]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-au1550.c
[media] tveeprom: Remove two unused fields from struct
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-au1550.c
1 /*
2 * au1550 psc spi controller driver
3 * may work also with au1200, au1210, au1250
4 * will not work on au1000, au1100 and au1500 (no full spi controller there)
5 *
6 * Copyright (c) 2006 ATRON electronic GmbH
7 * Author: Jan Nikitenko <jan.nikitenko@gmail.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/slab.h>
23 #include <linux/errno.h>
24 #include <linux/module.h>
25 #include <linux/device.h>
26 #include <linux/platform_device.h>
27 #include <linux/resource.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi_bitbang.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/completion.h>
32 #include <asm/mach-au1x00/au1000.h>
33 #include <asm/mach-au1x00/au1xxx_psc.h>
34 #include <asm/mach-au1x00/au1xxx_dbdma.h>
35
36 #include <asm/mach-au1x00/au1550_spi.h>
37
38 static unsigned usedma = 1;
39 module_param(usedma, uint, 0644);
40
41 /*
42 #define AU1550_SPI_DEBUG_LOOPBACK
43 */
44
45
46 #define AU1550_SPI_DBDMA_DESCRIPTORS 1
47 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U
48
49 struct au1550_spi {
50 struct spi_bitbang bitbang;
51
52 volatile psc_spi_t __iomem *regs;
53 int irq;
54
55 unsigned len;
56 unsigned tx_count;
57 unsigned rx_count;
58 const u8 *tx;
59 u8 *rx;
60
61 void (*rx_word)(struct au1550_spi *hw);
62 void (*tx_word)(struct au1550_spi *hw);
63 int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t);
64 irqreturn_t (*irq_callback)(struct au1550_spi *hw);
65
66 struct completion master_done;
67
68 unsigned usedma;
69 u32 dma_tx_id;
70 u32 dma_rx_id;
71 u32 dma_tx_ch;
72 u32 dma_rx_ch;
73
74 u8 *dma_rx_tmpbuf;
75 unsigned dma_rx_tmpbuf_size;
76 u32 dma_rx_tmpbuf_addr;
77
78 struct spi_master *master;
79 struct device *dev;
80 struct au1550_spi_info *pdata;
81 struct resource *ioarea;
82 };
83
84
85 /* we use an 8-bit memory device for dma transfers to/from spi fifo */
86 static dbdev_tab_t au1550_spi_mem_dbdev =
87 {
88 .dev_id = DBDMA_MEM_CHAN,
89 .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC,
90 .dev_tsize = 0,
91 .dev_devwidth = 8,
92 .dev_physaddr = 0x00000000,
93 .dev_intlevel = 0,
94 .dev_intpolarity = 0
95 };
96
97 static int ddma_memid; /* id to above mem dma device */
98
99 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw);
100
101
102 /*
103 * compute BRG and DIV bits to setup spi clock based on main input clock rate
104 * that was specified in platform data structure
105 * according to au1550 datasheet:
106 * psc_tempclk = psc_mainclk / (2 << DIV)
107 * spiclk = psc_tempclk / (2 * (BRG + 1))
108 * BRG valid range is 4..63
109 * DIV valid range is 0..3
110 */
111 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz)
112 {
113 u32 mainclk_hz = hw->pdata->mainclk_hz;
114 u32 div, brg;
115
116 for (div = 0; div < 4; div++) {
117 brg = mainclk_hz / speed_hz / (4 << div);
118 /* now we have BRG+1 in brg, so count with that */
119 if (brg < (4 + 1)) {
120 brg = (4 + 1); /* speed_hz too big */
121 break; /* set lowest brg (div is == 0) */
122 }
123 if (brg <= (63 + 1))
124 break; /* we have valid brg and div */
125 }
126 if (div == 4) {
127 div = 3; /* speed_hz too small */
128 brg = (63 + 1); /* set highest brg and div */
129 }
130 brg--;
131 return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div);
132 }
133
134 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw)
135 {
136 hw->regs->psc_spimsk =
137 PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO
138 | PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO
