]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-ep93xx.c
HID: logitech: read all 32 bits of report type bitfield
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-ep93xx.c
1 /*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (C) 2010-2011 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33
34 #include <mach/dma.h>
35 #include <mach/ep93xx_spi.h>
36
37 #define SSPCR0 0x0000
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
40
41 #define SSPCR1 0x0004
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
49
50 #define SSPDR 0x0008
51
52 #define SSPSR 0x000c
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
59
60 #define SSPIIR 0x0014
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
64 #define SSPICR SSPIIR
65
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT 5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
70
71 /**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @irq: IRQ number used by the driver
80 * @min_rate: minimum clock rate (in Hz) supported by the controller
81 * @max_rate: maximum clock rate (in Hz) supported by the controller
82 * @running: is the queue running
83 * @wq: workqueue used by the driver
84 * @msg_work: work that is queued for the driver
85 * @wait: wait here until given transfer is completed
86 * @msg_queue: queue for the messages
87 * @current_msg: message that is currently processed (or %NULL if none)
88 * @tx: current byte in transfer to transmit
89 * @rx: current byte in transfer to receive
90 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
91 * frame decreases this level and sending one frame increases it.
92 * @dma_rx: RX DMA channel
93 * @dma_tx: TX DMA channel
94 * @dma_rx_data: RX parameters passed to the DMA engine
95 * @dma_tx_data: TX parameters passed to the DMA engine
96 * @rx_sgt: sg table for RX transfers
97 * @tx_sgt: sg table for TX transfers
98 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
99 * the client
100 *
101 * This structure holds EP93xx SPI controller specific information. When
102 * @running is %true, driver accepts transfer requests from protocol drivers.
103 * @current_msg is used to hold pointer to the message that is currently
104 * processed. If @current_msg is %NULL, it means that no processing is going
105 * on.
106 *
107 * Most of the fields are only written once and they can be accessed without
108 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
109 * @running, and @msg_queue.
110 */
111 struct ep93xx_spi {
112 spinlock_t lock;
113 const struct platform_device *pdev;
114 struct clk *clk;
115 void __iomem *regs_base;
116 unsigned long sspdr_phys;
117 int irq;
118 unsigned long min_rate;
119 unsigned long max_rate;
120 bool running;
121 struct workqueue_struct *wq;
122 struct work_struct msg_work;
123 struct completion wait;
124 struct list_head msg_queue;
125 struct spi_message *current_msg;
126 size_t tx;
127 size_t rx;
128 size_t fifo_level;
129 struct dma_chan *dma_rx;
130 struct dma_chan *dma_tx;
131 struct ep93xx_dma_data dma_rx_data;
132 struct ep93xx_dma_data dma_tx_data;
133 struct sg_table rx_sgt;
134 struct sg_table tx_sgt;
135 void *zeropage;
136 };
137
138 /**
139 * struct ep93xx_spi_chip - SPI device hardware settings
140 * @spi: back pointer to the SPI device
141 * @rate: max rate in hz this chip supports
142 * @div_cpsr: cpsr (pre-scaler) divider
143 * @div_scr: scr divider
144 * @dss: bits per word (4 - 16 bits)
145 * @ops: private chip operations
146 *
147 * This structure is used to store hardware register specific settings for each
148 * SPI device. Settings are written to hardware by function
149 * ep93xx_spi_chip_setup().
