]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/spi/spi-bcm2835.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
[mirror_ubuntu-hirsute-kernel.git] / drivers / spi / spi-bcm2835.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12 */
13
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_gpio.h>
28 #include <linux/of_irq.h>
29 #include <linux/spi/spi.h>
30
31 /* SPI register offsets */
32 #define BCM2835_SPI_CS 0x00
33 #define BCM2835_SPI_FIFO 0x04
34 #define BCM2835_SPI_CLK 0x08
35 #define BCM2835_SPI_DLEN 0x0c
36 #define BCM2835_SPI_LTOH 0x10
37 #define BCM2835_SPI_DC 0x14
38
39 /* Bitfields in CS */
40 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
41 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
42 #define BCM2835_SPI_CS_CSPOL2 0x00800000
43 #define BCM2835_SPI_CS_CSPOL1 0x00400000
44 #define BCM2835_SPI_CS_CSPOL0 0x00200000
45 #define BCM2835_SPI_CS_RXF 0x00100000
46 #define BCM2835_SPI_CS_RXR 0x00080000
47 #define BCM2835_SPI_CS_TXD 0x00040000
48 #define BCM2835_SPI_CS_RXD 0x00020000
49 #define BCM2835_SPI_CS_DONE 0x00010000
50 #define BCM2835_SPI_CS_LEN 0x00002000
51 #define BCM2835_SPI_CS_REN 0x00001000
52 #define BCM2835_SPI_CS_ADCS 0x00000800
53 #define BCM2835_SPI_CS_INTR 0x00000400
54 #define BCM2835_SPI_CS_INTD 0x00000200
55 #define BCM2835_SPI_CS_DMAEN 0x00000100
56 #define BCM2835_SPI_CS_TA 0x00000080
57 #define BCM2835_SPI_CS_CSPOL 0x00000040
58 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
59 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
60 #define BCM2835_SPI_CS_CPOL 0x00000008
61 #define BCM2835_SPI_CS_CPHA 0x00000004
62 #define BCM2835_SPI_CS_CS_10 0x00000002
63 #define BCM2835_SPI_CS_CS_01 0x00000001
64
65 #define BCM2835_SPI_FIFO_SIZE 64
66 #define BCM2835_SPI_FIFO_SIZE_3_4 48
67 #define BCM2835_SPI_POLLING_LIMIT_US 30
68 #define BCM2835_SPI_POLLING_JIFFIES 2
69 #define BCM2835_SPI_DMA_MIN_LENGTH 96
70 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
71 | SPI_NO_CS | SPI_3WIRE)
72
73 #define DRV_NAME "spi-bcm2835"
74
75 /**
76 * struct bcm2835_spi - BCM2835 SPI controller
77 * @regs: base address of register map
78 * @clk: core clock, divided to calculate serial clock
79 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
80 * @tfr: SPI transfer currently processed
81 * @tx_buf: pointer whence next transmitted byte is read
82 * @rx_buf: pointer where next received byte is written
83 * @tx_len: remaining bytes to transmit
84 * @rx_len: remaining bytes to receive
85 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
86 * length is not a multiple of 4 (to overcome hardware limitation)
87 * @rx_prologue: bytes received without DMA if first RX sglist entry's
88 * length is not a multiple of 4 (to overcome hardware limitation)
89 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
90 * @dma_pending: whether a DMA transfer is in progress
91 */
92 struct bcm2835_spi {
93 void __iomem *regs;
94 struct clk *clk;
95 int irq;
96 struct spi_transfer *tfr;
97 const u8 *tx_buf;
98 u8 *rx_buf;
99 int tx_len;
100 int rx_len;
101 int tx_prologue;
102 int rx_prologue;
103 unsigned int tx_spillover;
104 unsigned int dma_pending;
105 };
106
107 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
108 {
109 return readl(bs->regs + reg);
110 }
111
112 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
113 {
114 writel(val, bs->regs + reg);
115 }
116
117 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
118 {
119 u8 byte;
120
121 while ((bs->rx_len) &&
122 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
123 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
124 if (bs->rx_buf)
125 *bs->rx_buf++ = byte;
126 bs->rx_len--;
127 }
128 }
129
130 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
131 {
132 u8 byte;
133
134 while ((bs->tx_len) &&
135 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
136 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
137 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
138 bs->tx_len--;
139 }
140 }
141
142 /**
143 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
144 * @bs: BCM2835 SPI controller
145 * @count: bytes to read from RX FIFO
146 *
147 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
148 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
149 * in the CS register is set (such that a read from the FIFO register receives
150 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
151 */
152 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
153 {
154 u32 val;
155 int len;
156
157 bs->rx_len -= count;
158
159 while (count > 0) {
160 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
161 len = min(count, 4);
162 memcpy(bs->rx_buf, &val, len);
163 bs->rx_buf += len;
164 count -= 4;
165 }
166 }
167
168 /**
169 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
170 * @bs: BCM2835 SPI controller
171 * @count: bytes to write to TX FIFO
172 *
173 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
174 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
175 * in the CS register is set (such that a write to the FIFO register transmits
176 * 32-bit instead of just 8-bit).