139 | PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD;
140 wmb(); /* drain writebuffer */
141
142 hw->regs->psc_spievent =
143 PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO
144 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO
145 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD;
146 wmb(); /* drain writebuffer */
147 }
148
149 static void au1550_spi_reset_fifos(struct au1550_spi *hw)
150 {
151 u32 pcr;
152
153 hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC;
154 wmb(); /* drain writebuffer */
155 do {
156 pcr = hw->regs->psc_spipcr;
157 wmb(); /* drain writebuffer */
158 } while (pcr != 0);
159 }
160
161 /*
162 * dma transfers are used for the most common spi word size of 8-bits
163 * we cannot easily change already set up dma channels' width, so if we wanted
164 * dma support for more than 8-bit words (up to 24 bits), we would need to
165 * setup dma channels from scratch on each spi transfer, based on bits_per_word
166 * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits
167 * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode
168 * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set()
169 */
170 static void au1550_spi_chipsel(struct spi_device *spi, int value)
171 {
172 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
173 unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
174 u32 cfg, stat;
175
176 switch (value) {
177 case BITBANG_CS_INACTIVE:
178 if (hw->pdata->deactivate_cs)
179 hw->pdata->deactivate_cs(hw->pdata, spi->chip_select,
180 cspol);
181 break;
182
183 case BITBANG_CS_ACTIVE:
184 au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
185
186 cfg = hw->regs->psc_spicfg;
187 wmb(); /* drain writebuffer */
188 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
189 wmb(); /* drain writebuffer */
190
191 if (spi->mode & SPI_CPOL)
192 cfg |= PSC_SPICFG_BI;
193 else
194 cfg &= ~PSC_SPICFG_BI;
195 if (spi->mode & SPI_CPHA)
196 cfg &= ~PSC_SPICFG_CDE;
197 else
198 cfg |= PSC_SPICFG_CDE;
199
200 if (spi->mode & SPI_LSB_FIRST)
201 cfg |= PSC_SPICFG_MLF;
202 else
203 cfg &= ~PSC_SPICFG_MLF;
204
205 if (hw->usedma && spi->bits_per_word <= 8)
206 cfg &= ~PSC_SPICFG_DD_DISABLE;
207 else
208 cfg |= PSC_SPICFG_DD_DISABLE;
209 cfg = PSC_SPICFG_CLR_LEN(cfg);
210 cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word);
211
212 cfg = PSC_SPICFG_CLR_BAUD(cfg);
213 cfg &= ~PSC_SPICFG_SET_DIV(3);
214 cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz);
215
216 hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE;
217 wmb(); /* drain writebuffer */
218 do {
219 stat = hw->regs->psc_spistat;
220 wmb(); /* drain writebuffer */
221 } while ((stat & PSC_SPISTAT_DR) == 0);
222
223 if (hw->pdata->activate_cs)
224 hw->pdata->activate_cs(hw->pdata, spi->chip_select,
225 cspol);
226 break;
227 }
228 }
229
230 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
231 {
232 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
233 unsigned bpw, hz;
234 u32 cfg, stat;
235
236 bpw = spi->bits_per_word;
237 hz = spi->max_speed_hz;
238 if (t) {
239 if (t->bits_per_word)
240 bpw = t->bits_per_word;
241 if (t->speed_hz)
242 hz = t->speed_hz;
243 }
244
245 if (!hz)
246 return -EINVAL;
247
248 au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
249
250 cfg = hw->regs->psc_spicfg;
251 wmb(); /* drain writebuffer */
252 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
253 wmb(); /* drain writebuffer */
254
255 if (hw->usedma && bpw <= 8)
256 cfg &= ~PSC_SPICFG_DD_DISABLE;
257 else
258 cfg |= PSC_SPICFG_DD_DISABLE;
259 cfg = PSC_SPICFG_CLR_LEN(cfg);
