]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-ep93xx.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-ep93xx.c
1 /*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (C) 2010-2011 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/spi/spi.h>
33
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36
37 #define SSPCR0 0x0000
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
40
41 #define SSPCR1 0x0004
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
49
50 #define SSPDR 0x0008
51
52 #define SSPSR 0x000c
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
59
60 #define SSPIIR 0x0014
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
64 #define SSPICR SSPIIR
65
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT 5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
70
71 /**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @pdev: pointer to platform device
74 * @clk: clock for the controller
75 * @regs_base: pointer to ioremap()'d registers
76 * @sspdr_phys: physical address of the SSPDR register
77 * @wait: wait here until given transfer is completed
78 * @current_msg: message that is currently processed (or %NULL if none)
79 * @tx: current byte in transfer to transmit
80 * @rx: current byte in transfer to receive
81 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
82 * frame decreases this level and sending one frame increases it.
83 * @dma_rx: RX DMA channel
84 * @dma_tx: TX DMA channel
85 * @dma_rx_data: RX parameters passed to the DMA engine
86 * @dma_tx_data: TX parameters passed to the DMA engine
87 * @rx_sgt: sg table for RX transfers
88 * @tx_sgt: sg table for TX transfers
89 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
90 * the client
91 */
92 struct ep93xx_spi {
93 const struct platform_device *pdev;
94 struct clk *clk;
95 void __iomem *regs_base;
96 unsigned long sspdr_phys;
97 struct completion wait;
98 struct spi_message *current_msg;
99 size_t tx;
100 size_t rx;
101 size_t fifo_level;
102 struct dma_chan *dma_rx;
103 struct dma_chan *dma_tx;
104 struct ep93xx_dma_data dma_rx_data;
105 struct ep93xx_dma_data dma_tx_data;
106 struct sg_table rx_sgt;
107 struct sg_table tx_sgt;
108 void *zeropage;
109 };
110
111 /* converts bits per word to CR0.DSS value */
112 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
113
114 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
115 u16 reg, u8 value)
116 {
117 writeb(value, espi->regs_base + reg);
118 }
119
120 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
121 {
122 return readb(spi->regs_base + reg);
123 }
124
125 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
126 u16 reg, u16 value)
127 {
128 writew(value, espi->regs_base + reg);
129 }
130
131 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
132 {
133 return readw(spi->regs_base + reg);
134 }
135
136 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
137 {
138 u8 regval;
139 int err;
140
141 err = clk_enable(espi->clk);
142 if (err)
143 return err;
144
145 regval = ep93xx_spi_read_u8(espi, SSPCR1);
146 regval |= SSPCR1_SSE;
147 ep93xx_spi_write_u8(espi, SSPCR1, regval);
148
149 return 0;
150 }
151
152 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
153 {
154 u8 regval;
155
156 regval = ep93xx_spi_read_u8(espi, SSPCR1);
157 regval &= ~SSPCR1_SSE;
158 ep93xx_spi_write_u8(espi, SSPCR1, regval);
159
160 clk_disable(espi->clk);
161 }
162
163 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
164 {
165 u8 regval;
166
167 regval = ep93xx_spi_read_u8(espi, SSPCR1);
168 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
169 ep93xx_spi_write_u8(espi, SSPCR1, regval);
170 }
171
172 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
173 {
174 u8 regval;
175
176 regval = ep93xx_spi_read_u8(espi, SSPCR1);
177 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
178 ep93xx_spi_write_u8(espi, SSPCR1, regval);
179 }
180
181 /**
182 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
183 * @espi: ep93xx SPI controller struct
184 * @rate: desired SPI output clock rate
185 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
186 * @div_scr: pointer to return the scr divider
187 */
188 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
189 u32 rate, u8 *div_cpsr, u8 *div_scr)
190 {
191 struct spi_master *master = platform_get_drvdata(espi->pdev);
192 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
193 int cpsr, scr;
194
195 /*
196 * Make sure that max value is between values supported by the
197 * controller. Note that minimum value is already checked in
198 * ep93xx_spi_transfer_one_message().
