]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/spi/spi-fsl-dspi.c
Merge tag 'iommu-updates-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / drivers / spi / spi-fsl-dspi.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kernel.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regmap.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/spi-fsl-dspi.h>
28 #include <linux/spi/spi_bitbang.h>
29 #include <linux/time.h>
30
31 #define DRIVER_NAME "fsl-dspi"
32
33 #define DSPI_FIFO_SIZE 4
34 #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
35
36 #define SPI_MCR 0x00
37 #define SPI_MCR_MASTER (1 << 31)
38 #define SPI_MCR_PCSIS (0x3F << 16)
39 #define SPI_MCR_CLR_TXF (1 << 11)
40 #define SPI_MCR_CLR_RXF (1 << 10)
41 #define SPI_MCR_XSPI (1 << 3)
42
43 #define SPI_TCR 0x08
44 #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
45
46 #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
47 #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
48 #define SPI_CTAR_CPOL(x) ((x) << 26)
49 #define SPI_CTAR_CPHA(x) ((x) << 25)
50 #define SPI_CTAR_LSBFE(x) ((x) << 24)
51 #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
52 #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
53 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
54 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
55 #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
56 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
57 #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
58 #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
59 #define SPI_CTAR_SCALE_BITS 0xf
60
61 #define SPI_CTAR0_SLAVE 0x0c
62
63 #define SPI_SR 0x2c
64 #define SPI_SR_EOQF 0x10000000
65 #define SPI_SR_TCFQF 0x80000000
66 #define SPI_SR_CLEAR 0xdaad0000
67
68 #define SPI_RSER_TFFFE BIT(25)
69 #define SPI_RSER_TFFFD BIT(24)
70 #define SPI_RSER_RFDFE BIT(17)
71 #define SPI_RSER_RFDFD BIT(16)
72
73 #define SPI_RSER 0x30
74 #define SPI_RSER_EOQFE 0x10000000
75 #define SPI_RSER_TCFQE 0x80000000
76
77 #define SPI_PUSHR 0x34
78 #define SPI_PUSHR_CMD_CONT (1 << 15)
79 #define SPI_PUSHR_CONT (SPI_PUSHR_CMD_CONT << 16)
80 #define SPI_PUSHR_CMD_CTAS(x) (((x) & 0x0003) << 12)
81 #define SPI_PUSHR_CTAS(x) (SPI_PUSHR_CMD_CTAS(x) << 16)
82 #define SPI_PUSHR_CMD_EOQ (1 << 11)
83 #define SPI_PUSHR_EOQ (SPI_PUSHR_CMD_EOQ << 16)
84 #define SPI_PUSHR_CMD_CTCNT (1 << 10)
85 #define SPI_PUSHR_CTCNT (SPI_PUSHR_CMD_CTCNT << 16)
86 #define SPI_PUSHR_CMD_PCS(x) ((1 << x) & 0x003f)
87 #define SPI_PUSHR_PCS(x) (SPI_PUSHR_CMD_PCS(x) << 16)
88 #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
89
90 #define SPI_PUSHR_SLAVE 0x34
91
92 #define SPI_POPR 0x38
93 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
94
95 #define SPI_TXFR0 0x3c
96 #define SPI_TXFR1 0x40
97 #define SPI_TXFR2 0x44
98 #define SPI_TXFR3 0x48
99 #define SPI_RXFR0 0x7c
100 #define SPI_RXFR1 0x80
101 #define SPI_RXFR2 0x84
102 #define SPI_RXFR3 0x88
103
104 #define SPI_CTARE(x) (0x11c + (((x) & 0x3) * 4))
105 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
106 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
107
108 #define SPI_SREX 0x13c
109
110 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
111 #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
112 #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
113 #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
114
115 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
116 #define SPI_FRAME_EBITS_MASK SPI_CTARE_FMSZE(1)
117
118 /* Register offsets for regmap_pushr */
119 #define PUSHR_CMD 0x0
120 #define PUSHR_TX 0x2
121
122 #define SPI_CS_INIT 0x01
123 #define SPI_CS_ASSERT 0x02
124 #define SPI_CS_DROP 0x04
125
126 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
127
128 struct chip_data {
129 u32 ctar_val;
130 u16 void_write_data;
131 };
132
133 enum dspi_trans_mode {
134 DSPI_EOQ_MODE = 0,
135 DSPI_TCFQ_MODE,
136 DSPI_DMA_MODE,
137 };
138