177 */
178 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
179 {
180 u32 val;
181 int len;
182
183 bs->tx_len -= count;
184
185 while (count > 0) {
186 if (bs->tx_buf) {
187 len = min(count, 4);
188 memcpy(&val, bs->tx_buf, len);
189 bs->tx_buf += len;
190 } else {
191 val = 0;
192 }
193 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
194 count -= 4;
195 }
196 }
197
198 /**
199 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
200 * @bs: BCM2835 SPI controller
201 *
202 * The caller must ensure that the RX FIFO can accommodate as many bytes
203 * as have been written to the TX FIFO: Transmission is halted once the
204 * RX FIFO is full, causing this function to spin forever.
205 */
206 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
207 {
208 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
209 cpu_relax();
210 }
211
212 /**
213 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
214 * @bs: BCM2835 SPI controller
215 * @count: bytes available for reading in RX FIFO
216 */
217 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
218 {
219 u8 val;
220
221 count = min(count, bs->rx_len);
222 bs->rx_len -= count;
223
224 while (count) {
225 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
226 if (bs->rx_buf)
227 *bs->rx_buf++ = val;
228 count--;
229 }
230 }
231
232 /**
233 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
234 * @bs: BCM2835 SPI controller
235 * @count: bytes available for writing in TX FIFO
236 */
237 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
238 {
239 u8 val;
240
241 count = min(count, bs->tx_len);
242 bs->tx_len -= count;
243
244 while (count) {
245 val = bs->tx_buf ? *bs->tx_buf++ : 0;
246 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
247 count--;
248 }
249 }
250
251 static void bcm2835_spi_reset_hw(struct spi_master *master)
252 {
253 struct bcm2835_spi *bs = spi_master_get_devdata(master);
254 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
255
256 /* Disable SPI interrupts and transfer */
257 cs &= ~(BCM2835_SPI_CS_INTR |
258 BCM2835_SPI_CS_INTD |
259 BCM2835_SPI_CS_DMAEN |
260 BCM2835_SPI_CS_TA);
261 /* and reset RX/TX FIFOS */
262 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
263
264 /* and reset the SPI_HW */
265 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
266 /* as well as DLEN */
267 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
268 }
269
270 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
271 {
272 struct spi_master *master = dev_id;
273 struct bcm2835_spi *bs = spi_master_get_devdata(master);
274 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
275
276 /*
277 * An interrupt is signaled either if DONE is set (TX FIFO empty)
278 * or if RXR is set (RX FIFO >= ¾ full).
279 */
280 if (cs & BCM2835_SPI_CS_RXF)
281 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
282 else if (cs & BCM2835_SPI_CS_RXR)
283 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
284
285 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
286 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
287
288 /* Read as many bytes as possible from FIFO */
289 bcm2835_rd_fifo(bs);
290 /* Write as many bytes as possible to FIFO */
291 bcm2835_wr_fifo(bs);
292
293 if (!bs->rx_len) {
294 /* Transfer complete - reset SPI HW */
295 bcm2835_spi_reset_hw(master);
296 /* wake up the framework */
297 complete(&master->xfer_completion);
298 }
299
300 return IRQ_HANDLED;
301 }
302
303 static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
304 struct spi_device *spi,
305 struct spi_transfer *tfr,
306 u32 cs, bool fifo_empty)
307 {
308 struct bcm2835_spi *bs = spi_master_get_devdata(master);
309
310 /*
311 * Enable HW block, but with interrupts still disabled.
