]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-atmel.c
spi: atmel: Fix DMA-setup for transfers with more than 8 bits per word
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-atmel.c
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
29
30 /* SPI register offsets */
31 #define SPI_CR 0x0000
32 #define SPI_MR 0x0004
33 #define SPI_RDR 0x0008
34 #define SPI_TDR 0x000c
35 #define SPI_SR 0x0010
36 #define SPI_IER 0x0014
37 #define SPI_IDR 0x0018
38 #define SPI_IMR 0x001c
39 #define SPI_CSR0 0x0030
40 #define SPI_CSR1 0x0034
41 #define SPI_CSR2 0x0038
42 #define SPI_CSR3 0x003c
43 #define SPI_FMR 0x0040
44 #define SPI_FLR 0x0044
45 #define SPI_VERSION 0x00fc
46 #define SPI_RPR 0x0100
47 #define SPI_RCR 0x0104
48 #define SPI_TPR 0x0108
49 #define SPI_TCR 0x010c
50 #define SPI_RNPR 0x0110
51 #define SPI_RNCR 0x0114
52 #define SPI_TNPR 0x0118
53 #define SPI_TNCR 0x011c
54 #define SPI_PTCR 0x0120
55 #define SPI_PTSR 0x0124
56
57 /* Bitfields in CR */
58 #define SPI_SPIEN_OFFSET 0
59 #define SPI_SPIEN_SIZE 1
60 #define SPI_SPIDIS_OFFSET 1
61 #define SPI_SPIDIS_SIZE 1
62 #define SPI_SWRST_OFFSET 7
63 #define SPI_SWRST_SIZE 1
64 #define SPI_LASTXFER_OFFSET 24
65 #define SPI_LASTXFER_SIZE 1
66 #define SPI_TXFCLR_OFFSET 16
67 #define SPI_TXFCLR_SIZE 1
68 #define SPI_RXFCLR_OFFSET 17
69 #define SPI_RXFCLR_SIZE 1
70 #define SPI_FIFOEN_OFFSET 30
71 #define SPI_FIFOEN_SIZE 1
72 #define SPI_FIFODIS_OFFSET 31
73 #define SPI_FIFODIS_SIZE 1
74
75 /* Bitfields in MR */
76 #define SPI_MSTR_OFFSET 0
77 #define SPI_MSTR_SIZE 1
78 #define SPI_PS_OFFSET 1
79 #define SPI_PS_SIZE 1
80 #define SPI_PCSDEC_OFFSET 2
81 #define SPI_PCSDEC_SIZE 1
82 #define SPI_FDIV_OFFSET 3
83 #define SPI_FDIV_SIZE 1
84 #define SPI_MODFDIS_OFFSET 4
85 #define SPI_MODFDIS_SIZE 1
86 #define SPI_WDRBT_OFFSET 5
87 #define SPI_WDRBT_SIZE 1
88 #define SPI_LLB_OFFSET 7
89 #define SPI_LLB_SIZE 1
90 #define SPI_PCS_OFFSET 16
91 #define SPI_PCS_SIZE 4
92 #define SPI_DLYBCS_OFFSET 24
93 #define SPI_DLYBCS_SIZE 8
94
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET 0
97 #define SPI_RD_SIZE 16
98
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET 0
101 #define SPI_TD_SIZE 16
102
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET 0
105 #define SPI_RDRF_SIZE 1
106 #define SPI_TDRE_OFFSET 1
107 #define SPI_TDRE_SIZE 1
108 #define SPI_MODF_OFFSET 2
109 #define SPI_MODF_SIZE 1
110 #define SPI_OVRES_OFFSET 3
111 #define SPI_OVRES_SIZE 1
112 #define SPI_ENDRX_OFFSET 4
113 #define SPI_ENDRX_SIZE 1
114 #define SPI_ENDTX_OFFSET 5
115 #define SPI_ENDTX_SIZE 1
116 #define SPI_RXBUFF_OFFSET 6
117 #define SPI_RXBUFF_SIZE 1
118 #define SPI_TXBUFE_OFFSET 7
119 #define SPI_TXBUFE_SIZE 1
120 #define SPI_NSSR_OFFSET 8
121 #define SPI_NSSR_SIZE 1
122 #define SPI_TXEMPTY_OFFSET 9
123 #define SPI_TXEMPTY_SIZE 1
124 #define SPI_SPIENS_OFFSET 16
125 #define SPI_SPIENS_SIZE 1
126 #define SPI_TXFEF_OFFSET 24
127 #define SPI_TXFEF_SIZE 1
128 #define SPI_TXFFF_OFFSET 25
129 #define SPI_TXFFF_SIZE 1
130 #define SPI_TXFTHF_OFFSET 26
131 #define SPI_TXFTHF_SIZE 1
132 #define SPI_RXFEF_OFFSET 27
133 #define SPI_RXFEF_SIZE 1
134 #define SPI_RXFFF_OFFSET 28
135 #define SPI_RXFFF_SIZE 1
136 #define SPI_RXFTHF_OFFSET 29
137 #define SPI_RXFTHF_SIZE 1
138 #define SPI_TXFPTEF_OFFSET 30
139 #define SPI_TXFPTEF_SIZE 1
140 #define SPI_RXFPTEF_OFFSET 31
141 #define SPI_RXFPTEF_SIZE 1
142
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET 0
145 #define SPI_CPOL_SIZE 1
146 #define SPI_NCPHA_OFFSET 1
147 #define SPI_NCPHA_SIZE 1
148 #define SPI_CSAAT_OFFSET 3
149 #define SPI_CSAAT_SIZE 1
150 #define SPI_BITS_OFFSET 4
151 #define SPI_BITS_SIZE 4
152 #define SPI_SCBR_OFFSET 8
153 #define SPI_SCBR_SIZE 8
154 #define SPI_DLYBS_OFFSET 16
155 #define SPI_DLYBS_SIZE 8
156 #define SPI_DLYBCT_OFFSET 24
157 #define SPI_DLYBCT_SIZE 8
158
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET 0
161 #define SPI_RXCTR_SIZE 16
162
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET 0
165 #define SPI_TXCTR_SIZE 16
166
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET 0
169 #define SPI_RXNCR_SIZE 16
170
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET 0
173 #define SPI_TXNCR_SIZE 16
174
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET 0
177 #define SPI_RXTEN_SIZE 1
178 #define SPI_RXTDIS_OFFSET 1
179 #define SPI_RXTDIS_SIZE 1
180 #define SPI_TXTEN_OFFSET 8
181 #define SPI_TXTEN_SIZE 1
182 #define SPI_TXTDIS_OFFSET 9
183 #define SPI_TXTDIS_SIZE 1
184
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET 0
187 #define SPI_TXRDYM_SIZE 2
188 #define SPI_RXRDYM_OFFSET 4
189 #define SPI_RXRDYM_SIZE 2
190 #define SPI_TXFTHRES_OFFSET 16
191 #define SPI_TXFTHRES_SIZE 6
192 #define SPI_RXFTHRES_OFFSET 24
193 #define SPI_RXFTHRES_SIZE 6
194
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET 0
197 #define SPI_TXFL_SIZE 6
198 #define SPI_RXFL_OFFSET 16
199 #define SPI_RXFL_SIZE 6
200
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT 0
203 #define SPI_BITS_9_BPT 1
204 #define SPI_BITS_10_BPT 2
205 #define SPI_BITS_11_BPT 3
206 #define SPI_BITS_12_BPT 4
207 #define SPI_BITS_13_BPT 5
208 #define SPI_BITS_14_BPT 6
209 #define SPI_BITS_15_BPT 7
210 #define SPI_BITS_16_BPT 8
211 #define SPI_ONE_DATA 0
212 #define SPI_TWO_DATA 1
213 #define SPI_FOUR_DATA 2
214
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217 (1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 | SPI_BF(name, value))
225
226 /* Register access macros */
227 #ifdef CONFIG_AVR32
228 #define spi_readl(port, reg) \
229 __raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231 __raw_writel((value), (port)->regs + SPI_##reg)
232
233 #define spi_readw(port, reg) \
234 __raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236 __raw_writew((value), (port)->regs + SPI_##reg)
237
238 #define spi_readb(port, reg) \
239 __raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241 __raw_writeb((value), (port)->regs + SPI_##reg)
242 #else
243 #define spi_readl(port, reg) \
244 readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246 writel_relaxed((value), (port)->regs + SPI_##reg)
247
248 #define spi_readw(port, reg) \
249 readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251 writew_relaxed((value), (port)->regs + SPI_##reg)
252
253 #define spi_readb(port, reg) \
254 readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256 writeb_relaxed((value), (port)->regs + SPI_##reg)
257 #endif
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259 * cache operations; better heuristics consider wordsize and bitrate.
