]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/spi/spi-bcm2835.c
Merge branch 'spi-4.20' into spi-4.21 for bcm stuff.
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-bcm2835.c
1 /*
2 * Driver for Broadcom BCM2835 SPI Controllers
3 *
4 * Copyright (C) 2012 Chris Boot
5 * Copyright (C) 2013 Stephen Warren
6 * Copyright (C) 2015 Martin Sperl
7 *
8 * This driver is inspired by:
9 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
10 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 */
22
23 #include <asm/page.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/of.h>
35 #include <linux/of_address.h>
36 #include <linux/of_device.h>
37 #include <linux/of_gpio.h>
38 #include <linux/of_irq.h>
39 #include <linux/spi/spi.h>
40
41 /* SPI register offsets */
42 #define BCM2835_SPI_CS 0x00
43 #define BCM2835_SPI_FIFO 0x04
44 #define BCM2835_SPI_CLK 0x08
45 #define BCM2835_SPI_DLEN 0x0c
46 #define BCM2835_SPI_LTOH 0x10
47 #define BCM2835_SPI_DC 0x14
48
49 /* Bitfields in CS */
50 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
51 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
52 #define BCM2835_SPI_CS_CSPOL2 0x00800000
53 #define BCM2835_SPI_CS_CSPOL1 0x00400000
54 #define BCM2835_SPI_CS_CSPOL0 0x00200000
55 #define BCM2835_SPI_CS_RXF 0x00100000
56 #define BCM2835_SPI_CS_RXR 0x00080000
57 #define BCM2835_SPI_CS_TXD 0x00040000
58 #define BCM2835_SPI_CS_RXD 0x00020000
59 #define BCM2835_SPI_CS_DONE 0x00010000
60 #define BCM2835_SPI_CS_LEN 0x00002000
61 #define BCM2835_SPI_CS_REN 0x00001000
62 #define BCM2835_SPI_CS_ADCS 0x00000800
63 #define BCM2835_SPI_CS_INTR 0x00000400
64 #define BCM2835_SPI_CS_INTD 0x00000200
65 #define BCM2835_SPI_CS_DMAEN 0x00000100
66 #define BCM2835_SPI_CS_TA 0x00000080
67 #define BCM2835_SPI_CS_CSPOL 0x00000040
68 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
69 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
70 #define BCM2835_SPI_CS_CPOL 0x00000008
71 #define BCM2835_SPI_CS_CPHA 0x00000004
72 #define BCM2835_SPI_CS_CS_10 0x00000002
73 #define BCM2835_SPI_CS_CS_01 0x00000001
74
75 #define BCM2835_SPI_POLLING_LIMIT_US 30
76 #define BCM2835_SPI_POLLING_JIFFIES 2
77 #define BCM2835_SPI_DMA_MIN_LENGTH 96
78 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
79 | SPI_NO_CS | SPI_3WIRE)
80
81 #define DRV_NAME "spi-bcm2835"
82
83 struct bcm2835_spi {
84 void __iomem *regs;
85 struct clk *clk;
86 int irq;
87 const u8 *tx_buf;
88 u8 *rx_buf;
89 int tx_len;
90 int rx_len;
91 bool dma_pending;
92 };
93
94 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
95 {
96 return readl(bs->regs + reg);
97 }
98
99 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
100 {
101 writel(val, bs->regs + reg);
102 }
103
104 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
105 {
106 u8 byte;
107
108 while ((bs->rx_len) &&
109 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
110 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
111 if (bs->rx_buf)
112 *bs->rx_buf++ = byte;
113 bs->rx_len--;
114 }
115 }
116
117 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
118 {
119 u8 byte;
120
121 while ((bs->tx_len) &&
122 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
123 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
124 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
125 bs->tx_len--;
126 }
127 }
128
129 static void bcm2835_spi_reset_hw(struct spi_master *master)
130 {
131 struct bcm2835_spi *bs = spi_master_get_devdata(master);