150 */
151 struct ep93xx_spi_chip {
152 const struct spi_device *spi;
153 unsigned long rate;
154 u8 div_cpsr;
155 u8 div_scr;
156 u8 dss;
157 struct ep93xx_spi_chip_ops *ops;
158 };
159
160 /* converts bits per word to CR0.DSS value */
161 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
162
163 static inline void
164 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
165 {
166 __raw_writeb(value, espi->regs_base + reg);
167 }
168
169 static inline u8
170 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
171 {
172 return __raw_readb(spi->regs_base + reg);
173 }
174
175 static inline void
176 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
177 {
178 __raw_writew(value, espi->regs_base + reg);
179 }
180
181 static inline u16
182 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
183 {
184 return __raw_readw(spi->regs_base + reg);
185 }
186
187 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
188 {
189 u8 regval;
190 int err;
191
192 err = clk_enable(espi->clk);
193 if (err)
194 return err;
195
196 regval = ep93xx_spi_read_u8(espi, SSPCR1);
197 regval |= SSPCR1_SSE;
198 ep93xx_spi_write_u8(espi, SSPCR1, regval);
199
200 return 0;
201 }
202
203 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
204 {
205 u8 regval;
206
207 regval = ep93xx_spi_read_u8(espi, SSPCR1);
208 regval &= ~SSPCR1_SSE;
209 ep93xx_spi_write_u8(espi, SSPCR1, regval);
210
211 clk_disable(espi->clk);
212 }
213
214 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
215 {
216 u8 regval;
217
218 regval = ep93xx_spi_read_u8(espi, SSPCR1);
219 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
220 ep93xx_spi_write_u8(espi, SSPCR1, regval);
221 }
222
223 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
224 {
225 u8 regval;
226
227 regval = ep93xx_spi_read_u8(espi, SSPCR1);
228 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
229 ep93xx_spi_write_u8(espi, SSPCR1, regval);
230 }
231
232 /**
233 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
234 * @espi: ep93xx SPI controller struct
235 * @chip: divisors are calculated for this chip
236 * @rate: desired SPI output clock rate
237 *
238 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
239 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
240 * for some reason, divisors cannot be calculated nothing is stored and
241 * %-EINVAL is returned.
242 */
243 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
244 struct ep93xx_spi_chip *chip,
245 unsigned long rate)
246 {
247 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
248 int cpsr, scr;
249
250 /*
251 * Make sure that max value is between values supported by the
252 * controller. Note that minimum value is already checked in
253 * ep93xx_spi_transfer().
254 */
255 rate = clamp(rate, espi->min_rate, espi->max_rate);
256
257 /*
258 * Calculate divisors so that we can get speed according the
259 * following formula:
260 * rate = spi_clock_rate / (cpsr * (1 + scr))
261 *
262 * cpsr must be even number and starts from 2, scr can be any number
263 * between 0 and 255.
264 */
265 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
266 for (scr = 0; scr <= 255; scr++) {
267 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
268 chip->div_scr = (u8)scr;
269 chip->div_cpsr = (u8)cpsr;
270 return 0;
271 }
272 }
273 }
274
275 return -EINVAL;
276 }
277
278 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
279 {
280 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
281 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
282
283 if (chip->ops && chip->ops->cs_control)
284 chip->ops->cs_control(spi, value);
285 }
286
287 /**
288 * ep93xx_spi_setup() - setup an SPI device
289 * @spi: SPI device to setup
290 *
291 * This function sets up SPI device mode, speed etc. Can be called multiple
292 * times for a single device. Returns %0 in case of success, negative error in
293 * case of failure. When this function returns success, the device is
294 * deselected.
295 */
296 static int ep93xx_spi_setup(struct spi_device *spi)
297 {
298 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
299 struct ep93xx_spi_chip *chip;
300
301 if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
302 dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
303 spi->bits_per_word);
304 return -EINVAL;
305 }
306
307 chip = spi_get_ctldata(spi);
308 if (!chip) {
309 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
310 spi->modalias);
311
312 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
313 if (!chip)
314 return -ENOMEM;
315
316 chip->spi = spi;
317 chip->ops = spi->controller_data;
318
319 if (chip->ops && chip->ops->setup) {
320 int ret = chip->ops->setup(spi);
321 if (ret) {
322 kfree(chip);
323 return ret;
324 }
325 }
326
327 spi_set_ctldata(spi, chip);
328 }
329
330 if (spi->max_speed_hz != chip->rate) {
331 int err;
332
333 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
334 if (err != 0) {
335 spi_set_ctldata(spi, NULL);
336 kfree(chip);
337 return err;
338 }
339 chip->rate = spi->max_speed_hz;
340 }
341
342 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
343
344 ep93xx_spi_cs_control(spi, false);
345 return 0;
346 }
347
348 /**
349 * ep93xx_spi_transfer() - queue message to be transferred
350 * @spi: target SPI device
351 * @msg: message to be transferred
352 *
353 * This function is called by SPI device drivers when they are going to transfer
354 * a new message. It simply puts the message in the queue and schedules
355 * workqueue to perform the actual transfer later on.
