]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-fsl-dspi.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-fsl-dspi.c
1 /*
2 * drivers/spi/spi-fsl-dspi.c
3 *
4 * Copyright 2013 Freescale Semiconductor, Inc.
5 *
6 * Freescale DSPI driver
7 * This file contains a driver for the Freescale DSPI
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/err.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/math64.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/pinctrl/consumer.h>
30 #include <linux/platform_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/regmap.h>
33 #include <linux/sched.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi_bitbang.h>
36 #include <linux/time.h>
37
38 #define DRIVER_NAME "fsl-dspi"
39
40 #define TRAN_STATE_RX_VOID 0x01
41 #define TRAN_STATE_TX_VOID 0x02
42 #define TRAN_STATE_WORD_ODD_NUM 0x04
43
44 #define DSPI_FIFO_SIZE 4
45 #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
46
47 #define SPI_MCR 0x00
48 #define SPI_MCR_MASTER (1 << 31)
49 #define SPI_MCR_PCSIS (0x3F << 16)
50 #define SPI_MCR_CLR_TXF (1 << 11)
51 #define SPI_MCR_CLR_RXF (1 << 10)
52
53 #define SPI_TCR 0x08
54 #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
55
56 #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
57 #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
58 #define SPI_CTAR_CPOL(x) ((x) << 26)
59 #define SPI_CTAR_CPHA(x) ((x) << 25)
60 #define SPI_CTAR_LSBFE(x) ((x) << 24)
61 #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
62 #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
63 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
64 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
65 #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
66 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
67 #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
68 #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
69 #define SPI_CTAR_SCALE_BITS 0xf
70
71 #define SPI_CTAR0_SLAVE 0x0c
72
73 #define SPI_SR 0x2c
74 #define SPI_SR_EOQF 0x10000000
75 #define SPI_SR_TCFQF 0x80000000
76 #define SPI_SR_CLEAR 0xdaad0000
77
78 #define SPI_RSER_TFFFE BIT(25)
79 #define SPI_RSER_TFFFD BIT(24)
80 #define SPI_RSER_RFDFE BIT(17)
81 #define SPI_RSER_RFDFD BIT(16)
82
83 #define SPI_RSER 0x30
84 #define SPI_RSER_EOQFE 0x10000000
85 #define SPI_RSER_TCFQE 0x80000000
86
87 #define SPI_PUSHR 0x34
88 #define SPI_PUSHR_CONT (1 << 31)
89 #define SPI_PUSHR_CTAS(x) (((x) & 0x00000003) << 28)
90 #define SPI_PUSHR_EOQ (1 << 27)
91 #define SPI_PUSHR_CTCNT (1 << 26)
92 #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16)
93 #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
94
95 #define SPI_PUSHR_SLAVE 0x34
96
97 #define SPI_POPR 0x38
98 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
99
100 #define SPI_TXFR0 0x3c
101 #define SPI_TXFR1 0x40
102 #define SPI_TXFR2 0x44
103 #define SPI_TXFR3 0x48
104 #define SPI_RXFR0 0x7c
105 #define SPI_RXFR1 0x80
106 #define SPI_RXFR2 0x84
107 #define SPI_RXFR3 0x88
108
109 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
111 #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
112 #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
113
114 #define SPI_CS_INIT 0x01
115 #define SPI_CS_ASSERT 0x02
116 #define SPI_CS_DROP 0x04
117
118 #define SPI_TCR_TCNT_MAX 0x10000
119
120 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
121
122 struct chip_data {
123 u32 mcr_val;
124 u32 ctar_val;
125 u16 void_write_data;
126 };
127
128 enum dspi_trans_mode {
129 DSPI_EOQ_MODE = 0,
130 DSPI_TCFQ_MODE,
131 DSPI_DMA_MODE,
132 };
133
134 struct fsl_dspi_devtype_data {
135 enum dspi_trans_mode trans_mode;
136 u8 max_clock_factor;
137 };
138
139 static const struct fsl_dspi_devtype_data vf610_data = {
140 .trans_mode = DSPI_DMA_MODE,