260 cfg |= PSC_SPICFG_SET_LEN(bpw);
261
262 cfg = PSC_SPICFG_CLR_BAUD(cfg);
263 cfg &= ~PSC_SPICFG_SET_DIV(3);
264 cfg |= au1550_spi_baudcfg(hw, hz);
265
266 hw->regs->psc_spicfg = cfg;
267 wmb(); /* drain writebuffer */
268
269 if (cfg & PSC_SPICFG_DE_ENABLE) {
270 do {
271 stat = hw->regs->psc_spistat;
272 wmb(); /* drain writebuffer */
273 } while ((stat & PSC_SPISTAT_DR) == 0);
274 }
275
276 au1550_spi_reset_fifos(hw);
277 au1550_spi_mask_ack_all(hw);
278 return 0;
279 }
280
281 /*
282 * for dma spi transfers, we have to setup rx channel, otherwise there is
283 * no reliable way how to recognize that spi transfer is done
284 * dma complete callbacks are called before real spi transfer is finished
285 * and if only tx dma channel is set up (and rx fifo overflow event masked)
286 * spi master done event irq is not generated unless rx fifo is empty (emptied)
287 * so we need rx tmp buffer to use for rx dma if user does not provide one
288 */
289 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size)
290 {
291 hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL);
292 if (!hw->dma_rx_tmpbuf)
293 return -ENOMEM;
294 hw->dma_rx_tmpbuf_size = size;
295 hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf,
296 size, DMA_FROM_DEVICE);
297 if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) {
298 kfree(hw->dma_rx_tmpbuf);
299 hw->dma_rx_tmpbuf = 0;
300 hw->dma_rx_tmpbuf_size = 0;
301 return -EFAULT;
302 }
303 return 0;
304 }
305
306 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw)
307 {
308 dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr,
309 hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE);
310 kfree(hw->dma_rx_tmpbuf);
311 hw->dma_rx_tmpbuf = 0;
312 hw->dma_rx_tmpbuf_size = 0;
313 }
314
315 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t)
316 {
317 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
318 dma_addr_t dma_tx_addr;
319 dma_addr_t dma_rx_addr;
320 u32 res;
321
322 hw->len = t->len;
323 hw->tx_count = 0;
324 hw->rx_count = 0;
325
326 hw->tx = t->tx_buf;
327 hw->rx = t->rx_buf;
328 dma_tx_addr = t->tx_dma;
329 dma_rx_addr = t->rx_dma;
330
331 /*
332 * check if buffers are already dma mapped, map them otherwise:
333 * - first map the TX buffer, so cache data gets written to memory
334 * - then map the RX buffer, so that cache entries (with
335 * soon-to-be-stale data) get removed
336 * use rx buffer in place of tx if tx buffer was not provided
337 * use temp rx buffer (preallocated or realloc to fit) for rx dma
338 */
339 if (t->tx_buf) {
340 if (t->tx_dma == 0) { /* if DMA_ADDR_INVALID, map it */
341 dma_tx_addr = dma_map_single(hw->dev,
342 (void *)t->tx_buf,
343 t->len, DMA_TO_DEVICE);
344 if (dma_mapping_error(hw->dev, dma_tx_addr))
345 dev_err(hw->dev, "tx dma map error\n");
346 }
347 }
348
349 if (t->rx_buf) {
350 if (t->rx_dma == 0) { /* if DMA_ADDR_INVALID, map it */
351 dma_rx_addr = dma_map_single(hw->dev,
352 (void *)t->rx_buf,
353 t->len, DMA_FROM_DEVICE);
354 if (dma_mapping_error(hw->dev, dma_rx_addr))
355 dev_err(hw->dev, "rx dma map error\n");
356 }
357 } else {
358 if (t->len > hw->dma_rx_tmpbuf_size) {
359 int ret;
360
361 au1550_spi_dma_rxtmp_free(hw);
362 ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len,
363 AU1550_SPI_DMA_RXTMP_MINSIZE));
364 if (ret < 0)
365 return ret;
366 }
367 hw->rx = hw->dma_rx_tmpbuf;
368 dma_rx_addr = hw->dma_rx_tmpbuf_addr;
369 dma_sync_single_for_device(hw->dev, dma_rx_addr,
370 t->len, DMA_FROM_DEVICE);
371 }
372
373 if (!t->tx_buf) {
374 dma_sync_single_for_device(hw->dev, dma_rx_addr,
375 t->len, DMA_BIDIRECTIONAL);
376 hw->tx = hw->rx;
377 }
378