356 *
357 * Returns %0 on success and negative error in case of failure.
358 */
359 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
360 {
361 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
362 struct spi_transfer *t;
363 unsigned long flags;
364
365 if (!msg || !msg->complete)
366 return -EINVAL;
367
368 /* first validate each transfer */
369 list_for_each_entry(t, &msg->transfers, transfer_list) {
370 if (t->bits_per_word) {
371 if (t->bits_per_word < 4 || t->bits_per_word > 16)
372 return -EINVAL;
373 }
374 if (t->speed_hz && t->speed_hz < espi->min_rate)
375 return -EINVAL;
376 }
377
378 /*
379 * Now that we own the message, let's initialize it so that it is
380 * suitable for us. We use @msg->status to signal whether there was
381 * error in transfer and @msg->state is used to hold pointer to the
382 * current transfer (or %NULL if no active current transfer).
383 */
384 msg->state = NULL;
385 msg->status = 0;
386 msg->actual_length = 0;
387
388 spin_lock_irqsave(&espi->lock, flags);
389 if (!espi->running) {
390 spin_unlock_irqrestore(&espi->lock, flags);
391 return -ESHUTDOWN;
392 }
393 list_add_tail(&msg->queue, &espi->msg_queue);
394 queue_work(espi->wq, &espi->msg_work);
395 spin_unlock_irqrestore(&espi->lock, flags);
396
397 return 0;
398 }
399
400 /**
401 * ep93xx_spi_cleanup() - cleans up master controller specific state
402 * @spi: SPI device to cleanup
403 *
404 * This function releases master controller specific state for given @spi
405 * device.
406 */
407 static void ep93xx_spi_cleanup(struct spi_device *spi)
408 {
409 struct ep93xx_spi_chip *chip;
410
411 chip = spi_get_ctldata(spi);
412 if (chip) {
413 if (chip->ops && chip->ops->cleanup)
414 chip->ops->cleanup(spi);
415 spi_set_ctldata(spi, NULL);
416 kfree(chip);
417 }
418 }
419
420 /**
421 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
422 * @espi: ep93xx SPI controller struct
423 * @chip: chip specific settings
424 *
425 * This function sets up the actual hardware registers with settings given in
426 * @chip. Note that no validation is done so make sure that callers validate
427 * settings before calling this.
428 */
429 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
430 const struct ep93xx_spi_chip *chip)
431 {
432 u16 cr0;
433
434 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
435 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
436 cr0 |= chip->dss;
437
438 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
439 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
440 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
441
442 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
443 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
444 }
445
446 static inline int bits_per_word(const struct ep93xx_spi *espi)
447 {
448 struct spi_message *msg = espi->current_msg;
449 struct spi_transfer *t = msg->state;
450
451 return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
452 }
453
454 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
455 {
456 if (bits_per_word(espi) > 8) {
457 u16 tx_val = 0;
458
459 if (t->tx_buf)
460 tx_val = ((u16 *)t->tx_buf)[espi->tx];
461 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
462 espi->tx += sizeof(tx_val);
463 } else {
464 u8 tx_val = 0;
465
466 if (t->tx_buf)
467 tx_val = ((u8 *)t->tx_buf)[espi->tx];
468 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
469 espi->tx += sizeof(tx_val);
470 }
471 }
472
473 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
474 {
475 if (bits_per_word(espi) > 8) {
476 u16 rx_val;
477
478 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
479 if (t->rx_buf)
480 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
481 espi->rx += sizeof(rx_val);
482 } else {
483 u8 rx_val;
484
485 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
486 if (t->rx_buf)
487 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
488 espi->rx += sizeof(rx_val);
489 }
490 }
491
492 /**
493 * ep93xx_spi_read_write() - perform next RX/TX transfer
494 * @espi: ep93xx SPI controller struct
495 *
496 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
497 * called several times, the whole transfer will be completed. Returns
498 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
499 *
500 * When this function is finished, RX FIFO should be empty and TX FIFO should be
501 * full.