141 .max_clock_factor = 2,
142 };
143
144 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
145 .trans_mode = DSPI_TCFQ_MODE,
146 .max_clock_factor = 8,
147 };
148
149 static const struct fsl_dspi_devtype_data ls2085a_data = {
150 .trans_mode = DSPI_TCFQ_MODE,
151 .max_clock_factor = 8,
152 };
153
154 struct fsl_dspi_dma {
155 /* Length of transfer in words of DSPI_FIFO_SIZE */
156 u32 curr_xfer_len;
157
158 u32 *tx_dma_buf;
159 struct dma_chan *chan_tx;
160 dma_addr_t tx_dma_phys;
161 struct completion cmd_tx_complete;
162 struct dma_async_tx_descriptor *tx_desc;
163
164 u32 *rx_dma_buf;
165 struct dma_chan *chan_rx;
166 dma_addr_t rx_dma_phys;
167 struct completion cmd_rx_complete;
168 struct dma_async_tx_descriptor *rx_desc;
169 };
170
171 struct fsl_dspi {
172 struct spi_master *master;
173 struct platform_device *pdev;
174
175 struct regmap *regmap;
176 int irq;
177 struct clk *clk;
178
179 struct spi_transfer *cur_transfer;
180 struct spi_message *cur_msg;
181 struct chip_data *cur_chip;
182 size_t len;
183 void *tx;
184 void *tx_end;
185 void *rx;
186 void *rx_end;
187 char dataflags;
188 u8 cs;
189 u16 void_write_data;
190 u32 cs_change;
191 const struct fsl_dspi_devtype_data *devtype_data;
192
193 wait_queue_head_t waitq;
194 u32 waitflags;
195
196 u32 spi_tcnt;
197 struct fsl_dspi_dma *dma;
198 };
199
200 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word);
201
202 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
203 {
204 unsigned int val;
205
206 regmap_read(dspi->regmap, SPI_CTAR(0), &val);
207
208 return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
209 }
210
211 static void dspi_tx_dma_callback(void *arg)
212 {
213 struct fsl_dspi *dspi = arg;
214 struct fsl_dspi_dma *dma = dspi->dma;
215
216 complete(&dma->cmd_tx_complete);
217 }
218
219 static void dspi_rx_dma_callback(void *arg)
220 {
221 struct fsl_dspi *dspi = arg;
222 struct fsl_dspi_dma *dma = dspi->dma;
223 int rx_word;
224 int i;
225 u16 d;
226
227 rx_word = is_double_byte_mode(dspi);
228
229 if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) {
230 for (i = 0; i < dma->curr_xfer_len; i++) {
231 d = dspi->dma->rx_dma_buf[i];
232 rx_word ? (*(u16 *)dspi->rx = d) :
233 (*(u8 *)dspi->rx = d);
234 dspi->rx += rx_word + 1;
235 }
236 }
237
238 complete(&dma->cmd_rx_complete);
239 }
240
241 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
242 {
243 struct fsl_dspi_dma *dma = dspi->dma;
244 struct device *dev = &dspi->pdev->dev;
245 int time_left;
246 int tx_word;
247 int i;
248
249 tx_word = is_double_byte_mode(dspi);
250
251 for (i = 0; i < dma->curr_xfer_len; i++) {
252 dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word);
253 if ((dspi->cs_change) && (!dspi->len))
254 dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT;
255 }
256
257 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
258 dma->tx_dma_phys,
259 dma->curr_xfer_len *
260 DMA_SLAVE_BUSWIDTH_4_BYTES,
261 DMA_MEM_TO_DEV,
262 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
263 if (!dma->tx_desc) {
264 dev_err(dev, "Not able to get desc for DMA xfer\n");
265 return -EIO;
266 }
267
268 dma->tx_desc->callback = dspi_tx_dma_callback;
269 dma->tx_desc->callback_param = dspi;
270 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
271 dev_err(dev, "DMA submit failed\n");
272 return -EINVAL;
273 }
274
275 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
276 dma->rx_dma_phys,
277 dma->curr_xfer_len *
278 DMA_SLAVE_BUSWIDTH_4_BYTES,
279 DMA_DEV_TO_MEM,
280 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
281 if (!dma->rx_desc) {
282 dev_err(dev, "Not able to get desc for DMA xfer\n");
283 return -EIO;
284 }
285
286 dma->rx_desc->callback = dspi_rx_dma_callback;
287 dma->rx_desc->callback_param = dspi;