132 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
133
134 /* Disable SPI interrupts and transfer */
135 cs &= ~(BCM2835_SPI_CS_INTR |
136 BCM2835_SPI_CS_INTD |
137 BCM2835_SPI_CS_DMAEN |
138 BCM2835_SPI_CS_TA);
139 /* and reset RX/TX FIFOS */
140 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
141
142 /* and reset the SPI_HW */
143 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
144 /* as well as DLEN */
145 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
146 }
147
148 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
149 {
150 struct spi_master *master = dev_id;
151 struct bcm2835_spi *bs = spi_master_get_devdata(master);
152
153 /* Read as many bytes as possible from FIFO */
154 bcm2835_rd_fifo(bs);
155 /* Write as many bytes as possible to FIFO */
156 bcm2835_wr_fifo(bs);
157
158 if (!bs->rx_len) {
159 /* Transfer complete - reset SPI HW */
160 bcm2835_spi_reset_hw(master);
161 /* wake up the framework */
162 complete(&master->xfer_completion);
163 }
164
165 return IRQ_HANDLED;
166 }
167
168 static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
169 struct spi_device *spi,
170 struct spi_transfer *tfr,
171 u32 cs)
172 {
173 struct bcm2835_spi *bs = spi_master_get_devdata(master);
174
175 /* fill in fifo if we have gpio-cs
176 * note that there have been rare events where the native-CS
177 * flapped for <1us which may change the behaviour
178 * with gpio-cs this does not happen, so it is implemented
179 * only for this case
180 */
181 if (gpio_is_valid(spi->cs_gpio)) {
182 /* enable HW block, but without interrupts enabled
183 * this would triggern an immediate interrupt
184 */
185 bcm2835_wr(bs, BCM2835_SPI_CS,
186 cs | BCM2835_SPI_CS_TA);
187 /* fill in tx fifo as much as possible */
188 bcm2835_wr_fifo(bs);
189 }
190
191 /*
192 * Enable the HW block. This will immediately trigger a DONE (TX
193 * empty) interrupt, upon which we will fill the TX FIFO with the
194 * first TX bytes. Pre-filling the TX FIFO here to avoid the
195 * interrupt doesn't work:-(
196 */
197 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
198 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
199
200 /* signal that we need to wait for completion */
201 return 1;
202 }
203
204 /*
205 * DMA support
206 *
207 * this implementation has currently a few issues in so far as it does
208 * not work arrount limitations of the HW.
209 *
210 * the main one being that DMA transfers are limited to 16 bit
211 * (so 0 to 65535 bytes) by the SPI HW due to BCM2835_SPI_DLEN
212 *
213 * also we currently assume that the scatter-gather fragments are
214 * all multiple of 4 (except the last) - otherwise we would need
215 * to reset the FIFO before subsequent transfers...
216 * this also means that tx/rx transfers sg's need to be of equal size!
217 *
218 * there may be a few more border-cases we may need to address as well
219 * but unfortunately this would mean splitting up the scatter-gather
220 * list making it slightly unpractical...
221 */
222 static void bcm2835_spi_dma_done(void *data)
223 {
224 struct spi_master *master = data;
225 struct bcm2835_spi *bs = spi_master_get_devdata(master);
226
227 /* reset fifo and HW */
228 bcm2835_spi_reset_hw(master);
229
230 /* and terminate tx-dma as we do not have an irq for it
231 * because when the rx dma will terminate and this callback
232 * is called the tx-dma must have finished - can't get to this
233 * situation otherwise...