199 */
200 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
201
202 /*
203 * Calculate divisors so that we can get speed according the
204 * following formula:
205 * rate = spi_clock_rate / (cpsr * (1 + scr))
206 *
207 * cpsr must be even number and starts from 2, scr can be any number
208 * between 0 and 255.
209 */
210 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
211 for (scr = 0; scr <= 255; scr++) {
212 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
213 *div_scr = (u8)scr;
214 *div_cpsr = (u8)cpsr;
215 return 0;
216 }
217 }
218 }
219
220 return -EINVAL;
221 }
222
223 static void ep93xx_spi_cs_control(struct spi_device *spi, bool enable)
224 {
225 if (spi->mode & SPI_CS_HIGH)
226 enable = !enable;
227
228 if (gpio_is_valid(spi->cs_gpio))
229 gpio_set_value(spi->cs_gpio, !enable);
230 }
231
232 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
233 struct spi_device *spi,
234 struct spi_transfer *xfer)
235 {
236 u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
237 u8 div_cpsr = 0;
238 u8 div_scr = 0;
239 u16 cr0;
240 int err;
241
242 err = ep93xx_spi_calc_divisors(espi, xfer->speed_hz,
243 &div_cpsr, &div_scr);
244 if (err)
245 return err;
246
247 cr0 = div_scr << SSPCR0_SCR_SHIFT;
248 cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
249 cr0 |= dss;
250
251 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
252 spi->mode, div_cpsr, div_scr, dss);
253 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
254
255 ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
256 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
257
258 return 0;
259 }
260
261 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
262 {
263 if (t->bits_per_word > 8) {
264 u16 tx_val = 0;
265
266 if (t->tx_buf)
267 tx_val = ((u16 *)t->tx_buf)[espi->tx];
268 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
269 espi->tx += sizeof(tx_val);
270 } else {
271 u8 tx_val = 0;
272
273 if (t->tx_buf)
274 tx_val = ((u8 *)t->tx_buf)[espi->tx];
275 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
276 espi->tx += sizeof(tx_val);
277 }
278 }
279
280 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
281 {
282 if (t->bits_per_word > 8) {
283 u16 rx_val;
284
285 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
286 if (t->rx_buf)
287 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
288 espi->rx += sizeof(rx_val);
289 } else {
290 u8 rx_val;
291
292 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
293 if (t->rx_buf)
294 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
295 espi->rx += sizeof(rx_val);
296 }
297 }
298
299 /**
300 * ep93xx_spi_read_write() - perform next RX/TX transfer
301 * @espi: ep93xx SPI controller struct
302 *
303 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
304 * called several times, the whole transfer will be completed. Returns
305 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
306 *
307 * When this function is finished, RX FIFO should be empty and TX FIFO should be
308 * full.
309 */
310 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
311 {
312 struct spi_message *msg = espi->current_msg;
313 struct spi_transfer *t = msg->state;
314
315 /* read as long as RX FIFO has frames in it */
316 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
317 ep93xx_do_read(espi, t);
318 espi->fifo_level--;
319 }
320
321 /* write as long as TX FIFO has room */
322 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
323 ep93xx_do_write(espi, t);
324 espi->fifo_level++;
325 }
326
327 if (espi->rx == t->len)
328 return 0;
329
330 return -EINPROGRESS;
331 }
332
333 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
334 {
335 /*
336 * Now everything is set up for the current transfer. We prime the TX
337 * FIFO, enable interrupts, and wait for the transfer to complete.
338 */
339 if (ep93xx_spi_read_write(espi)) {
340 ep93xx_spi_enable_interrupts(espi);
341 wait_for_completion(&espi->wait);
342 }
343 }
344
345 /**
346 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
347 * @espi: ep93xx SPI controller struct
348 * @dir: DMA transfer direction
349 *
350 * Function configures the DMA, maps the buffer and prepares the DMA
351 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
352 * in case of failure.