260 */
261 #define DMA_MIN_BYTES 16
262
263 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
264
265 #define AUTOSUSPEND_TIMEOUT 2000
266
267 struct atmel_spi_dma {
268 struct dma_chan *chan_rx;
269 struct dma_chan *chan_tx;
270 struct scatterlist sgrx;
271 struct scatterlist sgtx;
272 struct dma_async_tx_descriptor *data_desc_rx;
273 struct dma_async_tx_descriptor *data_desc_tx;
274
275 struct at_dma_slave dma_slave;
276 };
277
278 struct atmel_spi_caps {
279 bool is_spi2;
280 bool has_wdrbt;
281 bool has_dma_support;
282 };
283
284 /*
285 * The core SPI transfer engine just talks to a register bank to set up
286 * DMA transfers; transfer queue progress is driven by IRQs. The clock
287 * framework provides the base clock, subdivided for each spi_device.
288 */
289 struct atmel_spi {
290 spinlock_t lock;
291 unsigned long flags;
292
293 phys_addr_t phybase;
294 void __iomem *regs;
295 int irq;
296 struct clk *clk;
297 struct platform_device *pdev;
298
299 struct spi_transfer *current_transfer;
300 int current_remaining_bytes;
301 int done_status;
302
303 struct completion xfer_completion;
304
305 /* scratch buffer */
306 void *buffer;
307 dma_addr_t buffer_dma;
308
309 struct atmel_spi_caps caps;
310
311 bool use_dma;
312 bool use_pdc;
313 bool use_cs_gpios;
314 /* dmaengine data */
315 struct atmel_spi_dma dma;
316
317 bool keep_cs;
318 bool cs_active;
319
320 u32 fifo_size;
321 };
322
323 /* Controller-specific per-slave state */
324 struct atmel_spi_device {
325 unsigned int npcs_pin;
326 u32 csr;
327 };
328
329 #define BUFFER_SIZE PAGE_SIZE
330 #define INVALID_DMA_ADDRESS 0xffffffff
331
332 /*
333 * Version 2 of the SPI controller has
334 * - CR.LASTXFER
335 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
336 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
337 * - SPI_CSRx.CSAAT
338 * - SPI_CSRx.SBCR allows faster clocking
339 */
340 static bool atmel_spi_is_v2(struct atmel_spi *as)
341 {
342 return as->caps.is_spi2;
343 }
344
345 /*
346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
347 * they assume that spi slave device state will not change on deselect, so
348 * that automagic deselection is OK. ("NPCSx rises if no data is to be
349 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
350 * controllers have CSAAT and friends.
351 *
352 * Since the CSAAT functionality is a bit weird on newer controllers as
353 * well, we use GPIO to control nCSx pins on all controllers, updating
354 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
355 * support active-high chipselects despite the controller's belief that
356 * only active-low devices/systems exists.
357 *
358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
359 * right when driven with GPIO. ("Mode Fault does not allow more than one
360 * Master on Chip Select 0.") No workaround exists for that ... so for
361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
362 * and (c) will trigger that first erratum in some cases.
363 */
364
365 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
366 {
367 struct atmel_spi_device *asd = spi->controller_state;
368 unsigned active = spi->mode & SPI_CS_HIGH;
369 u32 mr;
370
371 if (atmel_spi_is_v2(as)) {
372 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
373 /* For the low SPI version, there is a issue that PDC transfer
374 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
375 */
376 spi_writel(as, CSR0, asd->csr);
377 if (as->caps.has_wdrbt) {
378 spi_writel(as, MR,
379 SPI_BF(PCS, ~(0x01 << spi->chip_select))
380 | SPI_BIT(WDRBT)
381 | SPI_BIT(MODFDIS)
382 | SPI_BIT(MSTR));
383 } else {
384 spi_writel(as, MR,
385 SPI_BF(PCS, ~(0x01 << spi->chip_select))
386 | SPI_BIT(MODFDIS)
387 | SPI_BIT(MSTR));
388 }
389
390 mr = spi_readl(as, MR);
391 if (as->use_cs_gpios)
392 gpio_set_value(asd->npcs_pin, active);
393 } else {
394 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
395 int i;
396 u32 csr;
397
398 /* Make sure clock polarity is correct */
399 for (i = 0; i < spi->master->num_chipselect; i++) {
400 csr = spi_readl(as, CSR0 + 4 * i);
401 if ((csr ^ cpol) & SPI_BIT(CPOL))
402 spi_writel(as, CSR0 + 4 * i,
403 csr ^ SPI_BIT(CPOL));
404 }
405
406 mr = spi_readl(as, MR);
407 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
408 if (as->use_cs_gpios && spi->chip_select != 0)
409 gpio_set_value(asd->npcs_pin, active);
410 spi_writel(as, MR, mr);
411 }
412
413 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
414 asd->npcs_pin, active ? " (high)" : "",
415 mr);
416 }
417
418 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
419 {
420 struct atmel_spi_device *asd = spi->controller_state;
421 unsigned active = spi->mode & SPI_CS_HIGH;
422 u32 mr;
423
424 /* only deactivate *this* device; sometimes transfers to
425 * another device may be active when this routine is called.