288 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
289 dev_err(dev, "DMA submit failed\n");
290 return -EINVAL;
291 }
292
293 reinit_completion(&dspi->dma->cmd_rx_complete);
294 reinit_completion(&dspi->dma->cmd_tx_complete);
295
296 dma_async_issue_pending(dma->chan_rx);
297 dma_async_issue_pending(dma->chan_tx);
298
299 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
300 DMA_COMPLETION_TIMEOUT);
301 if (time_left == 0) {
302 dev_err(dev, "DMA tx timeout\n");
303 dmaengine_terminate_all(dma->chan_tx);
304 dmaengine_terminate_all(dma->chan_rx);
305 return -ETIMEDOUT;
306 }
307
308 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
309 DMA_COMPLETION_TIMEOUT);
310 if (time_left == 0) {
311 dev_err(dev, "DMA rx timeout\n");
312 dmaengine_terminate_all(dma->chan_tx);
313 dmaengine_terminate_all(dma->chan_rx);
314 return -ETIMEDOUT;
315 }
316
317 return 0;
318 }
319
320 static int dspi_dma_xfer(struct fsl_dspi *dspi)
321 {
322 struct fsl_dspi_dma *dma = dspi->dma;
323 struct device *dev = &dspi->pdev->dev;
324 int curr_remaining_bytes;
325 int bytes_per_buffer;
326 int word = 1;
327 int ret = 0;
328
329 if (is_double_byte_mode(dspi))
330 word = 2;
331 curr_remaining_bytes = dspi->len;
332 bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
333 while (curr_remaining_bytes) {
334 /* Check if current transfer fits the DMA buffer */
335 dma->curr_xfer_len = curr_remaining_bytes / word;
336 if (dma->curr_xfer_len > bytes_per_buffer)
337 dma->curr_xfer_len = bytes_per_buffer;
338
339 ret = dspi_next_xfer_dma_submit(dspi);
340 if (ret) {
341 dev_err(dev, "DMA transfer failed\n");
342 goto exit;
343
344 } else {
345 curr_remaining_bytes -= dma->curr_xfer_len * word;
346 if (curr_remaining_bytes < 0)
347 curr_remaining_bytes = 0;
348 }
349 }
350
351 exit:
352 return ret;
353 }
354
355 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
356 {
357 struct fsl_dspi_dma *dma;
358 struct dma_slave_config cfg;
359 struct device *dev = &dspi->pdev->dev;
360 int ret;
361
362 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
363 if (!dma)
364 return -ENOMEM;
365
366 dma->chan_rx = dma_request_slave_channel(dev, "rx");
367 if (!dma->chan_rx) {
368 dev_err(dev, "rx dma channel not available\n");
369 ret = -ENODEV;
370 return ret;
371 }
372
373 dma->chan_tx = dma_request_slave_channel(dev, "tx");
374 if (!dma->chan_tx) {
375 dev_err(dev, "tx dma channel not available\n");
376 ret = -ENODEV;
377 goto err_tx_channel;
378 }
379
380 dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
381 &dma->tx_dma_phys, GFP_KERNEL);
382 if (!dma->tx_dma_buf) {
383 ret = -ENOMEM;
384 goto err_tx_dma_buf;
385 }
386
387 dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
388 &dma->rx_dma_phys, GFP_KERNEL);
389 if (!dma->rx_dma_buf) {
390 ret = -ENOMEM;
391 goto err_rx_dma_buf;
392 }
393
394 cfg.src_addr = phy_addr + SPI_POPR;
395 cfg.dst_addr = phy_addr + SPI_PUSHR;
396 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
397 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
398 cfg.src_maxburst = 1;
399 cfg.dst_maxburst = 1;
400
401 cfg.direction = DMA_DEV_TO_MEM;
402 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
403 if (ret) {
404 dev_err(dev, "can't configure rx dma channel\n");
405 ret = -EINVAL;
406 goto err_slave_config;
407 }
408
409 cfg.direction = DMA_MEM_TO_DEV;
410 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
411 if (ret) {
412 dev_err(dev, "can't configure tx dma channel\n");
413 ret = -EINVAL;
414 goto err_slave_config;
415 }
416
417 dspi->dma = dma;
418 init_completion(&dma->cmd_tx_complete);
419 init_completion(&dma->cmd_rx_complete);
420
421 return 0;
422
423 err_slave_config:
424 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
425 dma->rx_dma_buf, dma->rx_dma_phys);
