]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/soc/ti/knav_qmss_queue.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / soc / ti / knav_qmss_queue.c
1 /*
2 * Keystone Queue Manager subsystem driver
3 *
4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5 * Authors: Sandeep Nair <sandeep_n@ti.com>
6 * Cyril Chemparathy <cyril@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 */
18
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31
32 #include "knav_qmss.h"
33
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX 0
39 #define KNAV_QUEUE_STATUS_REG_INDEX 1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
41 #define KNAV_QUEUE_REGION_REG_INDEX 3
42 #define KNAV_QUEUE_PUSH_REG_INDEX 4
43 #define KNAV_QUEUE_POP_REG_INDEX 5
44
45 /* PDSP register indices in DTS */
46 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
47 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
48 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
49 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
50
51 #define knav_queue_idx_to_inst(kdev, idx) \
52 (kdev->instances + (idx << kdev->inst_shift))
53
54 #define for_each_handle_rcu(qh, inst) \
55 list_for_each_entry_rcu(qh, &inst->handles, list)
56
57 #define for_each_instance(idx, inst, kdev) \
58 for (idx = 0, inst = kdev->instances; \
59 idx < (kdev)->num_queues_in_use; \
60 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
61
62 /* All firmware file names end up here. List the firmware file names below.
63 * Newest followed by older ones. Search is done from start of the array
64 * until a firmware file is found.
65 */
66 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
67
68 /**
69 * knav_queue_notify: qmss queue notfier call
70 *
71 * @inst: qmss queue instance like accumulator
72 */
73 void knav_queue_notify(struct knav_queue_inst *inst)
74 {
75 struct knav_queue *qh;
76
77 if (!inst)
78 return;
79
80 rcu_read_lock();
81 for_each_handle_rcu(qh, inst) {
82 if (atomic_read(&qh->notifier_enabled) <= 0)
83 continue;
84 if (WARN_ON(!qh->notifier_fn))
85 continue;
86 atomic_inc(&qh->stats.notifies);
87 qh->notifier_fn(qh->notifier_fn_arg);
88 }
89 rcu_read_unlock();
90 }
91 EXPORT_SYMBOL_GPL(knav_queue_notify);
92
93 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
94 {
95 struct knav_queue_inst *inst = _instdata;
96
97 knav_queue_notify(inst);
98 return IRQ_HANDLED;
99 }
100
101 static int knav_queue_setup_irq(struct knav_range_info *range,
102 struct knav_queue_inst *inst)
103 {
104 unsigned queue = inst->id - range->queue_base;
105 unsigned long cpu_map;
106 int ret = 0, irq;
107
108 if (range->flags & RANGE_HAS_IRQ) {
109 irq = range->irqs[queue].irq;
110 cpu_map = range->irqs[queue].cpu_map;
111 ret = request_irq(irq, knav_queue_int_handler, 0,
112 inst->irq_name, inst);
113 if (ret)
114 return ret;
115 disable_irq(irq);
116 if (cpu_map) {
117 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
118 if (ret) {
119 dev_warn(range->kdev->dev,
120 "Failed to set IRQ affinity\n");
121 return ret;
122 }
123 }
124 }
125 return ret;
126 }
127
128 static void knav_queue_free_irq(struct knav_queue_inst *inst)
129 {
130 struct knav_range_info *range = inst->range;
131 unsigned queue = inst->id - inst->range->queue_base;
132 int irq;
133
134 if (range->flags & RANGE_HAS_IRQ) {
135 irq = range->irqs[queue].irq;
136 irq_set_affinity_hint(irq, NULL);
137 free_irq(irq, inst);
138 }
139 }
140
141 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
142 {
143 return !list_empty(&inst->handles);
144 }
145
146 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
147 {
148 return inst->range->flags & RANGE_RESERVED;
149 }
150
151 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
152 {
153 struct knav_queue *tmp;
154
155 rcu_read_lock();
156 for_each_handle_rcu(tmp, inst) {
157 if (tmp->flags & KNAV_QUEUE_SHARED) {
158 rcu_read_unlock();
159 return true;
160 }
161 }
162 rcu_read_unlock();
163 return false;
164 }
165
166 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
167 unsigned type)
168 {
169 if ((type == KNAV_QUEUE_QPEND) &&
170 (inst->range->flags & RANGE_HAS_IRQ)) {
171 return true;
172 } else if ((type == KNAV_QUEUE_ACC) &&
173 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
174 return true;
175 } else if ((type == KNAV_QUEUE_GP) &&
176 !(inst->range->flags &
177 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
178 return true;
179 }
180 return false;
181 }
182
183 static inline struct knav_queue_inst *
184 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
185 {
186 struct knav_queue_inst *inst;
187 int idx;
188
189 for_each_instance(idx, inst, kdev) {
190 if (inst->id == id)
191 return inst;
192 }
193 return NULL;
194 }
195
196 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
197 {
198 if (kdev->base_id <= id &&
199 kdev->base_id + kdev->num_queues > id) {
200 id -= kdev->base_id;
201 return knav_queue_match_id_to_inst(kdev, id);
202 }
203 return NULL;
204 }
205
206 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
207 const char *name, unsigned flags)
208 {
209 struct knav_queue *qh;
210 unsigned id;
211 int ret = 0;
212
213 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
214 if (!qh)
215 return ERR_PTR(-ENOMEM);
216
217 qh->flags = flags;
218 qh->inst = inst;
219 id = inst->id - inst->qmgr->start_queue;
220 qh->reg_push = &inst->qmgr->reg_push[id];
221 qh->reg_pop = &inst->qmgr->reg_pop[id];
222 qh->reg_peek = &inst->qmgr->reg_peek[id];
223
224 /* first opener? */
225 if (!knav_queue_is_busy(inst)) {
226 struct knav_range_info *range = inst->range;
227
228 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
229 if (range->ops && range->ops->open_queue)
230 ret = range->ops->open_queue(range, inst, flags);
231
232 if (ret) {
233 devm_kfree(inst->kdev->dev, qh);
234 return ERR_PTR(ret);
235 }
236 }
237 list_add_tail_rcu(&qh->list, &inst->handles);
238 return qh;
239 }
240
241 static struct knav_queue *
242 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
243 {
244 struct knav_queue_inst *inst;
245 struct knav_queue *qh;
246
247 mutex_lock(&knav_dev_lock);
248
249 qh = ERR_PTR(-ENODEV);
250 inst = knav_queue_find_by_id(id);
251 if (!inst)
252 goto unlock_ret;
253
254 qh = ERR_PTR(-EEXIST);
255 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