426 */
427 mr = spi_readl(as, MR);
428 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
429 mr = SPI_BFINS(PCS, 0xf, mr);
430 spi_writel(as, MR, mr);
431 }
432
433 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
434 asd->npcs_pin, active ? " (low)" : "",
435 mr);
436
437 if (!as->use_cs_gpios)
438 spi_writel(as, CR, SPI_BIT(LASTXFER));
439 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
440 gpio_set_value(asd->npcs_pin, !active);
441 }
442
443 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
444 {
445 spin_lock_irqsave(&as->lock, as->flags);
446 }
447
448 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
449 {
450 spin_unlock_irqrestore(&as->lock, as->flags);
451 }
452
453 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
454 struct spi_transfer *xfer)
455 {
456 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
457 }
458
459 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460 struct dma_slave_config *slave_config,
461 u8 bits_per_word)
462 {
463 int err = 0;
464
465 if (bits_per_word > 8) {
466 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
467 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 } else {
469 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
470 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 }
472
473 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
474 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
475 slave_config->src_maxburst = 1;
476 slave_config->dst_maxburst = 1;
477 slave_config->device_fc = false;
478
479 /*
480 * This driver uses fixed peripheral select mode (PS bit set to '0' in
481 * the Mode Register).
482 * So according to the datasheet, when FIFOs are available (and
483 * enabled), the Transmit FIFO operates in Multiple Data Mode.
484 * In this mode, up to 2 data, not 4, can be written into the Transmit
485 * Data Register in a single access.
486 * However, the first data has to be written into the lowest 16 bits and
487 * the second data into the highest 16 bits of the Transmit
488 * Data Register. For 8bit data (the most frequent case), it would
489 * require to rework tx_buf so each data would actualy fit 16 bits.
490 * So we'd rather write only one data at the time. Hence the transmit
491 * path works the same whether FIFOs are available (and enabled) or not.
492 */
493 slave_config->direction = DMA_MEM_TO_DEV;
494 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
495 dev_err(&as->pdev->dev,
496 "failed to configure tx dma channel\n");
497 err = -EINVAL;
498 }
499
500 /*
501 * This driver configures the spi controller for master mode (MSTR bit
502 * set to '1' in the Mode Register).
503 * So according to the datasheet, when FIFOs are available (and
504 * enabled), the Receive FIFO operates in Single Data Mode.
505 * So the receive path works the same whether FIFOs are available (and
506 * enabled) or not.
507 */
508 slave_config->direction = DMA_DEV_TO_MEM;
509 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
510 dev_err(&as->pdev->dev,
511 "failed to configure rx dma channel\n");
512 err = -EINVAL;
513 }
514
515 return err;
516 }
517
518 static int atmel_spi_configure_dma(struct atmel_spi *as)
519 {
520 struct dma_slave_config slave_config;
521 struct device *dev = &as->pdev->dev;
522 int err;
523
524 dma_cap_mask_t mask;
525 dma_cap_zero(mask);
526 dma_cap_set(DMA_SLAVE, mask);
527
528 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
529 if (IS_ERR(as->dma.chan_tx)) {
530 err = PTR_ERR(as->dma.chan_tx);
531 if (err == -EPROBE_DEFER) {
532 dev_warn(dev, "no DMA channel available at the moment\n");
533 return err;
534 }
535 dev_err(dev,
536 "DMA TX channel not available, SPI unable to use DMA\n");
537 err = -EBUSY;
538 goto error;
539 }
540
541 /*
542 * No reason to check EPROBE_DEFER here since we have already requested
543 * tx channel. If it fails here, it's for another reason.
544 */
545 as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
546
547 if (!as->dma.chan_rx) {
548 dev_err(dev,
549 "DMA RX channel not available, SPI unable to use DMA\n");
550 err = -EBUSY;
551 goto error;
552 }
553
554 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
555 if (err)
556 goto error;
557
558 dev_info(&as->pdev->dev,
559 "Using %s (tx) and %s (rx) for DMA transfers\n",
560 dma_chan_name(as->dma.chan_tx),
561 dma_chan_name(as->dma.chan_rx));
562 return 0;
563 error:
564 if (as->dma.chan_rx)
565 dma_release_channel(as->dma.chan_rx);
566 if (!IS_ERR(as->dma.chan_tx))
567 dma_release_channel(as->dma.chan_tx);
568 return err;
569 }
570
571 static void atmel_spi_stop_dma(struct atmel_spi *as)
572 {
573 if (as->dma.chan_rx)
574 dmaengine_terminate_all(as->dma.chan_rx);
575 if (as->dma.chan_tx)
576 dmaengine_terminate_all(as->dma.chan_tx);
577 }
578
579 static void atmel_spi_release_dma(struct atmel_spi *as)
580 {
581 if (as->dma.chan_rx)
582 dma_release_channel(as->dma.chan_rx);
583 if (as->dma.chan_tx)
584 dma_release_channel(as->dma.chan_tx);
585 }
586
587 /* This function is called by the DMA driver from tasklet context */
588 static void dma_callback(void *data)
589 {
590 struct spi_master *master = data;
591 struct atmel_spi *as = spi_master_get_devdata(master);
592
593 complete(&as->xfer_completion);
594 }
595
596 /*
597 * Next transfer using PIO without FIFO.
598 */
599 static void atmel_spi_next_xfer_single(struct spi_master *master,
600 struct spi_transfer *xfer)
601 {
602 struct atmel_spi *as = spi_master_get_devdata(master);
603 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
604
605 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
606
607 /* Make sure data is not remaining in RDR */
608 spi_readl(as, RDR);
609 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
610 spi_readl(as, RDR);
611 cpu_relax();
612 }
613
614 if (xfer->tx_buf) {
615 if (xfer->bits_per_word > 8)
616 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
617 else
618 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
619 } else {
620 spi_writel(as, TDR, 0);
621 }
622
623 dev_dbg(master->dev.parent,
624 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
625 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
626 xfer->bits_per_word);
627
628 /* Enable relevant interrupts */
629 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
630 }
631
632 /*
633 * Next transfer using PIO with FIFO.
634 */
635 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
636 struct spi_transfer *xfer)
637 {
638 struct atmel_spi *as = spi_master_get_devdata(master);
639 u32 current_remaining_data, num_data;
640 u32 offset = xfer->len - as->current_remaining_bytes;
641 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
642 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
643 u16 td0, td1;
644 u32 fifomr;
645
646 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
647
648 /* Compute the number of data to transfer in the current iteration */
649 current_remaining_data = ((xfer->bits_per_word > 8) ?
