]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi-imx.c
Linux 4.7-rc1
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-imx.c
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright (C) 2008 Juergen Beisert
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the
16 * Free Software Foundation
17 * 51 Franklin Street, Fifth Floor
18 * Boston, MA 02110-1301, USA.
19 */
20
21 #include <linux/clk.h>
22 #include <linux/completion.h>
23 #include <linux/delay.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/err.h>
27 #include <linux/gpio.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/irq.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spi_bitbang.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/of_gpio.h>
41
42 #include <linux/platform_data/dma-imx.h>
43 #include <linux/platform_data/spi-imx.h>
44
45 #define DRIVER_NAME "spi_imx"
46
47 #define MXC_CSPIRXDATA 0x00
48 #define MXC_CSPITXDATA 0x04
49 #define MXC_CSPICTRL 0x08
50 #define MXC_CSPIINT 0x0c
51 #define MXC_RESET 0x1c
52
53 /* generic defines to abstract from the different register layouts */
54 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
55 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
56
57 /* The maximum bytes that a sdma BD can transfer.*/
58 #define MAX_SDMA_BD_BYTES (1 << 15)
59 struct spi_imx_config {
60 unsigned int speed_hz;
61 unsigned int bpw;
62 unsigned int mode;
63 u8 cs;
64 };
65
66 enum spi_imx_devtype {
67 IMX1_CSPI,
68 IMX21_CSPI,
69 IMX27_CSPI,
70 IMX31_CSPI,
71 IMX35_CSPI, /* CSPI on all i.mx except above */
72 IMX51_ECSPI, /* ECSPI on i.mx51 and later */
73 };
74
75 struct spi_imx_data;
76
77 struct spi_imx_devtype_data {
78 void (*intctrl)(struct spi_imx_data *, int);
79 int (*config)(struct spi_imx_data *, struct spi_imx_config *);
80 void (*trigger)(struct spi_imx_data *);
81 int (*rx_available)(struct spi_imx_data *);
82 void (*reset)(struct spi_imx_data *);
83 enum spi_imx_devtype devtype;
84 };
85
86 struct spi_imx_data {
87 struct spi_bitbang bitbang;
88 struct device *dev;
89
90 struct completion xfer_done;
91 void __iomem *base;
92 unsigned long base_phys;
93
94 struct clk *clk_per;
95 struct clk *clk_ipg;
96 unsigned long spi_clk;
97 unsigned int spi_bus_clk;
98
99 unsigned int bytes_per_word;
100
101 unsigned int count;
102 void (*tx)(struct spi_imx_data *);
103 void (*rx)(struct spi_imx_data *);
104 void *rx_buf;
105 const void *tx_buf;
106 unsigned int txfifo; /* number of words pushed in tx FIFO */
107
108 /* DMA */
109 bool usedma;
110 u32 wml;
111 struct completion dma_rx_completion;
112 struct completion dma_tx_completion;
113
114 const struct spi_imx_devtype_data *devtype_data;
115 int chipselect[0];
116 };
117
118 static inline int is_imx27_cspi(struct spi_imx_data *d)
119 {
120 return d->devtype_data->devtype == IMX27_CSPI;
121 }
122
123 static inline int is_imx35_cspi(struct spi_imx_data *d)
124 {
125 return d->devtype_data->devtype == IMX35_CSPI;
126 }
127
128 static inline int is_imx51_ecspi(struct spi_imx_data *d)
129 {
130 return d->devtype_data->devtype == IMX51_ECSPI;
131 }
132
133 static inline unsigned spi_imx_get_fifosize(struct spi_imx_data *d)
134 {
135 return is_imx51_ecspi(d) ? 64 : 8;
136 }
137
138 #define MXC_SPI_BUF_RX(type) \
139 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
140 { \
141 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
142 \
143 if (spi_imx->rx_buf) { \
144 *(type *)spi_imx->rx_buf = val; \
145 spi_imx->rx_buf += sizeof(type); \
146 } \
147 }
148
149 #define MXC_SPI_BUF_TX(type) \
150 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
151 { \
152 type val = 0; \
153 \
154 if (spi_imx->tx_buf) { \
155 val = *(type *)spi_imx->tx_buf; \
156 spi_imx->tx_buf += sizeof(type); \
157 } \
158 \
159 spi_imx->count -= sizeof(type); \
160 \
161 writel(val, spi_imx->base + MXC_CSPITXDATA); \
162 }
163
164 MXC_SPI_BUF_RX(u8)
165 MXC_SPI_BUF_TX(u8)
166 MXC_SPI_BUF_RX(u16)
167 MXC_SPI_BUF_TX(u16)
168 MXC_SPI_BUF_RX(u32)
169 MXC_SPI_BUF_TX(u32)
170
171 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
172 * (which is currently not the case in this driver)
173 */
174 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
175 256, 384, 512, 768, 1024};
176
177 /* MX21, MX27 */
178 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
179 unsigned int fspi, unsigned int max)
180 {
181 int i;
182
183 for (i = 2; i < max; i++)
184 if (fspi * mxc_clkdivs[i] >= fin)
185 return i;
186
187 return max;
188 }
189
190 /* MX1, MX31, MX35, MX51 CSPI */
191 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
192 unsigned int fspi)