426 err_rx_dma_buf:
427 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
428 dma->tx_dma_buf, dma->tx_dma_phys);
429 err_tx_dma_buf:
430 dma_release_channel(dma->chan_tx);
431 err_tx_channel:
432 dma_release_channel(dma->chan_rx);
433
434 devm_kfree(dev, dma);
435 dspi->dma = NULL;
436
437 return ret;
438 }
439
440 static void dspi_release_dma(struct fsl_dspi *dspi)
441 {
442 struct fsl_dspi_dma *dma = dspi->dma;
443 struct device *dev = &dspi->pdev->dev;
444
445 if (dma) {
446 if (dma->chan_tx) {
447 dma_unmap_single(dev, dma->tx_dma_phys,
448 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
449 dma_release_channel(dma->chan_tx);
450 }
451
452 if (dma->chan_rx) {
453 dma_unmap_single(dev, dma->rx_dma_phys,
454 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
455 dma_release_channel(dma->chan_rx);
456 }
457 }
458 }
459
460 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
461 unsigned long clkrate)
462 {
463 /* Valid baud rate pre-scaler values */
464 int pbr_tbl[4] = {2, 3, 5, 7};
465 int brs[16] = { 2, 4, 6, 8,
466 16, 32, 64, 128,
467 256, 512, 1024, 2048,
468 4096, 8192, 16384, 32768 };
469 int scale_needed, scale, minscale = INT_MAX;
470 int i, j;
471
472 scale_needed = clkrate / speed_hz;
473 if (clkrate % speed_hz)
474 scale_needed++;
475
476 for (i = 0; i < ARRAY_SIZE(brs); i++)
477 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
478 scale = brs[i] * pbr_tbl[j];
479 if (scale >= scale_needed) {
480 if (scale < minscale) {
481 minscale = scale;
482 *br = i;
483 *pbr = j;
484 }
485 break;
486 }
487 }
488
489 if (minscale == INT_MAX) {
490 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
491 speed_hz, clkrate);
492 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
493 *br = ARRAY_SIZE(brs) - 1;
494 }
495 }
496
497 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
498 unsigned long clkrate)
499 {
500 int pscale_tbl[4] = {1, 3, 5, 7};
501 int scale_needed, scale, minscale = INT_MAX;
502 int i, j;
503 u32 remainder;
504
505 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
506 &remainder);
507 if (remainder)
508 scale_needed++;
509
510 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
511 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
512 scale = pscale_tbl[i] * (2 << j);
513 if (scale >= scale_needed) {
514 if (scale < minscale) {
515 minscale = scale;
516 *psc = i;
517 *sc = j;
518 }
519 break;
520 }
521 }
522
523 if (minscale == INT_MAX) {
524 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
525 delay_ns, clkrate);
526 *psc = ARRAY_SIZE(pscale_tbl) - 1;
527 *sc = SPI_CTAR_SCALE_BITS;
528 }
529 }
530
531 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
532 {
533 u16 d16;
534
535 if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
536 d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
537 else
538 d16 = dspi->void_write_data;
539
540 dspi->tx += tx_word + 1;
541 dspi->len -= tx_word + 1;
542
543 return SPI_PUSHR_TXDATA(d16) |
544 SPI_PUSHR_PCS(dspi->cs) |
545 SPI_PUSHR_CTAS(0) |
546 SPI_PUSHR_CONT;
547 }
548
549 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
550 {
551 u16 d;
552 unsigned int val;
553
554 regmap_read(dspi->regmap, SPI_POPR, &val);
555 d = SPI_POPR_RXDATA(val);
556
557 if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
558 rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
559
560 dspi->rx += rx_word + 1;
561 }
562
563 static int dspi_eoq_write(struct fsl_dspi *dspi)
564 {
565 int tx_count = 0;
566 int tx_word;
567 u32 dspi_pushr = 0;
568
569 tx_word = is_double_byte_mode(dspi);
570
571 while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
572 /* If we are in word mode, only have a single byte to transfer
573 * switch to byte mode temporarily. Will switch back at the
574 * end of the transfer.
