]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-atmel.c
spi/atmel: fix simple_return.cocci warnings
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-atmel.c
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30
31 /* SPI register offsets */
32 #define SPI_CR 0x0000
33 #define SPI_MR 0x0004
34 #define SPI_RDR 0x0008
35 #define SPI_TDR 0x000c
36 #define SPI_SR 0x0010
37 #define SPI_IER 0x0014
38 #define SPI_IDR 0x0018
39 #define SPI_IMR 0x001c
40 #define SPI_CSR0 0x0030
41 #define SPI_CSR1 0x0034
42 #define SPI_CSR2 0x0038
43 #define SPI_CSR3 0x003c
44 #define SPI_VERSION 0x00fc
45 #define SPI_RPR 0x0100
46 #define SPI_RCR 0x0104
47 #define SPI_TPR 0x0108
48 #define SPI_TCR 0x010c
49 #define SPI_RNPR 0x0110
50 #define SPI_RNCR 0x0114
51 #define SPI_TNPR 0x0118
52 #define SPI_TNCR 0x011c
53 #define SPI_PTCR 0x0120
54 #define SPI_PTSR 0x0124
55
56 /* Bitfields in CR */
57 #define SPI_SPIEN_OFFSET 0
58 #define SPI_SPIEN_SIZE 1
59 #define SPI_SPIDIS_OFFSET 1
60 #define SPI_SPIDIS_SIZE 1
61 #define SPI_SWRST_OFFSET 7
62 #define SPI_SWRST_SIZE 1
63 #define SPI_LASTXFER_OFFSET 24
64 #define SPI_LASTXFER_SIZE 1
65
66 /* Bitfields in MR */
67 #define SPI_MSTR_OFFSET 0
68 #define SPI_MSTR_SIZE 1
69 #define SPI_PS_OFFSET 1
70 #define SPI_PS_SIZE 1
71 #define SPI_PCSDEC_OFFSET 2
72 #define SPI_PCSDEC_SIZE 1
73 #define SPI_FDIV_OFFSET 3
74 #define SPI_FDIV_SIZE 1
75 #define SPI_MODFDIS_OFFSET 4
76 #define SPI_MODFDIS_SIZE 1
77 #define SPI_WDRBT_OFFSET 5
78 #define SPI_WDRBT_SIZE 1
79 #define SPI_LLB_OFFSET 7
80 #define SPI_LLB_SIZE 1
81 #define SPI_PCS_OFFSET 16
82 #define SPI_PCS_SIZE 4
83 #define SPI_DLYBCS_OFFSET 24
84 #define SPI_DLYBCS_SIZE 8
85
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET 0
88 #define SPI_RD_SIZE 16
89
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET 0
92 #define SPI_TD_SIZE 16
93
94 /* Bitfields in SR */
95 #define SPI_RDRF_OFFSET 0
96 #define SPI_RDRF_SIZE 1
97 #define SPI_TDRE_OFFSET 1
98 #define SPI_TDRE_SIZE 1
99 #define SPI_MODF_OFFSET 2
100 #define SPI_MODF_SIZE 1
101 #define SPI_OVRES_OFFSET 3
102 #define SPI_OVRES_SIZE 1
103 #define SPI_ENDRX_OFFSET 4
104 #define SPI_ENDRX_SIZE 1
105 #define SPI_ENDTX_OFFSET 5
106 #define SPI_ENDTX_SIZE 1
107 #define SPI_RXBUFF_OFFSET 6
108 #define SPI_RXBUFF_SIZE 1
109 #define SPI_TXBUFE_OFFSET 7
110 #define SPI_TXBUFE_SIZE 1
111 #define SPI_NSSR_OFFSET 8
112 #define SPI_NSSR_SIZE 1
113 #define SPI_TXEMPTY_OFFSET 9
114 #define SPI_TXEMPTY_SIZE 1
115 #define SPI_SPIENS_OFFSET 16
116 #define SPI_SPIENS_SIZE 1
117
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET 0
120 #define SPI_CPOL_SIZE 1
121 #define SPI_NCPHA_OFFSET 1
122 #define SPI_NCPHA_SIZE 1
123 #define SPI_CSAAT_OFFSET 3
124 #define SPI_CSAAT_SIZE 1
125 #define SPI_BITS_OFFSET 4
126 #define SPI_BITS_SIZE 4
127 #define SPI_SCBR_OFFSET 8
128 #define SPI_SCBR_SIZE 8
129 #define SPI_DLYBS_OFFSET 16
130 #define SPI_DLYBS_SIZE 8
131 #define SPI_DLYBCT_OFFSET 24
132 #define SPI_DLYBCT_SIZE 8
133
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET 0
136 #define SPI_RXCTR_SIZE 16
137
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET 0
140 #define SPI_TXCTR_SIZE 16
141
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET 0
144 #define SPI_RXNCR_SIZE 16
145
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET 0
148 #define SPI_TXNCR_SIZE 16
149
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET 0
152 #define SPI_RXTEN_SIZE 1
153 #define SPI_RXTDIS_OFFSET 1
154 #define SPI_RXTDIS_SIZE 1
155 #define SPI_TXTEN_OFFSET 8
156 #define SPI_TXTEN_SIZE 1
157 #define SPI_TXTDIS_OFFSET 9
158 #define SPI_TXTDIS_SIZE 1
159
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT 0
162 #define SPI_BITS_9_BPT 1
163 #define SPI_BITS_10_BPT 2
164 #define SPI_BITS_11_BPT 3
165 #define SPI_BITS_12_BPT 4
166 #define SPI_BITS_13_BPT 5
167 #define SPI_BITS_14_BPT 6
168 #define SPI_BITS_15_BPT 7
169 #define SPI_BITS_16_BPT 8
170
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173 (1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180 | SPI_BF(name, value))
181
182 /* Register access macros */
183 #define spi_readl(port, reg) \
184 __raw_readl((port)->regs + SPI_##reg)
185 #define spi_writel(port, reg, value) \
186 __raw_writel((value), (port)->regs + SPI_##reg)
187
188 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
189 * cache operations; better heuristics consider wordsize and bitrate.