234 */
235 if (cmpxchg(&bs->dma_pending, true, false)) {
236 dmaengine_terminate_all(master->dma_tx);
237 }
238
239 /* and mark as completed */;
240 complete(&master->xfer_completion);
241 }
242
243 static int bcm2835_spi_prepare_sg(struct spi_master *master,
244 struct spi_transfer *tfr,
245 bool is_tx)
246 {
247 struct dma_chan *chan;
248 struct scatterlist *sgl;
249 unsigned int nents;
250 enum dma_transfer_direction dir;
251 unsigned long flags;
252
253 struct dma_async_tx_descriptor *desc;
254 dma_cookie_t cookie;
255
256 if (is_tx) {
257 dir = DMA_MEM_TO_DEV;
258 chan = master->dma_tx;
259 nents = tfr->tx_sg.nents;
260 sgl = tfr->tx_sg.sgl;
261 flags = 0 /* no tx interrupt */;
262
263 } else {
264 dir = DMA_DEV_TO_MEM;
265 chan = master->dma_rx;
266 nents = tfr->rx_sg.nents;
267 sgl = tfr->rx_sg.sgl;
268 flags = DMA_PREP_INTERRUPT;
269 }
270 /* prepare the channel */
271 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
272 if (!desc)
273 return -EINVAL;
274
275 /* set callback for rx */
276 if (!is_tx) {
277 desc->callback = bcm2835_spi_dma_done;
278 desc->callback_param = master;
279 }
280
281 /* submit it to DMA-engine */
282 cookie = dmaengine_submit(desc);
283
284 return dma_submit_error(cookie);
285 }
286
287 static inline int bcm2835_check_sg_length(struct sg_table *sgt)
288 {
289 int i;
290 struct scatterlist *sgl;
291
292 /* check that the sg entries are word-sized (except for last) */
293 for_each_sg(sgt->sgl, sgl, (int)sgt->nents - 1, i) {
294 if (sg_dma_len(sgl) % 4)
295 return -EFAULT;
296 }
297
298 return 0;
299 }
300
301 static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
302 struct spi_device *spi,
303 struct spi_transfer *tfr,
304 u32 cs)
305 {
306 struct bcm2835_spi *bs = spi_master_get_devdata(master);
307 int ret;
308
309 /* check that the scatter gather segments are all a multiple of 4 */
310 if (bcm2835_check_sg_length(&tfr->tx_sg) ||
311 bcm2835_check_sg_length(&tfr->rx_sg)) {
312 dev_warn_once(&spi->dev,
313 "scatter gather segment length is not a multiple of 4 - falling back to interrupt mode\n");
314 return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
315 }
316
317 /* setup tx-DMA */
318 ret = bcm2835_spi_prepare_sg(master, tfr, true);
319 if (ret)
320 return ret;
321
322 /* start TX early */
323 dma_async_issue_pending(master->dma_tx);
324
325 /* mark as dma pending */
326 bs->dma_pending = 1;
327
328 /* set the DMA length */
329 bcm2835_wr(bs, BCM2835_SPI_DLEN, tfr->len);
330
331 /* start the HW */
332 bcm2835_wr(bs, BCM2835_SPI_CS,
333 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
334
335 /* setup rx-DMA late - to run transfers while
336 * mapping of the rx buffers still takes place
337 * this saves 10us or more.
338 */
339 ret = bcm2835_spi_prepare_sg(master, tfr, false);
340 if (ret) {
341 /* need to reset on errors */
342 dmaengine_terminate_all(master->dma_tx);
343 bs->dma_pending = false;
344 bcm2835_spi_reset_hw(master);
345 return ret;
346 }
347
348 /* start rx dma late */
349 dma_async_issue_pending(master->dma_rx);
350
351 /* wait for wakeup in framework */
352 return 1;
353 }
354
355 static bool bcm2835_spi_can_dma(struct spi_master *master,
356 struct spi_device *spi,
357 struct spi_transfer *tfr)
358 {
359 /* only run for gpio_cs */
360 if (!gpio_is_valid(spi->cs_gpio))
361 return false;
362
363 /* we start DMA efforts only on bigger transfers */
364 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
365 return false;
366
367 /* BCM2835_SPI_DLEN has defined a max transfer size as
368 * 16 bit, so max is 65535
369 * we can revisit this by using an alternative transfer
370 * method - ideally this would get done without any more
371 * interaction...