575 */
576 if (tx_word && (dspi->len == 1)) {
577 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
578 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
579 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
580 tx_word = 0;
581 }
582
583 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
584
585 if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
586 /* last transfer in the transfer */
587 dspi_pushr |= SPI_PUSHR_EOQ;
588 if ((dspi->cs_change) && (!dspi->len))
589 dspi_pushr &= ~SPI_PUSHR_CONT;
590 } else if (tx_word && (dspi->len == 1))
591 dspi_pushr |= SPI_PUSHR_EOQ;
592
593 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
594
595 tx_count++;
596 }
597
598 return tx_count * (tx_word + 1);
599 }
600
601 static int dspi_eoq_read(struct fsl_dspi *dspi)
602 {
603 int rx_count = 0;
604 int rx_word = is_double_byte_mode(dspi);
605
606 while ((dspi->rx < dspi->rx_end)
607 && (rx_count < DSPI_FIFO_SIZE)) {
608 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
609 rx_word = 0;
610
611 dspi_data_from_popr(dspi, rx_word);
612 rx_count++;
613 }
614
615 return rx_count;
616 }
617
618 static int dspi_tcfq_write(struct fsl_dspi *dspi)
619 {
620 int tx_word;
621 u32 dspi_pushr = 0;
622
623 tx_word = is_double_byte_mode(dspi);
624
625 if (tx_word && (dspi->len == 1)) {
626 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
627 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
628 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
629 tx_word = 0;
630 }
631
632 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
633
634 if ((dspi->cs_change) && (!dspi->len))
635 dspi_pushr &= ~SPI_PUSHR_CONT;
636
637 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
638
639 return tx_word + 1;
640 }
641
642 static void dspi_tcfq_read(struct fsl_dspi *dspi)
643 {
644 int rx_word = is_double_byte_mode(dspi);
645
646 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
647 rx_word = 0;
648
649 dspi_data_from_popr(dspi, rx_word);
650 }
651
652 static int dspi_transfer_one_message(struct spi_master *master,
653 struct spi_message *message)
654 {
655 struct fsl_dspi *dspi = spi_master_get_devdata(master);
656 struct spi_device *spi = message->spi;
657 struct spi_transfer *transfer;
658 int status = 0;
659 enum dspi_trans_mode trans_mode;
660 u32 spi_tcr;
661
662 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
663 dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
664
665 message->actual_length = 0;
666
667 list_for_each_entry(transfer, &message->transfers, transfer_list) {
668 dspi->cur_transfer = transfer;
669 dspi->cur_msg = message;
670 dspi->cur_chip = spi_get_ctldata(spi);
671 dspi->cs = spi->chip_select;
672 dspi->cs_change = 0;
673 if (list_is_last(&dspi->cur_transfer->transfer_list,
674 &dspi->cur_msg->transfers) || transfer->cs_change)
675 dspi->cs_change = 1;
676 dspi->void_write_data = dspi->cur_chip->void_write_data;
677
678 dspi->dataflags = 0;
679 dspi->tx = (void *)transfer->tx_buf;
680 dspi->tx_end = dspi->tx + transfer->len;
681 dspi->rx = transfer->rx_buf;
682 dspi->rx_end = dspi->rx + transfer->len;
683 dspi->len = transfer->len;
684
685 if (!dspi->rx)
686 dspi->dataflags |= TRAN_STATE_RX_VOID;
687
688 if (!dspi->tx)
689 dspi->dataflags |= TRAN_STATE_TX_VOID;
690
691 regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
692 regmap_update_bits(dspi->regmap, SPI_MCR,
693 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
694 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
695 regmap_write(dspi->regmap, SPI_CTAR(0),
696 dspi->cur_chip->ctar_val);
697
698 trans_mode = dspi->devtype_data->trans_mode;
699 switch (trans_mode) {
700 case DSPI_EOQ_MODE:
701 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