139 struct fsl_dspi_devtype_data {
140 enum dspi_trans_mode trans_mode;
141 u8 max_clock_factor;
142 bool xspi_mode;
143 };
144
145 static const struct fsl_dspi_devtype_data vf610_data = {
146 .trans_mode = DSPI_DMA_MODE,
147 .max_clock_factor = 2,
148 };
149
150 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
151 .trans_mode = DSPI_TCFQ_MODE,
152 .max_clock_factor = 8,
153 .xspi_mode = true,
154 };
155
156 static const struct fsl_dspi_devtype_data ls2085a_data = {
157 .trans_mode = DSPI_TCFQ_MODE,
158 .max_clock_factor = 8,
159 };
160
161 static const struct fsl_dspi_devtype_data coldfire_data = {
162 .trans_mode = DSPI_EOQ_MODE,
163 .max_clock_factor = 8,
164 };
165
166 struct fsl_dspi_dma {
167 /* Length of transfer in words of DSPI_FIFO_SIZE */
168 u32 curr_xfer_len;
169
170 u32 *tx_dma_buf;
171 struct dma_chan *chan_tx;
172 dma_addr_t tx_dma_phys;
173 struct completion cmd_tx_complete;
174 struct dma_async_tx_descriptor *tx_desc;
175
176 u32 *rx_dma_buf;
177 struct dma_chan *chan_rx;
178 dma_addr_t rx_dma_phys;
179 struct completion cmd_rx_complete;
180 struct dma_async_tx_descriptor *rx_desc;
181 };
182
183 struct fsl_dspi {
184 struct spi_master *master;
185 struct platform_device *pdev;
186
187 struct regmap *regmap;
188 struct regmap *regmap_pushr;
189 int irq;
190 struct clk *clk;
191
192 struct spi_transfer *cur_transfer;
193 struct spi_message *cur_msg;
194 struct chip_data *cur_chip;
195 size_t len;
196 const void *tx;
197 void *rx;
198 void *rx_end;
199 u16 void_write_data;
200 u16 tx_cmd;
201 u8 bits_per_word;
202 u8 bytes_per_word;
203 const struct fsl_dspi_devtype_data *devtype_data;
204
205 wait_queue_head_t waitq;
206 u32 waitflags;
207
208 struct fsl_dspi_dma *dma;
209 };
210
211 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
212 {
213 u32 txdata = 0;
214
215 if (dspi->tx) {
216 if (dspi->bytes_per_word == 1)
217 txdata = *(u8 *)dspi->tx;
218 else if (dspi->bytes_per_word == 2)
219 txdata = *(u16 *)dspi->tx;
220 else /* dspi->bytes_per_word == 4 */
221 txdata = *(u32 *)dspi->tx;
222 dspi->tx += dspi->bytes_per_word;
223 }
224 dspi->len -= dspi->bytes_per_word;
225 return txdata;
226 }
227
228 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
229 {
230 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
231
232 if (dspi->len > 0)
233 cmd |= SPI_PUSHR_CMD_CONT;
234 return cmd << 16 | data;
235 }
236
237 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
238 {
239 if (!dspi->rx)
240 return;
241
242 /* Mask of undefined bits */
243 rxdata &= (1 << dspi->bits_per_word) - 1;
244
245 if (dspi->bytes_per_word == 1)
246 *(u8 *)dspi->rx = rxdata;
247 else if (dspi->bytes_per_word == 2)
248 *(u16 *)dspi->rx = rxdata;
249 else /* dspi->bytes_per_word == 4 */
250 *(u32 *)dspi->rx = rxdata;
251 dspi->rx += dspi->bytes_per_word;
252 }
253
254 static void dspi_tx_dma_callback(void *arg)
255 {
256 struct fsl_dspi *dspi = arg;
257 struct fsl_dspi_dma *dma = dspi->dma;
258
259 complete(&dma->cmd_tx_complete);
260 }
261
262 static void dspi_rx_dma_callback(void *arg)
263 {
264 struct fsl_dspi *dspi = arg;
265 struct fsl_dspi_dma *dma = dspi->dma;
266 int i;
267
268 if (dspi->rx) {
269 for (i = 0; i < dma->curr_xfer_len; i++)
270 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
271 }
272
273 complete(&dma->cmd_rx_complete);
274 }
275
276 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
277 {
278 struct fsl_dspi_dma *dma = dspi->dma;
279 struct device *dev = &dspi->pdev->dev;
280 int time_left;
281 int i;
282
283 for (i = 0; i < dma->curr_xfer_len; i++)
284 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
285
286 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
287 dma->tx_dma_phys,
288 dma->curr_xfer_len *
289 DMA_SLAVE_BUSWIDTH_4_BYTES,
290 DMA_MEM_TO_DEV,
291 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
292 if (!dma->tx_desc) {
293 dev_err(dev, "Not able to get desc for DMA xfer\n");
294 return -EIO;
295 }
296