502 */
503 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
504 {
505 struct spi_message *msg = espi->current_msg;
506 struct spi_transfer *t = msg->state;
507
508 /* read as long as RX FIFO has frames in it */
509 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
510 ep93xx_do_read(espi, t);
511 espi->fifo_level--;
512 }
513
514 /* write as long as TX FIFO has room */
515 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
516 ep93xx_do_write(espi, t);
517 espi->fifo_level++;
518 }
519
520 if (espi->rx == t->len)
521 return 0;
522
523 return -EINPROGRESS;
524 }
525
526 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
527 {
528 /*
529 * Now everything is set up for the current transfer. We prime the TX
530 * FIFO, enable interrupts, and wait for the transfer to complete.
531 */
532 if (ep93xx_spi_read_write(espi)) {
533 ep93xx_spi_enable_interrupts(espi);
534 wait_for_completion(&espi->wait);
535 }
536 }
537
538 /**
539 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
540 * @espi: ep93xx SPI controller struct
541 * @dir: DMA transfer direction
542 *
543 * Function configures the DMA, maps the buffer and prepares the DMA
544 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
545 * in case of failure.
546 */
547 static struct dma_async_tx_descriptor *
548 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir)
549 {
550 struct spi_transfer *t = espi->current_msg->state;
551 struct dma_async_tx_descriptor *txd;
552 enum dma_slave_buswidth buswidth;
553 struct dma_slave_config conf;
554 enum dma_transfer_direction slave_dirn;
555 struct scatterlist *sg;
556 struct sg_table *sgt;
557 struct dma_chan *chan;
558 const void *buf, *pbuf;
559 size_t len = t->len;
560 int i, ret, nents;
561
562 if (bits_per_word(espi) > 8)
563 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
564 else
565 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
566
567 memset(&conf, 0, sizeof(conf));
568 conf.direction = dir;
569
570 if (dir == DMA_FROM_DEVICE) {
571 chan = espi->dma_rx;
572 buf = t->rx_buf;
573 sgt = &espi->rx_sgt;
574
575 conf.src_addr = espi->sspdr_phys;
576 conf.src_addr_width = buswidth;
577 slave_dirn = DMA_DEV_TO_MEM;
578 } else {
579 chan = espi->dma_tx;
580 buf = t->tx_buf;
581 sgt = &espi->tx_sgt;
582
583 conf.dst_addr = espi->sspdr_phys;
584 conf.dst_addr_width = buswidth;
585 slave_dirn = DMA_MEM_TO_DEV;
586 }
587
588 ret = dmaengine_slave_config(chan, &conf);
589 if (ret)
590 return ERR_PTR(ret);
591
592 /*
593 * We need to split the transfer into PAGE_SIZE'd chunks. This is
594 * because we are using @espi->zeropage to provide a zero RX buffer
595 * for the TX transfers and we have only allocated one page for that.
596 *
597 * For performance reasons we allocate a new sg_table only when
598 * needed. Otherwise we will re-use the current one. Eventually the
599 * last sg_table is released in ep93xx_spi_release_dma().
600 */
601
602 nents = DIV_ROUND_UP(len, PAGE_SIZE);
603 if (nents != sgt->nents) {
604 sg_free_table(sgt);
605
606 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
607 if (ret)
608 return ERR_PTR(ret);
609 }
610
611 pbuf = buf;
612 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
613 size_t bytes = min_t(size_t, len, PAGE_SIZE);
614
615 if (buf) {
616 sg_set_page(sg, virt_to_page(pbuf), bytes,
617 offset_in_page(pbuf));
618 } else {
619 sg_set_page(sg, virt_to_page(espi->zeropage),
620 bytes, 0);
621 }
622
623 pbuf += bytes;
624 len -= bytes;
625 }
626
627 if (WARN_ON(len)) {
628 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
629 return ERR_PTR(-EINVAL);
630 }
631
632 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
633 if (!nents)
634 return ERR_PTR(-ENOMEM);
635
636 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents,
637 slave_dirn, DMA_CTRL_ACK);
638 if (!txd) {
639 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
640 return ERR_PTR(-ENOMEM);
641 }
642 return txd;
643 }
644
645 /**
646 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
647 * @espi: ep93xx SPI controller struct
648 * @dir: DMA transfer direction
649 *
650 * Function finishes with the DMA transfer. After this, the DMA buffer is
651 * unmapped.