650 ((u32)as->current_remaining_bytes >> 1) :
651 (u32)as->current_remaining_bytes);
652 num_data = min(current_remaining_data, as->fifo_size);
653
654 /* Flush RX and TX FIFOs */
655 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
656 while (spi_readl(as, FLR))
657 cpu_relax();
658
659 /* Set RX FIFO Threshold to the number of data to transfer */
660 fifomr = spi_readl(as, FMR);
661 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
662
663 /* Clear FIFO flags in the Status Register, especially RXFTHF */
664 (void)spi_readl(as, SR);
665
666 /* Fill TX FIFO */
667 while (num_data >= 2) {
668 if (xfer->tx_buf) {
669 if (xfer->bits_per_word > 8) {
670 td0 = *words++;
671 td1 = *words++;
672 } else {
673 td0 = *bytes++;
674 td1 = *bytes++;
675 }
676 } else {
677 td0 = 0;
678 td1 = 0;
679 }
680
681 spi_writel(as, TDR, (td1 << 16) | td0);
682 num_data -= 2;
683 }
684
685 if (num_data) {
686 if (xfer->tx_buf) {
687 if (xfer->bits_per_word > 8)
688 td0 = *words++;
689 else
690 td0 = *bytes++;
691 } else {
692 td0 = 0;
693 }
694
695 spi_writew(as, TDR, td0);
696 num_data--;
697 }
698
699 dev_dbg(master->dev.parent,
700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
702 xfer->bits_per_word);
703
704 /*
705 * Enable RX FIFO Threshold Flag interrupt to be notified about
706 * transfer completion.
707 */
708 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
709 }
710
711 /*
712 * Next transfer using PIO.
713 */
714 static void atmel_spi_next_xfer_pio(struct spi_master *master,
715 struct spi_transfer *xfer)
716 {
717 struct atmel_spi *as = spi_master_get_devdata(master);
718
719 if (as->fifo_size)
720 atmel_spi_next_xfer_fifo(master, xfer);
721 else
722 atmel_spi_next_xfer_single(master, xfer);
723 }
724
725 /*
726 * Submit next transfer for DMA.
727 */
728 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
729 struct spi_transfer *xfer,
730 u32 *plen)
731 {
732 struct atmel_spi *as = spi_master_get_devdata(master);
733 struct dma_chan *rxchan = as->dma.chan_rx;
734 struct dma_chan *txchan = as->dma.chan_tx;
735 struct dma_async_tx_descriptor *rxdesc;
736 struct dma_async_tx_descriptor *txdesc;
737 struct dma_slave_config slave_config;
738 dma_cookie_t cookie;
739 u32 len = *plen;
740
741 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742
743 /* Check that the channels are available */
744 if (!rxchan || !txchan)
745 return -ENODEV;
746
747 /* release lock for DMA operations */
748 atmel_spi_unlock(as);
749
750 /* prepare the RX dma transfer */
751 sg_init_table(&as->dma.sgrx, 1);
752 if (xfer->rx_buf) {
753 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
754 } else {
755 as->dma.sgrx.dma_address = as->buffer_dma;
756 if (len > BUFFER_SIZE)
757 len = BUFFER_SIZE;
758 }
759
760 /* prepare the TX dma transfer */
761 sg_init_table(&as->dma.sgtx, 1);
762 if (xfer->tx_buf) {
763 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
764 } else {
765 as->dma.sgtx.dma_address = as->buffer_dma;
766 if (len > BUFFER_SIZE)
767 len = BUFFER_SIZE;
768 memset(as->buffer, 0, len);
769 }
770
771 sg_dma_len(&as->dma.sgtx) = len;
772 sg_dma_len(&as->dma.sgrx) = len;
773
774 *plen = len;
775
776 if (atmel_spi_dma_slave_config(as, &slave_config,
777 xfer->bits_per_word))
778 goto err_exit;
779
780 /* Send both scatterlists */
781 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
782 DMA_FROM_DEVICE,
783 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
784 if (!rxdesc)
785 goto err_dma;
786
787 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
788 DMA_TO_DEVICE,
789 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
790 if (!txdesc)
791 goto err_dma;
792
793 dev_dbg(master->dev.parent,
794 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
795 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
796 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
797
798 /* Enable relevant interrupts */
799 spi_writel(as, IER, SPI_BIT(OVRES));
800
801 /* Put the callback on the RX transfer only, that should finish last */
802 rxdesc->callback = dma_callback;
803 rxdesc->callback_param = master;
804
805 /* Submit and fire RX and TX with TX last so we're ready to read! */
806 cookie = rxdesc->tx_submit(rxdesc);
807 if (dma_submit_error(cookie))
808 goto err_dma;
809 cookie = txdesc->tx_submit(txdesc);
810 if (dma_submit_error(cookie))
811 goto err_dma;
812 rxchan->device->device_issue_pending(rxchan);
813 txchan->device->device_issue_pending(txchan);
814
815 /* take back lock */
816 atmel_spi_lock(as);
817 return 0;
818
819 err_dma:
820 spi_writel(as, IDR, SPI_BIT(OVRES));
821 atmel_spi_stop_dma(as);
822 err_exit:
823 atmel_spi_lock(as);
824 return -ENOMEM;
825 }
826
827 static void atmel_spi_next_xfer_data(struct spi_master *master,
828 struct spi_transfer *xfer,
829 dma_addr_t *tx_dma,
830 dma_addr_t *rx_dma,
831 u32 *plen)
832 {
833 struct atmel_spi *as = spi_master_get_devdata(master);
834 u32 len = *plen;
835
836 /* use scratch buffer only when rx or tx data is unspecified */
837 if (xfer->rx_buf)
838 *rx_dma = xfer->rx_dma + xfer->len - *plen;
839 else {
840 *rx_dma = as->buffer_dma;
841 if (len > BUFFER_SIZE)
842 len = BUFFER_SIZE;
843 }
844
845 if (xfer->tx_buf)
846 *tx_dma = xfer->tx_dma + xfer->len - *plen;
847 else {
848 *tx_dma = as->buffer_dma;
849 if (len > BUFFER_SIZE)
850 len = BUFFER_SIZE;
851 memset(as->buffer, 0, len);
852 dma_sync_single_for_device(&as->pdev->dev,
853 as->buffer_dma, len, DMA_TO_DEVICE);
854 }
855
856 *plen = len;
857 }
858
859 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
860 struct spi_device *spi,
861 struct spi_transfer *xfer)
862 {
863 u32 scbr, csr;
864 unsigned long bus_hz;
865
866 /* v1 chips start out at half the peripheral bus speed. */
867 bus_hz = clk_get_rate(as->clk);
868 if (!atmel_spi_is_v2(as))
869 bus_hz /= 2;
870
871 /*
872 * Calculate the lowest divider that satisfies the
873 * constraint, assuming div32/fdiv/mbz == 0.
874 */
875 if (xfer->speed_hz)
876 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
877 else
878 /*
879 * This can happend if max_speed is null.
880 * In this case, we set the lowest possible speed
881 */
882 scbr = 0xff;
883
884 /*
885 * If the resulting divider doesn't fit into the
886 * register bitfield, we can't satisfy the constraint.