190 */
191 #define DMA_MIN_BYTES 16
192
193 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
194
195 #define AUTOSUSPEND_TIMEOUT 2000
196
197 struct atmel_spi_dma {
198 struct dma_chan *chan_rx;
199 struct dma_chan *chan_tx;
200 struct scatterlist sgrx;
201 struct scatterlist sgtx;
202 struct dma_async_tx_descriptor *data_desc_rx;
203 struct dma_async_tx_descriptor *data_desc_tx;
204
205 struct at_dma_slave dma_slave;
206 };
207
208 struct atmel_spi_caps {
209 bool is_spi2;
210 bool has_wdrbt;
211 bool has_dma_support;
212 };
213
214 /*
215 * The core SPI transfer engine just talks to a register bank to set up
216 * DMA transfers; transfer queue progress is driven by IRQs. The clock
217 * framework provides the base clock, subdivided for each spi_device.
218 */
219 struct atmel_spi {
220 spinlock_t lock;
221 unsigned long flags;
222
223 phys_addr_t phybase;
224 void __iomem *regs;
225 int irq;
226 struct clk *clk;
227 struct platform_device *pdev;
228
229 struct spi_transfer *current_transfer;
230 int current_remaining_bytes;
231 int done_status;
232
233 struct completion xfer_completion;
234
235 /* scratch buffer */
236 void *buffer;
237 dma_addr_t buffer_dma;
238
239 struct atmel_spi_caps caps;
240
241 bool use_dma;
242 bool use_pdc;
243 /* dmaengine data */
244 struct atmel_spi_dma dma;
245
246 bool keep_cs;
247 bool cs_active;
248 };
249
250 /* Controller-specific per-slave state */
251 struct atmel_spi_device {
252 unsigned int npcs_pin;
253 u32 csr;
254 };
255
256 #define BUFFER_SIZE PAGE_SIZE
257 #define INVALID_DMA_ADDRESS 0xffffffff
258
259 /*
260 * Version 2 of the SPI controller has
261 * - CR.LASTXFER
262 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
263 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
264 * - SPI_CSRx.CSAAT
265 * - SPI_CSRx.SBCR allows faster clocking
266 */
267 static bool atmel_spi_is_v2(struct atmel_spi *as)
268 {
269 return as->caps.is_spi2;
270 }
271
272 /*
273 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
274 * they assume that spi slave device state will not change on deselect, so
275 * that automagic deselection is OK. ("NPCSx rises if no data is to be
276 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
277 * controllers have CSAAT and friends.
278 *
279 * Since the CSAAT functionality is a bit weird on newer controllers as
280 * well, we use GPIO to control nCSx pins on all controllers, updating
281 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
282 * support active-high chipselects despite the controller's belief that
283 * only active-low devices/systems exists.
284 *
285 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
286 * right when driven with GPIO. ("Mode Fault does not allow more than one
287 * Master on Chip Select 0.") No workaround exists for that ... so for
288 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
289 * and (c) will trigger that first erratum in some cases.
290 */
291
292 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
293 {
294 struct atmel_spi_device *asd = spi->controller_state;
295 unsigned active = spi->mode & SPI_CS_HIGH;
296 u32 mr;
297
298 if (atmel_spi_is_v2(as)) {
299 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
300 /* For the low SPI version, there is a issue that PDC transfer
301 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
302 */
303 spi_writel(as, CSR0, asd->csr);
304 if (as->caps.has_wdrbt) {
305 spi_writel(as, MR,
306 SPI_BF(PCS, ~(0x01 << spi->chip_select))
307 | SPI_BIT(WDRBT)
308 | SPI_BIT(MODFDIS)
309 | SPI_BIT(MSTR));
310 } else {
311 spi_writel(as, MR,
312 SPI_BF(PCS, ~(0x01 << spi->chip_select))
313 | SPI_BIT(MODFDIS)
314 | SPI_BIT(MSTR));
315 }
316
317 mr = spi_readl(as, MR);
318 gpio_set_value(asd->npcs_pin, active);
319 } else {
320 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
321 int i;
322 u32 csr;
323
324 /* Make sure clock polarity is correct */
325 for (i = 0; i < spi->master->num_chipselect; i++) {
326 csr = spi_readl(as, CSR0 + 4 * i);
327 if ((csr ^ cpol) & SPI_BIT(CPOL))
328 spi_writel(as, CSR0 + 4 * i,
329 csr ^ SPI_BIT(CPOL));
330 }
331
332 mr = spi_readl(as, MR);
333 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
334 if (spi->chip_select != 0)
335 gpio_set_value(asd->npcs_pin, active);
336 spi_writel(as, MR, mr);
337 }
338
339 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
340 asd->npcs_pin, active ? " (high)" : "",
341 mr);
342 }
343
344 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
345 {
346 struct atmel_spi_device *asd = spi->controller_state;
347 unsigned active = spi->mode & SPI_CS_HIGH;
348 u32 mr;
349
350 /* only deactivate *this* device; sometimes transfers to
351 * another device may be active when this routine is called.
