]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-lantiq-ssc.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-lantiq-ssc.c
1 /*
2 * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
3 * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
4 *
5 * This program is free software; you can distribute it and/or modify it
6 * under the terms of the GNU General Public License (Version 2) as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/clk.h>
14 #include <linux/io.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/sched.h>
18 #include <linux/completion.h>
19 #include <linux/spinlock.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/spi/spi.h>
24
25 #ifdef CONFIG_LANTIQ
26 #include <lantiq_soc.h>
27 #endif
28
29 #define LTQ_SPI_RX_IRQ_NAME "spi_rx"
30 #define LTQ_SPI_TX_IRQ_NAME "spi_tx"
31 #define LTQ_SPI_ERR_IRQ_NAME "spi_err"
32 #define LTQ_SPI_FRM_IRQ_NAME "spi_frm"
33
34 #define LTQ_SPI_CLC 0x00
35 #define LTQ_SPI_PISEL 0x04
36 #define LTQ_SPI_ID 0x08
37 #define LTQ_SPI_CON 0x10
38 #define LTQ_SPI_STAT 0x14
39 #define LTQ_SPI_WHBSTATE 0x18
40 #define LTQ_SPI_TB 0x20
41 #define LTQ_SPI_RB 0x24
42 #define LTQ_SPI_RXFCON 0x30
43 #define LTQ_SPI_TXFCON 0x34
44 #define LTQ_SPI_FSTAT 0x38
45 #define LTQ_SPI_BRT 0x40
46 #define LTQ_SPI_BRSTAT 0x44
47 #define LTQ_SPI_SFCON 0x60
48 #define LTQ_SPI_SFSTAT 0x64
49 #define LTQ_SPI_GPOCON 0x70
50 #define LTQ_SPI_GPOSTAT 0x74
51 #define LTQ_SPI_FPGO 0x78
52 #define LTQ_SPI_RXREQ 0x80
53 #define LTQ_SPI_RXCNT 0x84
54 #define LTQ_SPI_DMACON 0xec
55 #define LTQ_SPI_IRNEN 0xf4
56 #define LTQ_SPI_IRNICR 0xf8
57 #define LTQ_SPI_IRNCR 0xfc
58
59 #define LTQ_SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
60 #define LTQ_SPI_CLC_SMC_M (0xFF << LTQ_SPI_CLC_SMC_S)
61 #define LTQ_SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
62 #define LTQ_SPI_CLC_RMC_M (0xFF << LTQ_SPI_CLC_RMC_S)
63 #define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
64 #define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
65
66 #define LTQ_SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
67 #define LTQ_SPI_ID_TXFS_M (0x3F << LTQ_SPI_ID_TXFS_S)
68 #define LTQ_SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
69 #define LTQ_SPI_ID_RXFS_M (0x3F << LTQ_SPI_ID_RXFS_S)
70 #define LTQ_SPI_ID_MOD_S 8 /* Module ID */
71 #define LTQ_SPI_ID_MOD_M (0xff << LTQ_SPI_ID_MOD_S)
72 #define LTQ_SPI_ID_CFG_S 5 /* DMA interface support */
73 #define LTQ_SPI_ID_CFG_M (1 << LTQ_SPI_ID_CFG_S)
74 #define LTQ_SPI_ID_REV_M 0x1F /* Hardware revision number */
75
76 #define LTQ_SPI_CON_BM_S 16 /* Data width selection */
77 #define LTQ_SPI_CON_BM_M (0x1F << LTQ_SPI_CON_BM_S)
78 #define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
79 #define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
80 #define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
81 #define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
82 #define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
83 #define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
84 #define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
85 #define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
86 #define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
87 #define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
88 #define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
89 #define LTQ_SPI_CON_HB BIT(4) /* Heading control */
90 #define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
91 #define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
92
93 #define LTQ_SPI_STAT_RXBV_S 28
94 #define LTQ_SPI_STAT_RXBV_M (0x7 << LTQ_SPI_STAT_RXBV_S)
95 #define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
96 #define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
97 #define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
98 #define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
99 #define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
100 #define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
101 #define LTQ_SPI_STAT_ME BIT(7) /* Mode error flag */
102 #define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */
103 #define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
104 #define LTQ_SPI_STAT_ERRORS (LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
105 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
106 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
107
108 #define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
109 #define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
110 #define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
111 #define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
112 #define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
113 #define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
114 #define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
115 #define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
116 #define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
117 #define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
118 #define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