887 */
888 if (scbr >= (1 << SPI_SCBR_SIZE)) {
889 dev_err(&spi->dev,
890 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
891 xfer->speed_hz, scbr, bus_hz/255);
892 return -EINVAL;
893 }
894 if (scbr == 0) {
895 dev_err(&spi->dev,
896 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
897 xfer->speed_hz, scbr, bus_hz);
898 return -EINVAL;
899 }
900 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
901 csr = SPI_BFINS(SCBR, scbr, csr);
902 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
903
904 return 0;
905 }
906
907 /*
908 * Submit next transfer for PDC.
909 * lock is held, spi irq is blocked
910 */
911 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
912 struct spi_message *msg,
913 struct spi_transfer *xfer)
914 {
915 struct atmel_spi *as = spi_master_get_devdata(master);
916 u32 len;
917 dma_addr_t tx_dma, rx_dma;
918
919 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
920
921 len = as->current_remaining_bytes;
922 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
923 as->current_remaining_bytes -= len;
924
925 spi_writel(as, RPR, rx_dma);
926 spi_writel(as, TPR, tx_dma);
927
928 if (msg->spi->bits_per_word > 8)
929 len >>= 1;
930 spi_writel(as, RCR, len);
931 spi_writel(as, TCR, len);
932
933 dev_dbg(&msg->spi->dev,
934 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
935 xfer, xfer->len, xfer->tx_buf,
936 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
937 (unsigned long long)xfer->rx_dma);
938
939 if (as->current_remaining_bytes) {
940 len = as->current_remaining_bytes;
941 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
942 as->current_remaining_bytes -= len;
943
944 spi_writel(as, RNPR, rx_dma);
945 spi_writel(as, TNPR, tx_dma);
946
947 if (msg->spi->bits_per_word > 8)
948 len >>= 1;
949 spi_writel(as, RNCR, len);
950 spi_writel(as, TNCR, len);
951
952 dev_dbg(&msg->spi->dev,
953 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
954 xfer, xfer->len, xfer->tx_buf,
955 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
956 (unsigned long long)xfer->rx_dma);
957 }
958
959 /* REVISIT: We're waiting for RXBUFF before we start the next
960 * transfer because we need to handle some difficult timing
961 * issues otherwise. If we wait for TXBUFE in one transfer and
962 * then starts waiting for RXBUFF in the next, it's difficult
963 * to tell the difference between the RXBUFF interrupt we're
964 * actually waiting for and the RXBUFF interrupt of the
965 * previous transfer.
966 *
967 * It should be doable, though. Just not now...
968 */
969 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
970 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
971 }
972
973 /*
974 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
975 * - The buffer is either valid for CPU access, else NULL
976 * - If the buffer is valid, so is its DMA address
977 *
978 * This driver manages the dma address unless message->is_dma_mapped.
979 */
980 static int
981 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
982 {
983 struct device *dev = &as->pdev->dev;
984
985 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
986 if (xfer->tx_buf) {
987 /* tx_buf is a const void* where we need a void * for the dma
988 * mapping */
989 void *nonconst_tx = (void *)xfer->tx_buf;
990
991 xfer->tx_dma = dma_map_single(dev,
992 nonconst_tx, xfer->len,
993 DMA_TO_DEVICE);
994 if (dma_mapping_error(dev, xfer->tx_dma))
995 return -ENOMEM;
996 }
997 if (xfer->rx_buf) {
998 xfer->rx_dma = dma_map_single(dev,
999 xfer->rx_buf, xfer->len,
1000 DMA_FROM_DEVICE);
1001 if (dma_mapping_error(dev, xfer->rx_dma)) {
1002 if (xfer->tx_buf)
1003 dma_unmap_single(dev,
1004 xfer->tx_dma, xfer->len,
1005 DMA_TO_DEVICE);
1006 return -ENOMEM;
1007 }
1008 }
1009 return 0;
1010 }
1011
1012 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1013 struct spi_transfer *xfer)
1014 {
1015 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1016 dma_unmap_single(master->dev.parent, xfer->tx_dma,
1017 xfer->len, DMA_TO_DEVICE);
1018 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1019 dma_unmap_single(master->dev.parent, xfer->rx_dma,
1020 xfer->len, DMA_FROM_DEVICE);
1021 }
1022
1023 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1024 {
1025 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1026 }
1027
1028 static void
1029 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1030 {
1031 u8 *rxp;
1032 u16 *rxp16;
1033 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1034
1035 if (xfer->rx_buf) {
1036 if (xfer->bits_per_word > 8) {
1037 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1038 *rxp16 = spi_readl(as, RDR);
1039 } else {
1040 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1041 *rxp = spi_readl(as, RDR);
1042 }
1043 } else {
1044 spi_readl(as, RDR);
1045 }
1046 if (xfer->bits_per_word > 8) {
1047 if (as->current_remaining_bytes > 2)
1048 as->current_remaining_bytes -= 2;
1049 else
1050 as->current_remaining_bytes = 0;
1051 } else {
1052 as->current_remaining_bytes--;
1053 }
1054 }
1055
1056 static void
1057 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1058 {
1059 u32 fifolr = spi_readl(as, FLR);
1060 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1061 u32 offset = xfer->len - as->current_remaining_bytes;
1062 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1063 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1064 u16 rd; /* RD field is the lowest 16 bits of RDR */
1065
1066 /* Update the number of remaining bytes to transfer */
1067 num_bytes = ((xfer->bits_per_word > 8) ?
1068 (num_data << 1) :
1069 num_data);
1070
1071 if (as->current_remaining_bytes > num_bytes)
1072 as->current_remaining_bytes -= num_bytes;
1073 else
1074 as->current_remaining_bytes = 0;
1075
1076 /* Handle odd number of bytes when data are more than 8bit width */
1077 if (xfer->bits_per_word > 8)
1078 as->current_remaining_bytes &= ~0x1;
1079
1080 /* Read data */
1081 while (num_data) {
1082 rd = spi_readl(as, RDR);
1083 if (xfer->rx_buf) {
1084 if (xfer->bits_per_word > 8)
1085 *words++ = rd;
1086 else
1087 *bytes++ = rd;
1088 }
1089 num_data--;
1090 }
1091 }
1092
1093 /* Called from IRQ
1094 *
1095 * Must update "current_remaining_bytes" to keep track of data
1096 * to transfer.
1097 */
1098 static void
1099 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1100 {
1101 if (as->fifo_size)
1102 atmel_spi_pump_fifo_data(as, xfer);
1103 else
1104 atmel_spi_pump_single_data(as, xfer);
1105 }
1106
1107 /* Interrupt
1108 *
1109 * No need for locking in this Interrupt handler: done_status is the
1110 * only information modified.