256 goto unlock_ret;
257
258 qh = ERR_PTR(-EBUSY);
259 if ((flags & KNAV_QUEUE_SHARED) &&
260 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
261 goto unlock_ret;
262
263 qh = __knav_queue_open(inst, name, flags);
264
265 unlock_ret:
266 mutex_unlock(&knav_dev_lock);
267
268 return qh;
269 }
270
271 static struct knav_queue *knav_queue_open_by_type(const char *name,
272 unsigned type, unsigned flags)
273 {
274 struct knav_queue_inst *inst;
275 struct knav_queue *qh = ERR_PTR(-EINVAL);
276 int idx;
277
278 mutex_lock(&knav_dev_lock);
279
280 for_each_instance(idx, inst, kdev) {
281 if (knav_queue_is_reserved(inst))
282 continue;
283 if (!knav_queue_match_type(inst, type))
284 continue;
285 if (knav_queue_is_busy(inst))
286 continue;
287 qh = __knav_queue_open(inst, name, flags);
288 goto unlock_ret;
289 }
290
291 unlock_ret:
292 mutex_unlock(&knav_dev_lock);
293 return qh;
294 }
295
296 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
297 {
298 struct knav_range_info *range = inst->range;
299
300 if (range->ops && range->ops->set_notify)
301 range->ops->set_notify(range, inst, enabled);
302 }
303
304 static int knav_queue_enable_notifier(struct knav_queue *qh)
305 {
306 struct knav_queue_inst *inst = qh->inst;
307 bool first;
308
309 if (WARN_ON(!qh->notifier_fn))
310 return -EINVAL;
311
312 /* Adjust the per handle notifier count */
313 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
314 if (!first)
315 return 0; /* nothing to do */
316
317 /* Now adjust the per instance notifier count */
318 first = (atomic_inc_return(&inst->num_notifiers) == 1);
319 if (first)
320 knav_queue_set_notify(inst, true);
321
322 return 0;
323 }
324
325 static int knav_queue_disable_notifier(struct knav_queue *qh)
326 {
327 struct knav_queue_inst *inst = qh->inst;
328 bool last;
329
330 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
331 if (!last)
332 return 0; /* nothing to do */
333
334 last = (atomic_dec_return(&inst->num_notifiers) == 0);
335 if (last)
336 knav_queue_set_notify(inst, false);
337
338 return 0;
339 }
340
341 static int knav_queue_set_notifier(struct knav_queue *qh,
342 struct knav_queue_notify_config *cfg)
343 {
344 knav_queue_notify_fn old_fn = qh->notifier_fn;
345
346 if (!cfg)
347 return -EINVAL;
348
349 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
350 return -ENOTSUPP;
351
352 if (!cfg->fn && old_fn)
353 knav_queue_disable_notifier(qh);
354
355 qh->notifier_fn = cfg->fn;
356 qh->notifier_fn_arg = cfg->fn_arg;
357
358 if (cfg->fn && !old_fn)
359 knav_queue_enable_notifier(qh);
360
361 return 0;
362 }
363
364 static int knav_gp_set_notify(struct knav_range_info *range,
365 struct knav_queue_inst *inst,
366 bool enabled)
367 {
368 unsigned queue;
369
370 if (range->flags & RANGE_HAS_IRQ) {
371 queue = inst->id - range->queue_base;
372 if (enabled)
373 enable_irq(range->irqs[queue].irq);
374 else
375 disable_irq_nosync(range->irqs[queue].irq);
376 }
377 return 0;
378 }
379
380 static int knav_gp_open_queue(struct knav_range_info *range,
381 struct knav_queue_inst *inst, unsigned flags)
382 {
383 return knav_queue_setup_irq(range, inst);
384 }
385
386 static int knav_gp_close_queue(struct knav_range_info *range,
387 struct knav_queue_inst *inst)
388 {
389 knav_queue_free_irq(inst);
390 return 0;
391 }
392
393 struct knav_range_ops knav_gp_range_ops = {
394 .set_notify = knav_gp_set_notify,
395 .open_queue = knav_gp_open_queue,
396 .close_queue = knav_gp_close_queue,
397 };
398
399
400 static int knav_queue_get_count(void *qhandle)
401 {
402 struct knav_queue *qh = qhandle;
403 struct knav_queue_inst *inst = qh->inst;
404
405 return readl_relaxed(&qh->reg_peek[0].entry_count) +
406 atomic_read(&inst->desc_count);
407 }
408
409 static void knav_queue_debug_show_instance(struct seq_file *s,
410 struct knav_queue_inst *inst)
411 {
412 struct knav_device *kdev = inst->kdev;
413 struct knav_queue *qh;
414
415 if (!knav_queue_is_busy(inst))
416 return;
417
418 seq_printf(s, "\tqueue id %d (%s)\n",
419 kdev->base_id + inst->id, inst->name);
420 for_each_handle_rcu(qh, inst) {
421 seq_printf(s, "\t\thandle %p: ", qh);
422 seq_printf(s, "pushes %8d, ",
423 atomic_read(&qh->stats.pushes));
424 seq_printf(s, "pops %8d, ",
425 atomic_read(&qh->stats.pops));
426 seq_printf(s, "count %8d, ",
427 knav_queue_get_count(qh));
428 seq_printf(s, "notifies %8d, ",
429 atomic_read(&qh->stats.notifies));
430 seq_printf(s, "push errors %8d, ",
431 atomic_read(&qh->stats.push_errors));
432 seq_printf(s, "pop errors %8d\n",
433 atomic_read(&qh->stats.pop_errors));
434 }
435 }
436
437 static int knav_queue_debug_show(struct seq_file *s, void *v)
438 {
439 struct knav_queue_inst *inst;
440 int idx;
441
442 mutex_lock(&knav_dev_lock);
443 seq_printf(s, "%s: %u-%u\n",
444 dev_name(kdev->dev), kdev->base_id,
445 kdev->base_id + kdev->num_queues - 1);
446 for_each_instance(idx, inst, kdev)
447 knav_queue_debug_show_instance(s, inst);
448 mutex_unlock(&knav_dev_lock);
449
450 return 0;
451 }
452
453 static int knav_queue_debug_open(struct inode *inode, struct file *file)
454 {
455 return single_open(file, knav_queue_debug_show, NULL);
456 }
457
458 static const struct file_operations knav_queue_debug_ops = {
459 .open = knav_queue_debug_open,
460 .read = seq_read,
461 .llseek = seq_lseek,
462 .release = single_release,
463 };
464
465 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
466 u32 flags)
467 {
468 unsigned long end;
469 u32 val = 0;
470
471 end = jiffies + msecs_to_jiffies(timeout);
472 while (time_after(end, jiffies)) {
473 val = readl_relaxed(addr);
474 if (flags)
475 val &= flags;
476 if (!val)
477 break;
478 cpu_relax();
479 }
480 return val ? -ETIMEDOUT : 0;
481 }
482
483
484 static int knav_queue_flush(struct knav_queue *qh)
485 {
486 struct knav_queue_inst *inst = qh->inst;
487 unsigned id = inst->id - inst->qmgr->start_queue;
488
489 atomic_set(&inst->desc_count, 0);
490 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
491 return 0;
492 }
493
494 /**
495 * knav_queue_open() - open a hardware queue
496 * @name - name to give the queue handle
497 * @id - desired queue number if any or specifes the type
498 * of queue
499 * @flags - the following flags are applicable to queues:
500 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
501 * exclusive by default.