119 #define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
120 #define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
121 #define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
122 #define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
123 #define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
124 #define LTQ_SPI_WHBSTATE_CLR_ERRORS (LTQ_SPI_WHBSTATE_CLRRUE | \
125 LTQ_SPI_WHBSTATE_CLRME | \
126 LTQ_SPI_WHBSTATE_CLRTE | \
127 LTQ_SPI_WHBSTATE_CLRRE | \
128 LTQ_SPI_WHBSTATE_CLRAE | \
129 LTQ_SPI_WHBSTATE_CLRTUE)
130
131 #define LTQ_SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
132 #define LTQ_SPI_RXFCON_RXFITL_M (0x3F << LTQ_SPI_RXFCON_RXFITL_S)
133 #define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
134 #define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
135
136 #define LTQ_SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
137 #define LTQ_SPI_TXFCON_TXFITL_M (0x3F << LTQ_SPI_TXFCON_TXFITL_S)
138 #define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
139 #define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
140
141 #define LTQ_SPI_FSTAT_RXFFL_S 0
142 #define LTQ_SPI_FSTAT_RXFFL_M (0x3f << LTQ_SPI_FSTAT_RXFFL_S)
143 #define LTQ_SPI_FSTAT_TXFFL_S 8
144 #define LTQ_SPI_FSTAT_TXFFL_M (0x3f << LTQ_SPI_FSTAT_TXFFL_S)
145
146 #define LTQ_SPI_GPOCON_ISCSBN_S 8
147 #define LTQ_SPI_GPOCON_INVOUTN_S 0
148
149 #define LTQ_SPI_FGPO_SETOUTN_S 8
150 #define LTQ_SPI_FGPO_CLROUTN_S 0
151
152 #define LTQ_SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
153 #define LTQ_SPI_RXCNT_TODO_M 0xFFFF /* Recevie to-do value */
154
155 #define LTQ_SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
156 #define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
157 #define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
158 #define LTQ_SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
159 #define LTQ_SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
160 #define LTQ_SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
161 #define LTQ_SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
162 #define LTQ_SPI_IRNEN_ALL 0x1F
163
164 struct lantiq_ssc_hwcfg {
165 unsigned int irnen_r;
166 unsigned int irnen_t;
167 };
168
169 struct lantiq_ssc_spi {
170 struct spi_master *master;
171 struct device *dev;
172 void __iomem *regbase;
173 struct clk *spi_clk;
174 struct clk *fpi_clk;
175 const struct lantiq_ssc_hwcfg *hwcfg;
176
177 spinlock_t lock;
178 struct workqueue_struct *wq;
179 struct work_struct work;
180
181 const u8 *tx;
182 u8 *rx;
183 unsigned int tx_todo;
184 unsigned int rx_todo;
185 unsigned int bits_per_word;
186 unsigned int speed_hz;
187 unsigned int tx_fifo_size;
188 unsigned int rx_fifo_size;
189 unsigned int base_cs;
190 };
191
192 static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
193 {
194 return __raw_readl(spi->regbase + reg);
195 }
196
197 static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
198 u32 reg)
199 {
200 __raw_writel(val, spi->regbase + reg);
201 }
202
203 static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
204 u32 set, u32 reg)
205 {
206 u32 val = __raw_readl(spi->regbase + reg);
207
208 val &= ~clr;
209 val |= set;
210 __raw_writel(val, spi->regbase + reg);
211 }
212
213 static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
214 {
215 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
216
217 return (fstat & LTQ_SPI_FSTAT_TXFFL_M) >> LTQ_SPI_FSTAT_TXFFL_S;
218 }
219
220 static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
221 {
222 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
223
224 return fstat & LTQ_SPI_FSTAT_RXFFL_M;
225 }
226
227 static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
228 {
229 return spi->tx_fifo_size - tx_fifo_level(spi);
230 }
231
232 static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
233 {
234 u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
235
236 val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
237 lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
238 }
239
240 static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
241 {
242 u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
243
244 val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
245 lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
246 }
247
248 static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
249 {
250 lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
251 }
252
253 static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
254 {
255 lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
256 }
257
258 static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
259 {
260 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
261 }
262
263 static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
264 {
265 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
266 }
267
268 static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
269 unsigned int max_speed_hz)
270 {
271 u32 spi_clk, brt;
272
273 /*
274 * SPI module clock is derived from FPI bus clock dependent on
275 * divider value in CLC.RMS which is always set to 1.
