]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-fsl-dspi.c
Merge remote-tracking branch 'spi/topic/rcar' into spi-next
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-fsl-dspi.c
1 /*
2 * drivers/spi/spi-fsl-dspi.c
3 *
4 * Copyright 2013 Freescale Semiconductor, Inc.
5 *
6 * Freescale DSPI driver
7 * This file contains a driver for the Freescale DSPI
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/math64.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/regmap.h>
31 #include <linux/sched.h>
32 #include <linux/spi/spi.h>
33 #include <linux/spi/spi_bitbang.h>
34 #include <linux/time.h>
35
36 #define DRIVER_NAME "fsl-dspi"
37
38 #define TRAN_STATE_RX_VOID 0x01
39 #define TRAN_STATE_TX_VOID 0x02
40 #define TRAN_STATE_WORD_ODD_NUM 0x04
41
42 #define DSPI_FIFO_SIZE 4
43
44 #define SPI_MCR 0x00
45 #define SPI_MCR_MASTER (1 << 31)
46 #define SPI_MCR_PCSIS (0x3F << 16)
47 #define SPI_MCR_CLR_TXF (1 << 11)
48 #define SPI_MCR_CLR_RXF (1 << 10)
49
50 #define SPI_TCR 0x08
51 #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
52
53 #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
54 #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
55 #define SPI_CTAR_CPOL(x) ((x) << 26)
56 #define SPI_CTAR_CPHA(x) ((x) << 25)
57 #define SPI_CTAR_LSBFE(x) ((x) << 24)
58 #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
59 #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
60 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
61 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
62 #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
63 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
64 #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
65 #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
66 #define SPI_CTAR_SCALE_BITS 0xf
67
68 #define SPI_CTAR0_SLAVE 0x0c
69
70 #define SPI_SR 0x2c
71 #define SPI_SR_EOQF 0x10000000
72 #define SPI_SR_TCFQF 0x80000000
73 #define SPI_SR_CLEAR 0xdaad0000
74
75 #define SPI_RSER 0x30
76 #define SPI_RSER_EOQFE 0x10000000
77 #define SPI_RSER_TCFQE 0x80000000
78
79 #define SPI_PUSHR 0x34
80 #define SPI_PUSHR_CONT (1 << 31)
81 #define SPI_PUSHR_CTAS(x) (((x) & 0x00000003) << 28)
82 #define SPI_PUSHR_EOQ (1 << 27)
83 #define SPI_PUSHR_CTCNT (1 << 26)
84 #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16)
85 #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
86
87 #define SPI_PUSHR_SLAVE 0x34
88
89 #define SPI_POPR 0x38
90 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
91
92 #define SPI_TXFR0 0x3c
93 #define SPI_TXFR1 0x40
94 #define SPI_TXFR2 0x44
95 #define SPI_TXFR3 0x48
96 #define SPI_RXFR0 0x7c
97 #define SPI_RXFR1 0x80
98 #define SPI_RXFR2 0x84
99 #define SPI_RXFR3 0x88
100
101 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
102 #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
103 #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
104 #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
105
106 #define SPI_CS_INIT 0x01
107 #define SPI_CS_ASSERT 0x02
108 #define SPI_CS_DROP 0x04
109
110 #define SPI_TCR_TCNT_MAX 0x10000
111
112 struct chip_data {
113 u32 mcr_val;
114 u32 ctar_val;
115 u16 void_write_data;
116 };
117
118 enum dspi_trans_mode {
119 DSPI_EOQ_MODE = 0,
120 DSPI_TCFQ_MODE,
121 };
122
123 struct fsl_dspi_devtype_data {
124 enum dspi_trans_mode trans_mode;
125 u8 max_clock_factor;
126 };
127
128 static const struct fsl_dspi_devtype_data vf610_data = {
129 .trans_mode = DSPI_EOQ_MODE,
130 .max_clock_factor = 2,
131 };
132
133 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
134 .trans_mode = DSPI_TCFQ_MODE,
135 .max_clock_factor = 8,
136 };
137
138 static const struct fsl_dspi_devtype_data ls2085a_data = {
139 .trans_mode = DSPI_TCFQ_MODE,