702 dspi_eoq_write(dspi);
703 break;
704 case DSPI_TCFQ_MODE:
705 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
706 dspi_tcfq_write(dspi);
707 break;
708 case DSPI_DMA_MODE:
709 regmap_write(dspi->regmap, SPI_RSER,
710 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
711 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
712 status = dspi_dma_xfer(dspi);
713 break;
714 default:
715 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
716 trans_mode);
717 status = -EINVAL;
718 goto out;
719 }
720
721 if (trans_mode != DSPI_DMA_MODE) {
722 if (wait_event_interruptible(dspi->waitq,
723 dspi->waitflags))
724 dev_err(&dspi->pdev->dev,
725 "wait transfer complete fail!\n");
726 dspi->waitflags = 0;
727 }
728
729 if (transfer->delay_usecs)
730 udelay(transfer->delay_usecs);
731 }
732
733 out:
734 message->status = status;
735 spi_finalize_current_message(master);
736
737 return status;
738 }
739
740 static int dspi_setup(struct spi_device *spi)
741 {
742 struct chip_data *chip;
743 struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
744 u32 cs_sck_delay = 0, sck_cs_delay = 0;
745 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
746 unsigned char pasc = 0, asc = 0, fmsz = 0;
747 unsigned long clkrate;
748
749 if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
750 fmsz = spi->bits_per_word - 1;
751 } else {
752 pr_err("Invalid wordsize\n");
753 return -ENODEV;
754 }
755
756 /* Only alloc on first setup */
757 chip = spi_get_ctldata(spi);
758 if (chip == NULL) {
759 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
760 if (!chip)
761 return -ENOMEM;
762 }
763
764 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
765 &cs_sck_delay);
766
767 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
768 &sck_cs_delay);
769
770 chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
771 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
772
773 chip->void_write_data = 0;
774
775 clkrate = clk_get_rate(dspi->clk);
776 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
777
778 /* Set PCS to SCK delay scale values */
779 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
780
781 /* Set After SCK delay scale values */
782 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
783
784 chip->ctar_val = SPI_CTAR_FMSZ(fmsz)
785 | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
786 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
787 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
788 | SPI_CTAR_PCSSCK(pcssck)
789 | SPI_CTAR_CSSCK(cssck)
790 | SPI_CTAR_PASC(pasc)
791 | SPI_CTAR_ASC(asc)
792 | SPI_CTAR_PBR(pbr)
793 | SPI_CTAR_BR(br);
794
795 spi_set_ctldata(spi, chip);
796
797 return 0;
798 }
799
800 static void dspi_cleanup(struct spi_device *spi)
801 {
802 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
803
804 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
805 spi->master->bus_num, spi->chip_select);
806
807 kfree(chip);
808 }
809
810 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
811 {
812 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
813 struct spi_message *msg = dspi->cur_msg;
814 enum dspi_trans_mode trans_mode;
815 u32 spi_sr, spi_tcr;
816 u32 spi_tcnt, tcnt_diff;
817 int tx_word;
818
819 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
820 regmap_write(dspi->regmap, SPI_SR, spi_sr);
821
822
823 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
824 tx_word = is_double_byte_mode(dspi);
825
826 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
827 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
828 /*
829 * The width of SPI Transfer Counter in SPI_TCR is 16bits,
830 * so the max couner is 65535. When the counter reach 65535,
831 * it will wrap around, counter reset to zero.
