 size_t *size)
491 {
492 struct smem_header *header;
493 struct smem_region *region;
494 struct smem_global_entry *entry;
495 u32 aux_base;
496 unsigned i;
497
498 header = smem->regions[0].virt_base;
499 entry = &header->toc[item];
500 if (!entry->allocated)
501 return ERR_PTR(-ENXIO);
502
503 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
504
505 for (i = 0; i < smem->num_regions; i++) {
506 region = &smem->regions[i];
507
508 if (region->aux_base == aux_base || !aux_base) {
509 if (size != NULL)
510 *size = le32_to_cpu(entry->size);
511 return region->virt_base + le32_to_cpu(entry->offset);
512 }
513 }
514
515 return ERR_PTR(-ENOENT);
516 }
517
518 static void *qcom_smem_get_private(struct qcom_smem *smem,
519 struct smem_partition_header *phdr,
520 size_t cacheline,
521 unsigned item,
522 size_t *size)
523 {
524 struct smem_private_entry *e, *end;
525
526 e = phdr_to_first_uncached_entry(phdr);
527 end = phdr_to_last_uncached_entry(phdr);
528
529 while (e < end) {
530 if (e->canary != SMEM_PRIVATE_CANARY)
531 goto invalid_canary;
532
533 if (le16_to_cpu(e->item) == item) {
534 if (size != NULL)
535 *size = le32_to_cpu(e->size) -
536 le16_to_cpu(e->padding_data);
537
538 return uncached_entry_to_item(e);
539 }
540
541 e = uncached_entry_next(e);
542 }
543
544 /* Item was not found in the uncached list, search the cached list */
545
546 e = phdr_to_first_cached_entry(phdr, cacheline);
547 end = phdr_to_last_cached_entry(phdr);
548
549 while (e > end) {
550 if (e->canary != SMEM_PRIVATE_CANARY)
551 goto invalid_canary;
552
553 if (le16_to_cpu(e->item) == item) {
554 if (size != NULL)
555 *size = le32_to_cpu(e->size) -
556 le16_to_cpu(e->padding_data);
557
558 return cached_entry_to_item(e);
559 }
560
561 e = cached_entry_next(e, cacheline);
562 }
563
564 return ERR_PTR(-ENOENT);
565
566 invalid_canary:
567 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
568 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
569
570 return ERR_PTR(-EINVAL);
571 }
572
573 /**
574 * qcom_smem_get() - resolve ptr of size of a smem item
575 * @host: the remote processor, or -1
576 * @item: smem item handle
577 * @size: pointer to be filled out with size of the item
578 *
579 * Looks up smem item and returns pointer to it. Size of smem
580 * item is returned in @size.
581 */
582 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
583 {
584 struct smem_partition_header *phdr;
585 unsigned long flags;
586 size_t cacheln;
587 int ret;
588 void *ptr = ERR_PTR(-EPROBE_DEFER);
589
590 if (!__smem)
591 return ptr;
592
593 if (WARN_ON(item >= __smem->item_count))
594 return ERR_PTR(-EINVAL);
595
596 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
597 HWSPINLOCK_TIMEOUT,
598 &flags);
599 if (ret)
600 return ERR_PTR(ret);
601
602 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
603 phdr = __smem->partitions[host];
604 cacheln = __smem->cacheline[host];
605 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
606 } else if (__smem->global_partition) {
607 phdr = __smem->global_partition;
608 cacheln = __smem->global_cacheline;
609 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
610 } else {
611 ptr = qcom_smem_get_global(__smem, item, size);
612 }
613
614 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
615
616 return ptr;
617
618 }
619 EXPORT_SYMBOL(qcom_smem_get);
620
621 /**
622 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
623 * @host: the remote processor identifying a partition, or -1
624 *
625 * To be used by smem clients as a quick way to determine if any new
626 * allocations has been made.
627 */
628 int qcom_smem_get_free_space(unsigned host)
629 {
630 struct smem_partition_header *phdr;
631 struct smem_header *header;
632 unsigned ret;
633
634 if (!__smem)
635 return -EPROBE_DEFER;
636
637 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
638 phdr = __smem->partitions[host];
639 ret = le32_to_cpu(phdr->offset_free_cached) -
640 le32_to_cpu(phdr->offset_free_uncached);
641 } else if (__smem->global_partition) {
642 phdr = __smem->global_partition;
643 ret = le32_to_cpu(phdr->offset_free_cached) -
644 le32_to_cpu(phdr->offset_free_uncached);
645 } else {
646 header = __smem->regions[0].virt_base;
647 ret = le32_to_cpu(header->available);
648 }
649
650 return ret;
651 }
652 EXPORT_SYMBOL(qcom_smem_get_free_space);
653
654 /**
655 * qcom_smem_virt_to_phys() - return the physical address associated
656 * with an smem item pointer (previously returned by qcom_smem_get()
657 * @p: the virtual address to convert
658 *
659 * Returns 0 if the pointer provided is not within any smem region.