140 .max_clock_factor = 8,
141 };
142
143 struct fsl_dspi {
144 struct spi_master *master;
145 struct platform_device *pdev;
146
147 struct regmap *regmap;
148 int irq;
149 struct clk *clk;
150
151 struct spi_transfer *cur_transfer;
152 struct spi_message *cur_msg;
153 struct chip_data *cur_chip;
154 size_t len;
155 void *tx;
156 void *tx_end;
157 void *rx;
158 void *rx_end;
159 char dataflags;
160 u8 cs;
161 u16 void_write_data;
162 u32 cs_change;
163 const struct fsl_dspi_devtype_data *devtype_data;
164
165 wait_queue_head_t waitq;
166 u32 waitflags;
167
168 u32 spi_tcnt;
169 };
170
171 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
172 {
173 unsigned int val;
174
175 regmap_read(dspi->regmap, SPI_CTAR(0), &val);
176
177 return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
178 }
179
180 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
181 unsigned long clkrate)
182 {
183 /* Valid baud rate pre-scaler values */
184 int pbr_tbl[4] = {2, 3, 5, 7};
185 int brs[16] = { 2, 4, 6, 8,
186 16, 32, 64, 128,
187 256, 512, 1024, 2048,
188 4096, 8192, 16384, 32768 };
189 int scale_needed, scale, minscale = INT_MAX;
190 int i, j;
191
192 scale_needed = clkrate / speed_hz;
193 if (clkrate % speed_hz)
194 scale_needed++;
195
196 for (i = 0; i < ARRAY_SIZE(brs); i++)
197 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
198 scale = brs[i] * pbr_tbl[j];
199 if (scale >= scale_needed) {
200 if (scale < minscale) {
201 minscale = scale;
202 *br = i;
203 *pbr = j;
204 }
205 break;
206 }
207 }
208
209 if (minscale == INT_MAX) {
210 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
211 speed_hz, clkrate);
212 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
213 *br = ARRAY_SIZE(brs) - 1;
214 }
215 }
216
217 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
218 unsigned long clkrate)
219 {
220 int pscale_tbl[4] = {1, 3, 5, 7};
221 int scale_needed, scale, minscale = INT_MAX;
222 int i, j;
223 u32 remainder;
224
225 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
226 &remainder);
227 if (remainder)
228 scale_needed++;
229
230 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
231 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
232 scale = pscale_tbl[i] * (2 << j);
233 if (scale >= scale_needed) {
234 if (scale < minscale) {
235 minscale = scale;
236 *psc = i;
237 *sc = j;
238 }
239 break;
240 }
241 }
242
243 if (minscale == INT_MAX) {
244 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
245 delay_ns, clkrate);
246 *psc = ARRAY_SIZE(pscale_tbl) - 1;
247 *sc = SPI_CTAR_SCALE_BITS;
248 }
249 }
250
251 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
252 {
253 u16 d16;
254
255 if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
256 d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
257 else
258 d16 = dspi->void_write_data;
259
260 dspi->tx += tx_word + 1;
261 dspi->len -= tx_word + 1;
262
263 return SPI_PUSHR_TXDATA(d16) |
264 SPI_PUSHR_PCS(dspi->cs) |
265 SPI_PUSHR_CTAS(0) |
266 SPI_PUSHR_CONT;
267 }
268
269 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
270 {
271 u16 d;
272 unsigned int val;
273
274 regmap_read(dspi->regmap, SPI_POPR, &val);
275 d = SPI_POPR_RXDATA(val);
276
277 if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
278 rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
279
280 dspi->rx += rx_word + 1;
281 }
282
283 static int dspi_eoq_write(struct fsl_dspi *dspi)
284 {
285 int tx_count = 0;
286 int tx_word;
287 u32 dspi_pushr = 0;
288
289 tx_word = is_double_byte_mode(dspi);
290
291 while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
292 /* If we are in word mode, only have a single byte to transfer
293 * switch to byte mode temporarily. Will switch back at the
294 * end of the transfer.