502 * Subsequent attempts to open a shared queue should
503 * also have this flag.
504 *
505 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
506 * to check the returned value for error codes.
507 */
508 void *knav_queue_open(const char *name, unsigned id,
509 unsigned flags)
510 {
511 struct knav_queue *qh = ERR_PTR(-EINVAL);
512
513 switch (id) {
514 case KNAV_QUEUE_QPEND:
515 case KNAV_QUEUE_ACC:
516 case KNAV_QUEUE_GP:
517 qh = knav_queue_open_by_type(name, id, flags);
518 break;
519
520 default:
521 qh = knav_queue_open_by_id(name, id, flags);
522 break;
523 }
524 return qh;
525 }
526 EXPORT_SYMBOL_GPL(knav_queue_open);
527
528 /**
529 * knav_queue_close() - close a hardware queue handle
530 * @qh - handle to close
531 */
532 void knav_queue_close(void *qhandle)
533 {
534 struct knav_queue *qh = qhandle;
535 struct knav_queue_inst *inst = qh->inst;
536
537 while (atomic_read(&qh->notifier_enabled) > 0)
538 knav_queue_disable_notifier(qh);
539
540 mutex_lock(&knav_dev_lock);
541 list_del_rcu(&qh->list);
542 mutex_unlock(&knav_dev_lock);
543 synchronize_rcu();
544 if (!knav_queue_is_busy(inst)) {
545 struct knav_range_info *range = inst->range;
546
547 if (range->ops && range->ops->close_queue)
548 range->ops->close_queue(range, inst);
549 }
550 devm_kfree(inst->kdev->dev, qh);
551 }
552 EXPORT_SYMBOL_GPL(knav_queue_close);
553
554 /**
555 * knav_queue_device_control() - Perform control operations on a queue
556 * @qh - queue handle
557 * @cmd - control commands
558 * @arg - command argument
559 *
560 * Returns 0 on success, errno otherwise.
561 */
562 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
563 unsigned long arg)
564 {
565 struct knav_queue *qh = qhandle;
566 struct knav_queue_notify_config *cfg;
567 int ret;
568
569 switch ((int)cmd) {
570 case KNAV_QUEUE_GET_ID:
571 ret = qh->inst->kdev->base_id + qh->inst->id;
572 break;
573
574 case KNAV_QUEUE_FLUSH:
575 ret = knav_queue_flush(qh);
576 break;
577
578 case KNAV_QUEUE_SET_NOTIFIER:
579 cfg = (void *)arg;
580 ret = knav_queue_set_notifier(qh, cfg);
581 break;
582
583 case KNAV_QUEUE_ENABLE_NOTIFY:
584 ret = knav_queue_enable_notifier(qh);
585 break;
586
587 case KNAV_QUEUE_DISABLE_NOTIFY:
588 ret = knav_queue_disable_notifier(qh);
589 break;
590
591 case KNAV_QUEUE_GET_COUNT:
592 ret = knav_queue_get_count(qh);
593 break;
594
595 default:
596 ret = -ENOTSUPP;
597 break;
598 }
599 return ret;
600 }
601 EXPORT_SYMBOL_GPL(knav_queue_device_control);
602
603
604
605 /**
606 * knav_queue_push() - push data (or descriptor) to the tail of a queue
607 * @qh - hardware queue handle
608 * @data - data to push
609 * @size - size of data to push
610 * @flags - can be used to pass additional information
611 *
612 * Returns 0 on success, errno otherwise.
613 */
614 int knav_queue_push(void *qhandle, dma_addr_t dma,
615 unsigned size, unsigned flags)
616 {
617 struct knav_queue *qh = qhandle;
618 u32 val;
619
620 val = (u32)dma | ((size / 16) - 1);
621 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
622
623 atomic_inc(&qh->stats.pushes);
624 return 0;
625 }
626 EXPORT_SYMBOL_GPL(knav_queue_push);
627
628 /**
629 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
630 * @qh - hardware queue handle
631 * @size - (optional) size of the data pop'ed.
632 *
633 * Returns a DMA address on success, 0 on failure.
634 */
635 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
636 {
637 struct knav_queue *qh = qhandle;
638 struct knav_queue_inst *inst = qh->inst;
639 dma_addr_t dma;
640 u32 val, idx;
641
642 /* are we accumulated? */
643 if (inst->descs) {
644 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
645 atomic_inc(&inst->desc_count);
646 return 0;
647 }
648 idx = atomic_inc_return(&inst->desc_head);
649 idx &= ACC_DESCS_MASK;
650 val = inst->descs[idx];
651 } else {
652 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
653 if (unlikely(!val))
654 return 0;
655 }
656
657 dma = val & DESC_PTR_MASK;
658 if (size)
659 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
660
661 atomic_inc(&qh->stats.pops);
662 return dma;
663 }
664 EXPORT_SYMBOL_GPL(knav_queue_pop);
665
666 /* carve out descriptors and push into queue */
667 static void kdesc_fill_pool(struct knav_pool *pool)
668 {
669 struct knav_region *region;
670 int i;
671
672 region = pool->region;
673 pool->desc_size = region->desc_size;
674 for (i = 0; i < pool->num_desc; i++) {
675 int index = pool->region_offset + i;
676 dma_addr_t dma_addr;
677 unsigned dma_size;
678 dma_addr = region->dma_start + (region->desc_size * index);
679 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
680 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
681 DMA_TO_DEVICE);
682 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
683 }
684 }
685
686 /* pop out descriptors and close the queue */
687 static void kdesc_empty_pool(struct knav_pool *pool)
688 {
689 dma_addr_t dma;
690 unsigned size;
691 void *desc;
692 int i;
693
694 if (!pool->queue)
695 return;
696
697 for (i = 0;; i++) {
698 dma = knav_queue_pop(pool->queue, &size);
699 if (!dma)
700 break;
701 desc = knav_pool_desc_dma_to_virt(pool, dma);
702 if (!desc) {
703 dev_dbg(pool->kdev->dev,
704 "couldn't unmap desc, continuing\n");
705 continue;
706 }
707 }
708 WARN_ON(i != pool->num_desc);
709 knav_queue_close(pool->queue);
710 }
711
712
713 /* Get the DMA address of a descriptor */
714 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
715 {
716 struct knav_pool *pool = ph;
717 return pool->region->dma_start + (virt - pool->region->virt_start);
718 }
719 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
720
721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
722 {
723 struct knav_pool *pool = ph;
724 return pool->region->virt_start + (dma - pool->region->dma_start);
725 }
726 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
727
728 /**
729 * knav_pool_create() - Create a pool of descriptors
730 * @name - name to give the pool handle
731 * @num_desc - numbers of descriptors in the pool
732 * @region_id - QMSS region id from which the descriptors are to be
733 * allocated.