652 */
653 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
654 enum dma_data_direction dir)
655 {
656 struct dma_chan *chan;
657 struct sg_table *sgt;
658
659 if (dir == DMA_FROM_DEVICE) {
660 chan = espi->dma_rx;
661 sgt = &espi->rx_sgt;
662 } else {
663 chan = espi->dma_tx;
664 sgt = &espi->tx_sgt;
665 }
666
667 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
668 }
669
670 static void ep93xx_spi_dma_callback(void *callback_param)
671 {
672 complete(callback_param);
673 }
674
675 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
676 {
677 struct spi_message *msg = espi->current_msg;
678 struct dma_async_tx_descriptor *rxd, *txd;
679
680 rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE);
681 if (IS_ERR(rxd)) {
682 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
683 msg->status = PTR_ERR(rxd);
684 return;
685 }
686
687 txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE);
688 if (IS_ERR(txd)) {
689 ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
690 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
691 msg->status = PTR_ERR(txd);
692 return;
693 }
694
695 /* We are ready when RX is done */
696 rxd->callback = ep93xx_spi_dma_callback;
697 rxd->callback_param = &espi->wait;
698
699 /* Now submit both descriptors and wait while they finish */
700 dmaengine_submit(rxd);
701 dmaengine_submit(txd);
702
703 dma_async_issue_pending(espi->dma_rx);
704 dma_async_issue_pending(espi->dma_tx);
705
706 wait_for_completion(&espi->wait);
707
708 ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE);
709 ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
710 }
711
712 /**
713 * ep93xx_spi_process_transfer() - processes one SPI transfer
714 * @espi: ep93xx SPI controller struct
715 * @msg: current message
716 * @t: transfer to process
717 *
718 * This function processes one SPI transfer given in @t. Function waits until
719 * transfer is complete (may sleep) and updates @msg->status based on whether
720 * transfer was successfully processed or not.
721 */
722 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
723 struct spi_message *msg,
724 struct spi_transfer *t)
725 {
726 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
727
728 msg->state = t;
729
730 /*
731 * Handle any transfer specific settings if needed. We use
732 * temporary chip settings here and restore original later when
733 * the transfer is finished.
734 */
735 if (t->speed_hz || t->bits_per_word) {
736 struct ep93xx_spi_chip tmp_chip = *chip;
737
738 if (t->speed_hz) {
739 int err;
740
741 err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
742 t->speed_hz);
743 if (err) {
744 dev_err(&espi->pdev->dev,
745 "failed to adjust speed\n");
746 msg->status = err;
747 return;
748 }
749 }
750
751 if (t->bits_per_word)
752 tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
753
754 /*
755 * Set up temporary new hw settings for this transfer.
756 */
757 ep93xx_spi_chip_setup(espi, &tmp_chip);
758 }
759
760 espi->rx = 0;
761 espi->tx = 0;
762
763 /*
764 * There is no point of setting up DMA for the transfers which will
765 * fit into the FIFO and can be transferred with a single interrupt.
766 * So in these cases we will be using PIO and don't bother for DMA.
767 */
768 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
769 ep93xx_spi_dma_transfer(espi);
770 else
771 ep93xx_spi_pio_transfer(espi);
772
773 /*
774 * In case of error during transmit, we bail out from processing
775 * the message.
776 */
777 if (msg->status)
778 return;
779
780 msg->actual_length += t->len;
781
782 /*
783 * After this transfer is finished, perform any possible
784 * post-transfer actions requested by the protocol driver.
785 */
786 if (t->delay_usecs) {
787 set_current_state(TASK_UNINTERRUPTIBLE);
788 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
789 }
790 if (t->cs_change) {
791 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
792 /*
793 * In case protocol driver is asking us to drop the
794 * chipselect briefly, we let the scheduler to handle
795 * any "delay" here.
796 */
797 ep93xx_spi_cs_control(msg->spi, false);
798 cond_resched();
799 ep93xx_spi_cs_control(msg->spi, true);
800 }
801 }
802
803 if (t->speed_hz || t->bits_per_word)
804 ep93xx_spi_chip_setup(espi, chip);
805 }
806
807 /*
808 * ep93xx_spi_process_message() - process one SPI message
809 * @espi: ep93xx SPI controller struct
810 * @msg: message to process
811 *
812 * This function processes a single SPI message. We go through all transfers in
813 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
814 * asserted during the whole message (unless per transfer cs_change is set).