312 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
313 */
314 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
315
316 /* fill TX FIFO as much as possible */
317 if (fifo_empty)
318 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
319 bcm2835_wr_fifo(bs);
320
321 /* enable interrupts */
322 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
323 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
324
325 /* signal that we need to wait for completion */
326 return 1;
327 }
328
329 /**
330 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
331 * @master: SPI master
332 * @tfr: SPI transfer
333 * @bs: BCM2835 SPI controller
334 * @cs: CS register
335 *
336 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
337 * Only the final write access is permitted to transmit less than 4 bytes, the
338 * SPI controller deduces its intended size from the DLEN register.
339 *
340 * If a TX or RX sglist contains multiple entries, one per page, and the first
341 * entry starts in the middle of a page, that first entry's length may not be
342 * a multiple of 4. Subsequent entries are fine because they span an entire
343 * page, hence do have a length that's a multiple of 4.
344 *
345 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
346 * because they are contiguous in physical memory and therefore not split on
347 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
348 * buffers.
349 *
350 * The DMA engine is incapable of combining sglist entries into a continuous
351 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
352 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
353 * entry is rounded up by throwing away received bytes.
354 *
355 * Overcome this limitation by transferring the first few bytes without DMA:
356 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
357 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
358 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
359 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
360 *
361 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
362 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
363 * Caution, the additional 4 bytes spill over to the second TX sglist entry
364 * if the length of the first is *exactly* 1.
365 *
366 * At most 6 bytes are written and at most 3 bytes read. Do we know the
367 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
368 *
369 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
370 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
371 * the width but also garbles the FIFO's contents. The prologue must therefore
372 * be transmitted in 32-bit width to ensure that the following DMA transfer can
373 * pick up the residue in the RX FIFO in ungarbled form.
374 */
375 static void bcm2835_spi_transfer_prologue(struct spi_master *master,
376 struct spi_transfer *tfr,
377 struct bcm2835_spi *bs,
378 u32 cs)
379 {
380 int tx_remaining;
381
382 bs->tfr = tfr;
383 bs->tx_prologue = 0;
384 bs->rx_prologue = 0;
385 bs->tx_spillover = false;
386
387 if (!sg_is_last(&tfr->tx_sg.sgl[0]))
388 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
389
390 if (!sg_is_last(&tfr->rx_sg.sgl[0])) {
391 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
392
393 if (bs->rx_prologue > bs->tx_prologue) {
394 if (sg_is_last(&tfr->tx_sg.sgl[0])) {
395 bs->tx_prologue = bs->rx_prologue;
396 } else {
397 bs->tx_prologue += 4;
398 bs->tx_spillover =
399 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
400 }
401 }
402 }
403
404 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
405 if (!bs->tx_prologue)
406 return;
407
408 /* Write and read RX prologue. Adjust first entry in RX sglist. */
409 if (bs->rx_prologue) {
410 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
411 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
412 | BCM2835_SPI_CS_DMAEN);
413 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
414 bcm2835_wait_tx_fifo_empty(bs);
415 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
416 bcm2835_spi_reset_hw(master);
417
418 dma_sync_single_for_device(master->dma_rx->device->dev,
419 sg_dma_address(&tfr->rx_sg.sgl[0]),
420 bs->rx_prologue, DMA_FROM_DEVICE);
421
422 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
423 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
424 }
425
426 /*
427 * Write remaining TX prologue. Adjust first entry in TX sglist.
428 * Also adjust second entry if prologue spills over to it.
429 */
430 tx_remaining = bs->tx_prologue - bs->rx_prologue;
431 if (tx_remaining) {
432 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
433 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
434 | BCM2835_SPI_CS_DMAEN);
435 bcm2835_wr_fifo_count(bs, tx_remaining);
436 bcm2835_wait_tx_fifo_empty(bs);
437 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX);
438 }
439
440 if (likely(!bs->tx_spillover)) {
441 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
442 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
443 } else {
444 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
445 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
446 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
447 }
448 }
449
450 /**
451 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
452 * @bs: BCM2835 SPI controller
453 *
454 * Undo changes which were made to an SPI transfer's sglist when transmitting
455 * the prologue. This is necessary to ensure the same memory ranges are
456 * unmapped that were originally mapped.