353 */
354 static struct dma_async_tx_descriptor *
355 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
356 {
357 struct spi_transfer *t = espi->current_msg->state;
358 struct dma_async_tx_descriptor *txd;
359 enum dma_slave_buswidth buswidth;
360 struct dma_slave_config conf;
361 struct scatterlist *sg;
362 struct sg_table *sgt;
363 struct dma_chan *chan;
364 const void *buf, *pbuf;
365 size_t len = t->len;
366 int i, ret, nents;
367
368 if (t->bits_per_word > 8)
369 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
370 else
371 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
372
373 memset(&conf, 0, sizeof(conf));
374 conf.direction = dir;
375
376 if (dir == DMA_DEV_TO_MEM) {
377 chan = espi->dma_rx;
378 buf = t->rx_buf;
379 sgt = &espi->rx_sgt;
380
381 conf.src_addr = espi->sspdr_phys;
382 conf.src_addr_width = buswidth;
383 } else {
384 chan = espi->dma_tx;
385 buf = t->tx_buf;
386 sgt = &espi->tx_sgt;
387
388 conf.dst_addr = espi->sspdr_phys;
389 conf.dst_addr_width = buswidth;
390 }
391
392 ret = dmaengine_slave_config(chan, &conf);
393 if (ret)
394 return ERR_PTR(ret);
395
396 /*
397 * We need to split the transfer into PAGE_SIZE'd chunks. This is
398 * because we are using @espi->zeropage to provide a zero RX buffer
399 * for the TX transfers and we have only allocated one page for that.
400 *
401 * For performance reasons we allocate a new sg_table only when
402 * needed. Otherwise we will re-use the current one. Eventually the
403 * last sg_table is released in ep93xx_spi_release_dma().
404 */
405
406 nents = DIV_ROUND_UP(len, PAGE_SIZE);
407 if (nents != sgt->nents) {
408 sg_free_table(sgt);
409
410 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
411 if (ret)
412 return ERR_PTR(ret);
413 }
414
415 pbuf = buf;
416 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
417 size_t bytes = min_t(size_t, len, PAGE_SIZE);
418
419 if (buf) {
420 sg_set_page(sg, virt_to_page(pbuf), bytes,
421 offset_in_page(pbuf));
422 } else {
423 sg_set_page(sg, virt_to_page(espi->zeropage),
424 bytes, 0);
425 }
426
427 pbuf += bytes;
428 len -= bytes;
429 }
430
431 if (WARN_ON(len)) {
432 dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
433 return ERR_PTR(-EINVAL);
434 }
435
436 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
437 if (!nents)
438 return ERR_PTR(-ENOMEM);
439
440 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
441 if (!txd) {
442 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
443 return ERR_PTR(-ENOMEM);
444 }
445 return txd;
446 }
447
448 /**
449 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
450 * @espi: ep93xx SPI controller struct
451 * @dir: DMA transfer direction
452 *
453 * Function finishes with the DMA transfer. After this, the DMA buffer is
454 * unmapped.
455 */
456 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
457 enum dma_transfer_direction dir)
458 {
459 struct dma_chan *chan;
460 struct sg_table *sgt;
461
462 if (dir == DMA_DEV_TO_MEM) {
463 chan = espi->dma_rx;
464 sgt = &espi->rx_sgt;
465 } else {
466 chan = espi->dma_tx;
467 sgt = &espi->tx_sgt;
468 }
469
470 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
471 }
472
473 static void ep93xx_spi_dma_callback(void *callback_param)
474 {
475 complete(callback_param);
476 }
477
478 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
479 {
480 struct spi_message *msg = espi->current_msg;
481 struct dma_async_tx_descriptor *rxd, *txd;
482
483 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
484 if (IS_ERR(rxd)) {
485 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
486 msg->status = PTR_ERR(rxd);
487 return;
488 }
489
490 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
491 if (IS_ERR(txd)) {
492 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
493 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
494 msg->status = PTR_ERR(txd);
495 return;
496 }
497
498 /* We are ready when RX is done */
499 rxd->callback = ep93xx_spi_dma_callback;
500 rxd->callback_param = &espi->wait;
501
502 /* Now submit both descriptors and wait while they finish */
503 dmaengine_submit(rxd);
504 dmaengine_submit(txd);
505
506 dma_async_issue_pending(espi->dma_rx);
507 dma_async_issue_pending(espi->dma_tx);
508
509 wait_for_completion(&espi->wait);
510
511 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
512 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
513 }
514
515 /**
516 * ep93xx_spi_process_transfer() - processes one SPI transfer
517 * @espi: ep93xx SPI controller struct
518 * @msg: current message
519 * @t: transfer to process
520 *
521 * This function processes one SPI transfer given in @t. Function waits until
522 * transfer is complete (may sleep) and updates @msg->status based on whether
523 * transfer was successfully processed or not.