379 /* put buffers on the ring */
380 res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx),
381 t->len, DDMA_FLAGS_IE);
382 if (!res)
383 dev_err(hw->dev, "rx dma put dest error\n");
384
385 res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx),
386 t->len, DDMA_FLAGS_IE);
387 if (!res)
388 dev_err(hw->dev, "tx dma put source error\n");
389
390 au1xxx_dbdma_start(hw->dma_rx_ch);
391 au1xxx_dbdma_start(hw->dma_tx_ch);
392
393 /* by default enable nearly all events interrupt */
394 hw->regs->psc_spimsk = PSC_SPIMSK_SD;
395 wmb(); /* drain writebuffer */
396
397 /* start the transfer */
398 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
399 wmb(); /* drain writebuffer */
400
401 wait_for_completion(&hw->master_done);
402
403 au1xxx_dbdma_stop(hw->dma_tx_ch);
404 au1xxx_dbdma_stop(hw->dma_rx_ch);
405
406 if (!t->rx_buf) {
407 /* using the temporal preallocated and premapped buffer */
408 dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len,
409 DMA_FROM_DEVICE);
410 }
411 /* unmap buffers if mapped above */
412 if (t->rx_buf && t->rx_dma == 0 )
413 dma_unmap_single(hw->dev, dma_rx_addr, t->len,
414 DMA_FROM_DEVICE);
415 if (t->tx_buf && t->tx_dma == 0 )
416 dma_unmap_single(hw->dev, dma_tx_addr, t->len,
417 DMA_TO_DEVICE);
418
419 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
420 }
421
422 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw)
423 {
424 u32 stat, evnt;
425
426 stat = hw->regs->psc_spistat;
427 evnt = hw->regs->psc_spievent;
428 wmb(); /* drain writebuffer */
429 if ((stat & PSC_SPISTAT_DI) == 0) {
430 dev_err(hw->dev, "Unexpected IRQ!\n");
431 return IRQ_NONE;
432 }
433
434 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
435 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
436 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD))
437 != 0) {
438 /*
439 * due to an spi error we consider transfer as done,
440 * so mask all events until before next transfer start
441 * and stop the possibly running dma immediately
442 */
443 au1550_spi_mask_ack_all(hw);
444 au1xxx_dbdma_stop(hw->dma_rx_ch);
445 au1xxx_dbdma_stop(hw->dma_tx_ch);
446
447 /* get number of transferred bytes */
448 hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch);
449 hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch);
450
451 au1xxx_dbdma_reset(hw->dma_rx_ch);
452 au1xxx_dbdma_reset(hw->dma_tx_ch);
453 au1550_spi_reset_fifos(hw);
454
455 if (evnt == PSC_SPIEVNT_RO)
456 dev_err(hw->dev,
457 "dma transfer: receive FIFO overflow!\n");
458 else
459 dev_err(hw->dev,
460 "dma transfer: unexpected SPI error "
461 "(event=0x%x stat=0x%x)!\n", evnt, stat);
462
463 complete(&hw->master_done);
464 return IRQ_HANDLED;
465 }
466
467 if ((evnt & PSC_SPIEVNT_MD) != 0) {
468 /* transfer completed successfully */
469 au1550_spi_mask_ack_all(hw);
470 hw->rx_count = hw->len;
471 hw->tx_count = hw->len;
472 complete(&hw->master_done);
473 }
474 return IRQ_HANDLED;
475 }
476
477
478 /* routines to handle different word sizes in pio mode */
479 #define AU1550_SPI_RX_WORD(size, mask) \
480 static void au1550_spi_rx_word_##size(struct au1550_spi *hw) \
481 { \
482 u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask); \
483 wmb(); /* drain writebuffer */ \
484 if (hw->rx) { \
485 *(u##size *)hw->rx = (u##size)fifoword; \
486 hw->rx += (size) / 8; \
487 } \
488 hw->rx_count += (size) / 8; \
489 }
490
491 #define AU1550_SPI_TX_WORD(size, mask) \
492 static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \
493 { \
494 u32 fifoword = 0; \
495 if (hw->tx) { \
496 fifoword = *(u##size *)hw->tx & (u32)(mask); \
497 hw->tx += (size) / 8; \