276 *
277 * f_SPI
278 * baudrate = --------------
279 * 2 * (BR + 1)
280 */
281 spi_clk = clk_get_rate(spi->fpi_clk) / 2;
282
283 if (max_speed_hz > spi_clk)
284 brt = 0;
285 else
286 brt = spi_clk / max_speed_hz - 1;
287
288 if (brt > 0xFFFF)
289 brt = 0xFFFF;
290
291 dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
292 spi_clk, max_speed_hz, brt);
293
294 lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
295 }
296
297 static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
298 unsigned int bits_per_word)
299 {
300 u32 bm;
301
302 /* CON.BM value = bits_per_word - 1 */
303 bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
304
305 lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
306 }
307
308 static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
309 unsigned int mode)
310 {
311 u32 con_set = 0, con_clr = 0;
312
313 /*
314 * SPI mode mapping in CON register:
315 * Mode CPOL CPHA CON.PO CON.PH
316 * 0 0 0 0 1
317 * 1 0 1 0 0
318 * 2 1 0 1 1
319 * 3 1 1 1 0
320 */
321 if (mode & SPI_CPHA)
322 con_clr |= LTQ_SPI_CON_PH;
323 else
324 con_set |= LTQ_SPI_CON_PH;
325
326 if (mode & SPI_CPOL)
327 con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
328 else
329 con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
330
331 /* Set heading control */
332 if (mode & SPI_LSB_FIRST)
333 con_clr |= LTQ_SPI_CON_HB;
334 else
335 con_set |= LTQ_SPI_CON_HB;
336
337 /* Set loopback mode */
338 if (mode & SPI_LOOP)
339 con_set |= LTQ_SPI_CON_LB;
340 else
341 con_clr |= LTQ_SPI_CON_LB;
342
343 lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
344 }
345
346 static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
347 {
348 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
349
350 /*
351 * Set clock divider for run mode to 1 to
352 * run at same frequency as FPI bus
353 */
354 lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
355
356 /* Put controller into config mode */
357 hw_enter_config_mode(spi);
358
359 /* Clear error flags */
360 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
361
362 /* Enable error checking, disable TX/RX */
363 lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
364 LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
365 LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
366
367 /* Setup default SPI mode */
368 hw_setup_bits_per_word(spi, spi->bits_per_word);
369 hw_setup_clock_mode(spi, SPI_MODE_0);
370
371 /* Enable master mode and clear error flags */
372 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
373 LTQ_SPI_WHBSTATE_CLR_ERRORS,
374 LTQ_SPI_WHBSTATE);
375
376 /* Reset GPIO/CS registers */
377 lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
378 lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
379
380 /* Enable and flush FIFOs */
381 rx_fifo_reset(spi);
382 tx_fifo_reset(spi);
383
384 /* Enable interrupts */
385 lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
386 LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
387 }
388
389 static int lantiq_ssc_setup(struct spi_device *spidev)
390 {
391 struct spi_master *master = spidev->master;
392 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
393 unsigned int cs = spidev->chip_select;
394 u32 gpocon;
395
396 /* GPIOs are used for CS */
397 if (gpio_is_valid(spidev->cs_gpio))
398 return 0;
399
400 dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
401
402 if (cs < spi->base_cs) {
403 dev_err(spi->dev,
404 "chipselect %i too small (min %i)\n", cs, spi->base_cs);
405 return -EINVAL;
406 }
407
408 /* set GPO pin to CS mode */
409 gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
410
411 /* invert GPO pin */
412 if (spidev->mode & SPI_CS_HIGH)