524 */
525 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
526 struct spi_message *msg,
527 struct spi_transfer *t)
528 {
529 int err;
530
531 msg->state = t;
532
533 err = ep93xx_spi_chip_setup(espi, msg->spi, t);
534 if (err) {
535 dev_err(&espi->pdev->dev,
536 "failed to setup chip for transfer\n");
537 msg->status = err;
538 return;
539 }
540
541 espi->rx = 0;
542 espi->tx = 0;
543
544 /*
545 * There is no point of setting up DMA for the transfers which will
546 * fit into the FIFO and can be transferred with a single interrupt.
547 * So in these cases we will be using PIO and don't bother for DMA.
548 */
549 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
550 ep93xx_spi_dma_transfer(espi);
551 else
552 ep93xx_spi_pio_transfer(espi);
553
554 /*
555 * In case of error during transmit, we bail out from processing
556 * the message.
557 */
558 if (msg->status)
559 return;
560
561 msg->actual_length += t->len;
562
563 /*
564 * After this transfer is finished, perform any possible
565 * post-transfer actions requested by the protocol driver.
566 */
567 if (t->delay_usecs) {
568 set_current_state(TASK_UNINTERRUPTIBLE);
569 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
570 }
571 if (t->cs_change) {
572 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
573 /*
574 * In case protocol driver is asking us to drop the
575 * chipselect briefly, we let the scheduler to handle
576 * any "delay" here.
577 */
578 ep93xx_spi_cs_control(msg->spi, false);
579 cond_resched();
580 ep93xx_spi_cs_control(msg->spi, true);
581 }
582 }
583 }
584
585 /*
586 * ep93xx_spi_process_message() - process one SPI message
587 * @espi: ep93xx SPI controller struct
588 * @msg: message to process
589 *
590 * This function processes a single SPI message. We go through all transfers in
591 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
592 * asserted during the whole message (unless per transfer cs_change is set).
593 *
594 * @msg->status contains %0 in case of success or negative error code in case of
595 * failure.
596 */
597 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
598 struct spi_message *msg)
599 {
600 unsigned long timeout;
601 struct spi_transfer *t;
602 int err;
603
604 /*
605 * Enable the SPI controller and its clock.
606 */
607 err = ep93xx_spi_enable(espi);
608 if (err) {
609 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
610 msg->status = err;
611 return;
612 }
613
614 /*
615 * Just to be sure: flush any data from RX FIFO.
616 */
617 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
618 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
619 if (time_after(jiffies, timeout)) {
620 dev_warn(&espi->pdev->dev,
621 "timeout while flushing RX FIFO\n");
622 msg->status = -ETIMEDOUT;
623 return;
624 }
625 ep93xx_spi_read_u16(espi, SSPDR);
626 }
627
628 /*
629 * We explicitly handle FIFO level. This way we don't have to check TX
630 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
631 */
632 espi->fifo_level = 0;
633
634 /*
635 * Assert the chipselect.
636 */
637 ep93xx_spi_cs_control(msg->spi, true);
638
639 list_for_each_entry(t, &msg->transfers, transfer_list) {
640 ep93xx_spi_process_transfer(espi, msg, t);
641 if (msg->status)
642 break;
643 }
644
645 /*
646 * Now the whole message is transferred (or failed for some reason). We
647 * deselect the device and disable the SPI controller.