352 */
353 mr = spi_readl(as, MR);
354 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
355 mr = SPI_BFINS(PCS, 0xf, mr);
356 spi_writel(as, MR, mr);
357 }
358
359 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
360 asd->npcs_pin, active ? " (low)" : "",
361 mr);
362
363 if (atmel_spi_is_v2(as) || spi->chip_select != 0)
364 gpio_set_value(asd->npcs_pin, !active);
365 }
366
367 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
368 {
369 spin_lock_irqsave(&as->lock, as->flags);
370 }
371
372 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
373 {
374 spin_unlock_irqrestore(&as->lock, as->flags);
375 }
376
377 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
378 struct spi_transfer *xfer)
379 {
380 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
381 }
382
383 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
384 struct dma_slave_config *slave_config,
385 u8 bits_per_word)
386 {
387 int err = 0;
388
389 if (bits_per_word > 8) {
390 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
391 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
392 } else {
393 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
394 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
395 }
396
397 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
398 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
399 slave_config->src_maxburst = 1;
400 slave_config->dst_maxburst = 1;
401 slave_config->device_fc = false;
402
403 slave_config->direction = DMA_MEM_TO_DEV;
404 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
405 dev_err(&as->pdev->dev,
406 "failed to configure tx dma channel\n");
407 err = -EINVAL;
408 }
409
410 slave_config->direction = DMA_DEV_TO_MEM;
411 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
412 dev_err(&as->pdev->dev,
413 "failed to configure rx dma channel\n");
414 err = -EINVAL;
415 }
416
417 return err;
418 }
419
420 static bool filter(struct dma_chan *chan, void *pdata)
421 {
422 struct atmel_spi_dma *sl_pdata = pdata;
423 struct at_dma_slave *sl;
424
425 if (!sl_pdata)
426 return false;
427
428 sl = &sl_pdata->dma_slave;
429 if (sl->dma_dev == chan->device->dev) {
430 chan->private = sl;
431 return true;
432 } else {
433 return false;
434 }
435 }
436
437 static int atmel_spi_configure_dma(struct atmel_spi *as)
438 {
439 struct dma_slave_config slave_config;
440 struct device *dev = &as->pdev->dev;
441 int err;
442
443 dma_cap_mask_t mask;
444 dma_cap_zero(mask);
445 dma_cap_set(DMA_SLAVE, mask);
446
447 as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
448 &as->dma,
449 dev, "tx");
450 if (!as->dma.chan_tx) {
451 dev_err(dev,
452 "DMA TX channel not available, SPI unable to use DMA\n");
453 err = -EBUSY;
454 goto error;
455 }
456
457 as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
458 &as->dma,
459 dev, "rx");
460
461 if (!as->dma.chan_rx) {
462 dev_err(dev,
463 "DMA RX channel not available, SPI unable to use DMA\n");
464 err = -EBUSY;
465 goto error;
466 }
467
468 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
469 if (err)
470 goto error;
471
472 dev_info(&as->pdev->dev,
473 "Using %s (tx) and %s (rx) for DMA transfers\n",
474 dma_chan_name(as->dma.chan_tx),
475 dma_chan_name(as->dma.chan_rx));
476 return 0;
477 error:
478 if (as->dma.chan_rx)
479 dma_release_channel(as->dma.chan_rx);
480 if (as->dma.chan_tx)
481 dma_release_channel(as->dma.chan_tx);
482 return err;
483 }
484
485 static void atmel_spi_stop_dma(struct atmel_spi *as)
486 {
487 if (as->dma.chan_rx)
488 dmaengine_terminate_all(as->dma.chan_rx);
489 if (as->dma.chan_tx)
490 dmaengine_terminate_all(as->dma.chan_tx);
491 }
492
493 static void atmel_spi_release_dma(struct atmel_spi *as)
494 {
495 if (as->dma.chan_rx)
496 dma_release_channel(as->dma.chan_rx);
497 if (as->dma.chan_tx)
498 dma_release_channel(as->dma.chan_tx);
499 }
500
501 /* This function is called by the DMA driver from tasklet context */
502 static void dma_callback(void *data)
503 {
504 struct spi_master *master = data;
505 struct atmel_spi *as = spi_master_get_devdata(master);
506
507 complete(&as->xfer_completion);
508 }
509
510 /*
511 * Next transfer using PIO.
512 */
513 static void atmel_spi_next_xfer_pio(struct spi_master *master,
514 struct spi_transfer *xfer)
515 {
516 struct atmel_spi *as = spi_master_get_devdata(master);
517 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
518
519 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
520
521 /* Make sure data is not remaining in RDR */
522 spi_readl(as, RDR);
523 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
524 spi_readl(as, RDR);
525 cpu_relax();
526 }
527
528 if (xfer->tx_buf) {
529 if (xfer->bits_per_word > 8)
530 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
531 else
532 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
533 } else {
534 spi_writel(as, TDR, 0);
535 }
536
537 dev_dbg(master->dev.parent,
538 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
539 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
540 xfer->bits_per_word);
541
542 /* Enable relevant interrupts */
543 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
544 }
545
546 /*
547 * Submit next transfer for DMA.