413 gpocon |= 1 << (cs - spi->base_cs);
414
415 lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
416
417 return 0;
418 }
419
420 static int lantiq_ssc_prepare_message(struct spi_master *master,
421 struct spi_message *message)
422 {
423 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
424
425 hw_enter_config_mode(spi);
426 hw_setup_clock_mode(spi, message->spi->mode);
427 hw_enter_active_mode(spi);
428
429 return 0;
430 }
431
432 static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
433 struct spi_device *spidev, struct spi_transfer *t)
434 {
435 unsigned int speed_hz = t->speed_hz;
436 unsigned int bits_per_word = t->bits_per_word;
437 u32 con;
438
439 if (bits_per_word != spi->bits_per_word ||
440 speed_hz != spi->speed_hz) {
441 hw_enter_config_mode(spi);
442 hw_setup_speed_hz(spi, speed_hz);
443 hw_setup_bits_per_word(spi, bits_per_word);
444 hw_enter_active_mode(spi);
445
446 spi->speed_hz = speed_hz;
447 spi->bits_per_word = bits_per_word;
448 }
449
450 /* Configure transmitter and receiver */
451 con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
452 if (t->tx_buf)
453 con &= ~LTQ_SPI_CON_TXOFF;
454 else
455 con |= LTQ_SPI_CON_TXOFF;
456
457 if (t->rx_buf)
458 con &= ~LTQ_SPI_CON_RXOFF;
459 else
460 con |= LTQ_SPI_CON_RXOFF;
461
462 lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
463 }
464
465 static int lantiq_ssc_unprepare_message(struct spi_master *master,
466 struct spi_message *message)
467 {
468 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
469
470 flush_workqueue(spi->wq);
471
472 /* Disable transmitter and receiver while idle */
473 lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
474 LTQ_SPI_CON);
475
476 return 0;
477 }
478
479 static void tx_fifo_write(struct lantiq_ssc_spi *spi)
480 {
481 const u8 *tx8;
482 const u16 *tx16;
483 const u32 *tx32;
484 u32 data;
485 unsigned int tx_free = tx_fifo_free(spi);
486
487 while (spi->tx_todo && tx_free) {
488 switch (spi->bits_per_word) {
489 case 2 ... 8:
490 tx8 = spi->tx;
491 data = *tx8;
492 spi->tx_todo--;
493 spi->tx++;
494 break;
495 case 16:
496 tx16 = (u16 *) spi->tx;
497 data = *tx16;
498 spi->tx_todo -= 2;
499 spi->tx += 2;
500 break;
501 case 32:
502 tx32 = (u32 *) spi->tx;
503 data = *tx32;
504 spi->tx_todo -= 4;
505 spi->tx += 4;
506 break;
507 default:
508 WARN_ON(1);
509 data = 0;
510 break;
511 }
512
513 lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
514 tx_free--;
515 }
516 }
517
518 static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
519 {
520 u8 *rx8;
521 u16 *rx16;
522 u32 *rx32;
523 u32 data;
524 unsigned int rx_fill = rx_fifo_level(spi);
525
526 while (rx_fill) {
527 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
528
529 switch (spi->bits_per_word) {
530 case 2 ... 8:
531 rx8 = spi->rx;
532 *rx8 = data;
533 spi->rx_todo--;
534 spi->rx++;
535 break;
536 case 16:
537 rx16 = (u16 *) spi->rx;
538 *rx16 = data;
539 spi->rx_todo -= 2;
540 spi->rx += 2;
541 break;
542 case 32:
543 rx32 = (u32 *) spi->rx;
544 *rx32 = data;
545 spi->rx_todo -= 4;
546 spi->rx += 4;
547 break;
548 default:
549 WARN_ON(1);
550 break;
551 }
552
553 rx_fill--;
554 }
555 }
556
557 static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
558 {
559 u32 data, *rx32;
560 u8 *rx8;
561 unsigned int rxbv, shift;
562 unsigned int rx_fill = rx_fifo_level(spi);
563
564 /*
565 * In RX-only mode the bits per word value is ignored by HW. A value
566 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
567 * If remaining RX bytes are less than 4, the FIFO must be read
568 * differently. The amount of received and valid bytes is indicated
569 * by STAT.RXBV register value.