660 */
661 phys_addr_t qcom_smem_virt_to_phys(void *p)
662 {
663 unsigned i;
664
665 for (i = 0; i < __smem->num_regions; i++) {
666 struct smem_region *region = &__smem->regions[i];
667
668 if (p < region->virt_base)
669 continue;
670 if (p < region->virt_base + region->size) {
671 u64 offset = p - region->virt_base;
672
673 return (phys_addr_t)region->aux_base + offset;
674 }
675 }
676
677 return 0;
678 }
679 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
680
681 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
682 {
683 struct smem_header *header;
684 __le32 *versions;
685
686 header = smem->regions[0].virt_base;
687 versions = header->version;
688
689 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
690 }
691
692 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
693 {
694 struct smem_ptable *ptable;
695 u32 version;
696
697 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
698 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
699 return ERR_PTR(-ENOENT);
700
701 version = le32_to_cpu(ptable->version);
702 if (version != 1) {
703 dev_err(smem->dev,
704 "Unsupported partition header version %d\n", version);
705 return ERR_PTR(-EINVAL);
706 }
707 return ptable;
708 }
709
710 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
711 {
712 struct smem_ptable *ptable;
713 struct smem_info *info;
714
715 ptable = qcom_smem_get_ptable(smem);
716 if (IS_ERR_OR_NULL(ptable))
717 return SMEM_ITEM_COUNT;
718
719 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
720 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
721 return SMEM_ITEM_COUNT;
722
723 return le16_to_cpu(info->num_items);
724 }
725
726 /*
727 * Validate the partition header for a partition whose partition
728 * table entry is supplied. Returns a pointer to its header if
729 * valid, or a null pointer otherwise.
730 */
731 static struct smem_partition_header *
732 qcom_smem_partition_header(struct qcom_smem *smem,
733 struct smem_ptable_entry *entry, u16 host0, u16 host1)
734 {
735 struct smem_partition_header *header;
736 u32 size;
737
738 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
739
740 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
741 dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
742 header->magic[0], header->magic[1],
743 header->magic[2], header->magic[3]);
744 return NULL;
745 }
746
747 if (host0 != le16_to_cpu(header->host0)) {
748 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
749 host0, le16_to_cpu(header->host0));
750 return NULL;
751 }
752 if (host1 != le16_to_cpu(header->host1)) {
753 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
754 host1, le16_to_cpu(header->host1));
755 return NULL;
756 }
757
758 size = le32_to_cpu(header->size);
759 if (size != le32_to_cpu(entry->size)) {
760 dev_err(smem->dev, "bad partition size (%u != %u)\n",
761 size, le32_to_cpu(entry->size));
762 return NULL;
763 }
764
765 if (le32_to_cpu(header->offset_free_uncached) > size) {
766 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
767 le32_to_cpu(header->offset_free_uncached), size);
768 return NULL;
769 }
770
771 return header;
772 }
773
774 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
775 {
776 struct smem_partition_header *header;
777 struct smem_ptable_entry *entry;
778 struct smem_ptable *ptable;
779 bool found = false;
780 int i;
781
782 if (smem->global_partition) {
783 dev_err(smem->dev, "Already found the global partition\n");
784 return -EINVAL;
785 }
786
787 ptable = qcom_smem_get_ptable(smem);
788 if (IS_ERR(ptable))
789 return PTR_ERR(ptable);
790
791 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
792 entry = &ptable->entry[i];
793 if (!le32_to_cpu(entry->offset))
794 continue;
795 if (!le32_to_cpu(entry->size))
796 continue;
797
798 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
799 continue;
800
801 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
802 found = true;
803 break;
804 }
805 }
806
807 if (!found) {
808 dev_err(smem->dev, "Missing entry for global partition\n");
809 return -EINVAL;
810 }
811
812 header = qcom_smem_partition_header(smem, entry,
813 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
814 if (!header)
815 return -EINVAL;
816
817 smem->global_partition = header;
818 smem->global_cacheline = le32_to_cpu(entry->cacheline);
819
820 return 0;
821 }
822
823 static int
824 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
825 {
826 struct smem_partition_header *header;
827 struct smem_ptable_entry *entry;
828 struct smem_ptable *ptable;
829 unsigned int remote_host;
830 u16 host0, host1;
831 int i;
832
833 ptable = qcom_smem_get_ptable(smem);