498 } \
499 hw->tx_count += (size) / 8; \
500 if (hw->tx_count >= hw->len) \
501 fifoword |= PSC_SPITXRX_LC; \
502 hw->regs->psc_spitxrx = fifoword; \
503 wmb(); /* drain writebuffer */ \
504 }
505
506 AU1550_SPI_RX_WORD(8,0xff)
507 AU1550_SPI_RX_WORD(16,0xffff)
508 AU1550_SPI_RX_WORD(32,0xffffff)
509 AU1550_SPI_TX_WORD(8,0xff)
510 AU1550_SPI_TX_WORD(16,0xffff)
511 AU1550_SPI_TX_WORD(32,0xffffff)
512
513 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t)
514 {
515 u32 stat, mask;
516 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
517
518 hw->tx = t->tx_buf;
519 hw->rx = t->rx_buf;
520 hw->len = t->len;
521 hw->tx_count = 0;
522 hw->rx_count = 0;
523
524 /* by default enable nearly all events after filling tx fifo */
525 mask = PSC_SPIMSK_SD;
526
527 /* fill the transmit FIFO */
528 while (hw->tx_count < hw->len) {
529
530 hw->tx_word(hw);
531
532 if (hw->tx_count >= hw->len) {
533 /* mask tx fifo request interrupt as we are done */
534 mask |= PSC_SPIMSK_TR;
535 }
536
537 stat = hw->regs->psc_spistat;
538 wmb(); /* drain writebuffer */
539 if (stat & PSC_SPISTAT_TF)
540 break;
541 }
542
543 /* enable event interrupts */
544 hw->regs->psc_spimsk = mask;
545 wmb(); /* drain writebuffer */
546
547 /* start the transfer */
548 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
549 wmb(); /* drain writebuffer */
550
551 wait_for_completion(&hw->master_done);
552
553 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
554 }
555
556 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
557 {
558 int busy;
559 u32 stat, evnt;
560
561 stat = hw->regs->psc_spistat;
562 evnt = hw->regs->psc_spievent;
563 wmb(); /* drain writebuffer */
564 if ((stat & PSC_SPISTAT_DI) == 0) {
565 dev_err(hw->dev, "Unexpected IRQ!\n");
566 return IRQ_NONE;
567 }
568
569 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
570 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
571 | PSC_SPIEVNT_SD))
572 != 0) {
573 /*
574 * due to an error we consider transfer as done,
575 * so mask all events until before next transfer start
576 */
577 au1550_spi_mask_ack_all(hw);
578 au1550_spi_reset_fifos(hw);
579 dev_err(hw->dev,
580 "pio transfer: unexpected SPI error "
581 "(event=0x%x stat=0x%x)!\n", evnt, stat);
582 complete(&hw->master_done);
583 return IRQ_HANDLED;
584 }
585
586 /*
587 * while there is something to read from rx fifo
588 * or there is a space to write to tx fifo:
589 */
590 do {
591 busy = 0;
592 stat = hw->regs->psc_spistat;
593 wmb(); /* drain writebuffer */
594
595 /*
596 * Take care to not let the Rx FIFO overflow.
597 *
598 * We only write a byte if we have read one at least. Initially,
599 * the write fifo is full, so we should read from the read fifo
600 * first.
601 * In case we miss a word from the read fifo, we should get a
602 * RO event and should back out.
603 */
604 if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) {
605 hw->rx_word(hw);
606 busy = 1;
607
608 if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len)
609 hw->tx_word(hw);
610 }
611 } while (busy);
612
613 hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR;
614 wmb(); /* drain writebuffer */
615
616 /*
617 * Restart the SPI transmission in case of a transmit underflow.
618 * This seems to work despite the notes in the Au1550 data book
619 * of Figure 8-4 with flowchart for SPI master operation:
620 *
621 * """Note 1: An XFR Error Interrupt occurs, unless masked,
622 * for any of the following events: Tx FIFO Underflow,
623 * Rx FIFO Overflow, or Multiple-master Error
624 * Note 2: In case of a Tx Underflow Error, all zeroes are
625 * transmitted."""