297 dma->tx_desc->callback = dspi_tx_dma_callback;
298 dma->tx_desc->callback_param = dspi;
299 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
300 dev_err(dev, "DMA submit failed\n");
301 return -EINVAL;
302 }
303
304 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
305 dma->rx_dma_phys,
306 dma->curr_xfer_len *
307 DMA_SLAVE_BUSWIDTH_4_BYTES,
308 DMA_DEV_TO_MEM,
309 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
310 if (!dma->rx_desc) {
311 dev_err(dev, "Not able to get desc for DMA xfer\n");
312 return -EIO;
313 }
314
315 dma->rx_desc->callback = dspi_rx_dma_callback;
316 dma->rx_desc->callback_param = dspi;
317 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
318 dev_err(dev, "DMA submit failed\n");
319 return -EINVAL;
320 }
321
322 reinit_completion(&dspi->dma->cmd_rx_complete);
323 reinit_completion(&dspi->dma->cmd_tx_complete);
324
325 dma_async_issue_pending(dma->chan_rx);
326 dma_async_issue_pending(dma->chan_tx);
327
328 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
329 DMA_COMPLETION_TIMEOUT);
330 if (time_left == 0) {
331 dev_err(dev, "DMA tx timeout\n");
332 dmaengine_terminate_all(dma->chan_tx);
333 dmaengine_terminate_all(dma->chan_rx);
334 return -ETIMEDOUT;
335 }
336
337 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
338 DMA_COMPLETION_TIMEOUT);
339 if (time_left == 0) {
340 dev_err(dev, "DMA rx timeout\n");
341 dmaengine_terminate_all(dma->chan_tx);
342 dmaengine_terminate_all(dma->chan_rx);
343 return -ETIMEDOUT;
344 }
345
346 return 0;
347 }
348
349 static int dspi_dma_xfer(struct fsl_dspi *dspi)
350 {
351 struct fsl_dspi_dma *dma = dspi->dma;
352 struct device *dev = &dspi->pdev->dev;
353 struct spi_message *message = dspi->cur_msg;
354 int curr_remaining_bytes;
355 int bytes_per_buffer;
356 int ret = 0;
357
358 curr_remaining_bytes = dspi->len;
359 bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
360 while (curr_remaining_bytes) {
361 /* Check if current transfer fits the DMA buffer */
362 dma->curr_xfer_len = curr_remaining_bytes
363 / dspi->bytes_per_word;
364 if (dma->curr_xfer_len > bytes_per_buffer)
365 dma->curr_xfer_len = bytes_per_buffer;
366
367 ret = dspi_next_xfer_dma_submit(dspi);
368 if (ret) {
369 dev_err(dev, "DMA transfer failed\n");
370 goto exit;
371
372 } else {
373 const int len =
374 dma->curr_xfer_len * dspi->bytes_per_word;
375 curr_remaining_bytes -= len;
376 message->actual_length += len;
377 if (curr_remaining_bytes < 0)
378 curr_remaining_bytes = 0;
379 }
380 }
381
382 exit:
383 return ret;
384 }
385
386 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
387 {
388 struct fsl_dspi_dma *dma;
389 struct dma_slave_config cfg;
390 struct device *dev = &dspi->pdev->dev;
391 int ret;
392
393 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
394 if (!dma)
395 return -ENOMEM;
396
397 dma->chan_rx = dma_request_slave_channel(dev, "rx");
398 if (!dma->chan_rx) {
399 dev_err(dev, "rx dma channel not available\n");
400 ret = -ENODEV;
401 return ret;
402 }
403
404 dma->chan_tx = dma_request_slave_channel(dev, "tx");
405 if (!dma->chan_tx) {
406 dev_err(dev, "tx dma channel not available\n");
407 ret = -ENODEV;
408 goto err_tx_channel;
409 }
410
411 dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
412 &dma->tx_dma_phys, GFP_KERNEL);
413 if (!dma->tx_dma_buf) {
414 ret = -ENOMEM;
415 goto err_tx_dma_buf;
416 }
417
418 dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
419 &dma->rx_dma_phys, GFP_KERNEL);
420 if (!dma->rx_dma_buf) {
421 ret = -ENOMEM;
422 goto err_rx_dma_buf;
423 }
424
425 cfg.src_addr = phy_addr + SPI_POPR;
426 cfg.dst_addr = phy_addr + SPI_PUSHR;
427 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
428 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
429 cfg.src_maxburst = 1;
430 cfg.dst_maxburst = 1;
431
432 cfg.direction = DMA_DEV_TO_MEM;
433 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
434 if (ret) {
435 dev_err(dev, "can't configure rx dma channel\n");