295 */
296 if (tx_word && (dspi->len == 1)) {
297 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
298 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
299 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
300 tx_word = 0;
301 }
302
303 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
304
305 if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
306 /* last transfer in the transfer */
307 dspi_pushr |= SPI_PUSHR_EOQ;
308 if ((dspi->cs_change) && (!dspi->len))
309 dspi_pushr &= ~SPI_PUSHR_CONT;
310 } else if (tx_word && (dspi->len == 1))
311 dspi_pushr |= SPI_PUSHR_EOQ;
312
313 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
314
315 tx_count++;
316 }
317
318 return tx_count * (tx_word + 1);
319 }
320
321 static int dspi_eoq_read(struct fsl_dspi *dspi)
322 {
323 int rx_count = 0;
324 int rx_word = is_double_byte_mode(dspi);
325
326 while ((dspi->rx < dspi->rx_end)
327 && (rx_count < DSPI_FIFO_SIZE)) {
328 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
329 rx_word = 0;
330
331 dspi_data_from_popr(dspi, rx_word);
332 rx_count++;
333 }
334
335 return rx_count;
336 }
337
338 static int dspi_tcfq_write(struct fsl_dspi *dspi)
339 {
340 int tx_word;
341 u32 dspi_pushr = 0;
342
343 tx_word = is_double_byte_mode(dspi);
344
345 if (tx_word && (dspi->len == 1)) {
346 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
347 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
348 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
349 tx_word = 0;
350 }
351
352 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
353
354 if ((dspi->cs_change) && (!dspi->len))
355 dspi_pushr &= ~SPI_PUSHR_CONT;
356
357 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
358
359 return tx_word + 1;
360 }
361
362 static void dspi_tcfq_read(struct fsl_dspi *dspi)
363 {
364 int rx_word = is_double_byte_mode(dspi);
365
366 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
367 rx_word = 0;
368
369 dspi_data_from_popr(dspi, rx_word);
370 }
371
372 static int dspi_transfer_one_message(struct spi_master *master,
373 struct spi_message *message)
374 {
375 struct fsl_dspi *dspi = spi_master_get_devdata(master);
376 struct spi_device *spi = message->spi;
377 struct spi_transfer *transfer;
378 int status = 0;
379 enum dspi_trans_mode trans_mode;
380 u32 spi_tcr;
381
382 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
383 dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
384
385 message->actual_length = 0;
386
387 list_for_each_entry(transfer, &message->transfers, transfer_list) {
388 dspi->cur_transfer = transfer;
389 dspi->cur_msg = message;
390 dspi->cur_chip = spi_get_ctldata(spi);
391 dspi->cs = spi->chip_select;
392 dspi->cs_change = 0;
393 if (list_is_last(&dspi->cur_transfer->transfer_list,
394 &dspi->cur_msg->transfers) || transfer->cs_change)
395 dspi->cs_change = 1;
396 dspi->void_write_data = dspi->cur_chip->void_write_data;
397
398 dspi->dataflags = 0;
399 dspi->tx = (void *)transfer->tx_buf;
400 dspi->tx_end = dspi->tx + transfer->len;
401 dspi->rx = transfer->rx_buf;
402 dspi->rx_end = dspi->rx + transfer->len;
403 dspi->len = transfer->len;
404
405 if (!dspi->rx)
406 dspi->dataflags |= TRAN_STATE_RX_VOID;
407
408 if (!dspi->tx)
409 dspi->dataflags |= TRAN_STATE_TX_VOID;
410
411 regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
412 regmap_update_bits(dspi->regmap, SPI_MCR,
413 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
414 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
415 regmap_write(dspi->regmap, SPI_CTAR(0),
416 dspi->cur_chip->ctar_val);
417
418 trans_mode = dspi->devtype_data->trans_mode;
419 switch (trans_mode) {
420 case DSPI_EOQ_MODE:
421 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
422 dspi_eoq_write(dspi);
423 break;
424 case DSPI_TCFQ_MODE:
425 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
426 dspi_tcfq_write(dspi);
427 break;
428 default:
429 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
430 trans_mode);
431 status = -EINVAL;
432 goto out;
433 }
434
435 if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
436 dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
437 dspi->waitflags = 0;
438
439 if (transfer->delay_usecs)
440 udelay(transfer->delay_usecs);
441 }
442
443 out:
444 message->status = status;
445 spi_finalize_current_message(master);
446
447 return status;
448 }
449
450 static int dspi_setup(struct spi_device *spi)
451 {
452 struct chip_data *chip;
453 struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
454 u32 cs_sck_delay = 0, sck_cs_delay = 0;
455 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