570 */
571 while (rx_fill) {
572 if (spi->rx_todo < 4) {
573 rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
574 LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
575 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
576
577 shift = (rxbv - 1) * 8;
578 rx8 = spi->rx;
579
580 while (rxbv) {
581 *rx8++ = (data >> shift) & 0xFF;
582 rxbv--;
583 shift -= 8;
584 spi->rx_todo--;
585 spi->rx++;
586 }
587 } else {
588 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
589 rx32 = (u32 *) spi->rx;
590
591 *rx32++ = data;
592 spi->rx_todo -= 4;
593 spi->rx += 4;
594 }
595 rx_fill--;
596 }
597 }
598
599 static void rx_request(struct lantiq_ssc_spi *spi)
600 {
601 unsigned int rxreq, rxreq_max;
602
603 /*
604 * To avoid receive overflows at high clocks it is better to request
605 * only the amount of bytes that fits into all FIFOs. This value
606 * depends on the FIFO size implemented in hardware.
607 */
608 rxreq = spi->rx_todo;
609 rxreq_max = spi->rx_fifo_size * 4;
610 if (rxreq > rxreq_max)
611 rxreq = rxreq_max;
612
613 lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
614 }
615
616 static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
617 {
618 struct lantiq_ssc_spi *spi = data;
619
620 if (spi->tx) {
621 if (spi->rx && spi->rx_todo)
622 rx_fifo_read_full_duplex(spi);
623
624 if (spi->tx_todo)
625 tx_fifo_write(spi);
626 else if (!tx_fifo_level(spi))
627 goto completed;
628 } else if (spi->rx) {
629 if (spi->rx_todo) {
630 rx_fifo_read_half_duplex(spi);
631
632 if (spi->rx_todo)
633 rx_request(spi);
634 else
635 goto completed;
636 } else {
637 goto completed;
638 }
639 }
640
641 return IRQ_HANDLED;
642
643 completed:
644 queue_work(spi->wq, &spi->work);
645
646 return IRQ_HANDLED;
647 }
648
649 static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
650 {
651 struct lantiq_ssc_spi *spi = data;
652 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
653
654 if (!(stat & LTQ_SPI_STAT_ERRORS))
655 return IRQ_NONE;
656
657 if (stat & LTQ_SPI_STAT_RUE)
658 dev_err(spi->dev, "receive underflow error\n");
659 if (stat & LTQ_SPI_STAT_TUE)
660 dev_err(spi->dev, "transmit underflow error\n");
661 if (stat & LTQ_SPI_STAT_AE)
662 dev_err(spi->dev, "abort error\n");
663 if (stat & LTQ_SPI_STAT_RE)
664 dev_err(spi->dev, "receive overflow error\n");
665 if (stat & LTQ_SPI_STAT_TE)
666 dev_err(spi->dev, "transmit overflow error\n");
667 if (stat & LTQ_SPI_STAT_ME)
668 dev_err(spi->dev, "mode error\n");
669
670 /* Clear error flags */
671 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
672
673 /* set bad status so it can be retried */
674 if (spi->master->cur_msg)
675 spi->master->cur_msg->status = -EIO;
676 queue_work(spi->wq, &spi->work);
677
678 return IRQ_HANDLED;
679 }
680
681 static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
682 struct spi_transfer *t)
683 {
684 unsigned long flags;
685
686 spin_lock_irqsave(&spi->lock, flags);
687
688 spi->tx = t->tx_buf;
689 spi->rx = t->rx_buf;
690
691 if (t->tx_buf) {
692 spi->tx_todo = t->len;
693
694 /* initially fill TX FIFO */
695 tx_fifo_write(spi);
696 }
697
698 if (spi->rx) {
699 spi->rx_todo = t->len;
700
701 /* start shift clock in RX-only mode */
702 if (!spi->tx)
703 rx_request(spi);
704 }
705