372 */
373 if (tfr->len > 65535) {
374 dev_warn_once(&spi->dev,
375 "transfer size of %d too big for dma-transfer\n",
376 tfr->len);
377 return false;
378 }
379
380 /* if we run rx/tx_buf with word aligned addresses then we are OK */
381 if ((((size_t)tfr->rx_buf & 3) == 0) &&
382 (((size_t)tfr->tx_buf & 3) == 0))
383 return true;
384
385 /* otherwise we only allow transfers within the same page
386 * to avoid wasting time on dma_mapping when it is not practical
387 */
388 if (((size_t)tfr->tx_buf & (PAGE_SIZE - 1)) + tfr->len > PAGE_SIZE) {
389 dev_warn_once(&spi->dev,
390 "Unaligned spi tx-transfer bridging page\n");
391 return false;
392 }
393 if (((size_t)tfr->rx_buf & (PAGE_SIZE - 1)) + tfr->len > PAGE_SIZE) {
394 dev_warn_once(&spi->dev,
395 "Unaligned spi rx-transfer bridging page\n");
396 return false;
397 }
398
399 /* return OK */
400 return true;
401 }
402
403 static void bcm2835_dma_release(struct spi_master *master)
404 {
405 if (master->dma_tx) {
406 dmaengine_terminate_all(master->dma_tx);
407 dma_release_channel(master->dma_tx);
408 master->dma_tx = NULL;
409 }
410 if (master->dma_rx) {
411 dmaengine_terminate_all(master->dma_rx);
412 dma_release_channel(master->dma_rx);
413 master->dma_rx = NULL;
414 }
415 }
416
417 static void bcm2835_dma_init(struct spi_master *master, struct device *dev)
418 {
419 struct dma_slave_config slave_config;
420 const __be32 *addr;
421 dma_addr_t dma_reg_base;
422 int ret;
423
424 /* base address in dma-space */
425 addr = of_get_address(master->dev.of_node, 0, NULL, NULL);
426 if (!addr) {
427 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
428 goto err;
429 }
430 dma_reg_base = be32_to_cpup(addr);
431
432 /* get tx/rx dma */
433 master->dma_tx = dma_request_slave_channel(dev, "tx");
434 if (!master->dma_tx) {
435 dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
436 goto err;
437 }
438 master->dma_rx = dma_request_slave_channel(dev, "rx");
439 if (!master->dma_rx) {
440 dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
441 goto err_release;
442 }
443
444 /* configure DMAs */
445 slave_config.direction = DMA_MEM_TO_DEV;
446 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
447 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
448
449 ret = dmaengine_slave_config(master->dma_tx, &slave_config);
450 if (ret)
451 goto err_config;
452
453 slave_config.direction = DMA_DEV_TO_MEM;
454 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
455 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
456
457 ret = dmaengine_slave_config(master->dma_rx, &slave_config);
458 if (ret)
459 goto err_config;
460
461 /* all went well, so set can_dma */
462 master->can_dma = bcm2835_spi_can_dma;
463 master->max_dma_len = 65535; /* limitation by BCM2835_SPI_DLEN */
464 /* need to do TX AND RX DMA, so we need dummy buffers */
465 master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
466
467 return;
468
469 err_config:
470 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
471 ret);
472 err_release:
473 bcm2835_dma_release(master);
474 err:
475 return;
476 }
477
478 static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
479 struct spi_device *spi,
480 struct spi_transfer *tfr,
481 u32 cs,
482 unsigned long long xfer_time_us)
483 {
484 struct bcm2835_spi *bs = spi_master_get_devdata(master);
485 unsigned long timeout;
486
487 /* enable HW block without interrupts */
488 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
489
490 /* fill in the fifo before timeout calculations
491 * if we are interrupted here, then the data is
492 * getting transferred by the HW while we are interrupted
493 */
494 bcm2835_wr_fifo(bs);
495
496 /* set the timeout */
497 timeout = jiffies + BCM2835_SPI_POLLING_JIFFIES;
498
499 /* loop until finished the transfer */
500 while (bs->rx_len) {
501 /* fill in tx fifo with remaining data */
502 bcm2835_wr_fifo(bs);
503
504 /* read from fifo as much as possible */
505 bcm2835_rd_fifo(bs);
506
507 /* if there is still data pending to read
508 * then check the timeout
509 */
510 if (bs->rx_len && time_after(jiffies, timeout)) {