734 *
735 * Returns a pool handle on success.
736 * Use IS_ERR_OR_NULL() to identify error values on return.
737 */
738 void *knav_pool_create(const char *name,
739 int num_desc, int region_id)
740 {
741 struct knav_region *reg_itr, *region = NULL;
742 struct knav_pool *pool, *pi;
743 struct list_head *node;
744 unsigned last_offset;
745 bool slot_found;
746 int ret;
747
748 if (!kdev->dev)
749 return ERR_PTR(-ENODEV);
750
751 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
752 if (!pool) {
753 dev_err(kdev->dev, "out of memory allocating pool\n");
754 return ERR_PTR(-ENOMEM);
755 }
756
757 for_each_region(kdev, reg_itr) {
758 if (reg_itr->id != region_id)
759 continue;
760 region = reg_itr;
761 break;
762 }
763
764 if (!region) {
765 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
766 ret = -EINVAL;
767 goto err;
768 }
769
770 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
771 if (IS_ERR_OR_NULL(pool->queue)) {
772 dev_err(kdev->dev,
773 "failed to open queue for pool(%s), error %ld\n",
774 name, PTR_ERR(pool->queue));
775 ret = PTR_ERR(pool->queue);
776 goto err;
777 }
778
779 pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
780 pool->kdev = kdev;
781 pool->dev = kdev->dev;
782
783 mutex_lock(&knav_dev_lock);
784
785 if (num_desc > (region->num_desc - region->used_desc)) {
786 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
787 region_id, name);
788 ret = -ENOMEM;
789 goto err_unlock;
790 }
791
792 /* Region maintains a sorted (by region offset) list of pools
793 * use the first free slot which is large enough to accomodate
794 * the request
795 */
796 last_offset = 0;
797 slot_found = false;
798 node = &region->pools;
799 list_for_each_entry(pi, &region->pools, region_inst) {
800 if ((pi->region_offset - last_offset) >= num_desc) {
801 slot_found = true;
802 break;
803 }
804 last_offset = pi->region_offset + pi->num_desc;
805 }
806 node = &pi->region_inst;
807
808 if (slot_found) {
809 pool->region = region;
810 pool->num_desc = num_desc;
811 pool->region_offset = last_offset;
812 region->used_desc += num_desc;
813 list_add_tail(&pool->list, &kdev->pools);
814 list_add_tail(&pool->region_inst, node);
815 } else {
816 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
817 name, region_id);
818 ret = -ENOMEM;
819 goto err_unlock;
820 }
821
822 mutex_unlock(&knav_dev_lock);
823 kdesc_fill_pool(pool);
824 return pool;
825
826 err_unlock:
827 mutex_unlock(&knav_dev_lock);
828 err:
829 kfree(pool->name);
830 devm_kfree(kdev->dev, pool);
831 return ERR_PTR(ret);
832 }
833 EXPORT_SYMBOL_GPL(knav_pool_create);
834
835 /**
836 * knav_pool_destroy() - Free a pool of descriptors
837 * @pool - pool handle
838 */
839 void knav_pool_destroy(void *ph)
840 {
841 struct knav_pool *pool = ph;
842
843 if (!pool)
844 return;
845
846 if (!pool->region)
847 return;
848
849 kdesc_empty_pool(pool);
850 mutex_lock(&knav_dev_lock);
851
852 pool->region->used_desc -= pool->num_desc;
853 list_del(&pool->region_inst);
854 list_del(&pool->list);
855
856 mutex_unlock(&knav_dev_lock);
857 kfree(pool->name);
858 devm_kfree(kdev->dev, pool);
859 }
860 EXPORT_SYMBOL_GPL(knav_pool_destroy);
861
862
863 /**
864 * knav_pool_desc_get() - Get a descriptor from the pool
865 * @pool - pool handle
866 *
867 * Returns descriptor from the pool.
868 */
869 void *knav_pool_desc_get(void *ph)
870 {
871 struct knav_pool *pool = ph;
872 dma_addr_t dma;
873 unsigned size;
874 void *data;
875
876 dma = knav_queue_pop(pool->queue, &size);
877 if (unlikely(!dma))
878 return ERR_PTR(-ENOMEM);
879 data = knav_pool_desc_dma_to_virt(pool, dma);
880 return data;
881 }
882 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
883
884 /**
885 * knav_pool_desc_put() - return a descriptor to the pool
886 * @pool - pool handle
887 */
888 void knav_pool_desc_put(void *ph, void *desc)
889 {
890 struct knav_pool *pool = ph;
891 dma_addr_t dma;
892 dma = knav_pool_desc_virt_to_dma(pool, desc);
893 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
894 }
895 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
896
897 /**
898 * knav_pool_desc_map() - Map descriptor for DMA transfer
899 * @pool - pool handle
900 * @desc - address of descriptor to map
901 * @size - size of descriptor to map
902 * @dma - DMA address return pointer
903 * @dma_sz - adjusted return pointer
904 *
905 * Returns 0 on success, errno otherwise.
906 */
907 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
908 dma_addr_t *dma, unsigned *dma_sz)
909 {
910 struct knav_pool *pool = ph;
911 *dma = knav_pool_desc_virt_to_dma(pool, desc);
912 size = min(size, pool->region->desc_size);
913 size = ALIGN(size, SMP_CACHE_BYTES);
914 *dma_sz = size;
915 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
916
917 /* Ensure the descriptor reaches to the memory */
918 __iowmb();
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
923
924 /**
925 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
926 * @pool - pool handle
927 * @dma - DMA address of descriptor to unmap
928 * @dma_sz - size of descriptor to unmap
929 *
930 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
931 * error values on return.
932 */
933 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
934 {
935 struct knav_pool *pool = ph;
936 unsigned desc_sz;
937 void *desc;
938
939 desc_sz = min(dma_sz, pool->region->desc_size);
940 desc = knav_pool_desc_dma_to_virt(pool, dma);
941 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
942 prefetch(desc);
943 return desc;
944 }
945 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
946
947 /**
948 * knav_pool_count() - Get the number of descriptors in pool.
949 * @pool - pool handle
950 * Returns number of elements in the pool.