815 *
816 * @msg->status contains %0 in case of success or negative error code in case of
817 * failure.
818 */
819 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
820 struct spi_message *msg)
821 {
822 unsigned long timeout;
823 struct spi_transfer *t;
824 int err;
825
826 /*
827 * Enable the SPI controller and its clock.
828 */
829 err = ep93xx_spi_enable(espi);
830 if (err) {
831 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
832 msg->status = err;
833 return;
834 }
835
836 /*
837 * Just to be sure: flush any data from RX FIFO.
838 */
839 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
840 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
841 if (time_after(jiffies, timeout)) {
842 dev_warn(&espi->pdev->dev,
843 "timeout while flushing RX FIFO\n");
844 msg->status = -ETIMEDOUT;
845 return;
846 }
847 ep93xx_spi_read_u16(espi, SSPDR);
848 }
849
850 /*
851 * We explicitly handle FIFO level. This way we don't have to check TX
852 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
853 */
854 espi->fifo_level = 0;
855
856 /*
857 * Update SPI controller registers according to spi device and assert
858 * the chipselect.
859 */
860 ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
861 ep93xx_spi_cs_control(msg->spi, true);
862
863 list_for_each_entry(t, &msg->transfers, transfer_list) {
864 ep93xx_spi_process_transfer(espi, msg, t);
865 if (msg->status)
866 break;
867 }
868
869 /*
870 * Now the whole message is transferred (or failed for some reason). We
871 * deselect the device and disable the SPI controller.
872 */
873 ep93xx_spi_cs_control(msg->spi, false);
874 ep93xx_spi_disable(espi);
875 }
876
877 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
878
879 /**
880 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
881 * @work: work struct
882 *
883 * Workqueue worker function. This function is called when there are new
884 * SPI messages to be processed. Message is taken out from the queue and then
885 * passed to ep93xx_spi_process_message().
886 *
887 * After message is transferred, protocol driver is notified by calling
888 * @msg->complete(). In case of error, @msg->status is set to negative error
889 * number, otherwise it contains zero (and @msg->actual_length is updated).
890 */
891 static void ep93xx_spi_work(struct work_struct *work)
892 {
893 struct ep93xx_spi *espi = work_to_espi(work);
894 struct spi_message *msg;
895
896 spin_lock_irq(&espi->lock);
897 if (!espi->running || espi->current_msg ||
898 list_empty(&espi->msg_queue)) {
899 spin_unlock_irq(&espi->lock);
900 return;
901 }
902 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
903 list_del_init(&msg->queue);
904 espi->current_msg = msg;
905 spin_unlock_irq(&espi->lock);
906
907 ep93xx_spi_process_message(espi, msg);
908
909 /*
910 * Update the current message and re-schedule ourselves if there are
911 * more messages in the queue.
912 */
913 spin_lock_irq(&espi->lock);
914 espi->current_msg = NULL;
915 if (espi->running && !list_empty(&espi->msg_queue))
916 queue_work(espi->wq, &espi->msg_work);
917 spin_unlock_irq(&espi->lock);
918
919 /* notify the protocol driver that we are done with this message */
920 msg->complete(msg->context);
921 }
922
923 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
924 {
925 struct ep93xx_spi *espi = dev_id;
926 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
927
928 /*
929 * If we got ROR (receive overrun) interrupt we know that something is
930 * wrong. Just abort the message.
931 */
932 if (unlikely(irq_status & SSPIIR_RORIS)) {
933 /* clear the overrun interrupt */
934 ep93xx_spi_write_u8(espi, SSPICR, 0);
935 dev_warn(&espi->pdev->dev,
936 "receive overrun, aborting the message\n");
937 espi->current_msg->status = -EIO;
938 } else {
939 /*
940 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
941 * simply execute next data transfer.
942 */
943 if (ep93xx_spi_read_write(espi)) {
944 /*
945 * In normal case, there still is some processing left
946 * for current transfer. Let's wait for the next
947 * interrupt then.