706 spin_unlock_irqrestore(&spi->lock, flags);
707
708 return t->len;
709 }
710
711 /*
712 * The driver only gets an interrupt when the FIFO is empty, but there
713 * is an additional shift register from which the data is written to
714 * the wire. We get the last interrupt when the controller starts to
715 * write the last word to the wire, not when it is finished. Do busy
716 * waiting till it finishes.
717 */
718 static void lantiq_ssc_bussy_work(struct work_struct *work)
719 {
720 struct lantiq_ssc_spi *spi;
721 unsigned long long timeout = 8LL * 1000LL;
722 unsigned long end;
723
724 spi = container_of(work, typeof(*spi), work);
725
726 do_div(timeout, spi->speed_hz);
727 timeout += timeout + 100; /* some tolerance */
728
729 end = jiffies + msecs_to_jiffies(timeout);
730 do {
731 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
732
733 if (!(stat & LTQ_SPI_STAT_BSY)) {
734 spi_finalize_current_transfer(spi->master);
735 return;
736 }
737
738 cond_resched();
739 } while (!time_after_eq(jiffies, end));
740
741 if (spi->master->cur_msg)
742 spi->master->cur_msg->status = -EIO;
743 spi_finalize_current_transfer(spi->master);
744 }
745
746 static void lantiq_ssc_handle_err(struct spi_master *master,
747 struct spi_message *message)
748 {
749 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
750
751 /* flush FIFOs on timeout */
752 rx_fifo_flush(spi);
753 tx_fifo_flush(spi);
754 }
755
756 static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
757 {
758 struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
759 unsigned int cs = spidev->chip_select;
760 u32 fgpo;
761
762 if (!!(spidev->mode & SPI_CS_HIGH) == enable)
763 fgpo = (1 << (cs - spi->base_cs));
764 else
765 fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
766
767 lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
768 }
769
770 static int lantiq_ssc_transfer_one(struct spi_master *master,
771 struct spi_device *spidev,
772 struct spi_transfer *t)
773 {
774 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
775
776 hw_setup_transfer(spi, spidev, t);
777
778 return transfer_start(spi, spidev, t);
779 }
780
781 static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
782 .irnen_r = LTQ_SPI_IRNEN_R_XWAY,
783 .irnen_t = LTQ_SPI_IRNEN_T_XWAY,
784 };
785
786 static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
787 .irnen_r = LTQ_SPI_IRNEN_R_XRX,
788 .irnen_t = LTQ_SPI_IRNEN_T_XRX,
789 };
790
791 static const struct of_device_id lantiq_ssc_match[] = {
792 { .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
793 { .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
794 { .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
795 {},
796 };
797 MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
798
799 static int lantiq_ssc_probe(struct platform_device *pdev)
800 {
801 struct device *dev = &pdev->dev;
802 struct spi_master *master;
803 struct resource *res;
804 struct lantiq_ssc_spi *spi;
805 const struct lantiq_ssc_hwcfg *hwcfg;
806 const struct of_device_id *match;
807 int err, rx_irq, tx_irq, err_irq;
808 u32 id, supports_dma, revision;
809 unsigned int num_cs;
810
811 match = of_match_device(lantiq_ssc_match, dev);
812 if (!match) {
813 dev_err(dev, "no device match\n");
814 return -EINVAL;