457 */
458 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
459 {
460 struct spi_transfer *tfr = bs->tfr;
461
462 if (!bs->tx_prologue)
463 return;
464
465 if (bs->rx_prologue) {
466 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
467 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
468 }
469
470 if (likely(!bs->tx_spillover)) {
471 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
472 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
473 } else {
474 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
475 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
476 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
477 }
478 }
479
480 static void bcm2835_spi_dma_done(void *data)
481 {
482 struct spi_master *master = data;
483 struct bcm2835_spi *bs = spi_master_get_devdata(master);
484
485 /* reset fifo and HW */
486 bcm2835_spi_reset_hw(master);
487
488 /* and terminate tx-dma as we do not have an irq for it
489 * because when the rx dma will terminate and this callback
490 * is called the tx-dma must have finished - can't get to this
491 * situation otherwise...
492 */
493 if (cmpxchg(&bs->dma_pending, true, false)) {
494 dmaengine_terminate_async(master->dma_tx);
495 bcm2835_spi_undo_prologue(bs);
496 }
497
498 /* and mark as completed */;
499 complete(&master->xfer_completion);
500 }
501
502 static int bcm2835_spi_prepare_sg(struct spi_master *master,
503 struct spi_transfer *tfr,
504 bool is_tx)
505 {
506 struct dma_chan *chan;
507 struct scatterlist *sgl;
508 unsigned int nents;
509 enum dma_transfer_direction dir;
510 unsigned long flags;
511
512 struct dma_async_tx_descriptor *desc;
513 dma_cookie_t cookie;
514
515 if (is_tx) {
516 dir = DMA_MEM_TO_DEV;
517 chan = master->dma_tx;
518 nents = tfr->tx_sg.nents;
519 sgl = tfr->tx_sg.sgl;
520 flags = 0 /* no tx interrupt */;
521
522 } else {
523 dir = DMA_DEV_TO_MEM;
524 chan = master->dma_rx;
525 nents = tfr->rx_sg.nents;
526 sgl = tfr->rx_sg.sgl;
527 flags = DMA_PREP_INTERRUPT;
528 }
529 /* prepare the channel */
530 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
531 if (!desc)
532 return -EINVAL;
533
534 /* set callback for rx */
535 if (!is_tx) {
536 desc->callback = bcm2835_spi_dma_done;
537 desc->callback_param = master;
538 }
539
540 /* submit it to DMA-engine */
541 cookie = dmaengine_submit(desc);
542
543 return dma_submit_error(cookie);
544 }
545
546 static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
547 struct spi_device *spi,
548 struct spi_transfer *tfr,
549 u32 cs)
550 {
551 struct bcm2835_spi *bs = spi_master_get_devdata(master);
552 int ret;
553
554 /*
555 * Transfer first few bytes without DMA if length of first TX or RX
556 * sglist entry is not a multiple of 4 bytes (hardware limitation).
557 */
558 bcm2835_spi_transfer_prologue(master, tfr, bs, cs);
559
560 /* setup tx-DMA */
561 ret = bcm2835_spi_prepare_sg(master, tfr, true);
562 if (ret)
563 goto err_reset_hw;
564
565 /* start TX early */
566 dma_async_issue_pending(master->dma_tx);
567
568 /* mark as dma pending */
569 bs->dma_pending = 1;
570
571 /* set the DMA length */
572 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
573
574 /* start the HW */
575 bcm2835_wr(bs, BCM2835_SPI_CS,
576 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
577
578 /* setup rx-DMA late - to run transfers while
579 * mapping of the rx buffers still takes place
580 * this saves 10us or more.