948 */
949 return IRQ_HANDLED;
950 }
951 }
952
953 /*
954 * Current transfer is finished, either with error or with success. In
955 * any case we disable interrupts and notify the worker to handle
956 * any post-processing of the message.
957 */
958 ep93xx_spi_disable_interrupts(espi);
959 complete(&espi->wait);
960 return IRQ_HANDLED;
961 }
962
963 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
964 {
965 if (ep93xx_dma_chan_is_m2p(chan))
966 return false;
967
968 chan->private = filter_param;
969 return true;
970 }
971
972 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
973 {
974 dma_cap_mask_t mask;
975 int ret;
976
977 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
978 if (!espi->zeropage)
979 return -ENOMEM;
980
981 dma_cap_zero(mask);
982 dma_cap_set(DMA_SLAVE, mask);
983
984 espi->dma_rx_data.port = EP93XX_DMA_SSP;
985 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
986 espi->dma_rx_data.name = "ep93xx-spi-rx";
987
988 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
989 &espi->dma_rx_data);
990 if (!espi->dma_rx) {
991 ret = -ENODEV;
992 goto fail_free_page;
993 }
994
995 espi->dma_tx_data.port = EP93XX_DMA_SSP;
996 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
997 espi->dma_tx_data.name = "ep93xx-spi-tx";
998
999 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
1000 &espi->dma_tx_data);
1001 if (!espi->dma_tx) {
1002 ret = -ENODEV;
1003 goto fail_release_rx;
1004 }
1005
1006 return 0;
1007
1008 fail_release_rx:
1009 dma_release_channel(espi->dma_rx);
1010 espi->dma_rx = NULL;
1011 fail_free_page:
1012 free_page((unsigned long)espi->zeropage);
1013
1014 return ret;
1015 }
1016
1017 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1018 {
1019 if (espi->dma_rx) {
1020 dma_release_channel(espi->dma_rx);
1021 sg_free_table(&espi->rx_sgt);
1022 }
1023 if (espi->dma_tx) {
1024 dma_release_channel(espi->dma_tx);
1025 sg_free_table(&espi->tx_sgt);
1026 }
1027
1028 if (espi->zeropage)
1029 free_page((unsigned long)espi->zeropage);
1030 }
1031
1032 static int __devinit ep93xx_spi_probe(struct platform_device *pdev)
1033 {
1034 struct spi_master *master;
1035 struct ep93xx_spi_info *info;
1036 struct ep93xx_spi *espi;
1037 struct resource *res;
1038 int error;
1039
1040 info = pdev->dev.platform_data;
1041
1042 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1043 if (!master) {
1044 dev_err(&pdev->dev, "failed to allocate spi master\n");
1045 return -ENOMEM;
1046 }
1047
1048 master->setup = ep93xx_spi_setup;
1049 master->transfer = ep93xx_spi_transfer;
1050 master->cleanup = ep93xx_spi_cleanup;
1051 master->bus_num = pdev->id;
1052 master->num_chipselect = info->num_chipselect;
1053 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1054
1055 platform_set_drvdata(pdev, master);
1056
1057 espi = spi_master_get_devdata(master);
1058
1059 espi->clk = clk_get(&pdev->dev, NULL);
1060 if (IS_ERR(espi->clk)) {
1061 dev_err(&pdev->dev, "unable to get spi clock\n");
1062 error = PTR_ERR(espi->clk);
1063 goto fail_release_master;
1064 }
1065
1066 spin_lock_init(&espi->lock);
1067 init_completion(&espi->wait);
1068
1069 /*
1070 * Calculate maximum and minimum supported clock rates
1071 * for the controller.