436 ret = -EINVAL;
437 goto err_slave_config;
438 }
439
440 cfg.direction = DMA_MEM_TO_DEV;
441 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
442 if (ret) {
443 dev_err(dev, "can't configure tx dma channel\n");
444 ret = -EINVAL;
445 goto err_slave_config;
446 }
447
448 dspi->dma = dma;
449 init_completion(&dma->cmd_tx_complete);
450 init_completion(&dma->cmd_rx_complete);
451
452 return 0;
453
454 err_slave_config:
455 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
456 dma->rx_dma_buf, dma->rx_dma_phys);
457 err_rx_dma_buf:
458 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
459 dma->tx_dma_buf, dma->tx_dma_phys);
460 err_tx_dma_buf:
461 dma_release_channel(dma->chan_tx);
462 err_tx_channel:
463 dma_release_channel(dma->chan_rx);
464
465 devm_kfree(dev, dma);
466 dspi->dma = NULL;
467
468 return ret;
469 }
470
471 static void dspi_release_dma(struct fsl_dspi *dspi)
472 {
473 struct fsl_dspi_dma *dma = dspi->dma;
474 struct device *dev = &dspi->pdev->dev;
475
476 if (dma) {
477 if (dma->chan_tx) {
478 dma_unmap_single(dev, dma->tx_dma_phys,
479 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
480 dma_release_channel(dma->chan_tx);
481 }
482
483 if (dma->chan_rx) {
484 dma_unmap_single(dev, dma->rx_dma_phys,
485 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
486 dma_release_channel(dma->chan_rx);
487 }
488 }
489 }
490
491 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
492 unsigned long clkrate)
493 {
494 /* Valid baud rate pre-scaler values */
495 int pbr_tbl[4] = {2, 3, 5, 7};
496 int brs[16] = { 2, 4, 6, 8,
497 16, 32, 64, 128,
498 256, 512, 1024, 2048,
499 4096, 8192, 16384, 32768 };
500 int scale_needed, scale, minscale = INT_MAX;
501 int i, j;
502
503 scale_needed = clkrate / speed_hz;
504 if (clkrate % speed_hz)
505 scale_needed++;
506
507 for (i = 0; i < ARRAY_SIZE(brs); i++)
508 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
509 scale = brs[i] * pbr_tbl[j];
510 if (scale >= scale_needed) {
511 if (scale < minscale) {
512 minscale = scale;
513 *br = i;
514 *pbr = j;
515 }
516 break;
517 }
518 }
519
520 if (minscale == INT_MAX) {
521 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
522 speed_hz, clkrate);
523 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
524 *br = ARRAY_SIZE(brs) - 1;
525 }
526 }
527
528 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
529 unsigned long clkrate)
530 {
531 int pscale_tbl[4] = {1, 3, 5, 7};
532 int scale_needed, scale, minscale = INT_MAX;
533 int i, j;
534 u32 remainder;
535
536 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
537 &remainder);
538 if (remainder)
539 scale_needed++;
540
541 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
542 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
543 scale = pscale_tbl[i] * (2 << j);
544 if (scale >= scale_needed) {
545 if (scale < minscale) {
546 minscale = scale;
547 *psc = i;
548 *sc = j;
549 }
550 break;
551 }
552 }
553
554 if (minscale == INT_MAX) {
555 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
556 delay_ns, clkrate);
557 *psc = ARRAY_SIZE(pscale_tbl) - 1;
558 *sc = SPI_CTAR_SCALE_BITS;
559 }
560 }
561
562 static void fifo_write(struct fsl_dspi *dspi)
563 {
564 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
565 }
566
567 static void cmd_fifo_write(struct fsl_dspi *dspi)
568 {
569 u16 cmd = dspi->tx_cmd;
570
571 if (dspi->len > 0)
572 cmd |= SPI_PUSHR_CMD_CONT;
573 regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
574 }
575
576 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
577 {
578 regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
579 }
580
581 static void dspi_tcfq_write(struct fsl_dspi *dspi)
582 {
583 /* Clear transfer count */
584 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
585
586 if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
587 /* Write two TX FIFO entries first, and then the corresponding
588 * CMD FIFO entry.