1111 */
1112 static irqreturn_t
1113 atmel_spi_pio_interrupt(int irq, void *dev_id)
1114 {
1115 struct spi_master *master = dev_id;
1116 struct atmel_spi *as = spi_master_get_devdata(master);
1117 u32 status, pending, imr;
1118 struct spi_transfer *xfer;
1119 int ret = IRQ_NONE;
1120
1121 imr = spi_readl(as, IMR);
1122 status = spi_readl(as, SR);
1123 pending = status & imr;
1124
1125 if (pending & SPI_BIT(OVRES)) {
1126 ret = IRQ_HANDLED;
1127 spi_writel(as, IDR, SPI_BIT(OVRES));
1128 dev_warn(master->dev.parent, "overrun\n");
1129
1130 /*
1131 * When we get an overrun, we disregard the current
1132 * transfer. Data will not be copied back from any
1133 * bounce buffer and msg->actual_len will not be
1134 * updated with the last xfer.
1135 *
1136 * We will also not process any remaning transfers in
1137 * the message.
1138 */
1139 as->done_status = -EIO;
1140 smp_wmb();
1141
1142 /* Clear any overrun happening while cleaning up */
1143 spi_readl(as, SR);
1144
1145 complete(&as->xfer_completion);
1146
1147 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1148 atmel_spi_lock(as);
1149
1150 if (as->current_remaining_bytes) {
1151 ret = IRQ_HANDLED;
1152 xfer = as->current_transfer;
1153 atmel_spi_pump_pio_data(as, xfer);
1154 if (!as->current_remaining_bytes)
1155 spi_writel(as, IDR, pending);
1156
1157 complete(&as->xfer_completion);
1158 }
1159
1160 atmel_spi_unlock(as);
1161 } else {
1162 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1163 ret = IRQ_HANDLED;
1164 spi_writel(as, IDR, pending);
1165 }
1166
1167 return ret;
1168 }
1169
1170 static irqreturn_t
1171 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1172 {
1173 struct spi_master *master = dev_id;
1174 struct atmel_spi *as = spi_master_get_devdata(master);
1175 u32 status, pending, imr;
1176 int ret = IRQ_NONE;
1177
1178 imr = spi_readl(as, IMR);
1179 status = spi_readl(as, SR);
1180 pending = status & imr;
1181
1182 if (pending & SPI_BIT(OVRES)) {
1183
1184 ret = IRQ_HANDLED;
1185
1186 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1187 | SPI_BIT(OVRES)));
1188
1189 /* Clear any overrun happening while cleaning up */
1190 spi_readl(as, SR);
1191
1192 as->done_status = -EIO;
1193
1194 complete(&as->xfer_completion);
1195
1196 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1197 ret = IRQ_HANDLED;
1198
1199 spi_writel(as, IDR, pending);
1200
1201 complete(&as->xfer_completion);
1202 }
1203
1204 return ret;
1205 }
1206
1207 static int atmel_spi_setup(struct spi_device *spi)
1208 {
1209 struct atmel_spi *as;
1210 struct atmel_spi_device *asd;
1211 u32 csr;
1212 unsigned int bits = spi->bits_per_word;
1213 unsigned int npcs_pin;
1214 int ret;
1215
1216 as = spi_master_get_devdata(spi->master);
1217
1218 /* see notes above re chipselect */
1219 if (!atmel_spi_is_v2(as)
1220 && spi->chip_select == 0
1221 && (spi->mode & SPI_CS_HIGH)) {
1222 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1223 return -EINVAL;
1224 }
1225
1226 csr = SPI_BF(BITS, bits - 8);
1227 if (spi->mode & SPI_CPOL)
1228 csr |= SPI_BIT(CPOL);
1229 if (!(spi->mode & SPI_CPHA))
1230 csr |= SPI_BIT(NCPHA);
1231 if (!as->use_cs_gpios)
1232 csr |= SPI_BIT(CSAAT);
1233
1234 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1235 *
1236 * DLYBCT would add delays between words, slowing down transfers.
1237 * It could potentially be useful to cope with DMA bottlenecks, but
1238 * in those cases it's probably best to just use a lower bitrate.
1239 */
1240 csr |= SPI_BF(DLYBS, 0);
1241 csr |= SPI_BF(DLYBCT, 0);
1242
1243 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1244 npcs_pin = (unsigned long)spi->controller_data;
1245
1246 if (!as->use_cs_gpios)
1247 npcs_pin = spi->chip_select;
1248 else if (gpio_is_valid(spi->cs_gpio))
1249 npcs_pin = spi->cs_gpio;
1250
1251 asd = spi->controller_state;
1252 if (!asd) {
1253 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1254 if (!asd)
1255 return -ENOMEM;
1256
1257 if (as->use_cs_gpios) {
1258 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1259 if (ret) {
1260 kfree(asd);
1261 return ret;
1262 }
1263
1264 gpio_direction_output(npcs_pin,
1265 !(spi->mode & SPI_CS_HIGH));
1266 }
1267
1268 asd->npcs_pin = npcs_pin;
1269 spi->controller_state = asd;
1270 }
1271
1272 asd->csr = csr;
1273
1274 dev_dbg(&spi->dev,
1275 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1276 bits, spi->mode, spi->chip_select, csr);
1277
1278 if (!atmel_spi_is_v2(as))
1279 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1280
1281 return 0;
1282 }
1283
1284 static int atmel_spi_one_transfer(struct spi_master *master,
1285 struct spi_message *msg,
1286 struct spi_transfer *xfer)
1287 {
1288 struct atmel_spi *as;
1289 struct spi_device *spi = msg->spi;
1290 u8 bits;
1291 u32 len;
1292 struct atmel_spi_device *asd;
1293 int timeout;
1294 int ret;
1295 unsigned long dma_timeout;
1296
1297 as = spi_master_get_devdata(master);
1298
1299 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1300 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1301 return -EINVAL;
1302 }
1303
1304 if (xfer->bits_per_word) {
1305 asd = spi->controller_state;
1306 bits = (asd->csr >> 4) & 0xf;
1307 if (bits != xfer->bits_per_word - 8) {
1308 dev_dbg(&spi->dev,
1309 "you can't yet change bits_per_word in transfers\n");
1310 return -ENOPROTOOPT;
1311 }
1312 }
1313
1314 /*
1315 * DMA map early, for performance (empties dcache ASAP) and
1316 * better fault reporting.