511 dev_dbg_ratelimited(&spi->dev,
512 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
513 jiffies - timeout,
514 bs->tx_len, bs->rx_len);
515 /* fall back to interrupt mode */
516 return bcm2835_spi_transfer_one_irq(master, spi,
517 tfr, cs);
518 }
519 }
520
521 /* Transfer complete - reset SPI HW */
522 bcm2835_spi_reset_hw(master);
523 /* and return without waiting for completion */
524 return 0;
525 }
526
527 static int bcm2835_spi_transfer_one(struct spi_master *master,
528 struct spi_device *spi,
529 struct spi_transfer *tfr)
530 {
531 struct bcm2835_spi *bs = spi_master_get_devdata(master);
532 unsigned long spi_hz, clk_hz, cdiv;
533 unsigned long spi_used_hz;
534 unsigned long long xfer_time_us;
535 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
536
537 /* set clock */
538 spi_hz = tfr->speed_hz;
539 clk_hz = clk_get_rate(bs->clk);
540
541 if (spi_hz >= clk_hz / 2) {
542 cdiv = 2; /* clk_hz/2 is the fastest we can go */
543 } else if (spi_hz) {
544 /* CDIV must be a multiple of two */
545 cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
546 cdiv += (cdiv % 2);
547
548 if (cdiv >= 65536)
549 cdiv = 0; /* 0 is the slowest we can go */
550 } else {
551 cdiv = 0; /* 0 is the slowest we can go */
552 }
553 spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
554 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
555
556 /* handle all the 3-wire mode */
557 if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
558 cs |= BCM2835_SPI_CS_REN;
559 else
560 cs &= ~BCM2835_SPI_CS_REN;
561
562 /* for gpio_cs set dummy CS so that no HW-CS get changed
563 * we can not run this in bcm2835_spi_set_cs, as it does
564 * not get called for cs_gpio cases, so we need to do it here
565 */
566 if (gpio_is_valid(spi->cs_gpio) || (spi->mode & SPI_NO_CS))
567 cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
568
569 /* set transmit buffers and length */
570 bs->tx_buf = tfr->tx_buf;
571 bs->rx_buf = tfr->rx_buf;
572 bs->tx_len = tfr->len;
573 bs->rx_len = tfr->len;
574
575 /* calculate the estimated time in us the transfer runs */
576 xfer_time_us = (unsigned long long)tfr->len
577 * 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
578 * 1000000;
579 do_div(xfer_time_us, spi_used_hz);
580
581 /* for short requests run polling*/
582 if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
583 return bcm2835_spi_transfer_one_poll(master, spi, tfr,
584 cs, xfer_time_us);
585
586 /* run in dma mode if conditions are right */
587 if (master->can_dma && bcm2835_spi_can_dma(master, spi, tfr))
588 return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs);
589
590 /* run in interrupt-mode */
591 return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
592 }
593
594 static int bcm2835_spi_prepare_message(struct spi_master *master,
595 struct spi_message *msg)
596 {
597 struct spi_device *spi = msg->spi;
598 struct bcm2835_spi *bs = spi_master_get_devdata(master);
599 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
600
601 cs &= ~(BCM2835_SPI_CS_CPOL | BCM2835_SPI_CS_CPHA);
602
603 if (spi->mode & SPI_CPOL)
604 cs |= BCM2835_SPI_CS_CPOL;
605 if (spi->mode & SPI_CPHA)
606 cs |= BCM2835_SPI_CS_CPHA;
607
608 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
609
610 return 0;
611 }
612
613 static void bcm2835_spi_handle_err(struct spi_master *master,
614 struct spi_message *msg)
615 {
616 struct bcm2835_spi *bs = spi_master_get_devdata(master);
617
618 /* if an error occurred and we have an active dma, then terminate */
619 if (cmpxchg(&bs->dma_pending, true, false)) {
620 dmaengine_terminate_all(master->dma_tx);
621 dmaengine_terminate_all(master->dma_rx);
622 }
623 /* and reset */
624 bcm2835_spi_reset_hw(master);
625 }
626
627 static void bcm2835_spi_set_cs(struct spi_device *spi, bool gpio_level)
628 {
629 /*
630 * we can assume that we are "native" as per spi_set_cs
631 * calling us ONLY when cs_gpio is not set
632 * we can also assume that we are CS < 3 as per bcm2835_spi_setup
633 * we would not get called because of error handling there.