951 */
952 int knav_pool_count(void *ph)
953 {
954 struct knav_pool *pool = ph;
955 return knav_queue_get_count(pool->queue);
956 }
957 EXPORT_SYMBOL_GPL(knav_pool_count);
958
959 static void knav_queue_setup_region(struct knav_device *kdev,
960 struct knav_region *region)
961 {
962 unsigned hw_num_desc, hw_desc_size, size;
963 struct knav_reg_region __iomem *regs;
964 struct knav_qmgr_info *qmgr;
965 struct knav_pool *pool;
966 int id = region->id;
967 struct page *page;
968
969 /* unused region? */
970 if (!region->num_desc) {
971 dev_warn(kdev->dev, "unused region %s\n", region->name);
972 return;
973 }
974
975 /* get hardware descriptor value */
976 hw_num_desc = ilog2(region->num_desc - 1) + 1;
977
978 /* did we force fit ourselves into nothingness? */
979 if (region->num_desc < 32) {
980 region->num_desc = 0;
981 dev_warn(kdev->dev, "too few descriptors in region %s\n",
982 region->name);
983 return;
984 }
985
986 size = region->num_desc * region->desc_size;
987 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
988 GFP_DMA32);
989 if (!region->virt_start) {
990 region->num_desc = 0;
991 dev_err(kdev->dev, "memory alloc failed for region %s\n",
992 region->name);
993 return;
994 }
995 region->virt_end = region->virt_start + size;
996 page = virt_to_page(region->virt_start);
997
998 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
999 DMA_BIDIRECTIONAL);
1000 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1001 dev_err(kdev->dev, "dma map failed for region %s\n",
1002 region->name);
1003 goto fail;
1004 }
1005 region->dma_end = region->dma_start + size;
1006
1007 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1008 if (!pool) {
1009 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1010 goto fail;
1011 }
1012 pool->num_desc = 0;
1013 pool->region_offset = region->num_desc;
1014 list_add(&pool->region_inst, &region->pools);
1015
1016 dev_dbg(kdev->dev,
1017 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1018 region->name, id, region->desc_size, region->num_desc,
1019 region->link_index, &region->dma_start, &region->dma_end,
1020 region->virt_start, region->virt_end);
1021
1022 hw_desc_size = (region->desc_size / 16) - 1;
1023 hw_num_desc -= 5;
1024
1025 for_each_qmgr(kdev, qmgr) {
1026 regs = qmgr->reg_region + id;
1027 writel_relaxed((u32)region->dma_start, &regs->base);
1028 writel_relaxed(region->link_index, &regs->start_index);
1029 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1030 &regs->size_count);
1031 }
1032 return;
1033
1034 fail:
1035 if (region->dma_start)
1036 dma_unmap_page(kdev->dev, region->dma_start, size,
1037 DMA_BIDIRECTIONAL);
1038 if (region->virt_start)
1039 free_pages_exact(region->virt_start, size);
1040 region->num_desc = 0;
1041 return;
1042 }
1043
1044 static const char *knav_queue_find_name(struct device_node *node)
1045 {
1046 const char *name;
1047
1048 if (of_property_read_string(node, "label", &name) < 0)
1049 name = node->name;
1050 if (!name)
1051 name = "unknown";
1052 return name;
1053 }
1054
1055 static int knav_queue_setup_regions(struct knav_device *kdev,
1056 struct device_node *regions)
1057 {
1058 struct device *dev = kdev->dev;
1059 struct knav_region *region;
1060 struct device_node *child;
1061 u32 temp[2];
1062 int ret;
1063
1064 for_each_child_of_node(regions, child) {
1065 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1066 if (!region) {
1067 dev_err(dev, "out of memory allocating region\n");
1068 return -ENOMEM;
1069 }
1070
1071 region->name = knav_queue_find_name(child);
1072 of_property_read_u32(child, "id", &region->id);
1073 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1074 if (!ret) {
1075 region->num_desc = temp[0];
1076 region->desc_size = temp[1];
1077 } else {
1078 dev_err(dev, "invalid region info %s\n", region->name);
1079 devm_kfree(dev, region);
1080 continue;
1081 }
1082
1083 if (!of_get_property(child, "link-index", NULL)) {
1084 dev_err(dev, "No link info for %s\n", region->name);
1085 devm_kfree(dev, region);
1086 continue;
1087 }
1088 ret = of_property_read_u32(child, "link-index",
1089 &region->link_index);
1090 if (ret) {
1091 dev_err(dev, "link index not found for %s\n",
1092 region->name);
1093 devm_kfree(dev, region);
1094 continue;
1095 }
1096
1097 INIT_LIST_HEAD(&region->pools);
1098 list_add_tail(&region->list, &kdev->regions);
1099 }
1100 if (list_empty(&kdev->regions)) {
1101 dev_err(dev, "no valid region information found\n");
1102 return -ENODEV;
1103 }
1104
1105 /* Next, we run through the regions and set things up */
1106 for_each_region(kdev, region)
1107 knav_queue_setup_region(kdev, region);
1108
1109 return 0;
1110 }
1111
1112 static int knav_get_link_ram(struct knav_device *kdev,
1113 const char *name,
1114 struct knav_link_ram_block *block)
1115 {
1116 struct platform_device *pdev = to_platform_device(kdev->dev);
1117 struct device_node *node = pdev->dev.of_node;
1118 u32 temp[2];
1119
1120 /*
1121 * Note: link ram resources are specified in "entry" sized units. In
1122 * reality, although entries are ~40bits in hardware, we treat them as
1123 * 64-bit entities here.
1124 *
1125 * For example, to specify the internal link ram for Keystone-I class
1126 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1127 *
1128 * This gets a bit weird when other link rams are used. For example,
1129 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1130 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1131 * which accounts for 64-bits per entry, for 16K entries.