589 */
590 u32 data = dspi_pop_tx(dspi);
591
592 if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE(1)) {
593 /* LSB */
594 tx_fifo_write(dspi, data & 0xFFFF);
595 tx_fifo_write(dspi, data >> 16);
596 } else {
597 /* MSB */
598 tx_fifo_write(dspi, data >> 16);
599 tx_fifo_write(dspi, data & 0xFFFF);
600 }
601 cmd_fifo_write(dspi);
602 } else {
603 /* Write one entry to both TX FIFO and CMD FIFO
604 * simultaneously.
605 */
606 fifo_write(dspi);
607 }
608 }
609
610 static u32 fifo_read(struct fsl_dspi *dspi)
611 {
612 u32 rxdata = 0;
613
614 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
615 return rxdata;
616 }
617
618 static void dspi_tcfq_read(struct fsl_dspi *dspi)
619 {
620 dspi_push_rx(dspi, fifo_read(dspi));
621 }
622
623 static void dspi_eoq_write(struct fsl_dspi *dspi)
624 {
625 int fifo_size = DSPI_FIFO_SIZE;
626
627 /* Fill TX FIFO with as many transfers as possible */
628 while (dspi->len && fifo_size--) {
629 /* Request EOQF for last transfer in FIFO */
630 if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
631 dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
632 /* Clear transfer count for first transfer in FIFO */
633 if (fifo_size == (DSPI_FIFO_SIZE - 1))
634 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
635 /* Write combined TX FIFO and CMD FIFO entry */
636 fifo_write(dspi);
637 }
638 }
639
640 static void dspi_eoq_read(struct fsl_dspi *dspi)
641 {
642 int fifo_size = DSPI_FIFO_SIZE;
643
644 /* Read one FIFO entry at and push to rx buffer */
645 while ((dspi->rx < dspi->rx_end) && fifo_size--)
646 dspi_push_rx(dspi, fifo_read(dspi));
647 }
648
649 static int dspi_transfer_one_message(struct spi_master *master,
650 struct spi_message *message)
651 {
652 struct fsl_dspi *dspi = spi_master_get_devdata(master);
653 struct spi_device *spi = message->spi;
654 struct spi_transfer *transfer;
655 int status = 0;
656 enum dspi_trans_mode trans_mode;
657
658 message->actual_length = 0;
659
660 list_for_each_entry(transfer, &message->transfers, transfer_list) {
661 dspi->cur_transfer = transfer;
662 dspi->cur_msg = message;
663 dspi->cur_chip = spi_get_ctldata(spi);
664 /* Prepare command word for CMD FIFO */
665 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
666 SPI_PUSHR_CMD_PCS(spi->chip_select);
667 if (list_is_last(&dspi->cur_transfer->transfer_list,
668 &dspi->cur_msg->transfers)) {
669 /* Leave PCS activated after last transfer when
670 * cs_change is set.
671 */
672 if (transfer->cs_change)
673 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
674 } else {
675 /* Keep PCS active between transfers in same message
676 * when cs_change is not set, and de-activate PCS
677 * between transfers in the same message when
678 * cs_change is set.