548 */
549 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
550 struct spi_transfer *xfer,
551 u32 *plen)
552 {
553 struct atmel_spi *as = spi_master_get_devdata(master);
554 struct dma_chan *rxchan = as->dma.chan_rx;
555 struct dma_chan *txchan = as->dma.chan_tx;
556 struct dma_async_tx_descriptor *rxdesc;
557 struct dma_async_tx_descriptor *txdesc;
558 struct dma_slave_config slave_config;
559 dma_cookie_t cookie;
560 u32 len = *plen;
561
562 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
563
564 /* Check that the channels are available */
565 if (!rxchan || !txchan)
566 return -ENODEV;
567
568 /* release lock for DMA operations */
569 atmel_spi_unlock(as);
570
571 /* prepare the RX dma transfer */
572 sg_init_table(&as->dma.sgrx, 1);
573 if (xfer->rx_buf) {
574 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
575 } else {
576 as->dma.sgrx.dma_address = as->buffer_dma;
577 if (len > BUFFER_SIZE)
578 len = BUFFER_SIZE;
579 }
580
581 /* prepare the TX dma transfer */
582 sg_init_table(&as->dma.sgtx, 1);
583 if (xfer->tx_buf) {
584 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
585 } else {
586 as->dma.sgtx.dma_address = as->buffer_dma;
587 if (len > BUFFER_SIZE)
588 len = BUFFER_SIZE;
589 memset(as->buffer, 0, len);
590 }
591
592 sg_dma_len(&as->dma.sgtx) = len;
593 sg_dma_len(&as->dma.sgrx) = len;
594
595 *plen = len;
596
597 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
598 goto err_exit;
599
600 /* Send both scatterlists */
601 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
602 DMA_FROM_DEVICE,
603 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
604 if (!rxdesc)
605 goto err_dma;
606
607 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
608 DMA_TO_DEVICE,
609 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
610 if (!txdesc)
611 goto err_dma;
612
613 dev_dbg(master->dev.parent,
614 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
615 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
616 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
617
618 /* Enable relevant interrupts */
619 spi_writel(as, IER, SPI_BIT(OVRES));
620
621 /* Put the callback on the RX transfer only, that should finish last */
622 rxdesc->callback = dma_callback;
623 rxdesc->callback_param = master;
624
625 /* Submit and fire RX and TX with TX last so we're ready to read! */
626 cookie = rxdesc->tx_submit(rxdesc);
627 if (dma_submit_error(cookie))
628 goto err_dma;
629 cookie = txdesc->tx_submit(txdesc);
630 if (dma_submit_error(cookie))
631 goto err_dma;
632 rxchan->device->device_issue_pending(rxchan);
633 txchan->device->device_issue_pending(txchan);
634
635 /* take back lock */
636 atmel_spi_lock(as);
637 return 0;
638
639 err_dma:
640 spi_writel(as, IDR, SPI_BIT(OVRES));
641 atmel_spi_stop_dma(as);
642 err_exit:
643 atmel_spi_lock(as);
644 return -ENOMEM;
645 }
646
647 static void atmel_spi_next_xfer_data(struct spi_master *master,
648 struct spi_transfer *xfer,
649 dma_addr_t *tx_dma,
650 dma_addr_t *rx_dma,
651 u32 *plen)
652 {
653 struct atmel_spi *as = spi_master_get_devdata(master);
654 u32 len = *plen;
655
656 /* use scratch buffer only when rx or tx data is unspecified */
657 if (xfer->rx_buf)
658 *rx_dma = xfer->rx_dma + xfer->len - *plen;
659 else {
660 *rx_dma = as->buffer_dma;
661 if (len > BUFFER_SIZE)
662 len = BUFFER_SIZE;
663 }
664
665 if (xfer->tx_buf)
666 *tx_dma = xfer->tx_dma + xfer->len - *plen;
667 else {
668 *tx_dma = as->buffer_dma;
669 if (len > BUFFER_SIZE)
670 len = BUFFER_SIZE;
671 memset(as->buffer, 0, len);
672 dma_sync_single_for_device(&as->pdev->dev,
673 as->buffer_dma, len, DMA_TO_DEVICE);
674 }
675
676 *plen = len;
677 }
678
679 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
680 struct spi_device *spi,
681 struct spi_transfer *xfer)
682 {
683 u32 scbr, csr;
684 unsigned long bus_hz;
685
686 /* v1 chips start out at half the peripheral bus speed. */
687 bus_hz = clk_get_rate(as->clk);
688 if (!atmel_spi_is_v2(as))
689 bus_hz /= 2;
690
691 /*
692 * Calculate the lowest divider that satisfies the
693 * constraint, assuming div32/fdiv/mbz == 0.
694 */
695 if (xfer->speed_hz)
696 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
697 else
698 /*
699 * This can happend if max_speed is null.
700 * In this case, we set the lowest possible speed
701 */
702 scbr = 0xff;
703
704 /*
705 * If the resulting divider doesn't fit into the
706 * register bitfield, we can't satisfy the constraint.
707 */
708 if (scbr >= (1 << SPI_SCBR_SIZE)) {
709 dev_err(&spi->dev,
710 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
711 xfer->speed_hz, scbr, bus_hz/255);
712 return -EINVAL;
713 }
714 if (scbr == 0) {
715 dev_err(&spi->dev,
716 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
717 xfer->speed_hz, scbr, bus_hz);
718 return -EINVAL;
719 }
720 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
721 csr = SPI_BFINS(SCBR, scbr, csr);
722 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
723
724 return 0;
725 }
726
727 /*
728 * Submit next transfer for PDC.
729 * lock is held, spi irq is blocked
730 */
731 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
732 struct spi_message *msg,
733 struct spi_transfer *xfer)
734 {
735 struct atmel_spi *as = spi_master_get_devdata(master);
736 u32 len;
737 dma_addr_t tx_dma, rx_dma;
738
739 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
740
741 len = as->current_remaining_bytes;
742 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
743 as->current_remaining_bytes -= len;
744
745 spi_writel(as, RPR, rx_dma);
746 spi_writel(as, TPR, tx_dma);
747
748 if (msg->spi->bits_per_word > 8)
749 len >>= 1;
750 spi_writel(as, RCR, len);
751 spi_writel(as, TCR, len);
752
753 dev_dbg(&msg->spi->dev,
754 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
755 xfer, xfer->len, xfer->tx_buf,
756 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
757 (unsigned long long)xfer->rx_dma);
758
759 if (as->current_remaining_bytes) {
760 len = as->current_remaining_bytes;
761 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
762 as->current_remaining_bytes -= len;
763
764 spi_writel(as, RNPR, rx_dma);
765 spi_writel(as, TNPR, tx_dma);
766
767 if (msg->spi->bits_per_word > 8)
768 len >>= 1;
769 spi_writel(as, RNCR, len);
770 spi_writel(as, TNCR, len);
771
772 dev_dbg(&msg->spi->dev,
773 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
774 xfer, xfer->len, xfer->tx_buf,
775 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
776 (unsigned long long)xfer->rx_dma);
777 }
778
779 /* REVISIT: We're waiting for ENDRX before we start the next
780 * transfer because we need to handle some difficult timing
781 * issues otherwise. If we wait for ENDTX in one transfer and
782 * then starts waiting for ENDRX in the next, it's difficult
783 * to tell the difference between the ENDRX interrupt we're
784 * actually waiting for and the ENDRX interrupt of the
785 * previous transfer.