193 {
194 int i, div = 4;
195
196 for (i = 0; i < 7; i++) {
197 if (fspi * div >= fin)
198 return i;
199 div <<= 1;
200 }
201
202 return 7;
203 }
204
205 static int spi_imx_bytes_per_word(const int bpw)
206 {
207 return DIV_ROUND_UP(bpw, BITS_PER_BYTE);
208 }
209
210 static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
211 struct spi_transfer *transfer)
212 {
213 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
214 unsigned int bpw;
215
216 if (!master->dma_rx)
217 return false;
218
219 if (!transfer)
220 return false;
221
222 bpw = transfer->bits_per_word;
223 if (!bpw)
224 bpw = spi->bits_per_word;
225
226 bpw = spi_imx_bytes_per_word(bpw);
227
228 if (bpw != 1 && bpw != 2 && bpw != 4)
229 return false;
230
231 if (transfer->len < spi_imx->wml * bpw)
232 return false;
233
234 if (transfer->len % (spi_imx->wml * bpw))
235 return false;
236
237 return true;
238 }
239
240 #define MX51_ECSPI_CTRL 0x08
241 #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
242 #define MX51_ECSPI_CTRL_XCH (1 << 2)
243 #define MX51_ECSPI_CTRL_SMC (1 << 3)
244 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
245 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
246 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
247 #define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18)
248 #define MX51_ECSPI_CTRL_BL_OFFSET 20
249
250 #define MX51_ECSPI_CONFIG 0x0c
251 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0))
252 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4))
253 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8))
254 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12))
255 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20))
256
257 #define MX51_ECSPI_INT 0x10
258 #define MX51_ECSPI_INT_TEEN (1 << 0)
259 #define MX51_ECSPI_INT_RREN (1 << 3)
260
261 #define MX51_ECSPI_DMA 0x14
262 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
263 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
264 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
265
266 #define MX51_ECSPI_DMA_TEDEN (1 << 7)
267 #define MX51_ECSPI_DMA_RXDEN (1 << 23)
268 #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
269
270 #define MX51_ECSPI_STAT 0x18
271 #define MX51_ECSPI_STAT_RR (1 << 3)
272
273 #define MX51_ECSPI_TESTREG 0x20
274 #define MX51_ECSPI_TESTREG_LBC BIT(31)
275
276 /* MX51 eCSPI */
277 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
278 unsigned int fspi, unsigned int *fres)
279 {
280 /*
281 * there are two 4-bit dividers, the pre-divider divides by
282 * $pre, the post-divider by 2^$post
283 */
284 unsigned int pre, post;
285 unsigned int fin = spi_imx->spi_clk;
286
287 if (unlikely(fspi > fin))
288 return 0;
289
290 post = fls(fin) - fls(fspi);
291 if (fin > fspi << post)
292 post++;
293
294 /* now we have: (fin <= fspi << post) with post being minimal */
295
296 post = max(4U, post) - 4;
297 if (unlikely(post > 0xf)) {
298 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
299 fspi, fin);
300 return 0xff;
301 }
302
303 pre = DIV_ROUND_UP(fin, fspi << post) - 1;
304
305 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
306 __func__, fin, fspi, post, pre);
307
308 /* Resulting frequency for the SCLK line. */
309 *fres = (fin / (pre + 1)) >> post;
310
311 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
312 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
313 }
314
315 static void __maybe_unused mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
316 {
317 unsigned val = 0;
318
319 if (enable & MXC_INT_TE)
320 val |= MX51_ECSPI_INT_TEEN;
321
322 if (enable & MXC_INT_RR)
323 val |= MX51_ECSPI_INT_RREN;
324
325 writel(val, spi_imx->base + MX51_ECSPI_INT);
326 }
327
328 static void __maybe_unused mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
329 {
330 u32 reg;
331
332 reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
333 reg |= MX51_ECSPI_CTRL_XCH;
334 writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
335 }
336
337 static int __maybe_unused mx51_ecspi_config(struct spi_imx_data *spi_imx,
338 struct spi_imx_config *config)
339 {
340 u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
341 u32 clk = config->speed_hz, delay, reg;
342 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
343
344 /*
345 * The hardware seems to have a race condition when changing modes. The
346 * current assumption is that the selection of the channel arrives
347 * earlier in the hardware than the mode bits when they are written at
348 * the same time.
349 * So set master mode for all channels as we do not support slave mode.