634 * the level passed is the electrical level not enabled/disabled
635 * so it has to get translated back to enable/disable
636 * see spi_set_cs in spi.c for the implementation
637 */
638
639 struct spi_master *master = spi->master;
640 struct bcm2835_spi *bs = spi_master_get_devdata(master);
641 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
642 bool enable;
643
644 /* calculate the enable flag from the passed gpio_level */
645 enable = (spi->mode & SPI_CS_HIGH) ? gpio_level : !gpio_level;
646
647 /* set flags for "reverse" polarity in the registers */
648 if (spi->mode & SPI_CS_HIGH) {
649 /* set the correct CS-bits */
650 cs |= BCM2835_SPI_CS_CSPOL;
651 cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select;
652 } else {
653 /* clean the CS-bits */
654 cs &= ~BCM2835_SPI_CS_CSPOL;
655 cs &= ~(BCM2835_SPI_CS_CSPOL0 << spi->chip_select);
656 }
657
658 /* select the correct chip_select depending on disabled/enabled */
659 if (enable) {
660 /* set cs correctly */
661 if (spi->mode & SPI_NO_CS) {
662 /* use the "undefined" chip-select */
663 cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
664 } else {
665 /* set the chip select */
666 cs &= ~(BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01);
667 cs |= spi->chip_select;
668 }
669 } else {
670 /* disable CSPOL which puts HW-CS into deselected state */
671 cs &= ~BCM2835_SPI_CS_CSPOL;
672 /* use the "undefined" chip-select as precaution */
673 cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
674 }
675
676 /* finally set the calculated flags in SPI_CS */
677 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
678 }
679
680 static int chip_match_name(struct gpio_chip *chip, void *data)
681 {
682 return !strcmp(chip->label, data);
683 }
684
685 static int bcm2835_spi_setup(struct spi_device *spi)
686 {
687 int err;
688 struct gpio_chip *chip;
689 /*
690 * sanity checking the native-chipselects
691 */
692 if (spi->mode & SPI_NO_CS)
693 return 0;
694 if (gpio_is_valid(spi->cs_gpio))
695 return 0;
696 if (spi->chip_select > 1) {
697 /* error in the case of native CS requested with CS > 1
698 * officially there is a CS2, but it is not documented
699 * which GPIO is connected with that...