1317 */
1318 if ((!msg->is_dma_mapped)
1319 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1320 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1321 return -ENOMEM;
1322 }
1323
1324 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1325
1326 as->done_status = 0;
1327 as->current_transfer = xfer;
1328 as->current_remaining_bytes = xfer->len;
1329 while (as->current_remaining_bytes) {
1330 reinit_completion(&as->xfer_completion);
1331
1332 if (as->use_pdc) {
1333 atmel_spi_pdc_next_xfer(master, msg, xfer);
1334 } else if (atmel_spi_use_dma(as, xfer)) {
1335 len = as->current_remaining_bytes;
1336 ret = atmel_spi_next_xfer_dma_submit(master,
1337 xfer, &len);
1338 if (ret) {
1339 dev_err(&spi->dev,
1340 "unable to use DMA, fallback to PIO\n");
1341 atmel_spi_next_xfer_pio(master, xfer);
1342 } else {
1343 as->current_remaining_bytes -= len;
1344 if (as->current_remaining_bytes < 0)
1345 as->current_remaining_bytes = 0;
1346 }
1347 } else {
1348 atmel_spi_next_xfer_pio(master, xfer);
1349 }
1350
1351 /* interrupts are disabled, so free the lock for schedule */
1352 atmel_spi_unlock(as);
1353 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1354 SPI_DMA_TIMEOUT);
1355 atmel_spi_lock(as);
1356 if (WARN_ON(dma_timeout == 0)) {
1357 dev_err(&spi->dev, "spi transfer timeout\n");
1358 as->done_status = -EIO;
1359 }
1360
1361 if (as->done_status)
1362 break;
1363 }
1364
1365 if (as->done_status) {
1366 if (as->use_pdc) {
1367 dev_warn(master->dev.parent,
1368 "overrun (%u/%u remaining)\n",
1369 spi_readl(as, TCR), spi_readl(as, RCR));
1370
1371 /*
1372 * Clean up DMA registers and make sure the data
1373 * registers are empty.
1374 */
1375 spi_writel(as, RNCR, 0);
1376 spi_writel(as, TNCR, 0);
1377 spi_writel(as, RCR, 0);
1378 spi_writel(as, TCR, 0);
1379 for (timeout = 1000; timeout; timeout--)
1380 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1381 break;
1382 if (!timeout)
1383 dev_warn(master->dev.parent,
1384 "timeout waiting for TXEMPTY");
1385 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1386 spi_readl(as, RDR);
1387
1388 /* Clear any overrun happening while cleaning up */
1389 spi_readl(as, SR);
1390
1391 } else if (atmel_spi_use_dma(as, xfer)) {
1392 atmel_spi_stop_dma(as);
1393 }
1394
1395 if (!msg->is_dma_mapped
1396 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1397 atmel_spi_dma_unmap_xfer(master, xfer);
1398
1399 return 0;
1400
1401 } else {
1402 /* only update length if no error */
1403 msg->actual_length += xfer->len;
1404 }
1405
1406 if (!msg->is_dma_mapped
1407 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1408 atmel_spi_dma_unmap_xfer(master, xfer);
1409
1410 if (xfer->delay_usecs)
1411 udelay(xfer->delay_usecs);
1412
1413 if (xfer->cs_change) {
1414 if (list_is_last(&xfer->transfer_list,
1415 &msg->transfers)) {
1416 as->keep_cs = true;
1417 } else {
1418 as->cs_active = !as->cs_active;
1419 if (as->cs_active)
1420 cs_activate(as, msg->spi);
1421 else
1422 cs_deactivate(as, msg->spi);
1423 }
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int atmel_spi_transfer_one_message(struct spi_master *master,
1430 struct spi_message *msg)
1431 {
1432 struct atmel_spi *as;
1433 struct spi_transfer *xfer;
1434 struct spi_device *spi = msg->spi;
1435 int ret = 0;
1436
1437 as = spi_master_get_devdata(master);
1438
1439 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1440 msg, dev_name(&spi->dev));
1441
1442 atmel_spi_lock(as);
1443 cs_activate(as, spi);
1444
1445 as->cs_active = true;
1446 as->keep_cs = false;
1447
1448 msg->status = 0;
1449 msg->actual_length = 0;
1450
1451 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1452 ret = atmel_spi_one_transfer(master, msg, xfer);
1453 if (ret)
1454 goto msg_done;
1455 }
1456
1457 if (as->use_pdc)
1458 atmel_spi_disable_pdc_transfer(as);
1459
1460 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1461 dev_dbg(&spi->dev,
1462 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1463 xfer, xfer->len,
1464 xfer->tx_buf, &xfer->tx_dma,
1465 xfer->rx_buf, &xfer->rx_dma);
1466 }
1467
1468 msg_done:
1469 if (!as->keep_cs)
1470 cs_deactivate(as, msg->spi);
1471
1472 atmel_spi_unlock(as);
1473
1474 msg->status = as->done_status;
1475 spi_finalize_current_message(spi->master);
1476
1477 return ret;
1478 }
1479
1480 static void atmel_spi_cleanup(struct spi_device *spi)
1481 {
1482 struct atmel_spi_device *asd = spi->controller_state;
1483 unsigned gpio = (unsigned long) spi->controller_data;
1484
1485 if (!asd)
1486 return;
1487
1488 spi->controller_state = NULL;
1489 gpio_free(gpio);
1490 kfree(asd);
1491 }
1492
1493 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1494 {
1495 return spi_readl(as, VERSION) & 0x00000fff;
1496 }
1497
1498 static void atmel_get_caps(struct atmel_spi *as)
1499 {
1500 unsigned int version;
1501
1502 version = atmel_get_version(as);
1503 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1504
1505 as->caps.is_spi2 = version > 0x121;
1506 as->caps.has_wdrbt = version >= 0x210;
1507 as->caps.has_dma_support = version >= 0x212;
1508 }
1509
1510 /*-------------------------------------------------------------------------*/
1511
1512 static int atmel_spi_probe(struct platform_device *pdev)
1513 {
1514 struct resource *regs;
1515 int irq;
1516 struct clk *clk;
1517 int ret;
1518 struct spi_master *master;
1519 struct atmel_spi *as;
1520
1521 /* Select default pin state */
1522 pinctrl_pm_select_default_state(&pdev->dev);
1523
1524 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1525 if (!regs)
1526 return -ENXIO;
1527
1528 irq = platform_get_irq(pdev, 0);
1529 if (irq < 0)
1530 return irq;
1531
1532 clk = devm_clk_get(&pdev->dev, "spi_clk");
1533 if (IS_ERR(clk))
1534 return PTR_ERR(clk);
1535
1536 /* setup spi core then atmel-specific driver state */
1537 ret = -ENOMEM;
1538 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1539 if (!master)
1540 goto out_free;
1541
1542 /* the spi->mode bits understood by this driver: */
1543 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1544 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1545 master->dev.of_node = pdev->dev.of_node;
1546 master->bus_num = pdev->id;
1547 master->num_chipselect = master->dev.of_node ? 0 : 4;
1548 master->setup = atmel_spi_setup;
1549 master->transfer_one_message = atmel_spi_transfer_one_message;
1550 master->cleanup = atmel_spi_cleanup;
1551 master->auto_runtime_pm = true;
1552 platform_set_drvdata(pdev, master);
1553
1554 as = spi_master_get_devdata(master);
1555
1556 /*
1557 * Scratch buffer is used for throwaway rx and tx data.
1558 * It's coherent to minimize dcache pollution.