456 unsigned char pasc = 0, asc = 0, fmsz = 0;
457 unsigned long clkrate;
458
459 if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
460 fmsz = spi->bits_per_word - 1;
461 } else {
462 pr_err("Invalid wordsize\n");
463 return -ENODEV;
464 }
465
466 /* Only alloc on first setup */
467 chip = spi_get_ctldata(spi);
468 if (chip == NULL) {
469 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
470 if (!chip)
471 return -ENOMEM;
472 }
473
474 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
475 &cs_sck_delay);
476
477 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
478 &sck_cs_delay);
479
480 chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
481 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
482
483 chip->void_write_data = 0;
484
485 clkrate = clk_get_rate(dspi->clk);
486 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
487
488 /* Set PCS to SCK delay scale values */
489 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
490
491 /* Set After SCK delay scale values */
492 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
493
494 chip->ctar_val = SPI_CTAR_FMSZ(fmsz)
495 | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
496 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
497 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
498 | SPI_CTAR_PCSSCK(pcssck)
499 | SPI_CTAR_CSSCK(cssck)
500 | SPI_CTAR_PASC(pasc)
501 | SPI_CTAR_ASC(asc)
502 | SPI_CTAR_PBR(pbr)
503 | SPI_CTAR_BR(br);
504
505 spi_set_ctldata(spi, chip);
506
507 return 0;
508 }
509
510 static void dspi_cleanup(struct spi_device *spi)
511 {
512 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
513
514 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
515 spi->master->bus_num, spi->chip_select);
516
517 kfree(chip);
518 }
519
520 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
521 {
522 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
523 struct spi_message *msg = dspi->cur_msg;
524 enum dspi_trans_mode trans_mode;
525 u32 spi_sr, spi_tcr;
526 u32 spi_tcnt, tcnt_diff;
527 int tx_word;
528
529 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
530 regmap_write(dspi->regmap, SPI_SR, spi_sr);
531
532
533 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
534 tx_word = is_double_byte_mode(dspi);
535
536 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
537 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
538 /*
539 * The width of SPI Transfer Counter in SPI_TCR is 16bits,
540 * so the max couner is 65535. When the counter reach 65535,
541 * it will wrap around, counter reset to zero.
542 * spi_tcnt my be less than dspi->spi_tcnt, it means the
543 * counter already wrapped around.
544 * SPI Transfer Counter is a counter of transmitted frames.
545 * The size of frame maybe two bytes.
546 */
547 tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
548 % SPI_TCR_TCNT_MAX;
549 tcnt_diff *= (tx_word + 1);
550 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
551 tcnt_diff--;
552
553 msg->actual_length += tcnt_diff;
554
555 dspi->spi_tcnt = spi_tcnt;
556
557 trans_mode = dspi->devtype_data->trans_mode;
558 switch (trans_mode) {
559 case DSPI_EOQ_MODE:
560 dspi_eoq_read(dspi);
561 break;
562 case DSPI_TCFQ_MODE:
563 dspi_tcfq_read(dspi);
564 break;
565 default:
566 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
567 trans_mode);
568 return IRQ_HANDLED;
569 }
570
571 if (!dspi->len) {
572 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
573 regmap_update_bits(dspi->regmap,
574 SPI_CTAR(0),
575 SPI_FRAME_BITS_MASK,
576 SPI_FRAME_BITS(16));
577 dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
578 }
579
580 dspi->waitflags = 1;
581 wake_up_interruptible(&dspi->waitq);
582 } else {
583 switch (trans_mode) {
584 case DSPI_EOQ_MODE:
585 dspi_eoq_write(dspi);
586 break;
587 case DSPI_TCFQ_MODE:
588 dspi_tcfq_write(dspi);
589 break;
590 default:
591 dev_err(&dspi->pdev->dev,
592 "unsupported trans_mode %u\n",
593 trans_mode);
594 }
595 }
596 }
597
598 return IRQ_HANDLED;
599 }
600
601 static const struct of_device_id fsl_dspi_dt_ids[] = {
602 { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, },
603 { .compatible = "fsl,ls1021a-v1.0-dspi",
604 .data = (void *)&ls1021a_v1_data, },
605 { .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, },
606 { /* sentinel */ }
607 };
608 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
609
610 #ifdef CONFIG_PM_SLEEP
611 static int dspi_suspend(struct device *dev)
612 {
613 struct spi_master *master = dev_get_drvdata(dev);
614 struct fsl_dspi *dspi = spi_master_get_devdata(master);
615
616 spi_master_suspend(master);