786 *
787 * It should be doable, though. Just not now...
788 */
789 spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
790 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
791 }
792
793 /*
794 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
795 * - The buffer is either valid for CPU access, else NULL
796 * - If the buffer is valid, so is its DMA address
797 *
798 * This driver manages the dma address unless message->is_dma_mapped.
799 */
800 static int
801 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
802 {
803 struct device *dev = &as->pdev->dev;
804
805 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
806 if (xfer->tx_buf) {
807 /* tx_buf is a const void* where we need a void * for the dma
808 * mapping */
809 void *nonconst_tx = (void *)xfer->tx_buf;
810
811 xfer->tx_dma = dma_map_single(dev,
812 nonconst_tx, xfer->len,
813 DMA_TO_DEVICE);
814 if (dma_mapping_error(dev, xfer->tx_dma))
815 return -ENOMEM;
816 }
817 if (xfer->rx_buf) {
818 xfer->rx_dma = dma_map_single(dev,
819 xfer->rx_buf, xfer->len,
820 DMA_FROM_DEVICE);
821 if (dma_mapping_error(dev, xfer->rx_dma)) {
822 if (xfer->tx_buf)
823 dma_unmap_single(dev,
824 xfer->tx_dma, xfer->len,
825 DMA_TO_DEVICE);
826 return -ENOMEM;
827 }
828 }
829 return 0;
830 }
831
832 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
833 struct spi_transfer *xfer)
834 {
835 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
836 dma_unmap_single(master->dev.parent, xfer->tx_dma,
837 xfer->len, DMA_TO_DEVICE);
838 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
839 dma_unmap_single(master->dev.parent, xfer->rx_dma,
840 xfer->len, DMA_FROM_DEVICE);
841 }
842
843 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
844 {
845 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
846 }
847
848 /* Called from IRQ
849 *
850 * Must update "current_remaining_bytes" to keep track of data
851 * to transfer.
852 */
853 static void
854 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
855 {
856 u8 *rxp;
857 u16 *rxp16;
858 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
859
860 if (xfer->rx_buf) {
861 if (xfer->bits_per_word > 8) {
862 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
863 *rxp16 = spi_readl(as, RDR);
864 } else {
865 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
866 *rxp = spi_readl(as, RDR);
867 }
868 } else {
869 spi_readl(as, RDR);
870 }
871 if (xfer->bits_per_word > 8) {
872 if (as->current_remaining_bytes > 2)
873 as->current_remaining_bytes -= 2;
874 else
875 as->current_remaining_bytes = 0;
876 } else {
877 as->current_remaining_bytes--;
878 }
879 }
880
881 /* Interrupt
882 *
883 * No need for locking in this Interrupt handler: done_status is the
884 * only information modified.
885 */
886 static irqreturn_t
887 atmel_spi_pio_interrupt(int irq, void *dev_id)
888 {
889 struct spi_master *master = dev_id;
890 struct atmel_spi *as = spi_master_get_devdata(master);
891 u32 status, pending, imr;
892 struct spi_transfer *xfer;
893 int ret = IRQ_NONE;
894
895 imr = spi_readl(as, IMR);
896 status = spi_readl(as, SR);
897 pending = status & imr;
898
899 if (pending & SPI_BIT(OVRES)) {
900 ret = IRQ_HANDLED;
901 spi_writel(as, IDR, SPI_BIT(OVRES));
902 dev_warn(master->dev.parent, "overrun\n");
903
904 /*
905 * When we get an overrun, we disregard the current
906 * transfer. Data will not be copied back from any
907 * bounce buffer and msg->actual_len will not be
908 * updated with the last xfer.
909 *
910 * We will also not process any remaning transfers in
911 * the message.
912 */
913 as->done_status = -EIO;
914 smp_wmb();
915
916 /* Clear any overrun happening while cleaning up */
917 spi_readl(as, SR);
918
919 complete(&as->xfer_completion);
920
921 } else if (pending & SPI_BIT(RDRF)) {
922 atmel_spi_lock(as);
923
924 if (as->current_remaining_bytes) {
925 ret = IRQ_HANDLED;
926 xfer = as->current_transfer;
927 atmel_spi_pump_pio_data(as, xfer);
928 if (!as->current_remaining_bytes)
929 spi_writel(as, IDR, pending);
930
931 complete(&as->xfer_completion);
932 }
933
934 atmel_spi_unlock(as);
935 } else {
936 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
937 ret = IRQ_HANDLED;
938 spi_writel(as, IDR, pending);
939 }
940
941 return ret;
942 }
943
944 static irqreturn_t
945 atmel_spi_pdc_interrupt(int irq, void *dev_id)
946 {
947 struct spi_master *master = dev_id;
948 struct atmel_spi *as = spi_master_get_devdata(master);
949 u32 status, pending, imr;
950 int ret = IRQ_NONE;
951
952 imr = spi_readl(as, IMR);
953 status = spi_readl(as, SR);
954 pending = status & imr;
955
956 if (pending & SPI_BIT(OVRES)) {
957
958 ret = IRQ_HANDLED;
959
960 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
961 | SPI_BIT(OVRES)));
962
963 /* Clear any overrun happening while cleaning up */
964 spi_readl(as, SR);
965
966 as->done_status = -EIO;
967
968 complete(&as->xfer_completion);
969
970 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
971 ret = IRQ_HANDLED;
972
973 spi_writel(as, IDR, pending);
974
975 complete(&as->xfer_completion);
976 }
977
978 return ret;
979 }
980
981 static int atmel_spi_setup(struct spi_device *spi)
982 {
983 struct atmel_spi *as;
984 struct atmel_spi_device *asd;
985 u32 csr;
986 unsigned int bits = spi->bits_per_word;
987 unsigned int npcs_pin;
988 int ret;
989
990 as = spi_master_get_devdata(spi->master);
991
992 /* see notes above re chipselect */
993 if (!atmel_spi_is_v2(as)
994 && spi->chip_select == 0
995 && (spi->mode & SPI_CS_HIGH)) {
996 dev_dbg(&spi->dev, "setup: can't be active-high\n");
997 return -EINVAL;
998 }
999
1000 csr = SPI_BF(BITS, bits - 8);
1001 if (spi->mode & SPI_CPOL)
1002 csr |= SPI_BIT(CPOL);
1003 if (!(spi->mode & SPI_CPHA))
1004 csr |= SPI_BIT(NCPHA);
1005
1006 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1007 *
1008 * DLYBCT would add delays between words, slowing down transfers.