1559 */
1560 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1561 &as->buffer_dma, GFP_KERNEL);
1562 if (!as->buffer)
1563 goto out_free;
1564
1565 spin_lock_init(&as->lock);
1566
1567 as->pdev = pdev;
1568 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1569 if (IS_ERR(as->regs)) {
1570 ret = PTR_ERR(as->regs);
1571 goto out_free_buffer;
1572 }
1573 as->phybase = regs->start;
1574 as->irq = irq;
1575 as->clk = clk;
1576
1577 init_completion(&as->xfer_completion);
1578
1579 atmel_get_caps(as);
1580
1581 as->use_cs_gpios = true;
1582 if (atmel_spi_is_v2(as) &&
1583 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1584 as->use_cs_gpios = false;
1585 master->num_chipselect = 4;
1586 }
1587
1588 as->use_dma = false;
1589 as->use_pdc = false;
1590 if (as->caps.has_dma_support) {
1591 ret = atmel_spi_configure_dma(as);
1592 if (ret == 0)
1593 as->use_dma = true;
1594 else if (ret == -EPROBE_DEFER)
1595 return ret;
1596 } else {
1597 as->use_pdc = true;
1598 }
1599
1600 if (as->caps.has_dma_support && !as->use_dma)
1601 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1602
1603 if (as->use_pdc) {
1604 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1605 0, dev_name(&pdev->dev), master);
1606 } else {
1607 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1608 0, dev_name(&pdev->dev), master);
1609 }
1610 if (ret)
1611 goto out_unmap_regs;
1612
1613 /* Initialize the hardware */
1614 ret = clk_prepare_enable(clk);
1615 if (ret)
1616 goto out_free_irq;
1617 spi_writel(as, CR, SPI_BIT(SWRST));
1618 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1619 if (as->caps.has_wdrbt) {
1620 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1621 | SPI_BIT(MSTR));
1622 } else {
1623 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1624 }
1625
1626 if (as->use_pdc)
1627 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1628 spi_writel(as, CR, SPI_BIT(SPIEN));
1629
1630 as->fifo_size = 0;
1631 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1632 &as->fifo_size)) {
1633 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1634 spi_writel(as, CR, SPI_BIT(FIFOEN));
1635 }
1636
1637 /* go! */
1638 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1639 (unsigned long)regs->start, irq);
1640
1641 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1642 pm_runtime_use_autosuspend(&pdev->dev);
1643 pm_runtime_set_active(&pdev->dev);
1644 pm_runtime_enable(&pdev->dev);
1645
1646 ret = devm_spi_register_master(&pdev->dev, master);
1647 if (ret)
1648 goto out_free_dma;
1649
1650 return 0;
1651
1652 out_free_dma:
1653 pm_runtime_disable(&pdev->dev);
1654 pm_runtime_set_suspended(&pdev->dev);
1655
1656 if (as->use_dma)
1657 atmel_spi_release_dma(as);
1658
1659 spi_writel(as, CR, SPI_BIT(SWRST));
1660 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661 clk_disable_unprepare(clk);
1662 out_free_irq:
1663 out_unmap_regs:
1664 out_free_buffer:
1665 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1666 as->buffer_dma);
1667 out_free:
1668 spi_master_put(master);
1669 return ret;
1670 }
1671
1672 static int atmel_spi_remove(struct platform_device *pdev)
1673 {
1674 struct spi_master *master = platform_get_drvdata(pdev);
1675 struct atmel_spi *as = spi_master_get_devdata(master);
1676
1677 pm_runtime_get_sync(&pdev->dev);
1678
1679 /* reset the hardware and block queue progress */
1680 spin_lock_irq(&as->lock);
1681 if (as->use_dma) {
1682 atmel_spi_stop_dma(as);
1683 atmel_spi_release_dma(as);
1684 }
1685
1686 spi_writel(as, CR, SPI_BIT(SWRST));
1687 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1688 spi_readl(as, SR);
1689 spin_unlock_irq(&as->lock);
1690
1691 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1692 as->buffer_dma);
1693
1694 clk_disable_unprepare(as->clk);
1695
1696 pm_runtime_put_noidle(&pdev->dev);
1697 pm_runtime_disable(&pdev->dev);
1698
1699 return 0;
1700 }
1701
1702 #ifdef CONFIG_PM
1703 static int atmel_spi_runtime_suspend(struct device *dev)
1704 {
1705 struct spi_master *master = dev_get_drvdata(dev);
1706 struct atmel_spi *as = spi_master_get_devdata(master);
1707
1708 clk_disable_unprepare(as->clk);
1709 pinctrl_pm_select_sleep_state(dev);
1710
1711 return 0;
1712 }
1713
1714 static int atmel_spi_runtime_resume(struct device *dev)
1715 {
1716 struct spi_master *master = dev_get_drvdata(dev);
1717 struct atmel_spi *as = spi_master_get_devdata(master);
1718
1719 pinctrl_pm_select_default_state(dev);
1720
1721 return clk_prepare_enable(as->clk);
1722 }
1723
1724 static int atmel_spi_suspend(struct device *dev)
1725 {
1726 struct spi_master *master = dev_get_drvdata(dev);
1727 int ret;
1728
1729 /* Stop the queue running */
1730 ret = spi_master_suspend(master);
1731 if (ret) {
1732 dev_warn(dev, "cannot suspend master\n");
1733 return ret;
1734 }
1735
1736 if (!pm_runtime_suspended(dev))
1737 atmel_spi_runtime_suspend(dev);
1738
1739 return 0;
1740 }
1741
1742 static int atmel_spi_resume(struct device *dev)
1743 {
1744 struct spi_master *master = dev_get_drvdata(dev);
1745 int ret;
1746
1747 if (!pm_runtime_suspended(dev)) {
1748 ret = atmel_spi_runtime_resume(dev);
1749 if (ret)
1750 return ret;
1751 }
1752
1753 /* Start the queue running */
1754 ret = spi_master_resume(master);
1755 if (ret)
1756 dev_err(dev, "problem starting queue (%d)\n", ret);
1757
1758 return ret;
1759 }
1760
1761 static const struct dev_pm_ops atmel_spi_pm_ops = {
1762 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1763 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1764 atmel_spi_runtime_resume, NULL)
1765 };
1766 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1767 #else
1768 #define ATMEL_SPI_PM_OPS NULL
1769 #endif
1770
1771 #if defined(CONFIG_OF)
1772 static const struct of_device_id atmel_spi_dt_ids[] = {
1773 { .compatible = "atmel,at91rm9200-spi" },
1774 { /* sentinel */ }
1775 };
1776
1777 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1778 #endif
1779
1780 static struct platform_driver atmel_spi_driver = {
1781 .driver = {
1782 .name = "atmel_spi",
1783 .pm = ATMEL_SPI_PM_OPS,
1784 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1785 },
1786 .probe = atmel_spi_probe,
1787 .remove = atmel_spi_remove,
1788 };
1789 module_platform_driver(atmel_spi_driver);
1790
1791 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1792 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1793 MODULE_LICENSE("GPL");
1794 MODULE_ALIAS("platform:atmel_spi");