350 */
351 ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
352
353 /* set clock speed */
354 ctrl |= mx51_ecspi_clkdiv(spi_imx, config->speed_hz, &clk);
355 spi_imx->spi_bus_clk = clk;
356
357 /* set chip select to use */
358 ctrl |= MX51_ECSPI_CTRL_CS(config->cs);
359
360 ctrl |= (config->bpw - 1) << MX51_ECSPI_CTRL_BL_OFFSET;
361
362 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(config->cs);
363
364 if (config->mode & SPI_CPHA)
365 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(config->cs);
366 else
367 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(config->cs);
368
369 if (config->mode & SPI_CPOL) {
370 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(config->cs);
371 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(config->cs);
372 } else {
373 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(config->cs);
374 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(config->cs);
375 }
376 if (config->mode & SPI_CS_HIGH)
377 cfg |= MX51_ECSPI_CONFIG_SSBPOL(config->cs);
378 else
379 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(config->cs);
380
381 if (spi_imx->usedma)
382 ctrl |= MX51_ECSPI_CTRL_SMC;
383
384 /* CTRL register always go first to bring out controller from reset */
385 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
386
387 reg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
388 if (config->mode & SPI_LOOP)
389 reg |= MX51_ECSPI_TESTREG_LBC;
390 else
391 reg &= ~MX51_ECSPI_TESTREG_LBC;
392 writel(reg, spi_imx->base + MX51_ECSPI_TESTREG);
393
394 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
395
396 /*
397 * Wait until the changes in the configuration register CONFIGREG
398 * propagate into the hardware. It takes exactly one tick of the
399 * SCLK clock, but we will wait two SCLK clock just to be sure. The
400 * effect of the delay it takes for the hardware to apply changes
401 * is noticable if the SCLK clock run very slow. In such a case, if
402 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
403 * be asserted before the SCLK polarity changes, which would disrupt
404 * the SPI communication as the device on the other end would consider
405 * the change of SCLK polarity as a clock tick already.
406 */
407 delay = (2 * 1000000) / clk;
408 if (likely(delay < 10)) /* SCLK is faster than 100 kHz */
409 udelay(delay);
410 else /* SCLK is _very_ slow */
411 usleep_range(delay, delay + 10);
412
413 /*
414 * Configure the DMA register: setup the watermark
415 * and enable DMA request.
416 */
417
418 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml) |
419 MX51_ECSPI_DMA_TX_WML(spi_imx->wml) |
420 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
421 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
422 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
423
424 return 0;
425 }
426
427 static int __maybe_unused mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
428 {
429 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
430 }
431
432 static void __maybe_unused mx51_ecspi_reset(struct spi_imx_data *spi_imx)
433 {
434 /* drain receive buffer */
435 while (mx51_ecspi_rx_available(spi_imx))
436 readl(spi_imx->base + MXC_CSPIRXDATA);
437 }
438
439 #define MX31_INTREG_TEEN (1 << 0)
440 #define MX31_INTREG_RREN (1 << 3)
441
442 #define MX31_CSPICTRL_ENABLE (1 << 0)
443 #define MX31_CSPICTRL_MASTER (1 << 1)
444 #define MX31_CSPICTRL_XCH (1 << 2)
445 #define MX31_CSPICTRL_POL (1 << 4)
446 #define MX31_CSPICTRL_PHA (1 << 5)
447 #define MX31_CSPICTRL_SSCTL (1 << 6)
448 #define MX31_CSPICTRL_SSPOL (1 << 7)
449 #define MX31_CSPICTRL_BC_SHIFT 8
450 #define MX35_CSPICTRL_BL_SHIFT 20
451 #define MX31_CSPICTRL_CS_SHIFT 24
452 #define MX35_CSPICTRL_CS_SHIFT 12
453 #define MX31_CSPICTRL_DR_SHIFT 16
454
455 #define MX31_CSPISTATUS 0x14
456 #define MX31_STATUS_RR (1 << 3)
457
458 /* These functions also work for the i.MX35, but be aware that
459 * the i.MX35 has a slightly different register layout for bits
460 * we do not use here.
461 */
462 static void __maybe_unused mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
463 {
464 unsigned int val = 0;
465
466 if (enable & MXC_INT_TE)
467 val |= MX31_INTREG_TEEN;
468 if (enable & MXC_INT_RR)
469 val |= MX31_INTREG_RREN;
470
471 writel(val, spi_imx->base + MXC_CSPIINT);
472 }
473
474 static void __maybe_unused mx31_trigger(struct spi_imx_data *spi_imx)
475 {
476 unsigned int reg;
477
478 reg = readl(spi_imx->base + MXC_CSPICTRL);
479 reg |= MX31_CSPICTRL_XCH;