648 */
649 ep93xx_spi_cs_control(msg->spi, false);
650 ep93xx_spi_disable(espi);
651 }
652
653 static int ep93xx_spi_transfer_one_message(struct spi_master *master,
654 struct spi_message *msg)
655 {
656 struct ep93xx_spi *espi = spi_master_get_devdata(master);
657
658 msg->state = NULL;
659 msg->status = 0;
660 msg->actual_length = 0;
661
662 espi->current_msg = msg;
663 ep93xx_spi_process_message(espi, msg);
664 espi->current_msg = NULL;
665
666 spi_finalize_current_message(master);
667
668 return 0;
669 }
670
671 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
672 {
673 struct ep93xx_spi *espi = dev_id;
674 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
675
676 /*
677 * If we got ROR (receive overrun) interrupt we know that something is
678 * wrong. Just abort the message.
679 */
680 if (unlikely(irq_status & SSPIIR_RORIS)) {
681 /* clear the overrun interrupt */
682 ep93xx_spi_write_u8(espi, SSPICR, 0);
683 dev_warn(&espi->pdev->dev,
684 "receive overrun, aborting the message\n");
685 espi->current_msg->status = -EIO;
686 } else {
687 /*
688 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
689 * simply execute next data transfer.
690 */
691 if (ep93xx_spi_read_write(espi)) {
692 /*
693 * In normal case, there still is some processing left
694 * for current transfer. Let's wait for the next
695 * interrupt then.
696 */
697 return IRQ_HANDLED;
698 }
699 }
700
701 /*
702 * Current transfer is finished, either with error or with success. In
703 * any case we disable interrupts and notify the worker to handle
704 * any post-processing of the message.
705 */
706 ep93xx_spi_disable_interrupts(espi);
707 complete(&espi->wait);
708 return IRQ_HANDLED;
709 }
710
711 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
712 {
713 if (ep93xx_dma_chan_is_m2p(chan))
714 return false;
715
716 chan->private = filter_param;
717 return true;
718 }
719
720 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
721 {
722 dma_cap_mask_t mask;
723 int ret;
724
725 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
726 if (!espi->zeropage)
727 return -ENOMEM;
728
729 dma_cap_zero(mask);
730 dma_cap_set(DMA_SLAVE, mask);
731
732 espi->dma_rx_data.port = EP93XX_DMA_SSP;
733 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
734 espi->dma_rx_data.name = "ep93xx-spi-rx";
735
736 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
737 &espi->dma_rx_data);
738 if (!espi->dma_rx) {
739 ret = -ENODEV;
740 goto fail_free_page;
741 }
742
743 espi->dma_tx_data.port = EP93XX_DMA_SSP;
744 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
745 espi->dma_tx_data.name = "ep93xx-spi-tx";
746
747 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
748 &espi->dma_tx_data);
749 if (!espi->dma_tx) {
750 ret = -ENODEV;
751 goto fail_release_rx;
752 }
753
754 return 0;
755
756 fail_release_rx:
757 dma_release_channel(espi->dma_rx);
758 espi->dma_rx = NULL;
759 fail_free_page:
760 free_page((unsigned long)espi->zeropage);
761
762 return ret;
763 }
764
765 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
766 {
767 if (espi->dma_rx) {
768 dma_release_channel(espi->dma_rx);
769 sg_free_table(&espi->rx_sgt);
770 }
771 if (espi->dma_tx) {
772 dma_release_channel(espi->dma_tx);
773 sg_free_table(&espi->tx_sgt);
774 }
775
776 if (espi->zeropage)
777 free_page((unsigned long)espi->zeropage);
778 }
779
780 static int ep93xx_spi_probe(struct platform_device *pdev)
781 {
782 struct spi_master *master;
783 struct ep93xx_spi_info *info;
784 struct ep93xx_spi *espi;
785 struct resource *res;
786 int irq;
787 int error;
788 int i;
789
790 info = dev_get_platdata(&pdev->dev);
791 if (!info) {