832 * spi_tcnt my be less than dspi->spi_tcnt, it means the
833 * counter already wrapped around.
834 * SPI Transfer Counter is a counter of transmitted frames.
835 * The size of frame maybe two bytes.
836 */
837 tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
838 % SPI_TCR_TCNT_MAX;
839 tcnt_diff *= (tx_word + 1);
840 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
841 tcnt_diff--;
842
843 msg->actual_length += tcnt_diff;
844
845 dspi->spi_tcnt = spi_tcnt;
846
847 trans_mode = dspi->devtype_data->trans_mode;
848 switch (trans_mode) {
849 case DSPI_EOQ_MODE:
850 dspi_eoq_read(dspi);
851 break;
852 case DSPI_TCFQ_MODE:
853 dspi_tcfq_read(dspi);
854 break;
855 default:
856 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
857 trans_mode);
858 return IRQ_HANDLED;
859 }
860
861 if (!dspi->len) {
862 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
863 regmap_update_bits(dspi->regmap,
864 SPI_CTAR(0),
865 SPI_FRAME_BITS_MASK,
866 SPI_FRAME_BITS(16));
867 dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
868 }
869
870 dspi->waitflags = 1;
871 wake_up_interruptible(&dspi->waitq);
872 } else {
873 switch (trans_mode) {
874 case DSPI_EOQ_MODE:
875 dspi_eoq_write(dspi);
876 break;
877 case DSPI_TCFQ_MODE:
878 dspi_tcfq_write(dspi);
879 break;
880 default:
881 dev_err(&dspi->pdev->dev,
882 "unsupported trans_mode %u\n",
883 trans_mode);
884 }
885 }
886 }
887
888 return IRQ_HANDLED;
889 }
890
891 static const struct of_device_id fsl_dspi_dt_ids[] = {
892 { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, },
893 { .compatible = "fsl,ls1021a-v1.0-dspi",
894 .data = (void *)&ls1021a_v1_data, },
895 { .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, },
896 { /* sentinel */ }
897 };
898 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
899
900 #ifdef CONFIG_PM_SLEEP
901 static int dspi_suspend(struct device *dev)
902 {
903 struct spi_master *master = dev_get_drvdata(dev);
904 struct fsl_dspi *dspi = spi_master_get_devdata(master);
905
906 spi_master_suspend(master);
907 clk_disable_unprepare(dspi->clk);
908
909 pinctrl_pm_select_sleep_state(dev);
910
911 return 0;
912 }
913
914 static int dspi_resume(struct device *dev)
915 {
916 struct spi_master *master = dev_get_drvdata(dev);
917 struct fsl_dspi *dspi = spi_master_get_devdata(master);
918 int ret;
919
920 pinctrl_pm_select_default_state(dev);
921
922 ret = clk_prepare_enable(dspi->clk);
923 if (ret)
924 return ret;
925 spi_master_resume(master);
926
927 return 0;
928 }
929 #endif /* CONFIG_PM_SLEEP */
930
931 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
932
933 static const struct regmap_config dspi_regmap_config = {
934 .reg_bits = 32,
935 .val_bits = 32,
936 .reg_stride = 4,
937 .max_register = 0x88,
938 };
939
940 static void dspi_init(struct fsl_dspi *dspi)
941 {
942 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
943 }
944
945 static int dspi_probe(struct platform_device *pdev)
946 {
947 struct device_node *np = pdev->dev.of_node;
948 struct spi_master *master;
949 struct fsl_dspi *dspi;
950 struct resource *res;
951 void __iomem *base;
952 int ret = 0, cs_num, bus_num;
953
954 master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
955 if (!master)
956 return -ENOMEM;
957
958 dspi = spi_master_get_devdata(master);
959 dspi->pdev = pdev;
960 dspi->master = master;
961
962 master->transfer = NULL;
963 master->setup = dspi_setup;
964 master->transfer_one_message = dspi_transfer_one_message;
965 master->dev.of_node = pdev->dev.of_node;