480 writel(reg, spi_imx->base + MXC_CSPICTRL);
481 }
482
483 static int __maybe_unused mx31_config(struct spi_imx_data *spi_imx,
484 struct spi_imx_config *config)
485 {
486 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
487 int cs = spi_imx->chipselect[config->cs];
488
489 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz) <<
490 MX31_CSPICTRL_DR_SHIFT;
491
492 if (is_imx35_cspi(spi_imx)) {
493 reg |= (config->bpw - 1) << MX35_CSPICTRL_BL_SHIFT;
494 reg |= MX31_CSPICTRL_SSCTL;
495 } else {
496 reg |= (config->bpw - 1) << MX31_CSPICTRL_BC_SHIFT;
497 }
498
499 if (config->mode & SPI_CPHA)
500 reg |= MX31_CSPICTRL_PHA;
501 if (config->mode & SPI_CPOL)
502 reg |= MX31_CSPICTRL_POL;
503 if (config->mode & SPI_CS_HIGH)
504 reg |= MX31_CSPICTRL_SSPOL;
505 if (cs < 0)
506 reg |= (cs + 32) <<
507 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
508 MX31_CSPICTRL_CS_SHIFT);
509
510 writel(reg, spi_imx->base + MXC_CSPICTRL);
511
512 return 0;
513 }
514
515 static int __maybe_unused mx31_rx_available(struct spi_imx_data *spi_imx)
516 {
517 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
518 }
519
520 static void __maybe_unused mx31_reset(struct spi_imx_data *spi_imx)
521 {
522 /* drain receive buffer */
523 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
524 readl(spi_imx->base + MXC_CSPIRXDATA);
525 }
526
527 #define MX21_INTREG_RR (1 << 4)
528 #define MX21_INTREG_TEEN (1 << 9)
529 #define MX21_INTREG_RREN (1 << 13)
530
531 #define MX21_CSPICTRL_POL (1 << 5)
532 #define MX21_CSPICTRL_PHA (1 << 6)
533 #define MX21_CSPICTRL_SSPOL (1 << 8)
534 #define MX21_CSPICTRL_XCH (1 << 9)
535 #define MX21_CSPICTRL_ENABLE (1 << 10)
536 #define MX21_CSPICTRL_MASTER (1 << 11)
537 #define MX21_CSPICTRL_DR_SHIFT 14
538 #define MX21_CSPICTRL_CS_SHIFT 19
539
540 static void __maybe_unused mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
541 {
542 unsigned int val = 0;
543
544 if (enable & MXC_INT_TE)
545 val |= MX21_INTREG_TEEN;
546 if (enable & MXC_INT_RR)
547 val |= MX21_INTREG_RREN;
548
549 writel(val, spi_imx->base + MXC_CSPIINT);
550 }
551
552 static void __maybe_unused mx21_trigger(struct spi_imx_data *spi_imx)
553 {
554 unsigned int reg;
555
556 reg = readl(spi_imx->base + MXC_CSPICTRL);
557 reg |= MX21_CSPICTRL_XCH;
558 writel(reg, spi_imx->base + MXC_CSPICTRL);
559 }
560
561 static int __maybe_unused mx21_config(struct spi_imx_data *spi_imx,
562 struct spi_imx_config *config)
563 {
564 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
565 int cs = spi_imx->chipselect[config->cs];
566 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
567
568 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, config->speed_hz, max) <<
569 MX21_CSPICTRL_DR_SHIFT;
570 reg |= config->bpw - 1;
571
572 if (config->mode & SPI_CPHA)
573 reg |= MX21_CSPICTRL_PHA;
574 if (config->mode & SPI_CPOL)
575 reg |= MX21_CSPICTRL_POL;
576 if (config->mode & SPI_CS_HIGH)
577 reg |= MX21_CSPICTRL_SSPOL;
578 if (cs < 0)
579 reg |= (cs + 32) << MX21_CSPICTRL_CS_SHIFT;
580
581 writel(reg, spi_imx->base + MXC_CSPICTRL);
582
583 return 0;
584 }
585
586 static int __maybe_unused mx21_rx_available(struct spi_imx_data *spi_imx)
587 {
588 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
589 }
590
591 static void __maybe_unused mx21_reset(struct spi_imx_data *spi_imx)
592 {
593 writel(1, spi_imx->base + MXC_RESET);
594 }
595
596 #define MX1_INTREG_RR (1 << 3)
597 #define MX1_INTREG_TEEN (1 << 8)
598 #define MX1_INTREG_RREN (1 << 11)
599
600 #define MX1_CSPICTRL_POL (1 << 4)
601 #define MX1_CSPICTRL_PHA (1 << 5)
602 #define MX1_CSPICTRL_XCH (1 << 8)
603 #define MX1_CSPICTRL_ENABLE (1 << 9)
604 #define MX1_CSPICTRL_MASTER (1 << 10)
605 #define MX1_CSPICTRL_DR_SHIFT 13
606
607 static void __maybe_unused mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
608 {
609 unsigned int val = 0;
610
611 if (enable & MXC_INT_TE)
612 val |= MX1_INTREG_TEEN;
613 if (enable & MXC_INT_RR)
614 val |= MX1_INTREG_RREN;
615
616 writel(val, spi_imx->base + MXC_CSPIINT);
617 }
618
619 static void __maybe_unused mx1_trigger(struct spi_imx_data *spi_imx)
620 {
621 unsigned int reg;
622
623 reg = readl(spi_imx->base + MXC_CSPICTRL);
624 reg |= MX1_CSPICTRL_XCH;
625 writel(reg, spi_imx->base + MXC_CSPICTRL);
626 }
627
628 static int __maybe_unused mx1_config(struct spi_imx_data *spi_imx,
629 struct spi_imx_config *config)
630 {
631 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
632
633 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz) <<
634 MX1_CSPICTRL_DR_SHIFT;