679 */
680 if (!transfer->cs_change)
681 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
682 }
683
684 dspi->void_write_data = dspi->cur_chip->void_write_data;
685
686 dspi->tx = transfer->tx_buf;
687 dspi->rx = transfer->rx_buf;
688 dspi->rx_end = dspi->rx + transfer->len;
689 dspi->len = transfer->len;
690 /* Validated transfer specific frame size (defaults applied) */
691 dspi->bits_per_word = transfer->bits_per_word;
692 if (transfer->bits_per_word <= 8)
693 dspi->bytes_per_word = 1;
694 else if (transfer->bits_per_word <= 16)
695 dspi->bytes_per_word = 2;
696 else
697 dspi->bytes_per_word = 4;
698
699 regmap_update_bits(dspi->regmap, SPI_MCR,
700 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
701 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
702 regmap_write(dspi->regmap, SPI_CTAR(0),
703 dspi->cur_chip->ctar_val |
704 SPI_FRAME_BITS(transfer->bits_per_word));
705 if (dspi->devtype_data->xspi_mode)
706 regmap_write(dspi->regmap, SPI_CTARE(0),
707 SPI_FRAME_EBITS(transfer->bits_per_word)
708 | SPI_CTARE_DTCP(1));
709
710 trans_mode = dspi->devtype_data->trans_mode;
711 switch (trans_mode) {
712 case DSPI_EOQ_MODE:
713 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
714 dspi_eoq_write(dspi);
715 break;
716 case DSPI_TCFQ_MODE:
717 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
718 dspi_tcfq_write(dspi);
719 break;
720 case DSPI_DMA_MODE:
721 regmap_write(dspi->regmap, SPI_RSER,
722 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
723 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
724 status = dspi_dma_xfer(dspi);
725 break;
726 default:
727 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
728 trans_mode);
729 status = -EINVAL;
730 goto out;
731 }
732
733 if (trans_mode != DSPI_DMA_MODE) {
734 if (wait_event_interruptible(dspi->waitq,
735 dspi->waitflags))
736 dev_err(&dspi->pdev->dev,
737 "wait transfer complete fail!\n");
738 dspi->waitflags = 0;
739 }
740
741 if (transfer->delay_usecs)
742 udelay(transfer->delay_usecs);
743 }
744
745 out:
746 message->status = status;
747 spi_finalize_current_message(master);
748
749 return status;
750 }
751
752 static int dspi_setup(struct spi_device *spi)
753 {
754 struct chip_data *chip;
755 struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
756 struct fsl_dspi_platform_data *pdata;
757 u32 cs_sck_delay = 0, sck_cs_delay = 0;
758 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
759 unsigned char pasc = 0, asc = 0;
760 unsigned long clkrate;
761
762 /* Only alloc on first setup */
763 chip = spi_get_ctldata(spi);
764 if (chip == NULL) {
765 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
766 if (!chip)
767 return -ENOMEM;
768 }
769
770 pdata = dev_get_platdata(&dspi->pdev->dev);
771
772 if (!pdata) {
773 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
774 &cs_sck_delay);
775
776 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
777 &sck_cs_delay);
778 } else {
779 cs_sck_delay = pdata->cs_sck_delay;
780 sck_cs_delay = pdata->sck_cs_delay;
781 }
782
783 chip->void_write_data = 0;
784
785 clkrate = clk_get_rate(dspi->clk);
786 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
787
788 /* Set PCS to SCK delay scale values */
789 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
790
791 /* Set After SCK delay scale values */
792 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
793
794 chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
795 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
796 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
797 | SPI_CTAR_PCSSCK(pcssck)
798 | SPI_CTAR_CSSCK(cssck)
799 | SPI_CTAR_PASC(pasc)
800 | SPI_CTAR_ASC(asc)
801 | SPI_CTAR_PBR(pbr)
802 | SPI_CTAR_BR(br);
803
804 spi_set_ctldata(spi, chip);
805
806 return 0;
807 }
808
809 static void dspi_cleanup(struct spi_device *spi)
810 {
811 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
812
813 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
814 spi->master->bus_num, spi->chip_select);
815
816 kfree(chip);
817 }
818
819 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
820 {
821 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
822 struct spi_message *msg = dspi->cur_msg;
823 enum dspi_trans_mode trans_mode;
824 u32 spi_sr, spi_tcr;
825 u16 spi_tcnt;
826
827 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
828 regmap_write(dspi->regmap, SPI_SR, spi_sr);
829
830
831 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
832 /* Get transfer counter (in number of SPI transfers). It was
833 * reset to 0 when transfer(s) were started.