1132 */
1133 if (!of_property_read_u32_array(node, name , temp, 2)) {
1134 if (temp[0]) {
1135 /*
1136 * queue_base specified => using internal or onchip
1137 * link ram WARNING - we do not "reserve" this block
1138 */
1139 block->dma = (dma_addr_t)temp[0];
1140 block->virt = NULL;
1141 block->size = temp[1];
1142 } else {
1143 block->size = temp[1];
1144 /* queue_base not specific => allocate requested size */
1145 block->virt = dmam_alloc_coherent(kdev->dev,
1146 8 * block->size, &block->dma,
1147 GFP_KERNEL);
1148 if (!block->virt) {
1149 dev_err(kdev->dev, "failed to alloc linkram\n");
1150 return -ENOMEM;
1151 }
1152 }
1153 } else {
1154 return -ENODEV;
1155 }
1156 return 0;
1157 }
1158
1159 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1160 {
1161 struct knav_link_ram_block *block;
1162 struct knav_qmgr_info *qmgr;
1163
1164 for_each_qmgr(kdev, qmgr) {
1165 block = &kdev->link_rams[0];
1166 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1167 &block->dma, block->virt, block->size);
1168 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1169 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1170
1171 block++;
1172 if (!block->size)
1173 continue;
1174
1175 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1176 &block->dma, block->virt, block->size);
1177 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1178 }
1179
1180 return 0;
1181 }
1182
1183 static int knav_setup_queue_range(struct knav_device *kdev,
1184 struct device_node *node)
1185 {
1186 struct device *dev = kdev->dev;
1187 struct knav_range_info *range;
1188 struct knav_qmgr_info *qmgr;
1189 u32 temp[2], start, end, id, index;
1190 int ret, i;
1191
1192 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1193 if (!range) {
1194 dev_err(dev, "out of memory allocating range\n");
1195 return -ENOMEM;
1196 }
1197
1198 range->kdev = kdev;
1199 range->name = knav_queue_find_name(node);
1200 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1201 if (!ret) {
1202 range->queue_base = temp[0] - kdev->base_id;
1203 range->num_queues = temp[1];
1204 } else {
1205 dev_err(dev, "invalid queue range %s\n", range->name);
1206 devm_kfree(dev, range);
1207 return -EINVAL;
1208 }
1209
1210 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1211 struct of_phandle_args oirq;
1212
1213 if (of_irq_parse_one(node, i, &oirq))
1214 break;
1215
1216 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1217 if (range->irqs[i].irq == IRQ_NONE)
1218 break;
1219
1220 range->num_irqs++;
1221
1222 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1223 range->irqs[i].cpu_map =
1224 (oirq.args[2] & 0x0000ff00) >> 8;
1225 }
1226
1227 range->num_irqs = min(range->num_irqs, range->num_queues);
1228 if (range->num_irqs)
1229 range->flags |= RANGE_HAS_IRQ;
1230
1231 if (of_get_property(node, "qalloc-by-id", NULL))
1232 range->flags |= RANGE_RESERVED;
1233
1234 if (of_get_property(node, "accumulator", NULL)) {
1235 ret = knav_init_acc_range(kdev, node, range);
1236 if (ret < 0) {
1237 devm_kfree(dev, range);
1238 return ret;
1239 }
1240 } else {
1241 range->ops = &knav_gp_range_ops;
1242 }
1243
1244 /* set threshold to 1, and flush out the queues */
1245 for_each_qmgr(kdev, qmgr) {
1246 start = max(qmgr->start_queue, range->queue_base);
1247 end = min(qmgr->start_queue + qmgr->num_queues,
1248 range->queue_base + range->num_queues);
1249 for (id = start; id < end; id++) {
1250 index = id - qmgr->start_queue;
1251 writel_relaxed(THRESH_GTE | 1,
1252 &qmgr->reg_peek[index].ptr_size_thresh);
1253 writel_relaxed(0,
1254 &qmgr->reg_push[index].ptr_size_thresh);
1255 }
1256 }
1257
1258 list_add_tail(&range->list, &kdev->queue_ranges);
1259 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1260 range->name, range->queue_base,
1261 range->queue_base + range->num_queues - 1,
1262 range->num_irqs,
1263 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1264 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1265 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1266 kdev->num_queues_in_use += range->num_queues;
1267 return 0;
1268 }
1269
1270 static int knav_setup_queue_pools(struct knav_device *kdev,
1271 struct device_node *queue_pools)
1272 {
1273 struct device_node *type, *range;
1274 int ret;
1275
1276 for_each_child_of_node(queue_pools, type) {
1277 for_each_child_of_node(type, range) {
1278 ret = knav_setup_queue_range(kdev, range);
1279 /* return value ignored, we init the rest... */
1280 }
1281 }
1282
1283 /* ... and barf if they all failed! */
1284 if (list_empty(&kdev->queue_ranges)) {
1285 dev_err(kdev->dev, "no valid queue range found\n");
1286 return -ENODEV;
1287 }
1288 return 0;
1289 }
1290
1291 static void knav_free_queue_range(struct knav_device *kdev,
1292 struct knav_range_info *range)
1293 {
1294 if (range->ops && range->ops->free_range)
1295 range->ops->free_range(range);
1296 list_del(&range->list);
1297 devm_kfree(kdev->dev, range);
1298 }
1299
1300 static void knav_free_queue_ranges(struct knav_device *kdev)
1301 {
1302 struct knav_range_info *range;
1303
1304 for (;;) {
1305 range = first_queue_range(kdev);
1306 if (!range)
1307 break;
1308 knav_free_queue_range(kdev, range);
1309 }
1310 }
1311
1312 static void knav_queue_free_regions(struct knav_device *kdev)
1313 {
1314 struct knav_region *region;
1315 struct knav_pool *pool, *tmp;
1316 unsigned size;
1317
1318 for (;;) {
1319 region = first_region(kdev);
1320 if (!region)
1321 break;
1322 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1323 knav_pool_destroy(pool);
1324
1325 size = region->virt_end - region->virt_start;
1326 if (size)
1327 free_pages_exact(region->virt_start, size);
1328 list_del(&region->list);
1329 devm_kfree(kdev->dev, region);
1330 }
1331 }
1332
1333 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1334 struct device_node *node, int index)
1335 {
1336 struct resource res;
1337 void __iomem *regs;
1338 int ret;
1339
1340 ret = of_address_to_resource(node, index, &res);
1341 if (ret) {
1342 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1343 node->name, index);
1344 return ERR_PTR(ret);
1345 }
1346
1347 regs = devm_ioremap_resource(kdev->dev, &res);
1348 if (IS_ERR(regs))
1349 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1350 index, node->name);
1351 return regs;
1352 }
1353
1354 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1355 struct device_node *qmgrs)
1356 {
1357 struct device *dev = kdev->dev;
1358 struct knav_qmgr_info *qmgr;
1359 struct device_node *child;
1360 u32 temp[2];
1361 int ret;
1362
1363 for_each_child_of_node(qmgrs, child) {
1364 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1365 if (!qmgr) {
1366 dev_err(dev, "out of memory allocating qmgr\n");
1367 return -ENOMEM;
1368 }
1369