1009 * It could potentially be useful to cope with DMA bottlenecks, but
1010 * in those cases it's probably best to just use a lower bitrate.
1011 */
1012 csr |= SPI_BF(DLYBS, 0);
1013 csr |= SPI_BF(DLYBCT, 0);
1014
1015 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1016 npcs_pin = (unsigned long)spi->controller_data;
1017
1018 if (gpio_is_valid(spi->cs_gpio))
1019 npcs_pin = spi->cs_gpio;
1020
1021 asd = spi->controller_state;
1022 if (!asd) {
1023 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1024 if (!asd)
1025 return -ENOMEM;
1026
1027 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1028 if (ret) {
1029 kfree(asd);
1030 return ret;
1031 }
1032
1033 asd->npcs_pin = npcs_pin;
1034 spi->controller_state = asd;
1035 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1036 }
1037
1038 asd->csr = csr;
1039
1040 dev_dbg(&spi->dev,
1041 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1042 bits, spi->mode, spi->chip_select, csr);
1043
1044 if (!atmel_spi_is_v2(as))
1045 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1046
1047 return 0;
1048 }
1049
1050 static int atmel_spi_one_transfer(struct spi_master *master,
1051 struct spi_message *msg,
1052 struct spi_transfer *xfer)
1053 {
1054 struct atmel_spi *as;
1055 struct spi_device *spi = msg->spi;
1056 u8 bits;
1057 u32 len;
1058 struct atmel_spi_device *asd;
1059 int timeout;
1060 int ret;
1061
1062 as = spi_master_get_devdata(master);
1063
1064 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1065 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1066 return -EINVAL;
1067 }
1068
1069 if (xfer->bits_per_word) {
1070 asd = spi->controller_state;
1071 bits = (asd->csr >> 4) & 0xf;
1072 if (bits != xfer->bits_per_word - 8) {
1073 dev_dbg(&spi->dev,
1074 "you can't yet change bits_per_word in transfers\n");
1075 return -ENOPROTOOPT;
1076 }
1077 }
1078
1079 /*
1080 * DMA map early, for performance (empties dcache ASAP) and
1081 * better fault reporting.
1082 */
1083 if ((!msg->is_dma_mapped)
1084 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1085 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1086 return -ENOMEM;
1087 }
1088
1089 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1090
1091 as->done_status = 0;
1092 as->current_transfer = xfer;
1093 as->current_remaining_bytes = xfer->len;
1094 while (as->current_remaining_bytes) {
1095 reinit_completion(&as->xfer_completion);
1096
1097 if (as->use_pdc) {
1098 atmel_spi_pdc_next_xfer(master, msg, xfer);
1099 } else if (atmel_spi_use_dma(as, xfer)) {
1100 len = as->current_remaining_bytes;
1101 ret = atmel_spi_next_xfer_dma_submit(master,
1102 xfer, &len);
1103 if (ret) {
1104 dev_err(&spi->dev,
1105 "unable to use DMA, fallback to PIO\n");
1106 atmel_spi_next_xfer_pio(master, xfer);
1107 } else {
1108 as->current_remaining_bytes -= len;
1109 if (as->current_remaining_bytes < 0)
1110 as->current_remaining_bytes = 0;
1111 }
1112 } else {
1113 atmel_spi_next_xfer_pio(master, xfer);
1114 }
1115
1116 /* interrupts are disabled, so free the lock for schedule */
1117 atmel_spi_unlock(as);
1118 ret = wait_for_completion_timeout(&as->xfer_completion,
1119 SPI_DMA_TIMEOUT);
1120 atmel_spi_lock(as);
1121 if (WARN_ON(ret == 0)) {
1122 dev_err(&spi->dev,
1123 "spi trasfer timeout, err %d\n", ret);
1124 as->done_status = -EIO;
1125 } else {
1126 ret = 0;
1127 }
1128
1129 if (as->done_status)
1130 break;
1131 }
1132
1133 if (as->done_status) {
1134 if (as->use_pdc) {
1135 dev_warn(master->dev.parent,
1136 "overrun (%u/%u remaining)\n",
1137 spi_readl(as, TCR), spi_readl(as, RCR));
1138
1139 /*
1140 * Clean up DMA registers and make sure the data
1141 * registers are empty.