834 */
835 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
836 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
837 /* Update total number of bytes that were transferred */
838 msg->actual_length += spi_tcnt * dspi->bytes_per_word;
839
840 trans_mode = dspi->devtype_data->trans_mode;
841 switch (trans_mode) {
842 case DSPI_EOQ_MODE:
843 dspi_eoq_read(dspi);
844 break;
845 case DSPI_TCFQ_MODE:
846 dspi_tcfq_read(dspi);
847 break;
848 default:
849 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
850 trans_mode);
851 return IRQ_HANDLED;
852 }
853
854 if (!dspi->len) {
855 dspi->waitflags = 1;
856 wake_up_interruptible(&dspi->waitq);
857 } else {
858 switch (trans_mode) {
859 case DSPI_EOQ_MODE:
860 dspi_eoq_write(dspi);
861 break;
862 case DSPI_TCFQ_MODE:
863 dspi_tcfq_write(dspi);
864 break;
865 default:
866 dev_err(&dspi->pdev->dev,
867 "unsupported trans_mode %u\n",
868 trans_mode);
869 }
870 }
871 }
872
873 return IRQ_HANDLED;
874 }
875
876 static const struct of_device_id fsl_dspi_dt_ids[] = {
877 { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
878 { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
879 { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
880 { /* sentinel */ }
881 };
882 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
883
884 #ifdef CONFIG_PM_SLEEP
885 static int dspi_suspend(struct device *dev)
886 {
887 struct spi_master *master = dev_get_drvdata(dev);
888 struct fsl_dspi *dspi = spi_master_get_devdata(master);
889
890 spi_master_suspend(master);
891 clk_disable_unprepare(dspi->clk);
892
893 pinctrl_pm_select_sleep_state(dev);
894
895 return 0;
896 }
897
898 static int dspi_resume(struct device *dev)
899 {
900 struct spi_master *master = dev_get_drvdata(dev);
901 struct fsl_dspi *dspi = spi_master_get_devdata(master);
902 int ret;
903
904 pinctrl_pm_select_default_state(dev);
905
906 ret = clk_prepare_enable(dspi->clk);
907 if (ret)
908 return ret;
909 spi_master_resume(master);
910
911 return 0;
912 }
913 #endif /* CONFIG_PM_SLEEP */
914
915 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
916
917 static const struct regmap_range dspi_volatile_ranges[] = {
918 regmap_reg_range(SPI_MCR, SPI_TCR),
919 regmap_reg_range(SPI_SR, SPI_SR),
920 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
921 };
922
923 static const struct regmap_access_table dspi_volatile_table = {
924 .yes_ranges = dspi_volatile_ranges,
925 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
926 };
927
928 static const struct regmap_config dspi_regmap_config = {
929 .reg_bits = 32,
930 .val_bits = 32,
931 .reg_stride = 4,
932 .max_register = 0x88,
933 .volatile_table = &dspi_volatile_table,
934 };
935
936 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
937 regmap_reg_range(SPI_MCR, SPI_TCR),
938 regmap_reg_range(SPI_SR, SPI_SR),
939 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
940 regmap_reg_range(SPI_SREX, SPI_SREX),
941 };
942
943 static const struct regmap_access_table dspi_xspi_volatile_table = {
944 .yes_ranges = dspi_xspi_volatile_ranges,
945 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
946 };
947
948 static const struct regmap_config dspi_xspi_regmap_config[] = {
949 {
950 .reg_bits = 32,
951 .val_bits = 32,
952 .reg_stride = 4,
953 .max_register = 0x13c,
954 .volatile_table = &dspi_xspi_volatile_table,
955 },
956 {
957 .name = "pushr",
958 .reg_bits = 16,
959 .val_bits = 16,
960 .reg_stride = 2,
961 .max_register = 0x2,
962 },
963 };
964
965 static void dspi_init(struct fsl_dspi *dspi)
966 {
967 regmap_write(dspi->regmap, SPI_MCR, SPI_MCR_MASTER | SPI_MCR_PCSIS |
968 (dspi->devtype_data->xspi_mode ? SPI_MCR_XSPI : 0));
969 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
970 if (dspi->devtype_data->xspi_mode)
971 regmap_write(dspi->regmap, SPI_CTARE(0),
972 SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
973 }
974
975 static int dspi_probe(struct platform_device *pdev)
976 {
977 struct device_node *np = pdev->dev.of_node;
978 struct spi_master *master;
979 struct fsl_dspi *dspi;
980 struct resource *res;
981 const struct regmap_config *regmap_config;
982 void __iomem *base;
983 struct fsl_dspi_platform_data *pdata;
984 int ret = 0, cs_num, bus_num;
985
986 master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
987 if (!master)
988 return -ENOMEM;
989
990 dspi = spi_master_get_devdata(master);
991 dspi->pdev = pdev;
992 dspi->master = master;
993
994 master->transfer = NULL;