792 dev_err(&pdev->dev, "missing platform data\n");
793 return -EINVAL;
794 }
795
796 irq = platform_get_irq(pdev, 0);
797 if (irq < 0) {
798 dev_err(&pdev->dev, "failed to get irq resources\n");
799 return -EBUSY;
800 }
801
802 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
803 if (!res) {
804 dev_err(&pdev->dev, "unable to get iomem resource\n");
805 return -ENODEV;
806 }
807
808 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
809 if (!master)
810 return -ENOMEM;
811
812 master->transfer_one_message = ep93xx_spi_transfer_one_message;
813 master->bus_num = pdev->id;
814 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
815 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
816
817 master->num_chipselect = info->num_chipselect;
818 master->cs_gpios = devm_kzalloc(&master->dev,
819 sizeof(int) * master->num_chipselect,
820 GFP_KERNEL);
821 if (!master->cs_gpios) {
822 error = -ENOMEM;
823 goto fail_release_master;
824 }
825
826 for (i = 0; i < master->num_chipselect; i++) {
827 master->cs_gpios[i] = info->chipselect[i];
828
829 if (!gpio_is_valid(master->cs_gpios[i]))
830 continue;
831
832 error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
833 GPIOF_OUT_INIT_HIGH,
834 "ep93xx-spi");
835 if (error) {
836 dev_err(&pdev->dev, "could not request cs gpio %d\n",
837 master->cs_gpios[i]);
838 goto fail_release_master;
839 }
840 }
841
842 platform_set_drvdata(pdev, master);
843
844 espi = spi_master_get_devdata(master);
845
846 espi->clk = devm_clk_get(&pdev->dev, NULL);
847 if (IS_ERR(espi->clk)) {
848 dev_err(&pdev->dev, "unable to get spi clock\n");
849 error = PTR_ERR(espi->clk);
850 goto fail_release_master;
851 }
852
853 init_completion(&espi->wait);
854
855 /*
856 * Calculate maximum and minimum supported clock rates
857 * for the controller.
858 */
859 master->max_speed_hz = clk_get_rate(espi->clk) / 2;
860 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
861 espi->pdev = pdev;
862
863 espi->sspdr_phys = res->start + SSPDR;
864
865 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
866 if (IS_ERR(espi->regs_base)) {
867 error = PTR_ERR(espi->regs_base);
868 goto fail_release_master;
869 }
870
871 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
872 0, "ep93xx-spi", espi);
873 if (error) {
874 dev_err(&pdev->dev, "failed to request irq\n");
875 goto fail_release_master;
876 }
877
878 if (info->use_dma && ep93xx_spi_setup_dma(espi))
879 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
880
881 /* make sure that the hardware is disabled */
882 ep93xx_spi_write_u8(espi, SSPCR1, 0);
883
884 error = devm_spi_register_master(&pdev->dev, master);
885 if (error) {
886 dev_err(&pdev->dev, "failed to register SPI master\n");
887 goto fail_free_dma;
888 }
889
890 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
891 (unsigned long)res->start, irq);
892
893 return 0;
894
895 fail_free_dma:
896 ep93xx_spi_release_dma(espi);
897 fail_release_master:
898 spi_master_put(master);
899
900 return error;
901 }
902
903 static int ep93xx_spi_remove(struct platform_device *pdev)
904 {
905 struct spi_master *master = platform_get_drvdata(pdev);
906 struct ep93xx_spi *espi = spi_master_get_devdata(master);
907
908 ep93xx_spi_release_dma(espi);
909
910 return 0;
911 }
912
913 static struct platform_driver ep93xx_spi_driver = {
914 .driver = {
915 .name = "ep93xx-spi",
916 },
917 .probe = ep93xx_spi_probe,
918 .remove = ep93xx_spi_remove,
919 };
920 module_platform_driver(ep93xx_spi_driver);
921
922 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
923 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
924 MODULE_LICENSE("GPL");
925 MODULE_ALIAS("platform:ep93xx-spi");