635 reg |= config->bpw - 1;
636
637 if (config->mode & SPI_CPHA)
638 reg |= MX1_CSPICTRL_PHA;
639 if (config->mode & SPI_CPOL)
640 reg |= MX1_CSPICTRL_POL;
641
642 writel(reg, spi_imx->base + MXC_CSPICTRL);
643
644 return 0;
645 }
646
647 static int __maybe_unused mx1_rx_available(struct spi_imx_data *spi_imx)
648 {
649 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
650 }
651
652 static void __maybe_unused mx1_reset(struct spi_imx_data *spi_imx)
653 {
654 writel(1, spi_imx->base + MXC_RESET);
655 }
656
657 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
658 .intctrl = mx1_intctrl,
659 .config = mx1_config,
660 .trigger = mx1_trigger,
661 .rx_available = mx1_rx_available,
662 .reset = mx1_reset,
663 .devtype = IMX1_CSPI,
664 };
665
666 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
667 .intctrl = mx21_intctrl,
668 .config = mx21_config,
669 .trigger = mx21_trigger,
670 .rx_available = mx21_rx_available,
671 .reset = mx21_reset,
672 .devtype = IMX21_CSPI,
673 };
674
675 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
676 /* i.mx27 cspi shares the functions with i.mx21 one */
677 .intctrl = mx21_intctrl,
678 .config = mx21_config,
679 .trigger = mx21_trigger,
680 .rx_available = mx21_rx_available,
681 .reset = mx21_reset,
682 .devtype = IMX27_CSPI,
683 };
684
685 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
686 .intctrl = mx31_intctrl,
687 .config = mx31_config,
688 .trigger = mx31_trigger,
689 .rx_available = mx31_rx_available,
690 .reset = mx31_reset,
691 .devtype = IMX31_CSPI,
692 };
693
694 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
695 /* i.mx35 and later cspi shares the functions with i.mx31 one */
696 .intctrl = mx31_intctrl,
697 .config = mx31_config,
698 .trigger = mx31_trigger,
699 .rx_available = mx31_rx_available,
700 .reset = mx31_reset,
701 .devtype = IMX35_CSPI,
702 };
703
704 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
705 .intctrl = mx51_ecspi_intctrl,
706 .config = mx51_ecspi_config,
707 .trigger = mx51_ecspi_trigger,
708 .rx_available = mx51_ecspi_rx_available,
709 .reset = mx51_ecspi_reset,
710 .devtype = IMX51_ECSPI,
711 };
712
713 static const struct platform_device_id spi_imx_devtype[] = {
714 {
715 .name = "imx1-cspi",
716 .driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data,
717 }, {
718 .name = "imx21-cspi",
719 .driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data,
720 }, {
721 .name = "imx27-cspi",
722 .driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data,
723 }, {
724 .name = "imx31-cspi",
725 .driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data,
726 }, {
727 .name = "imx35-cspi",
728 .driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data,
729 }, {
730 .name = "imx51-ecspi",
731 .driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data,
732 }, {
733 /* sentinel */
734 }
735 };
736
737 static const struct of_device_id spi_imx_dt_ids[] = {
738 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
739 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
740 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
741 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
742 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
743 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
744 { /* sentinel */ }
745 };
746 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
747
748 static void spi_imx_chipselect(struct spi_device *spi, int is_active)
749 {
750 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
751 int gpio = spi_imx->chipselect[spi->chip_select];
752 int active = is_active != BITBANG_CS_INACTIVE;
753 int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH);
754
755 if (!gpio_is_valid(gpio))
756 return;
757
758 gpio_set_value(gpio, dev_is_lowactive ^ active);
759 }
760
761 static void spi_imx_push(struct spi_imx_data *spi_imx)
762 {
763 while (spi_imx->txfifo < spi_imx_get_fifosize(spi_imx)) {
764 if (!spi_imx->count)
765 break;
766 spi_imx->tx(spi_imx);
767 spi_imx->txfifo++;
768 }
769
770 spi_imx->devtype_data->trigger(spi_imx);
771 }
772
773 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
774 {
775 struct spi_imx_data *spi_imx = dev_id;
776
777 while (spi_imx->devtype_data->rx_available(spi_imx)) {
778 spi_imx->rx(spi_imx);
779 spi_imx->txfifo--;
780 }
781
782 if (spi_imx->count) {
783 spi_imx_push(spi_imx);
784 return IRQ_HANDLED;
785 }
786
787 if (spi_imx->txfifo) {
788 /* No data left to push, but still waiting for rx data,
789 * enable receive data available interrupt.