1370 ret = of_property_read_u32_array(child, "managed-queues",
1371 temp, 2);
1372 if (!ret) {
1373 qmgr->start_queue = temp[0];
1374 qmgr->num_queues = temp[1];
1375 } else {
1376 dev_err(dev, "invalid qmgr queue range\n");
1377 devm_kfree(dev, qmgr);
1378 continue;
1379 }
1380
1381 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1382 qmgr->start_queue, qmgr->num_queues);
1383
1384 qmgr->reg_peek =
1385 knav_queue_map_reg(kdev, child,
1386 KNAV_QUEUE_PEEK_REG_INDEX);
1387 qmgr->reg_status =
1388 knav_queue_map_reg(kdev, child,
1389 KNAV_QUEUE_STATUS_REG_INDEX);
1390 qmgr->reg_config =
1391 knav_queue_map_reg(kdev, child,
1392 KNAV_QUEUE_CONFIG_REG_INDEX);
1393 qmgr->reg_region =
1394 knav_queue_map_reg(kdev, child,
1395 KNAV_QUEUE_REGION_REG_INDEX);
1396 qmgr->reg_push =
1397 knav_queue_map_reg(kdev, child,
1398 KNAV_QUEUE_PUSH_REG_INDEX);
1399 qmgr->reg_pop =
1400 knav_queue_map_reg(kdev, child,
1401 KNAV_QUEUE_POP_REG_INDEX);
1402
1403 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1404 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1405 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1406 dev_err(dev, "failed to map qmgr regs\n");
1407 if (!IS_ERR(qmgr->reg_peek))
1408 devm_iounmap(dev, qmgr->reg_peek);
1409 if (!IS_ERR(qmgr->reg_status))
1410 devm_iounmap(dev, qmgr->reg_status);
1411 if (!IS_ERR(qmgr->reg_config))
1412 devm_iounmap(dev, qmgr->reg_config);
1413 if (!IS_ERR(qmgr->reg_region))
1414 devm_iounmap(dev, qmgr->reg_region);
1415 if (!IS_ERR(qmgr->reg_push))
1416 devm_iounmap(dev, qmgr->reg_push);
1417 if (!IS_ERR(qmgr->reg_pop))
1418 devm_iounmap(dev, qmgr->reg_pop);
1419 devm_kfree(dev, qmgr);
1420 continue;
1421 }
1422
1423 list_add_tail(&qmgr->list, &kdev->qmgrs);
1424 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1425 qmgr->start_queue, qmgr->num_queues,
1426 qmgr->reg_peek, qmgr->reg_status,
1427 qmgr->reg_config, qmgr->reg_region,
1428 qmgr->reg_push, qmgr->reg_pop);
1429 }
1430 return 0;
1431 }
1432
1433 static int knav_queue_init_pdsps(struct knav_device *kdev,
1434 struct device_node *pdsps)
1435 {
1436 struct device *dev = kdev->dev;
1437 struct knav_pdsp_info *pdsp;
1438 struct device_node *child;
1439
1440 for_each_child_of_node(pdsps, child) {
1441 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1442 if (!pdsp) {
1443 dev_err(dev, "out of memory allocating pdsp\n");
1444 return -ENOMEM;
1445 }
1446 pdsp->name = knav_queue_find_name(child);
1447 pdsp->iram =
1448 knav_queue_map_reg(kdev, child,
1449 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1450 pdsp->regs =
1451 knav_queue_map_reg(kdev, child,
1452 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1453 pdsp->intd =
1454 knav_queue_map_reg(kdev, child,
1455 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1456 pdsp->command =
1457 knav_queue_map_reg(kdev, child,
1458 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1459
1460 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1461 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1462 dev_err(dev, "failed to map pdsp %s regs\n",
1463 pdsp->name);
1464 if (!IS_ERR(pdsp->command))
1465 devm_iounmap(dev, pdsp->command);
1466 if (!IS_ERR(pdsp->iram))
1467 devm_iounmap(dev, pdsp->iram);
1468 if (!IS_ERR(pdsp->regs))
1469 devm_iounmap(dev, pdsp->regs);
1470 if (!IS_ERR(pdsp->intd))
1471 devm_iounmap(dev, pdsp->intd);
1472 devm_kfree(dev, pdsp);
1473 continue;
1474 }
1475 of_property_read_u32(child, "id", &pdsp->id);
1476 list_add_tail(&pdsp->list, &kdev->pdsps);
1477 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1478 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1479 pdsp->intd);
1480 }
1481 return 0;
1482 }
1483
1484 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1485 struct knav_pdsp_info *pdsp)
1486 {
1487 u32 val, timeout = 1000;
1488 int ret;
1489
1490 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1491 writel_relaxed(val, &pdsp->regs->control);
1492 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1493 PDSP_CTRL_RUNNING);
1494 if (ret < 0) {
1495 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1496 return ret;
1497 }
1498 pdsp->loaded = false;
1499 pdsp->started = false;
1500 return 0;
1501 }
1502
1503 static int knav_queue_load_pdsp(struct knav_device *kdev,
1504 struct knav_pdsp_info *pdsp)
1505 {
1506 int i, ret, fwlen;
1507 const struct firmware *fw;
1508 bool found = false;
1509 u32 *fwdata;
1510
1511 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1512 if (knav_acc_firmwares[i]) {
1513 ret = request_firmware_direct(&fw,
1514 knav_acc_firmwares[i],
1515 kdev->dev);
1516 if (!ret) {
1517 found = true;
1518 break;
1519 }
1520 }
1521 }
1522
1523 if (!found) {
1524 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1525 return -ENODEV;
1526 }
1527
1528 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1529 knav_acc_firmwares[i]);
1530
1531 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1532 /* download the firmware */
1533 fwdata = (u32 *)fw->data;
1534 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1535 for (i = 0; i < fwlen; i++)
1536 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1537
1538 release_firmware(fw);
1539 return 0;
1540 }
1541
1542 static int knav_queue_start_pdsp(struct knav_device *kdev,
1543 struct knav_pdsp_info *pdsp)
1544 {
1545 u32 val, timeout = 1000;
1546 int ret;
1547
1548 /* write a command for sync */
1549 writel_relaxed(0xffffffff, pdsp->command);
1550 while (readl_relaxed(pdsp->command) != 0xffffffff)
1551 cpu_relax();
1552
1553 /* soft reset the PDSP */
1554 val = readl_relaxed(&pdsp->regs->control);
1555 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1556 writel_relaxed(val, &pdsp->regs->control);
1557
1558 /* enable pdsp */
1559 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1560 writel_relaxed(val, &pdsp->regs->control);
1561
1562 /* wait for command register to clear */
1563 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1564 if (ret < 0) {
1565 dev_err(kdev->dev,
1566 "timed out on pdsp %s command register wait\n",
1567 pdsp->name);
1568 return ret;
1569 }
1570 return 0;
1571 }
1572
1573 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1574 {
1575 struct knav_pdsp_info *pdsp;
1576
1577 /* disable all pdsps */
1578 for_each_pdsp(kdev, pdsp)
1579 knav_queue_stop_pdsp(kdev, pdsp);
1580 }
1581
1582 static int knav_queue_start_pdsps(struct knav_device *kdev)
1583 {
1584 struct knav_pdsp_info *pdsp;
1585 int ret;
1586
1587 knav_queue_stop_pdsps(kdev);
1588 /* now load them all. We return success even if pdsp
1589 * is not loaded as acc channels are optional on having
1590 * firmware availability in the system. We set the loaded
1591 * and stated flag and when initialize the acc range, check
1592 * it and init the range only if pdsp is started.