626 *
627 * By simply restarting the spi transfer on Tx Underflow Error,
628 * we assume that spi transfer was paused instead of zeroes
629 * transmittion mentioned in the Note 2 of Au1550 data book.
630 */
631 if (evnt & PSC_SPIEVNT_TU) {
632 hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD;
633 wmb(); /* drain writebuffer */
634 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
635 wmb(); /* drain writebuffer */
636 }
637
638 if (hw->rx_count >= hw->len) {
639 /* transfer completed successfully */
640 au1550_spi_mask_ack_all(hw);
641 complete(&hw->master_done);
642 }
643 return IRQ_HANDLED;
644 }
645
646 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
647 {
648 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
649 return hw->txrx_bufs(spi, t);
650 }
651
652 static irqreturn_t au1550_spi_irq(int irq, void *dev)
653 {
654 struct au1550_spi *hw = dev;
655 return hw->irq_callback(hw);
656 }
657
658 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw)
659 {
660 if (bpw <= 8) {
661 if (hw->usedma) {
662 hw->txrx_bufs = &au1550_spi_dma_txrxb;
663 hw->irq_callback = &au1550_spi_dma_irq_callback;
664 } else {
665 hw->rx_word = &au1550_spi_rx_word_8;
666 hw->tx_word = &au1550_spi_tx_word_8;
667 hw->txrx_bufs = &au1550_spi_pio_txrxb;
668 hw->irq_callback = &au1550_spi_pio_irq_callback;
669 }
670 } else if (bpw <= 16) {
671 hw->rx_word = &au1550_spi_rx_word_16;
672 hw->tx_word = &au1550_spi_tx_word_16;
673 hw->txrx_bufs = &au1550_spi_pio_txrxb;
674 hw->irq_callback = &au1550_spi_pio_irq_callback;
675 } else {
676 hw->rx_word = &au1550_spi_rx_word_32;
677 hw->tx_word = &au1550_spi_tx_word_32;
678 hw->txrx_bufs = &au1550_spi_pio_txrxb;
679 hw->irq_callback = &au1550_spi_pio_irq_callback;
680 }
681 }
682
683 static void au1550_spi_setup_psc_as_spi(struct au1550_spi *hw)
684 {
685 u32 stat, cfg;
686
687 /* set up the PSC for SPI mode */
688 hw->regs->psc_ctrl = PSC_CTRL_DISABLE;
689 wmb(); /* drain writebuffer */
690 hw->regs->psc_sel = PSC_SEL_PS_SPIMODE;
691 wmb(); /* drain writebuffer */
692
693 hw->regs->psc_spicfg = 0;
694 wmb(); /* drain writebuffer */
695
696 hw->regs->psc_ctrl = PSC_CTRL_ENABLE;
697 wmb(); /* drain writebuffer */
698
699 do {
700 stat = hw->regs->psc_spistat;
701 wmb(); /* drain writebuffer */
702 } while ((stat & PSC_SPISTAT_SR) == 0);
703
704
705 cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE;
706 cfg |= PSC_SPICFG_SET_LEN(8);
707 cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8;
708 /* use minimal allowed brg and div values as initial setting: */
709 cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0);
710
711 #ifdef AU1550_SPI_DEBUG_LOOPBACK
712 cfg |= PSC_SPICFG_LB;
713 #endif
714
715 hw->regs->psc_spicfg = cfg;
716 wmb(); /* drain writebuffer */
717
718 au1550_spi_mask_ack_all(hw);
719
720 hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE;
721 wmb(); /* drain writebuffer */
722
723 do {
724 stat = hw->regs->psc_spistat;
725 wmb(); /* drain writebuffer */
726 } while ((stat & PSC_SPISTAT_DR) == 0);
727
728 au1550_spi_reset_fifos(hw);
729 }
730
731
732 static int au1550_spi_probe(struct platform_device *pdev)
733 {
734 struct au1550_spi *hw;
735 struct spi_master *master;
736 struct resource *r;
737 int err = 0;
738
739 master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi));
740 if (master == NULL) {
741 dev_err(&pdev->dev, "No memory for spi_master\n");
742 err = -ENOMEM;
743 goto err_nomem;