790 */
791 spi_imx->devtype_data->intctrl(
792 spi_imx, MXC_INT_RR);
793 return IRQ_HANDLED;
794 }
795
796 spi_imx->devtype_data->intctrl(spi_imx, 0);
797 complete(&spi_imx->xfer_done);
798
799 return IRQ_HANDLED;
800 }
801
802 static int spi_imx_dma_configure(struct spi_master *master,
803 int bytes_per_word)
804 {
805 int ret;
806 enum dma_slave_buswidth buswidth;
807 struct dma_slave_config rx = {}, tx = {};
808 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
809
810 if (bytes_per_word == spi_imx->bytes_per_word)
811 /* Same as last time */
812 return 0;
813
814 switch (bytes_per_word) {
815 case 4:
816 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
817 break;
818 case 2:
819 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
820 break;
821 case 1:
822 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
823 break;
824 default:
825 return -EINVAL;
826 }
827
828 tx.direction = DMA_MEM_TO_DEV;
829 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
830 tx.dst_addr_width = buswidth;
831 tx.dst_maxburst = spi_imx->wml;
832 ret = dmaengine_slave_config(master->dma_tx, &tx);
833 if (ret) {
834 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
835 return ret;
836 }
837
838 rx.direction = DMA_DEV_TO_MEM;
839 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
840 rx.src_addr_width = buswidth;
841 rx.src_maxburst = spi_imx->wml;
842 ret = dmaengine_slave_config(master->dma_rx, &rx);
843 if (ret) {
844 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
845 return ret;
846 }
847
848 spi_imx->bytes_per_word = bytes_per_word;
849
850 return 0;
851 }
852
853 static int spi_imx_setupxfer(struct spi_device *spi,
854 struct spi_transfer *t)
855 {
856 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
857 struct spi_imx_config config;
858 int ret;
859
860 config.bpw = t ? t->bits_per_word : spi->bits_per_word;
861 config.speed_hz = t ? t->speed_hz : spi->max_speed_hz;
862 config.mode = spi->mode;
863 config.cs = spi->chip_select;
864
865 if (!config.speed_hz)
866 config.speed_hz = spi->max_speed_hz;
867 if (!config.bpw)
868 config.bpw = spi->bits_per_word;
869
870 /* Initialize the functions for transfer */
871 if (config.bpw <= 8) {
872 spi_imx->rx = spi_imx_buf_rx_u8;
873 spi_imx->tx = spi_imx_buf_tx_u8;
874 } else if (config.bpw <= 16) {
875 spi_imx->rx = spi_imx_buf_rx_u16;
876 spi_imx->tx = spi_imx_buf_tx_u16;
877 } else {
878 spi_imx->rx = spi_imx_buf_rx_u32;
879 spi_imx->tx = spi_imx_buf_tx_u32;
880 }
881
882 if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t))
883 spi_imx->usedma = 1;
884 else
885 spi_imx->usedma = 0;
886
887 if (spi_imx->usedma) {
888 ret = spi_imx_dma_configure(spi->master,
889 spi_imx_bytes_per_word(config.bpw));
890 if (ret)
891 return ret;
892 }
893
894 spi_imx->devtype_data->config(spi_imx, &config);
895
896 return 0;
897 }
898
899 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
900 {
901 struct spi_master *master = spi_imx->bitbang.master;
902
903 if (master->dma_rx) {
904 dma_release_channel(master->dma_rx);
905 master->dma_rx = NULL;
906 }
907
908 if (master->dma_tx) {
909 dma_release_channel(master->dma_tx);
910 master->dma_tx = NULL;
911 }
912 }
913
914 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
915 struct spi_master *master)
916 {
917 int ret;
918
919 /* use pio mode for i.mx6dl chip TKT238285 */
920 if (of_machine_is_compatible("fsl,imx6dl"))
921 return 0;
922
923 spi_imx->wml = spi_imx_get_fifosize(spi_imx) / 2;
924
925 /* Prepare for TX DMA: */
926 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
927 if (IS_ERR(master->dma_tx)) {
928 ret = PTR_ERR(master->dma_tx);
929 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
930 master->dma_tx = NULL;
931 goto err;
932 }
933
934 /* Prepare for RX : */
935 master->dma_rx = dma_request_slave_channel_reason(dev, "rx");
936 if (IS_ERR(master->dma_rx)) {
937 ret = PTR_ERR(master->dma_rx);
938 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
939 master->dma_rx = NULL;
940 goto err;
941 }
942
943 spi_imx_dma_configure(master, 1);
944
945 init_completion(&spi_imx->dma_rx_completion);
946 init_completion(&spi_imx->dma_tx_completion);
947 master->can_dma = spi_imx_can_dma;
948 master->max_dma_len = MAX_SDMA_BD_BYTES;
949 spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX |
950 SPI_MASTER_MUST_TX;
951
952 return 0;
953 err:
954 spi_imx_sdma_exit(spi_imx);
955 return ret;
956 }
957
958 static void spi_imx_dma_rx_callback(void *cookie)
959 {
960 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
961
962 complete(&spi_imx->dma_rx_completion);
963 }
964
965 static void spi_imx_dma_tx_callback(void *cookie)
966 {
967 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
968
969 complete(&spi_imx->dma_tx_completion);
970 }
971
972 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
973 {
974 unsigned long timeout = 0;
975
976 /* Time with actual data transfer and CS change delay related to HW */
977 timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
978
979 /* Add extra second for scheduler related activities */
980 timeout += 1;
981
982 /* Double calculated timeout */
983 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
984 }
985
986 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
987 struct spi_transfer *transfer)
988 {
989 struct dma_async_tx_descriptor *desc_tx, *desc_rx;
990 unsigned long transfer_timeout;
991 unsigned long timeout;
992 struct spi_master *master = spi_imx->bitbang.master;
993 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
994
995 /*
996 * The TX DMA setup starts the transfer, so make sure RX is configured
997 * before TX.