1142 */
1143 spi_writel(as, RNCR, 0);
1144 spi_writel(as, TNCR, 0);
1145 spi_writel(as, RCR, 0);
1146 spi_writel(as, TCR, 0);
1147 for (timeout = 1000; timeout; timeout--)
1148 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1149 break;
1150 if (!timeout)
1151 dev_warn(master->dev.parent,
1152 "timeout waiting for TXEMPTY");
1153 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1154 spi_readl(as, RDR);
1155
1156 /* Clear any overrun happening while cleaning up */
1157 spi_readl(as, SR);
1158
1159 } else if (atmel_spi_use_dma(as, xfer)) {
1160 atmel_spi_stop_dma(as);
1161 }
1162
1163 if (!msg->is_dma_mapped
1164 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1165 atmel_spi_dma_unmap_xfer(master, xfer);
1166
1167 return 0;
1168
1169 } else {
1170 /* only update length if no error */
1171 msg->actual_length += xfer->len;
1172 }
1173
1174 if (!msg->is_dma_mapped
1175 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1176 atmel_spi_dma_unmap_xfer(master, xfer);
1177
1178 if (xfer->delay_usecs)
1179 udelay(xfer->delay_usecs);
1180
1181 if (xfer->cs_change) {
1182 if (list_is_last(&xfer->transfer_list,
1183 &msg->transfers)) {
1184 as->keep_cs = true;
1185 } else {
1186 as->cs_active = !as->cs_active;
1187 if (as->cs_active)
1188 cs_activate(as, msg->spi);
1189 else
1190 cs_deactivate(as, msg->spi);
1191 }
1192 }
1193
1194 return 0;
1195 }
1196
1197 static int atmel_spi_transfer_one_message(struct spi_master *master,
1198 struct spi_message *msg)
1199 {
1200 struct atmel_spi *as;
1201 struct spi_transfer *xfer;
1202 struct spi_device *spi = msg->spi;
1203 int ret = 0;
1204
1205 as = spi_master_get_devdata(master);
1206
1207 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1208 msg, dev_name(&spi->dev));
1209
1210 atmel_spi_lock(as);
1211 cs_activate(as, spi);
1212
1213 as->cs_active = true;
1214 as->keep_cs = false;
1215
1216 msg->status = 0;
1217 msg->actual_length = 0;
1218
1219 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220 ret = atmel_spi_one_transfer(master, msg, xfer);
1221 if (ret)
1222 goto msg_done;
1223 }
1224
1225 if (as->use_pdc)
1226 atmel_spi_disable_pdc_transfer(as);
1227
1228 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1229 dev_dbg(&spi->dev,
1230 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1231 xfer, xfer->len,
1232 xfer->tx_buf, &xfer->tx_dma,
1233 xfer->rx_buf, &xfer->rx_dma);
1234 }
1235
1236 msg_done:
1237 if (!as->keep_cs)
1238 cs_deactivate(as, msg->spi);
1239
1240 atmel_spi_unlock(as);
1241
1242 msg->status = as->done_status;
1243 spi_finalize_current_message(spi->master);
1244
1245 return ret;
1246 }
1247
1248 static void atmel_spi_cleanup(struct spi_device *spi)
1249 {
1250 struct atmel_spi_device *asd = spi->controller_state;
1251 unsigned gpio = (unsigned long) spi->controller_data;
1252
1253 if (!asd)
1254 return;
1255
1256 spi->controller_state = NULL;
1257 gpio_free(gpio);
1258 kfree(asd);
1259 }
1260
1261 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1262 {
1263 return spi_readl(as, VERSION) & 0x00000fff;
1264 }
1265
1266 static void atmel_get_caps(struct atmel_spi *as)
1267 {
1268 unsigned int version;
1269
1270 version = atmel_get_version(as);
1271 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1272
1273 as->caps.is_spi2 = version > 0x121;
1274 as->caps.has_wdrbt = version >= 0x210;
1275 as->caps.has_dma_support = version >= 0x212;
1276 }
1277
1278 /*-------------------------------------------------------------------------*/
1279
1280 static int atmel_spi_probe(struct platform_device *pdev)
1281 {
1282 struct resource *regs;
1283 int irq;
1284 struct clk *clk;
1285 int ret;
1286 struct spi_master *master;
1287 struct atmel_spi *as;
1288
1289 /* Select default pin state */
1290 pinctrl_pm_select_default_state(&pdev->dev);
1291
1292 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293 if (!regs)
1294 return -ENXIO;
1295
1296 irq = platform_get_irq(pdev, 0);
1297 if (irq < 0)
1298 return irq;
1299
1300 clk = devm_clk_get(&pdev->dev, "spi_clk");
1301 if (IS_ERR(clk))
1302 return PTR_ERR(clk);
1303
1304 /* setup spi core then atmel-specific driver state */
1305 ret = -ENOMEM;
1306 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1307 if (!master)
1308 goto out_free;
1309
1310 /* the spi->mode bits understood by this driver: */
1311 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1312 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1313 master->dev.of_node = pdev->dev.of_node;
1314 master->bus_num = pdev->id;
1315 master->num_chipselect = master->dev.of_node ? 0 : 4;
1316 master->setup = atmel_spi_setup;
1317 master->transfer_one_message = atmel_spi_transfer_one_message;
1318 master->cleanup = atmel_spi_cleanup;
1319 master->auto_runtime_pm = true;
1320 platform_set_drvdata(pdev, master);
1321
1322 as = spi_master_get_devdata(master);
1323
1324 /*
1325 * Scratch buffer is used for throwaway rx and tx data.
1326 * It's coherent to minimize dcache pollution.