744 }
745
746 /* the spi->mode bits understood by this driver: */
747 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
748 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 24);
749
750 hw = spi_master_get_devdata(master);
751
752 hw->master = master;
753 hw->pdata = dev_get_platdata(&pdev->dev);
754 hw->dev = &pdev->dev;
755
756 if (hw->pdata == NULL) {
757 dev_err(&pdev->dev, "No platform data supplied\n");
758 err = -ENOENT;
759 goto err_no_pdata;
760 }
761
762 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
763 if (!r) {
764 dev_err(&pdev->dev, "no IRQ\n");
765 err = -ENODEV;
766 goto err_no_iores;
767 }
768 hw->irq = r->start;
769
770 hw->usedma = 0;
771 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
772 if (r) {
773 hw->dma_tx_id = r->start;
774 r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
775 if (r) {
776 hw->dma_rx_id = r->start;
777 if (usedma && ddma_memid) {
778 if (pdev->dev.dma_mask == NULL)
779 dev_warn(&pdev->dev, "no dma mask\n");
780 else
781 hw->usedma = 1;
782 }
783 }
784 }
785
786 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
787 if (!r) {
788 dev_err(&pdev->dev, "no mmio resource\n");
789 err = -ENODEV;
790 goto err_no_iores;
791 }
792
793 hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t),
794 pdev->name);
795 if (!hw->ioarea) {
796 dev_err(&pdev->dev, "Cannot reserve iomem region\n");
797 err = -ENXIO;
798 goto err_no_iores;
799 }
800
801 hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t));
802 if (!hw->regs) {
803 dev_err(&pdev->dev, "cannot ioremap\n");
804 err = -ENXIO;
805 goto err_ioremap;
806 }
807
808 platform_set_drvdata(pdev, hw);
809
810 init_completion(&hw->master_done);
811
812 hw->bitbang.master = hw->master;
813 hw->bitbang.setup_transfer = au1550_spi_setupxfer;
814 hw->bitbang.chipselect = au1550_spi_chipsel;
815 hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs;
816
817 if (hw->usedma) {
818 hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid,
819 hw->dma_tx_id, NULL, (void *)hw);
820 if (hw->dma_tx_ch == 0) {
821 dev_err(&pdev->dev,
822 "Cannot allocate tx dma channel\n");
823 err = -ENXIO;
824 goto err_no_txdma;
825 }
826 au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8);
827 if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch,
828 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
829 dev_err(&pdev->dev,
830 "Cannot allocate tx dma descriptors\n");
831 err = -ENXIO;
832 goto err_no_txdma_descr;
833 }
834
835
836 hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id,
837 ddma_memid, NULL, (void *)hw);
838 if (hw->dma_rx_ch == 0) {
839 dev_err(&pdev->dev,
840 "Cannot allocate rx dma channel\n");
841 err = -ENXIO;
842 goto err_no_rxdma;
843 }
844 au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8);
845 if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch,
846 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
847 dev_err(&pdev->dev,
848 "Cannot allocate rx dma descriptors\n");
849 err = -ENXIO;
850 goto err_no_rxdma_descr;
851 }
852
853 err = au1550_spi_dma_rxtmp_alloc(hw,
854 AU1550_SPI_DMA_RXTMP_MINSIZE);
855 if (err < 0) {
856 dev_err(&pdev->dev,
857 "Cannot allocate initial rx dma tmp buffer\n");
858 goto err_dma_rxtmp_alloc;
859 }
860 }
861
862 au1550_spi_bits_handlers_set(hw, 8);
863
864 err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw);
865 if (err) {
866 dev_err(&pdev->dev, "Cannot claim IRQ\n");
867 goto err_no_irq;