966
967 master->cleanup = dspi_cleanup;
968 master->mode_bits = SPI_CPOL | SPI_CPHA;
969 master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
970 SPI_BPW_MASK(16);
971
972 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
973 if (ret < 0) {
974 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
975 goto out_master_put;
976 }
977 master->num_chipselect = cs_num;
978
979 ret = of_property_read_u32(np, "bus-num", &bus_num);
980 if (ret < 0) {
981 dev_err(&pdev->dev, "can't get bus-num\n");
982 goto out_master_put;
983 }
984 master->bus_num = bus_num;
985
986 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
987 if (!dspi->devtype_data) {
988 dev_err(&pdev->dev, "can't get devtype_data\n");
989 ret = -EFAULT;
990 goto out_master_put;
991 }
992
993 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
994 base = devm_ioremap_resource(&pdev->dev, res);
995 if (IS_ERR(base)) {
996 ret = PTR_ERR(base);
997 goto out_master_put;
998 }
999
1000 dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
1001 &dspi_regmap_config);
1002 if (IS_ERR(dspi->regmap)) {
1003 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1004 PTR_ERR(dspi->regmap));
1005 ret = PTR_ERR(dspi->regmap);
1006 goto out_master_put;
1007 }
1008
1009 dspi_init(dspi);
1010 dspi->irq = platform_get_irq(pdev, 0);
1011 if (dspi->irq < 0) {
1012 dev_err(&pdev->dev, "can't get platform irq\n");
1013 ret = dspi->irq;
1014 goto out_master_put;
1015 }
1016
1017 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
1018 pdev->name, dspi);
1019 if (ret < 0) {
1020 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1021 goto out_master_put;
1022 }
1023
1024 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1025 if (IS_ERR(dspi->clk)) {
1026 ret = PTR_ERR(dspi->clk);
1027 dev_err(&pdev->dev, "unable to get clock\n");
1028 goto out_master_put;
1029 }
1030 ret = clk_prepare_enable(dspi->clk);
1031 if (ret)
1032 goto out_master_put;
1033
1034 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1035 ret = dspi_request_dma(dspi, res->start);
1036 if (ret < 0) {
1037 dev_err(&pdev->dev, "can't get dma channels\n");
1038 goto out_clk_put;
1039 }
1040 }
1041
1042 master->max_speed_hz =
1043 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1044
1045 init_waitqueue_head(&dspi->waitq);
1046 platform_set_drvdata(pdev, master);
1047
1048 ret = spi_register_master(master);
1049 if (ret != 0) {
1050 dev_err(&pdev->dev, "Problem registering DSPI master\n");
1051 goto out_clk_put;
1052 }
1053
1054 return ret;
1055
1056 out_clk_put:
1057 clk_disable_unprepare(dspi->clk);
1058 out_master_put:
1059 spi_master_put(master);
1060
1061 return ret;
1062 }
1063
1064 static int dspi_remove(struct platform_device *pdev)
1065 {
1066 struct spi_master *master = platform_get_drvdata(pdev);
1067 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1068
1069 /* Disconnect from the SPI framework */
1070 dspi_release_dma(dspi);
1071 clk_disable_unprepare(dspi->clk);
1072 spi_unregister_master(dspi->master);
1073
1074 return 0;
1075 }
1076
1077 static struct platform_driver fsl_dspi_driver = {
1078 .driver.name = DRIVER_NAME,
1079 .driver.of_match_table = fsl_dspi_dt_ids,
1080 .driver.owner = THIS_MODULE,
1081 .driver.pm = &dspi_pm,
1082 .probe = dspi_probe,
1083 .remove = dspi_remove,
1084 };
1085 module_platform_driver(fsl_dspi_driver);
1086
1087 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1088 MODULE_LICENSE("GPL");
1089 MODULE_ALIAS("platform:" DRIVER_NAME);