998 */
999 desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
1000 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1001 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1002 if (!desc_rx)
1003 return -EINVAL;
1004
1005 desc_rx->callback = spi_imx_dma_rx_callback;
1006 desc_rx->callback_param = (void *)spi_imx;
1007 dmaengine_submit(desc_rx);
1008 reinit_completion(&spi_imx->dma_rx_completion);
1009 dma_async_issue_pending(master->dma_rx);
1010
1011 desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
1012 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1013 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1014 if (!desc_tx) {
1015 dmaengine_terminate_all(master->dma_tx);
1016 return -EINVAL;
1017 }
1018
1019 desc_tx->callback = spi_imx_dma_tx_callback;
1020 desc_tx->callback_param = (void *)spi_imx;
1021 dmaengine_submit(desc_tx);
1022 reinit_completion(&spi_imx->dma_tx_completion);
1023 dma_async_issue_pending(master->dma_tx);
1024
1025 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1026
1027 /* Wait SDMA to finish the data transfer.*/
1028 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1029 transfer_timeout);
1030 if (!timeout) {
1031 dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1032 dmaengine_terminate_all(master->dma_tx);
1033 dmaengine_terminate_all(master->dma_rx);
1034 return -ETIMEDOUT;
1035 }
1036
1037 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1038 transfer_timeout);
1039 if (!timeout) {
1040 dev_err(&master->dev, "I/O Error in DMA RX\n");
1041 spi_imx->devtype_data->reset(spi_imx);
1042 dmaengine_terminate_all(master->dma_rx);
1043 return -ETIMEDOUT;
1044 }
1045
1046 return transfer->len;
1047 }
1048
1049 static int spi_imx_pio_transfer(struct spi_device *spi,
1050 struct spi_transfer *transfer)
1051 {
1052 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1053
1054 spi_imx->tx_buf = transfer->tx_buf;
1055 spi_imx->rx_buf = transfer->rx_buf;
1056 spi_imx->count = transfer->len;
1057 spi_imx->txfifo = 0;
1058
1059 reinit_completion(&spi_imx->xfer_done);
1060
1061 spi_imx_push(spi_imx);
1062
1063 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1064
1065 wait_for_completion(&spi_imx->xfer_done);
1066
1067 return transfer->len;
1068 }
1069
1070 static int spi_imx_transfer(struct spi_device *spi,
1071 struct spi_transfer *transfer)
1072 {
1073 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1074
1075 if (spi_imx->usedma)
1076 return spi_imx_dma_transfer(spi_imx, transfer);
1077 else
1078 return spi_imx_pio_transfer(spi, transfer);
1079 }
1080
1081 static int spi_imx_setup(struct spi_device *spi)
1082 {
1083 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1084 int gpio = spi_imx->chipselect[spi->chip_select];
1085
1086 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1087 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1088
1089 if (gpio_is_valid(gpio))
1090 gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
1091
1092 spi_imx_chipselect(spi, BITBANG_CS_INACTIVE);
1093
1094 return 0;
1095 }
1096
1097 static void spi_imx_cleanup(struct spi_device *spi)
1098 {
1099 }
1100
1101 static int
1102 spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
1103 {
1104 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1105 int ret;
1106
1107 ret = clk_enable(spi_imx->clk_per);
1108 if (ret)
1109 return ret;
1110
1111 ret = clk_enable(spi_imx->clk_ipg);
1112 if (ret) {
1113 clk_disable(spi_imx->clk_per);
1114 return ret;
1115 }
1116
1117 return 0;
1118 }
1119
1120 static int
1121 spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
1122 {
1123 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1124
1125 clk_disable(spi_imx->clk_ipg);
1126 clk_disable(spi_imx->clk_per);
1127 return 0;
1128 }
1129
1130 static int spi_imx_probe(struct platform_device *pdev)
1131 {
1132 struct device_node *np = pdev->dev.of_node;
1133 const struct of_device_id *of_id =
1134 of_match_device(spi_imx_dt_ids, &pdev->dev);
1135 struct spi_imx_master *mxc_platform_info =
1136 dev_get_platdata(&pdev->dev);
1137 struct spi_master *master;
1138 struct spi_imx_data *spi_imx;
1139 struct resource *res;
1140 int i, ret, num_cs, irq;
1141
1142 if (!np && !mxc_platform_info) {
1143 dev_err(&pdev->dev, "can't get the platform data\n");
1144 return -EINVAL;
1145 }
1146
1147 ret = of_property_read_u32(np, "fsl,spi-num-chipselects", &num_cs);
1148 if (ret < 0) {
1149 if (mxc_platform_info)
1150 num_cs = mxc_platform_info->num_chipselect;
1151 else
1152 return ret;
1153 }
1154
1155 master = spi_alloc_master(&pdev->dev,
1156 sizeof(struct spi_imx_data) + sizeof(int) * num_cs);
1157 if (!master)
1158 return -ENOMEM;
1159