1593 */
1594 for_each_pdsp(kdev, pdsp) {
1595 ret = knav_queue_load_pdsp(kdev, pdsp);
1596 if (!ret)
1597 pdsp->loaded = true;
1598 }
1599
1600 for_each_pdsp(kdev, pdsp) {
1601 if (pdsp->loaded) {
1602 ret = knav_queue_start_pdsp(kdev, pdsp);
1603 if (!ret)
1604 pdsp->started = true;
1605 }
1606 }
1607 return 0;
1608 }
1609
1610 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1611 {
1612 struct knav_qmgr_info *qmgr;
1613
1614 for_each_qmgr(kdev, qmgr) {
1615 if ((id >= qmgr->start_queue) &&
1616 (id < qmgr->start_queue + qmgr->num_queues))
1617 return qmgr;
1618 }
1619 return NULL;
1620 }
1621
1622 static int knav_queue_init_queue(struct knav_device *kdev,
1623 struct knav_range_info *range,
1624 struct knav_queue_inst *inst,
1625 unsigned id)
1626 {
1627 char irq_name[KNAV_NAME_SIZE];
1628 inst->qmgr = knav_find_qmgr(id);
1629 if (!inst->qmgr)
1630 return -1;
1631
1632 INIT_LIST_HEAD(&inst->handles);
1633 inst->kdev = kdev;
1634 inst->range = range;
1635 inst->irq_num = -1;
1636 inst->id = id;
1637 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1638 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1639
1640 if (range->ops && range->ops->init_queue)
1641 return range->ops->init_queue(range, inst);
1642 else
1643 return 0;
1644 }
1645
1646 static int knav_queue_init_queues(struct knav_device *kdev)
1647 {
1648 struct knav_range_info *range;
1649 int size, id, base_idx;
1650 int idx = 0, ret = 0;
1651
1652 /* how much do we need for instance data? */
1653 size = sizeof(struct knav_queue_inst);
1654
1655 /* round this up to a power of 2, keep the index to instance
1656 * arithmetic fast.
1657 * */
1658 kdev->inst_shift = order_base_2(size);
1659 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1660 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1661 if (!kdev->instances)
1662 return -ENOMEM;
1663
1664 for_each_queue_range(kdev, range) {
1665 if (range->ops && range->ops->init_range)
1666 range->ops->init_range(range);
1667 base_idx = idx;
1668 for (id = range->queue_base;
1669 id < range->queue_base + range->num_queues; id++, idx++) {
1670 ret = knav_queue_init_queue(kdev, range,
1671 knav_queue_idx_to_inst(kdev, idx), id);
1672 if (ret < 0)
1673 return ret;
1674 }
1675 range->queue_base_inst =
1676 knav_queue_idx_to_inst(kdev, base_idx);
1677 }
1678 return 0;
1679 }
1680
1681 static int knav_queue_probe(struct platform_device *pdev)
1682 {
1683 struct device_node *node = pdev->dev.of_node;
1684 struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1685 struct device *dev = &pdev->dev;
1686 u32 temp[2];
1687 int ret;
1688
1689 if (!node) {
1690 dev_err(dev, "device tree info unavailable\n");
1691 return -ENODEV;
1692 }
1693
1694 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1695 if (!kdev) {
1696 dev_err(dev, "memory allocation failed\n");
1697 return -ENOMEM;
1698 }
1699
1700 platform_set_drvdata(pdev, kdev);
1701 kdev->dev = dev;
1702 INIT_LIST_HEAD(&kdev->queue_ranges);
1703 INIT_LIST_HEAD(&kdev->qmgrs);
1704 INIT_LIST_HEAD(&kdev->pools);
1705 INIT_LIST_HEAD(&kdev->regions);
1706 INIT_LIST_HEAD(&kdev->pdsps);
1707
1708 pm_runtime_enable(&pdev->dev);
1709 ret = pm_runtime_get_sync(&pdev->dev);
1710 if (ret < 0) {
1711 dev_err(dev, "Failed to enable QMSS\n");
1712 return ret;
1713 }
1714
1715 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1716 dev_err(dev, "queue-range not specified\n");
1717 ret = -ENODEV;
1718 goto err;
1719 }
1720 kdev->base_id = temp[0];
1721 kdev->num_queues = temp[1];
1722
1723 /* Initialize queue managers using device tree configuration */
1724 qmgrs = of_get_child_by_name(node, "qmgrs");
1725 if (!qmgrs) {
1726 dev_err(dev, "queue manager info not specified\n");
1727 ret = -ENODEV;
1728 goto err;
1729 }
1730 ret = knav_queue_init_qmgrs(kdev, qmgrs);
1731 of_node_put(qmgrs);
1732 if (ret)
1733 goto err;
1734
1735 /* get pdsp configuration values from device tree */
1736 pdsps = of_get_child_by_name(node, "pdsps");
1737 if (pdsps) {
1738 ret = knav_queue_init_pdsps(kdev, pdsps);
1739 if (ret)
1740 goto err;
1741
1742 ret = knav_queue_start_pdsps(kdev);
1743 if (ret)
1744 goto err;
1745 }
1746 of_node_put(pdsps);
1747
1748 /* get usable queue range values from device tree */
1749 queue_pools = of_get_child_by_name(node, "queue-pools");
1750 if (!queue_pools) {
1751 dev_err(dev, "queue-pools not specified\n");
1752 ret = -ENODEV;
1753 goto err;
1754 }
1755 ret = knav_setup_queue_pools(kdev, queue_pools);
1756 of_node_put(queue_pools);
1757 if (ret)
1758 goto err;
1759
1760 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1761 if (ret) {
1762 dev_err(kdev->dev, "could not setup linking ram\n");
1763 goto err;
1764 }
1765
1766 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1767 if (ret) {
1768 /*
1769 * nothing really, we have one linking ram already, so we just
1770 * live within our means
1771 */
1772 }
1773
1774 ret = knav_queue_setup_link_ram(kdev);
1775 if (ret)
1776 goto err;
1777
1778 regions = of_get_child_by_name(node, "descriptor-regions");
1779 if (!regions) {
1780 dev_err(dev, "descriptor-regions not specified\n");
1781 goto err;
1782 }
1783 ret = knav_queue_setup_regions(kdev, regions);
1784 of_node_put(regions);
1785 if (ret)
1786 goto err;
1787
1788 ret = knav_queue_init_queues(kdev);
1789 if (ret < 0) {
1790 dev_err(dev, "hwqueue initialization failed\n");
1791 goto err;
1792 }
1793
1794 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1795 &knav_queue_debug_ops);
1796 return 0;
1797
1798 err:
1799 knav_queue_stop_pdsps(kdev);
1800 knav_queue_free_regions(kdev);
1801 knav_free_queue_ranges(kdev);
1802 pm_runtime_put_sync(&pdev->dev);
1803 pm_runtime_disable(&pdev->dev);
1804 return ret;
1805 }
1806
1807 static int knav_queue_remove(struct platform_device *pdev)
1808 {
1809 /* TODO: Free resources */
1810 pm_runtime_put_sync(&pdev->dev);
1811 pm_runtime_disable(&pdev->dev);
1812 return 0;
1813 }
1814
1815 /* Match table for of_platform binding */
1816 static struct of_device_id keystone_qmss_of_match[] = {
1817 { .compatible = "ti,keystone-navigator-qmss", },
1818 {},
1819 };
1820 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1821
1822 static struct platform_driver keystone_qmss_driver = {
1823 .probe = knav_queue_probe,
1824 .remove = knav_queue_remove,
1825 .driver = {
1826 .name = "keystone-navigator-qmss",
1827 .of_match_table = keystone_qmss_of_match,
1828 },
1829 };
1830 module_platform_driver(keystone_qmss_driver);
1831
1832 MODULE_LICENSE("GPL v2");
1833 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1834 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1835 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");