581 */
582 ret = bcm2835_spi_prepare_sg(master, tfr, false);
583 if (ret) {
584 /* need to reset on errors */
585 dmaengine_terminate_sync(master->dma_tx);
586 bs->dma_pending = false;
587 goto err_reset_hw;
588 }
589
590 /* start rx dma late */
591 dma_async_issue_pending(master->dma_rx);
592
593 /* wait for wakeup in framework */
594 return 1;
595
596 err_reset_hw:
597 bcm2835_spi_reset_hw(master);
598 bcm2835_spi_undo_prologue(bs);
599 return ret;
600 }
601
602 static bool bcm2835_spi_can_dma(struct spi_master *master,
603 struct spi_device *spi,
604 struct spi_transfer *tfr)
605 {
606 /* we start DMA efforts only on bigger transfers */
607 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
608 return false;
609
610 /* return OK */
611 return true;
612 }
613
614 static void bcm2835_dma_release(struct spi_master *master)
615 {
616 if (master->dma_tx) {
617 dmaengine_terminate_sync(master->dma_tx);
618 dma_release_channel(master->dma_tx);
619 master->dma_tx = NULL;
620 }
621 if (master->dma_rx) {
622 dmaengine_terminate_sync(master->dma_rx);
623 dma_release_channel(master->dma_rx);
624 master->dma_rx = NULL;
625 }
626 }
627
628 static void bcm2835_dma_init(struct spi_master *master, struct device *dev)
629 {
630 struct dma_slave_config slave_config;
631 const __be32 *addr;
632 dma_addr_t dma_reg_base;
633 int ret;
634
635 /* base address in dma-space */
636 addr = of_get_address(master->dev.of_node, 0, NULL, NULL);
637 if (!addr) {
638 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
639 goto err;
640 }
641 dma_reg_base = be32_to_cpup(addr);
642
643 /* get tx/rx dma */
644 master->dma_tx = dma_request_slave_channel(dev, "tx");
645 if (!master->dma_tx) {
646 dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
647 goto err;
648 }
649 master->dma_rx = dma_request_slave_channel(dev, "rx");
650 if (!master->dma_rx) {
651 dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
652 goto err_release;
653 }
654
655 /* configure DMAs */
656 slave_config.direction = DMA_MEM_TO_DEV;
657 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
658 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
659
660 ret = dmaengine_slave_config(master->dma_tx, &slave_config);
661 if (ret)
662 goto err_config;
663
664 slave_config.direction = DMA_DEV_TO_MEM;
665 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
666 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
667
668 ret = dmaengine_slave_config(master->dma_rx, &slave_config);
669 if (ret)
670 goto err_config;
671
672 /* all went well, so set can_dma */
673 master->can_dma = bcm2835_spi_can_dma;
674 /* need to do TX AND RX DMA, so we need dummy buffers */
675 master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
676
677 return;
678
679 err_config:
680 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
681 ret);
682 err_release:
683 bcm2835_dma_release(master);
684 err:
685 return;
686 }
687
688 static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
689 struct spi_device *spi,
690 struct spi_transfer *tfr,
691 u32 cs,
692 unsigned long long xfer_time_us)
693 {
694 struct bcm2835_spi *bs = spi_master_get_devdata(master);
695 unsigned long timeout;
696
697 /* enable HW block without interrupts */
698 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
699
700 /* fill in the fifo before timeout calculations
701 * if we are interrupted here, then the data is
702 * getting transferred by the HW while we are interrupted
703 */
704 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
705
706 /* set the timeout */
707 timeout = jiffies + BCM2835_SPI_POLLING_JIFFIES;
708
709 /* loop until finished the transfer */
710 while (bs->rx_len) {
711 /* fill in tx fifo with remaining data */
712 bcm2835_wr_fifo(bs);
713
714 /* read from fifo as much as possible */
715 bcm2835_rd_fifo(bs);
716
717 /* if there is still data pending to read
718 * then check the timeout
719 */
720 if (bs->rx_len && time_after(jiffies, timeout)) {
721 dev_dbg_ratelimited(&spi->dev,
722 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
723 jiffies - timeout,
724 bs->tx_len, bs->rx_len);
725 /* fall back to interrupt mode */
726 return bcm2835_spi_transfer_one_irq(master, spi,
727 tfr, cs, false);
728 }
729 }
730
731 /* Transfer complete - reset SPI HW */
732 bcm2835_spi_reset_hw(master);
733 /* and return without waiting for completion */
734 return 0;
735 }
736
737 static int bcm2835_spi_transfer_one(struct spi_master *master,
738 struct spi_device *spi,
739 struct spi_transfer *tfr)
740 {
741 struct bcm2835_spi *bs = spi_master_get_devdata(master);
742 unsigned long spi_hz, clk_hz, cdiv;
743 unsigned long spi_used_hz;
744 unsigned long long xfer_time_us;
745 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
746
747 /* set clock */
748 spi_hz = tfr->speed_hz;
749 clk_hz = clk_get_rate(bs->clk);
750
751 if (spi_hz >= clk_hz / 2) {
752 cdiv = 2; /* clk_hz/2 is the fastest we can go */
753 } else if (spi_hz) {
754 /* CDIV must be a multiple of two */
755 cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
756 cdiv += (cdiv % 2);
757
758 if (cdiv >= 65536)
759 cdiv = 0; /* 0 is the slowest we can go */
760 } else {
761 cdiv = 0; /* 0 is the slowest we can go */
762 }
763 spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
764 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
765
766 /* handle all the 3-wire mode */
767 if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
768 cs |= BCM2835_SPI_CS_REN;
769 else
770 cs &= ~BCM2835_SPI_CS_REN;
771
772 /*
773 * The driver always uses software-controlled GPIO Chip Select.