1160 platform_set_drvdata(pdev, master);
1161
1162 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1163 master->bus_num = pdev->id;
1164 master->num_chipselect = num_cs;
1165
1166 spi_imx = spi_master_get_devdata(master);
1167 spi_imx->bitbang.master = master;
1168 spi_imx->dev = &pdev->dev;
1169
1170 spi_imx->devtype_data = of_id ? of_id->data :
1171 (struct spi_imx_devtype_data *)pdev->id_entry->driver_data;
1172
1173 for (i = 0; i < master->num_chipselect; i++) {
1174 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
1175 if (!gpio_is_valid(cs_gpio) && mxc_platform_info)
1176 cs_gpio = mxc_platform_info->chipselect[i];
1177
1178 spi_imx->chipselect[i] = cs_gpio;
1179 if (!gpio_is_valid(cs_gpio))
1180 continue;
1181
1182 ret = devm_gpio_request(&pdev->dev, spi_imx->chipselect[i],
1183 DRIVER_NAME);
1184 if (ret) {
1185 dev_err(&pdev->dev, "can't get cs gpios\n");
1186 goto out_master_put;
1187 }
1188 }
1189
1190 spi_imx->bitbang.chipselect = spi_imx_chipselect;
1191 spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
1192 spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
1193 spi_imx->bitbang.master->setup = spi_imx_setup;
1194 spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
1195 spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
1196 spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
1197 spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1198 if (is_imx51_ecspi(spi_imx))
1199 spi_imx->bitbang.master->mode_bits |= SPI_LOOP;
1200
1201 init_completion(&spi_imx->xfer_done);
1202
1203 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1204 spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
1205 if (IS_ERR(spi_imx->base)) {
1206 ret = PTR_ERR(spi_imx->base);
1207 goto out_master_put;
1208 }
1209 spi_imx->base_phys = res->start;
1210
1211 irq = platform_get_irq(pdev, 0);
1212 if (irq < 0) {
1213 ret = irq;
1214 goto out_master_put;
1215 }
1216
1217 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1218 dev_name(&pdev->dev), spi_imx);
1219 if (ret) {
1220 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1221 goto out_master_put;
1222 }
1223
1224 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1225 if (IS_ERR(spi_imx->clk_ipg)) {
1226 ret = PTR_ERR(spi_imx->clk_ipg);
1227 goto out_master_put;
1228 }
1229
1230 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1231 if (IS_ERR(spi_imx->clk_per)) {
1232 ret = PTR_ERR(spi_imx->clk_per);
1233 goto out_master_put;
1234 }
1235
1236 ret = clk_prepare_enable(spi_imx->clk_per);
1237 if (ret)
1238 goto out_master_put;
1239
1240 ret = clk_prepare_enable(spi_imx->clk_ipg);
1241 if (ret)
1242 goto out_put_per;
1243
1244 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1245 /*
1246 * Only validated on i.mx6 now, can remove the constrain if validated on
1247 * other chips.
1248 */
1249 if (is_imx51_ecspi(spi_imx)) {
1250 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
1251 if (ret == -EPROBE_DEFER)
1252 goto out_clk_put;
1253
1254 if (ret < 0)
1255 dev_err(&pdev->dev, "dma setup error %d, use pio\n",
1256 ret);
1257 }
1258
1259 spi_imx->devtype_data->reset(spi_imx);
1260
1261 spi_imx->devtype_data->intctrl(spi_imx, 0);
1262
1263 master->dev.of_node = pdev->dev.of_node;
1264 ret = spi_bitbang_start(&spi_imx->bitbang);
1265 if (ret) {
1266 dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
1267 goto out_clk_put;
1268 }
1269
1270 dev_info(&pdev->dev, "probed\n");
1271
1272 clk_disable(spi_imx->clk_ipg);
1273 clk_disable(spi_imx->clk_per);
1274 return ret;
1275
1276 out_clk_put:
1277 clk_disable_unprepare(spi_imx->clk_ipg);
1278 out_put_per:
1279 clk_disable_unprepare(spi_imx->clk_per);
1280 out_master_put:
1281 spi_master_put(master);
1282
1283 return ret;
1284 }
1285
1286 static int spi_imx_remove(struct platform_device *pdev)
1287 {
1288 struct spi_master *master = platform_get_drvdata(pdev);
1289 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1290
1291 spi_bitbang_stop(&spi_imx->bitbang);
1292
1293 writel(0, spi_imx->base + MXC_CSPICTRL);
1294 clk_unprepare(spi_imx->clk_ipg);
1295 clk_unprepare(spi_imx->clk_per);
1296 spi_imx_sdma_exit(spi_imx);
1297 spi_master_put(master);
1298
1299 return 0;
1300 }
1301
1302 static struct platform_driver spi_imx_driver = {
1303 .driver = {
1304 .name = DRIVER_NAME,
1305 .of_match_table = spi_imx_dt_ids,
1306 },
1307 .id_table = spi_imx_devtype,
1308 .probe = spi_imx_probe,
1309 .remove = spi_imx_remove,
1310 };
1311 module_platform_driver(spi_imx_driver);
1312
1313 MODULE_DESCRIPTION("SPI Master Controller driver");
1314 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1315 MODULE_LICENSE("GPL");
1316 MODULE_ALIAS("platform:" DRIVER_NAME);