868 }
869
870 master->bus_num = pdev->id;
871 master->num_chipselect = hw->pdata->num_chipselect;
872
873 /*
874 * precompute valid range for spi freq - from au1550 datasheet:
875 * psc_tempclk = psc_mainclk / (2 << DIV)
876 * spiclk = psc_tempclk / (2 * (BRG + 1))
877 * BRG valid range is 4..63
878 * DIV valid range is 0..3
879 * round the min and max frequencies to values that would still
880 * produce valid brg and div
881 */
882 {
883 int min_div = (2 << 0) * (2 * (4 + 1));
884 int max_div = (2 << 3) * (2 * (63 + 1));
885 master->max_speed_hz = hw->pdata->mainclk_hz / min_div;
886 master->min_speed_hz =
887 hw->pdata->mainclk_hz / (max_div + 1) + 1;
888 }
889
890 au1550_spi_setup_psc_as_spi(hw);
891
892 err = spi_bitbang_start(&hw->bitbang);
893 if (err) {
894 dev_err(&pdev->dev, "Failed to register SPI master\n");
895 goto err_register;
896 }
897
898 dev_info(&pdev->dev,
899 "spi master registered: bus_num=%d num_chipselect=%d\n",
900 master->bus_num, master->num_chipselect);
901
902 return 0;
903
904 err_register:
905 free_irq(hw->irq, hw);
906
907 err_no_irq:
908 au1550_spi_dma_rxtmp_free(hw);
909
910 err_dma_rxtmp_alloc:
911 err_no_rxdma_descr:
912 if (hw->usedma)
913 au1xxx_dbdma_chan_free(hw->dma_rx_ch);
914
915 err_no_rxdma:
916 err_no_txdma_descr:
917 if (hw->usedma)
918 au1xxx_dbdma_chan_free(hw->dma_tx_ch);
919
920 err_no_txdma:
921 iounmap((void __iomem *)hw->regs);
922
923 err_ioremap:
924 release_mem_region(r->start, sizeof(psc_spi_t));
925
926 err_no_iores:
927 err_no_pdata:
928 spi_master_put(hw->master);
929
930 err_nomem:
931 return err;
932 }
933
934 static int au1550_spi_remove(struct platform_device *pdev)
935 {
936 struct au1550_spi *hw = platform_get_drvdata(pdev);
937
938 dev_info(&pdev->dev, "spi master remove: bus_num=%d\n",
939 hw->master->bus_num);
940
941 spi_bitbang_stop(&hw->bitbang);
942 free_irq(hw->irq, hw);
943 iounmap((void __iomem *)hw->regs);
944 release_mem_region(hw->ioarea->start, sizeof(psc_spi_t));
945
946 if (hw->usedma) {
947 au1550_spi_dma_rxtmp_free(hw);
948 au1xxx_dbdma_chan_free(hw->dma_rx_ch);
949 au1xxx_dbdma_chan_free(hw->dma_tx_ch);
950 }
951
952 spi_master_put(hw->master);
953 return 0;
954 }
955
956 /* work with hotplug and coldplug */
957 MODULE_ALIAS("platform:au1550-spi");
958
959 static struct platform_driver au1550_spi_drv = {
960 .probe = au1550_spi_probe,
961 .remove = au1550_spi_remove,
962 .driver = {
963 .name = "au1550-spi",
964 },
965 };
966
967 static int __init au1550_spi_init(void)
968 {
969 /*
970 * create memory device with 8 bits dev_devwidth
971 * needed for proper byte ordering to spi fifo
972 */
973 switch (alchemy_get_cputype()) {
974 case ALCHEMY_CPU_AU1550:
975 case ALCHEMY_CPU_AU1200:
976 case ALCHEMY_CPU_AU1300:
977 break;
978 default:
979 return -ENODEV;
980 }
981
982 if (usedma) {
983 ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev);
984 if (!ddma_memid)
985 printk(KERN_ERR "au1550-spi: cannot add memory"
986 "dbdma device\n");
987 }
988 return platform_driver_register(&au1550_spi_drv);
989 }
990 module_init(au1550_spi_init);
991
992 static void __exit au1550_spi_exit(void)
993 {
994 if (usedma && ddma_memid)
995 au1xxx_ddma_del_device(ddma_memid);
996 platform_driver_unregister(&au1550_spi_drv);
997 }
998 module_exit(au1550_spi_exit);
999
1000 MODULE_DESCRIPTION("Au1550 PSC SPI Driver");
1001 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>");
1002 MODULE_LICENSE("GPL");