1327 */
1328 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1329 &as->buffer_dma, GFP_KERNEL);
1330 if (!as->buffer)
1331 goto out_free;
1332
1333 spin_lock_init(&as->lock);
1334
1335 as->pdev = pdev;
1336 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1337 if (IS_ERR(as->regs)) {
1338 ret = PTR_ERR(as->regs);
1339 goto out_free_buffer;
1340 }
1341 as->phybase = regs->start;
1342 as->irq = irq;
1343 as->clk = clk;
1344
1345 init_completion(&as->xfer_completion);
1346
1347 atmel_get_caps(as);
1348
1349 as->use_dma = false;
1350 as->use_pdc = false;
1351 if (as->caps.has_dma_support) {
1352 if (atmel_spi_configure_dma(as) == 0)
1353 as->use_dma = true;
1354 } else {
1355 as->use_pdc = true;
1356 }
1357
1358 if (as->caps.has_dma_support && !as->use_dma)
1359 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1360
1361 if (as->use_pdc) {
1362 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1363 0, dev_name(&pdev->dev), master);
1364 } else {
1365 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1366 0, dev_name(&pdev->dev), master);
1367 }
1368 if (ret)
1369 goto out_unmap_regs;
1370
1371 /* Initialize the hardware */
1372 ret = clk_prepare_enable(clk);
1373 if (ret)
1374 goto out_free_irq;
1375 spi_writel(as, CR, SPI_BIT(SWRST));
1376 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1377 if (as->caps.has_wdrbt) {
1378 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1379 | SPI_BIT(MSTR));
1380 } else {
1381 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1382 }
1383
1384 if (as->use_pdc)
1385 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1386 spi_writel(as, CR, SPI_BIT(SPIEN));
1387
1388 /* go! */
1389 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1390 (unsigned long)regs->start, irq);
1391
1392 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1393 pm_runtime_use_autosuspend(&pdev->dev);
1394 pm_runtime_set_active(&pdev->dev);
1395 pm_runtime_enable(&pdev->dev);
1396
1397 ret = devm_spi_register_master(&pdev->dev, master);
1398 if (ret)
1399 goto out_free_dma;
1400
1401 return 0;
1402
1403 out_free_dma:
1404 pm_runtime_disable(&pdev->dev);
1405 pm_runtime_set_suspended(&pdev->dev);
1406
1407 if (as->use_dma)
1408 atmel_spi_release_dma(as);
1409
1410 spi_writel(as, CR, SPI_BIT(SWRST));
1411 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1412 clk_disable_unprepare(clk);
1413 out_free_irq:
1414 out_unmap_regs:
1415 out_free_buffer:
1416 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1417 as->buffer_dma);
1418 out_free:
1419 spi_master_put(master);
1420 return ret;
1421 }
1422
1423 static int atmel_spi_remove(struct platform_device *pdev)
1424 {
1425 struct spi_master *master = platform_get_drvdata(pdev);
1426 struct atmel_spi *as = spi_master_get_devdata(master);
1427
1428 pm_runtime_get_sync(&pdev->dev);
1429
1430 /* reset the hardware and block queue progress */
1431 spin_lock_irq(&as->lock);
1432 if (as->use_dma) {
1433 atmel_spi_stop_dma(as);
1434 atmel_spi_release_dma(as);
1435 }
1436
1437 spi_writel(as, CR, SPI_BIT(SWRST));
1438 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1439 spi_readl(as, SR);
1440 spin_unlock_irq(&as->lock);
1441
1442 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1443 as->buffer_dma);
1444
1445 clk_disable_unprepare(as->clk);
1446
1447 pm_runtime_put_noidle(&pdev->dev);
1448 pm_runtime_disable(&pdev->dev);
1449
1450 return 0;
1451 }
1452
1453 #ifdef CONFIG_PM
1454 #ifdef CONFIG_PM_SLEEP
1455 static int atmel_spi_suspend(struct device *dev)
1456 {
1457 struct spi_master *master = dev_get_drvdata(dev);
1458 struct atmel_spi *as = spi_master_get_devdata(master);
1459 int ret;
1460
1461 /* Stop the queue running */
1462 ret = spi_master_suspend(master);
1463 if (ret) {
1464 dev_warn(dev, "cannot suspend master\n");
1465 return ret;
1466 }
1467
1468 if (!pm_runtime_suspended(dev)) {
1469 clk_disable_unprepare(as->clk);
1470 pinctrl_pm_select_sleep_state(dev);
1471 }
1472
1473 return 0;
1474 }
1475
1476 static int atmel_spi_resume(struct device *dev)
1477 {
1478 struct spi_master *master = dev_get_drvdata(dev);
1479 struct atmel_spi *as = spi_master_get_devdata(master);
1480 int ret;
1481
1482 if (!pm_runtime_suspended(dev)) {
1483 pinctrl_pm_select_default_state(dev);
1484 ret = clk_prepare_enable(as->clk);
1485 if (ret)
1486 return ret;
1487 }
1488
1489 /* Start the queue running */
1490 ret = spi_master_resume(master);
1491 if (ret)
1492 dev_err(dev, "problem starting queue (%d)\n", ret);
1493
1494 return ret;
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_PM_RUNTIME
1499 static int atmel_spi_runtime_suspend(struct device *dev)
1500 {
1501 struct spi_master *master = dev_get_drvdata(dev);
1502 struct atmel_spi *as = spi_master_get_devdata(master);
1503
1504 clk_disable_unprepare(as->clk);
1505 pinctrl_pm_select_sleep_state(dev);
1506
1507 return 0;
1508 }
1509
1510 static int atmel_spi_runtime_resume(struct device *dev)
1511 {
1512 struct spi_master *master = dev_get_drvdata(dev);
1513 struct atmel_spi *as = spi_master_get_devdata(master);
1514
1515 pinctrl_pm_select_default_state(dev);
1516
1517 return clk_prepare_enable(as->clk);
1518 }
1519 #endif
1520
1521 static const struct dev_pm_ops atmel_spi_pm_ops = {
1522 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1523 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1524 atmel_spi_runtime_resume, NULL)
1525 };
1526 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1527 #else
1528 #define ATMEL_SPI_PM_OPS NULL
1529 #endif
1530
1531 #if defined(CONFIG_OF)
1532 static const struct of_device_id atmel_spi_dt_ids[] = {
1533 { .compatible = "atmel,at91rm9200-spi" },
1534 { /* sentinel */ }
1535 };
1536
1537 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1538 #endif
1539
1540 static struct platform_driver atmel_spi_driver = {
1541 .driver = {
1542 .name = "atmel_spi",
1543 .owner = THIS_MODULE,
1544 .pm = ATMEL_SPI_PM_OPS,
1545 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1546 },
1547 .probe = atmel_spi_probe,
1548 .remove = atmel_spi_remove,
1549 };
1550 module_platform_driver(atmel_spi_driver);
1551
1552 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1553 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1554 MODULE_LICENSE("GPL");
1555 MODULE_ALIAS("platform:atmel_spi");