617 clk_disable_unprepare(dspi->clk);
618
619 pinctrl_pm_select_sleep_state(dev);
620
621 return 0;
622 }
623
624 static int dspi_resume(struct device *dev)
625 {
626 struct spi_master *master = dev_get_drvdata(dev);
627 struct fsl_dspi *dspi = spi_master_get_devdata(master);
628 int ret;
629
630 pinctrl_pm_select_default_state(dev);
631
632 ret = clk_prepare_enable(dspi->clk);
633 if (ret)
634 return ret;
635 spi_master_resume(master);
636
637 return 0;
638 }
639 #endif /* CONFIG_PM_SLEEP */
640
641 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
642
643 static const struct regmap_config dspi_regmap_config = {
644 .reg_bits = 32,
645 .val_bits = 32,
646 .reg_stride = 4,
647 .max_register = 0x88,
648 };
649
650 static void dspi_init(struct fsl_dspi *dspi)
651 {
652 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
653 }
654
655 static int dspi_probe(struct platform_device *pdev)
656 {
657 struct device_node *np = pdev->dev.of_node;
658 struct spi_master *master;
659 struct fsl_dspi *dspi;
660 struct resource *res;
661 void __iomem *base;
662 int ret = 0, cs_num, bus_num;
663
664 master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
665 if (!master)
666 return -ENOMEM;
667
668 dspi = spi_master_get_devdata(master);
669 dspi->pdev = pdev;
670 dspi->master = master;
671
672 master->transfer = NULL;
673 master->setup = dspi_setup;
674 master->transfer_one_message = dspi_transfer_one_message;
675 master->dev.of_node = pdev->dev.of_node;
676
677 master->cleanup = dspi_cleanup;
678 master->mode_bits = SPI_CPOL | SPI_CPHA;
679 master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
680 SPI_BPW_MASK(16);
681
682 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
683 if (ret < 0) {
684 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
685 goto out_master_put;
686 }
687 master->num_chipselect = cs_num;
688
689 ret = of_property_read_u32(np, "bus-num", &bus_num);
690 if (ret < 0) {
691 dev_err(&pdev->dev, "can't get bus-num\n");
692 goto out_master_put;
693 }
694 master->bus_num = bus_num;
695
696 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
697 if (!dspi->devtype_data) {
698 dev_err(&pdev->dev, "can't get devtype_data\n");
699 ret = -EFAULT;
700 goto out_master_put;
701 }
702
703 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
704 base = devm_ioremap_resource(&pdev->dev, res);
705 if (IS_ERR(base)) {
706 ret = PTR_ERR(base);
707 goto out_master_put;
708 }
709
710 dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
711 &dspi_regmap_config);
712 if (IS_ERR(dspi->regmap)) {
713 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
714 PTR_ERR(dspi->regmap));
715 return PTR_ERR(dspi->regmap);
716 }
717
718 dspi_init(dspi);
719 dspi->irq = platform_get_irq(pdev, 0);
720 if (dspi->irq < 0) {
721 dev_err(&pdev->dev, "can't get platform irq\n");
722 ret = dspi->irq;
723 goto out_master_put;
724 }
725
726 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
727 pdev->name, dspi);
728 if (ret < 0) {
729 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
730 goto out_master_put;
731 }
732
733 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
734 if (IS_ERR(dspi->clk)) {
735 ret = PTR_ERR(dspi->clk);
736 dev_err(&pdev->dev, "unable to get clock\n");
737 goto out_master_put;
738 }
739 ret = clk_prepare_enable(dspi->clk);
740 if (ret)
741 goto out_master_put;
742
743 master->max_speed_hz =
744 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
745
746 init_waitqueue_head(&dspi->waitq);
747 platform_set_drvdata(pdev, master);
748
749 ret = spi_register_master(master);
750 if (ret != 0) {
751 dev_err(&pdev->dev, "Problem registering DSPI master\n");
752 goto out_clk_put;
753 }
754
755 return ret;
756
757 out_clk_put:
758 clk_disable_unprepare(dspi->clk);
759 out_master_put:
760 spi_master_put(master);
761
762 return ret;
763 }
764
765 static int dspi_remove(struct platform_device *pdev)
766 {
767 struct spi_master *master = platform_get_drvdata(pdev);
768 struct fsl_dspi *dspi = spi_master_get_devdata(master);
769
770 /* Disconnect from the SPI framework */
771 clk_disable_unprepare(dspi->clk);
772 spi_unregister_master(dspi->master);
773
774 return 0;
775 }
776
777 static struct platform_driver fsl_dspi_driver = {
778 .driver.name = DRIVER_NAME,
779 .driver.of_match_table = fsl_dspi_dt_ids,
780 .driver.owner = THIS_MODULE,
781 .driver.pm = &dspi_pm,
782 .probe = dspi_probe,
783 .remove = dspi_remove,
784 };
785 module_platform_driver(fsl_dspi_driver);
786
787 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
788 MODULE_LICENSE("GPL");
789 MODULE_ALIAS("platform:" DRIVER_NAME);