1072 */
1073 espi->max_rate = clk_get_rate(espi->clk) / 2;
1074 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1075 espi->pdev = pdev;
1076
1077 espi->irq = platform_get_irq(pdev, 0);
1078 if (espi->irq < 0) {
1079 error = -EBUSY;
1080 dev_err(&pdev->dev, "failed to get irq resources\n");
1081 goto fail_put_clock;
1082 }
1083
1084 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1085 if (!res) {
1086 dev_err(&pdev->dev, "unable to get iomem resource\n");
1087 error = -ENODEV;
1088 goto fail_put_clock;
1089 }
1090
1091 res = request_mem_region(res->start, resource_size(res), pdev->name);
1092 if (!res) {
1093 dev_err(&pdev->dev, "unable to request iomem resources\n");
1094 error = -EBUSY;
1095 goto fail_put_clock;
1096 }
1097
1098 espi->sspdr_phys = res->start + SSPDR;
1099 espi->regs_base = ioremap(res->start, resource_size(res));
1100 if (!espi->regs_base) {
1101 dev_err(&pdev->dev, "failed to map resources\n");
1102 error = -ENODEV;
1103 goto fail_free_mem;
1104 }
1105
1106 error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
1107 "ep93xx-spi", espi);
1108 if (error) {
1109 dev_err(&pdev->dev, "failed to request irq\n");
1110 goto fail_unmap_regs;
1111 }
1112
1113 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1114 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1115
1116 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1117 if (!espi->wq) {
1118 dev_err(&pdev->dev, "unable to create workqueue\n");
1119 goto fail_free_dma;
1120 }
1121 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1122 INIT_LIST_HEAD(&espi->msg_queue);
1123 espi->running = true;
1124
1125 /* make sure that the hardware is disabled */
1126 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1127
1128 error = spi_register_master(master);
1129 if (error) {
1130 dev_err(&pdev->dev, "failed to register SPI master\n");
1131 goto fail_free_queue;
1132 }
1133
1134 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1135 (unsigned long)res->start, espi->irq);
1136
1137 return 0;
1138
1139 fail_free_queue:
1140 destroy_workqueue(espi->wq);
1141 fail_free_dma:
1142 ep93xx_spi_release_dma(espi);
1143 free_irq(espi->irq, espi);
1144 fail_unmap_regs:
1145 iounmap(espi->regs_base);
1146 fail_free_mem:
1147 release_mem_region(res->start, resource_size(res));
1148 fail_put_clock:
1149 clk_put(espi->clk);
1150 fail_release_master:
1151 spi_master_put(master);
1152 platform_set_drvdata(pdev, NULL);
1153
1154 return error;
1155 }
1156
1157 static int __devexit ep93xx_spi_remove(struct platform_device *pdev)
1158 {
1159 struct spi_master *master = platform_get_drvdata(pdev);
1160 struct ep93xx_spi *espi = spi_master_get_devdata(master);
1161 struct resource *res;
1162
1163 spin_lock_irq(&espi->lock);
1164 espi->running = false;
1165 spin_unlock_irq(&espi->lock);
1166
1167 destroy_workqueue(espi->wq);
1168
1169 /*
1170 * Complete remaining messages with %-ESHUTDOWN status.
1171 */
1172 spin_lock_irq(&espi->lock);
1173 while (!list_empty(&espi->msg_queue)) {
1174 struct spi_message *msg;
1175
1176 msg = list_first_entry(&espi->msg_queue,
1177 struct spi_message, queue);
1178 list_del_init(&msg->queue);
1179 msg->status = -ESHUTDOWN;
1180 spin_unlock_irq(&espi->lock);
1181 msg->complete(msg->context);
1182 spin_lock_irq(&espi->lock);
1183 }
1184 spin_unlock_irq(&espi->lock);
1185
1186 ep93xx_spi_release_dma(espi);
1187 free_irq(espi->irq, espi);
1188 iounmap(espi->regs_base);
1189 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1190 release_mem_region(res->start, resource_size(res));
1191 clk_put(espi->clk);
1192 platform_set_drvdata(pdev, NULL);
1193
1194 spi_unregister_master(master);
1195 return 0;
1196 }
1197
1198 static struct platform_driver ep93xx_spi_driver = {
1199 .driver = {
1200 .name = "ep93xx-spi",
1201 .owner = THIS_MODULE,
1202 },
1203 .probe = ep93xx_spi_probe,
1204 .remove = __devexit_p(ep93xx_spi_remove),
1205 };
1206 module_platform_driver(ep93xx_spi_driver);
1207
1208 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1209 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1210 MODULE_LICENSE("GPL");
1211 MODULE_ALIAS("platform:ep93xx-spi");