774 * Set the hardware-controlled native Chip Select to an invalid
775 * value to prevent it from interfering.
776 */
777 cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
778
779 /* set transmit buffers and length */
780 bs->tx_buf = tfr->tx_buf;
781 bs->rx_buf = tfr->rx_buf;
782 bs->tx_len = tfr->len;
783 bs->rx_len = tfr->len;
784
785 /* calculate the estimated time in us the transfer runs */
786 xfer_time_us = (unsigned long long)tfr->len
787 * 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
788 * 1000000;
789 do_div(xfer_time_us, spi_used_hz);
790
791 /* for short requests run polling*/
792 if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
793 return bcm2835_spi_transfer_one_poll(master, spi, tfr,
794 cs, xfer_time_us);
795
796 /* run in dma mode if conditions are right */
797 if (master->can_dma && bcm2835_spi_can_dma(master, spi, tfr))
798 return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs);
799
800 /* run in interrupt-mode */
801 return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs, true);
802 }
803
804 static int bcm2835_spi_prepare_message(struct spi_master *master,
805 struct spi_message *msg)
806 {
807 struct spi_device *spi = msg->spi;
808 struct bcm2835_spi *bs = spi_master_get_devdata(master);
809 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
810 int ret;
811
812 /*
813 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by the SPI HW
814 * due to DLEN. Split up transfers (32-bit FIFO aligned) if the limit is
815 * exceeded.
816 */
817 ret = spi_split_transfers_maxsize(master, msg, 65532,
818 GFP_KERNEL | GFP_DMA);
819 if (ret)
820 return ret;
821
822 cs &= ~(BCM2835_SPI_CS_CPOL | BCM2835_SPI_CS_CPHA);
823
824 if (spi->mode & SPI_CPOL)
825 cs |= BCM2835_SPI_CS_CPOL;
826 if (spi->mode & SPI_CPHA)
827 cs |= BCM2835_SPI_CS_CPHA;
828
829 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
830
831 return 0;
832 }
833
834 static void bcm2835_spi_handle_err(struct spi_master *master,
835 struct spi_message *msg)
836 {
837 struct bcm2835_spi *bs = spi_master_get_devdata(master);
838
839 /* if an error occurred and we have an active dma, then terminate */
840 if (cmpxchg(&bs->dma_pending, true, false)) {
841 dmaengine_terminate_sync(master->dma_tx);
842 dmaengine_terminate_sync(master->dma_rx);
843 bcm2835_spi_undo_prologue(bs);
844 }
845 /* and reset */
846 bcm2835_spi_reset_hw(master);
847 }
848
849 static int chip_match_name(struct gpio_chip *chip, void *data)
850 {
851 return !strcmp(chip->label, data);
852 }
853
854 static int bcm2835_spi_setup(struct spi_device *spi)
855 {
856 int err;
857 struct gpio_chip *chip;
858 /*
859 * sanity checking the native-chipselects
860 */
861 if (spi->mode & SPI_NO_CS)
862 return 0;
863 if (gpio_is_valid(spi->cs_gpio))
864 return 0;
865 if (spi->chip_select > 1) {
866 /* error in the case of native CS requested with CS > 1
867 * officially there is a CS2, but it is not documented
868 * which GPIO is connected with that...