700 */
701 dev_err(&spi->dev,
702 "setup: only two native chip-selects are supported\n");
703 return -EINVAL;
704 }
705 /* now translate native cs to GPIO */
706
707 /* get the gpio chip for the base */
708 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
709 if (!chip)
710 return 0;
711
712 /* and calculate the real CS */
713 spi->cs_gpio = chip->base + 8 - spi->chip_select;
714
715 /* and set up the "mode" and level */
716 dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
717 spi->chip_select, spi->cs_gpio);
718
719 /* set up GPIO as output and pull to the correct level */
720 err = gpio_direction_output(spi->cs_gpio,
721 (spi->mode & SPI_CS_HIGH) ? 0 : 1);
722 if (err) {
723 dev_err(&spi->dev,
724 "could not set CS%i gpio %i as output: %i",
725 spi->chip_select, spi->cs_gpio, err);
726 return err;
727 }
728
729 return 0;
730 }
731
732 static int bcm2835_spi_probe(struct platform_device *pdev)
733 {
734 struct spi_master *master;
735 struct bcm2835_spi *bs;
736 struct resource *res;
737 int err;
738
739 master = spi_alloc_master(&pdev->dev, sizeof(*bs));
740 if (!master) {
741 dev_err(&pdev->dev, "spi_alloc_master() failed\n");
742 return -ENOMEM;
743 }
744
745 platform_set_drvdata(pdev, master);
746
747 master->mode_bits = BCM2835_SPI_MODE_BITS;
748 master->bits_per_word_mask = SPI_BPW_MASK(8);
749 master->num_chipselect = 3;
750 master->setup = bcm2835_spi_setup;
751 master->set_cs = bcm2835_spi_set_cs;
752 master->transfer_one = bcm2835_spi_transfer_one;
753 master->handle_err = bcm2835_spi_handle_err;
754 master->prepare_message = bcm2835_spi_prepare_message;
755 master->dev.of_node = pdev->dev.of_node;
756
757 bs = spi_master_get_devdata(master);
758
759 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
760 bs->regs = devm_ioremap_resource(&pdev->dev, res);
761 if (IS_ERR(bs->regs)) {
762 err = PTR_ERR(bs->regs);
763 goto out_master_put;
764 }
765
766 bs->clk = devm_clk_get(&pdev->dev, NULL);
767 if (IS_ERR(bs->clk)) {
768 err = PTR_ERR(bs->clk);
769 dev_err(&pdev->dev, "could not get clk: %d\n", err);
770 goto out_master_put;
771 }
772
773 bs->irq = platform_get_irq(pdev, 0);
774 if (bs->irq <= 0) {
775 dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
776 err = bs->irq ? bs->irq : -ENODEV;
777 goto out_master_put;
778 }
779
780 clk_prepare_enable(bs->clk);
781
782 bcm2835_dma_init(master, &pdev->dev);
783
784 /* initialise the hardware with the default polarities */
785 bcm2835_wr(bs, BCM2835_SPI_CS,
786 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
787
788 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
789 dev_name(&pdev->dev), master);
790 if (err) {
791 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
792 goto out_clk_disable;
793 }
794
795 err = devm_spi_register_master(&pdev->dev, master);
796 if (err) {
797 dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
798 goto out_clk_disable;
799 }
800
801 return 0;
802
803 out_clk_disable:
804 clk_disable_unprepare(bs->clk);
805 out_master_put:
806 spi_master_put(master);
807 return err;
808 }
809
810 static int bcm2835_spi_remove(struct platform_device *pdev)
811 {
812 struct spi_master *master = platform_get_drvdata(pdev);
813 struct bcm2835_spi *bs = spi_master_get_devdata(master);
814
815 /* Clear FIFOs, and disable the HW block */
816 bcm2835_wr(bs, BCM2835_SPI_CS,
817 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
818
819 clk_disable_unprepare(bs->clk);
820
821 bcm2835_dma_release(master);
822
823 return 0;
824 }
825
826 static const struct of_device_id bcm2835_spi_match[] = {
827 { .compatible = "brcm,bcm2835-spi", },
828 {}
829 };
830 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
831
832 static struct platform_driver bcm2835_spi_driver = {
833 .driver = {
834 .name = DRV_NAME,
835 .of_match_table = bcm2835_spi_match,
836 },
837 .probe = bcm2835_spi_probe,
838 .remove = bcm2835_spi_remove,
839 };
840 module_platform_driver(bcm2835_spi_driver);
841
842 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
843 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
844 MODULE_LICENSE("GPL");