995 master->setup = dspi_setup;
996 master->transfer_one_message = dspi_transfer_one_message;
997 master->dev.of_node = pdev->dev.of_node;
998
999 master->cleanup = dspi_cleanup;
1000 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1001
1002 pdata = dev_get_platdata(&pdev->dev);
1003 if (pdata) {
1004 master->num_chipselect = pdata->cs_num;
1005 master->bus_num = pdata->bus_num;
1006
1007 dspi->devtype_data = &coldfire_data;
1008 } else {
1009
1010 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1011 if (ret < 0) {
1012 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1013 goto out_master_put;
1014 }
1015 master->num_chipselect = cs_num;
1016
1017 ret = of_property_read_u32(np, "bus-num", &bus_num);
1018 if (ret < 0) {
1019 dev_err(&pdev->dev, "can't get bus-num\n");
1020 goto out_master_put;
1021 }
1022 master->bus_num = bus_num;
1023
1024 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1025 if (!dspi->devtype_data) {
1026 dev_err(&pdev->dev, "can't get devtype_data\n");
1027 ret = -EFAULT;
1028 goto out_master_put;
1029 }
1030 }
1031
1032 if (dspi->devtype_data->xspi_mode)
1033 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1034 else
1035 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1036
1037 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1038 base = devm_ioremap_resource(&pdev->dev, res);
1039 if (IS_ERR(base)) {
1040 ret = PTR_ERR(base);
1041 goto out_master_put;
1042 }
1043
1044 if (dspi->devtype_data->xspi_mode)
1045 regmap_config = &dspi_xspi_regmap_config[0];
1046 else
1047 regmap_config = &dspi_regmap_config;
1048 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1049 if (IS_ERR(dspi->regmap)) {
1050 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1051 PTR_ERR(dspi->regmap));
1052 ret = PTR_ERR(dspi->regmap);
1053 goto out_master_put;
1054 }
1055
1056 if (dspi->devtype_data->xspi_mode) {
1057 dspi->regmap_pushr = devm_regmap_init_mmio(
1058 &pdev->dev, base + SPI_PUSHR,
1059 &dspi_xspi_regmap_config[1]);
1060 if (IS_ERR(dspi->regmap_pushr)) {
1061 dev_err(&pdev->dev,
1062 "failed to init pushr regmap: %ld\n",
1063 PTR_ERR(dspi->regmap_pushr));
1064 ret = PTR_ERR(dspi->regmap_pushr);
1065 goto out_master_put;
1066 }
1067 }
1068
1069 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1070 if (IS_ERR(dspi->clk)) {
1071 ret = PTR_ERR(dspi->clk);
1072 dev_err(&pdev->dev, "unable to get clock\n");
1073 goto out_master_put;
1074 }
1075 ret = clk_prepare_enable(dspi->clk);
1076 if (ret)
1077 goto out_master_put;
1078
1079 dspi_init(dspi);
1080 dspi->irq = platform_get_irq(pdev, 0);
1081 if (dspi->irq < 0) {
1082 dev_err(&pdev->dev, "can't get platform irq\n");
1083 ret = dspi->irq;
1084 goto out_clk_put;
1085 }
1086
1087 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
1088 pdev->name, dspi);
1089 if (ret < 0) {
1090 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1091 goto out_clk_put;
1092 }
1093
1094 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1095 ret = dspi_request_dma(dspi, res->start);
1096 if (ret < 0) {
1097 dev_err(&pdev->dev, "can't get dma channels\n");
1098 goto out_clk_put;
1099 }
1100 }
1101
1102 master->max_speed_hz =
1103 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1104
1105 init_waitqueue_head(&dspi->waitq);
1106 platform_set_drvdata(pdev, master);
1107
1108 ret = spi_register_master(master);
1109 if (ret != 0) {
1110 dev_err(&pdev->dev, "Problem registering DSPI master\n");
1111 goto out_clk_put;
1112 }
1113
1114 return ret;
1115
1116 out_clk_put:
1117 clk_disable_unprepare(dspi->clk);
1118 out_master_put:
1119 spi_master_put(master);
1120
1121 return ret;
1122 }
1123
1124 static int dspi_remove(struct platform_device *pdev)
1125 {
1126 struct spi_master *master = platform_get_drvdata(pdev);
1127 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1128
1129 /* Disconnect from the SPI framework */
1130 dspi_release_dma(dspi);
1131 clk_disable_unprepare(dspi->clk);
1132 spi_unregister_master(dspi->master);
1133
1134 return 0;
1135 }
1136
1137 static struct platform_driver fsl_dspi_driver = {
1138 .driver.name = DRIVER_NAME,
1139 .driver.of_match_table = fsl_dspi_dt_ids,
1140 .driver.owner = THIS_MODULE,
1141 .driver.pm = &dspi_pm,
1142 .probe = dspi_probe,
1143 .remove = dspi_remove,
1144 };
1145 module_platform_driver(fsl_dspi_driver);
1146
1147 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1148 MODULE_LICENSE("GPL");
1149 MODULE_ALIAS("platform:" DRIVER_NAME);