869 */
870 dev_err(&spi->dev,
871 "setup: only two native chip-selects are supported\n");
872 return -EINVAL;
873 }
874 /* now translate native cs to GPIO */
875
876 /* get the gpio chip for the base */
877 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
878 if (!chip)
879 return 0;
880
881 /* and calculate the real CS */
882 spi->cs_gpio = chip->base + 8 - spi->chip_select;
883
884 /* and set up the "mode" and level */
885 dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
886 spi->chip_select, spi->cs_gpio);
887
888 /* set up GPIO as output and pull to the correct level */
889 err = gpio_direction_output(spi->cs_gpio,
890 (spi->mode & SPI_CS_HIGH) ? 0 : 1);
891 if (err) {
892 dev_err(&spi->dev,
893 "could not set CS%i gpio %i as output: %i",
894 spi->chip_select, spi->cs_gpio, err);
895 return err;
896 }
897
898 return 0;
899 }
900
901 static int bcm2835_spi_probe(struct platform_device *pdev)
902 {
903 struct spi_master *master;
904 struct bcm2835_spi *bs;
905 struct resource *res;
906 int err;
907
908 master = spi_alloc_master(&pdev->dev, sizeof(*bs));
909 if (!master) {
910 dev_err(&pdev->dev, "spi_alloc_master() failed\n");
911 return -ENOMEM;
912 }
913
914 platform_set_drvdata(pdev, master);
915
916 master->mode_bits = BCM2835_SPI_MODE_BITS;
917 master->bits_per_word_mask = SPI_BPW_MASK(8);
918 master->num_chipselect = 3;
919 master->setup = bcm2835_spi_setup;
920 master->transfer_one = bcm2835_spi_transfer_one;
921 master->handle_err = bcm2835_spi_handle_err;
922 master->prepare_message = bcm2835_spi_prepare_message;
923 master->dev.of_node = pdev->dev.of_node;
924
925 bs = spi_master_get_devdata(master);
926
927 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
928 bs->regs = devm_ioremap_resource(&pdev->dev, res);
929 if (IS_ERR(bs->regs)) {
930 err = PTR_ERR(bs->regs);
931 goto out_master_put;
932 }
933
934 bs->clk = devm_clk_get(&pdev->dev, NULL);
935 if (IS_ERR(bs->clk)) {
936 err = PTR_ERR(bs->clk);
937 dev_err(&pdev->dev, "could not get clk: %d\n", err);
938 goto out_master_put;
939 }
940
941 bs->irq = platform_get_irq(pdev, 0);
942 if (bs->irq <= 0) {
943 dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
944 err = bs->irq ? bs->irq : -ENODEV;
945 goto out_master_put;
946 }
947
948 clk_prepare_enable(bs->clk);
949
950 bcm2835_dma_init(master, &pdev->dev);
951
952 /* initialise the hardware with the default polarities */
953 bcm2835_wr(bs, BCM2835_SPI_CS,
954 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
955
956 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
957 dev_name(&pdev->dev), master);
958 if (err) {
959 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
960 goto out_clk_disable;
961 }
962
963 err = devm_spi_register_master(&pdev->dev, master);
964 if (err) {
965 dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
966 goto out_clk_disable;
967 }
968
969 return 0;
970
971 out_clk_disable:
972 clk_disable_unprepare(bs->clk);
973 out_master_put:
974 spi_master_put(master);
975 return err;
976 }
977
978 static int bcm2835_spi_remove(struct platform_device *pdev)
979 {
980 struct spi_master *master = platform_get_drvdata(pdev);
981 struct bcm2835_spi *bs = spi_master_get_devdata(master);
982
983 /* Clear FIFOs, and disable the HW block */
984 bcm2835_wr(bs, BCM2835_SPI_CS,
985 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
986
987 clk_disable_unprepare(bs->clk);
988
989 bcm2835_dma_release(master);
990
991 return 0;
992 }
993
994 static const struct of_device_id bcm2835_spi_match[] = {
995 { .compatible = "brcm,bcm2835-spi", },
996 {}
997 };
998 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
999
1000 static struct platform_driver bcm2835_spi_driver = {
1001 .driver = {
1002 .name = DRV_NAME,
1003 .of_match_table = bcm2835_spi_match,
1004 },
1005 .probe = bcm2835_spi_probe,
1006 .remove = bcm2835_spi_remove,
1007 };
1008 module_platform_driver(bcm2835_spi_driver);
1009
1010 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1011 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1012 MODULE_LICENSE("GPL");