834 if (IS_ERR(ptable))
835 return PTR_ERR(ptable);
836
837 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
838 entry = &ptable->entry[i];
839 if (!le32_to_cpu(entry->offset))
840 continue;
841 if (!le32_to_cpu(entry->size))
842 continue;
843
844 host0 = le16_to_cpu(entry->host0);
845 host1 = le16_to_cpu(entry->host1);
846 if (host0 == local_host)
847 remote_host = host1;
848 else if (host1 == local_host)
849 remote_host = host0;
850 else
851 continue;
852
853 if (remote_host >= SMEM_HOST_COUNT) {
854 dev_err(smem->dev, "bad host %hu\n", remote_host);
855 return -EINVAL;
856 }
857
858 if (smem->partitions[remote_host]) {
859 dev_err(smem->dev, "duplicate host %hu\n", remote_host);
860 return -EINVAL;
861 }
862
863 header = qcom_smem_partition_header(smem, entry, host0, host1);
864 if (!header)
865 return -EINVAL;
866
867 smem->partitions[remote_host] = header;
868 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
869 }
870
871 return 0;
872 }
873
874 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
875 const char *name, int i)
876 {
877 struct device_node *np;
878 struct resource r;
879 resource_size_t size;
880 int ret;
881
882 np = of_parse_phandle(dev->of_node, name, 0);
883 if (!np) {
884 dev_err(dev, "No %s specified\n", name);
885 return -EINVAL;
886 }
887
888 ret = of_address_to_resource(np, 0, &r);
889 of_node_put(np);
890 if (ret)
891 return ret;
892 size = resource_size(&r);
893
894 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
895 if (!smem->regions[i].virt_base)
896 return -ENOMEM;
897 smem->regions[i].aux_base = (u32)r.start;
898 smem->regions[i].size = size;
899
900 return 0;
901 }
902
903 static int qcom_smem_probe(struct platform_device *pdev)
904 {
905 struct smem_header *header;
906 struct qcom_smem *smem;
907 size_t array_size;
908 int num_regions;
909 int hwlock_id;
910 u32 version;
911 int ret;
912
913 num_regions = 1;
914 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
915 num_regions++;
916
917 array_size = num_regions * sizeof(struct smem_region);
918 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
919 if (!smem)
920 return -ENOMEM;
921
922 smem->dev = &pdev->dev;
923 smem->num_regions = num_regions;
924
925 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
926 if (ret)
927 return ret;
928
929 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
930 "qcom,rpm-msg-ram", 1)))
931 return ret;
932
933 header = smem->regions[0].virt_base;
934 if (le32_to_cpu(header->initialized) != 1 ||
935 le32_to_cpu(header->reserved)) {
936 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
937 return -EINVAL;
938 }
939
940 version = qcom_smem_get_sbl_version(smem);
941 switch (version >> 16) {
942 case SMEM_GLOBAL_PART_VERSION:
943 ret = qcom_smem_set_global_partition(smem);
944 if (ret < 0)
945 return ret;
946 smem->item_count = qcom_smem_get_item_count(smem);
947 break;
948 case SMEM_GLOBAL_HEAP_VERSION:
949 smem->item_count = SMEM_ITEM_COUNT;
950 break;
951 default:
952 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
953 return -EINVAL;
954 }
955
956 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
957 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
958 if (ret < 0 && ret != -ENOENT)
959 return ret;
960
961 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
962 if (hwlock_id < 0) {
963 if (hwlock_id != -EPROBE_DEFER)
964 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
965 return hwlock_id;
966 }
967
968 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
969 if (!smem->hwlock)
970 return -ENXIO;
971
972 __smem = smem;
973
974 return 0;
975 }
976
977 static int qcom_smem_remove(struct platform_device *pdev)
978 {
979 hwspin_lock_free(__smem->hwlock);
980 __smem = NULL;
981
982 return 0;
983 }
984
985 static const struct of_device_id qcom_smem_of_match[] = {
986 { .compatible = "qcom,smem" },
987 {}
988 };
989 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
990
991 static struct platform_driver qcom_smem_driver = {
992 .probe = qcom_smem_probe,
993 .remove = qcom_smem_remove,
994 .driver = {
995 .name = "qcom-smem",
996 .of_match_table = qcom_smem_of_match,
997 .suppress_bind_attrs = true,
998 },
999 };
1000
1001 static int __init qcom_smem_init(void)
1002 {
1003 return platform_driver_register(&qcom_smem_driver);
1004 }
1005 arch_initcall(qcom_smem_init);
1006
1007 static void __exit qcom_smem_exit(void)
1008 {
1009 platform_driver_unregister(&qcom_smem_driver);
1010 }
1011 module_exit(qcom_smem_exit)
1012
1013 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1014 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1015 MODULE_LICENSE("GPL v2");