815 }
816 hwcfg = match->data;
817
818 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
819 if (!res) {
820 dev_err(dev, "failed to get resources\n");
821 return -ENXIO;
822 }
823
824 rx_irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
825 if (rx_irq < 0) {
826 dev_err(dev, "failed to get %s\n", LTQ_SPI_RX_IRQ_NAME);
827 return -ENXIO;
828 }
829
830 tx_irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
831 if (tx_irq < 0) {
832 dev_err(dev, "failed to get %s\n", LTQ_SPI_TX_IRQ_NAME);
833 return -ENXIO;
834 }
835
836 err_irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
837 if (err_irq < 0) {
838 dev_err(dev, "failed to get %s\n", LTQ_SPI_ERR_IRQ_NAME);
839 return -ENXIO;
840 }
841
842 master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
843 if (!master)
844 return -ENOMEM;
845
846 spi = spi_master_get_devdata(master);
847 spi->master = master;
848 spi->dev = dev;
849 spi->hwcfg = hwcfg;
850 platform_set_drvdata(pdev, spi);
851
852 spi->regbase = devm_ioremap_resource(dev, res);
853 if (IS_ERR(spi->regbase)) {
854 err = PTR_ERR(spi->regbase);
855 goto err_master_put;
856 }
857
858 err = devm_request_irq(dev, rx_irq, lantiq_ssc_xmit_interrupt,
859 0, LTQ_SPI_RX_IRQ_NAME, spi);
860 if (err)
861 goto err_master_put;
862
863 err = devm_request_irq(dev, tx_irq, lantiq_ssc_xmit_interrupt,
864 0, LTQ_SPI_TX_IRQ_NAME, spi);
865 if (err)
866 goto err_master_put;
867
868 err = devm_request_irq(dev, err_irq, lantiq_ssc_err_interrupt,
869 0, LTQ_SPI_ERR_IRQ_NAME, spi);
870 if (err)
871 goto err_master_put;
872
873 spi->spi_clk = devm_clk_get(dev, "gate");
874 if (IS_ERR(spi->spi_clk)) {
875 err = PTR_ERR(spi->spi_clk);
876 goto err_master_put;
877 }
878 err = clk_prepare_enable(spi->spi_clk);
879 if (err)
880 goto err_master_put;
881
882 /*
883 * Use the old clk_get_fpi() function on Lantiq platform, till it
884 * supports common clk.
885 */
886 #if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
887 spi->fpi_clk = clk_get_fpi();
888 #else
889 spi->fpi_clk = clk_get(dev, "freq");
890 #endif
891 if (IS_ERR(spi->fpi_clk)) {
892 err = PTR_ERR(spi->fpi_clk);
893 goto err_clk_disable;
894 }
895
896 num_cs = 8;
897 of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
898
899 spi->base_cs = 1;
900 of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
901
902 spin_lock_init(&spi->lock);
903 spi->bits_per_word = 8;
904 spi->speed_hz = 0;
905
906 master->dev.of_node = pdev->dev.of_node;
907 master->num_chipselect = num_cs;
908 master->setup = lantiq_ssc_setup;
909 master->set_cs = lantiq_ssc_set_cs;
910 master->handle_err = lantiq_ssc_handle_err;
911 master->prepare_message = lantiq_ssc_prepare_message;
912 master->unprepare_message = lantiq_ssc_unprepare_message;
913 master->transfer_one = lantiq_ssc_transfer_one;
914 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
915 SPI_LOOP;
916 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
917 SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
918
919 spi->wq = alloc_ordered_workqueue(dev_name(dev), 0);
920 if (!spi->wq) {
921 err = -ENOMEM;
922 goto err_clk_put;
923 }
924 INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
925
926 id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
927 spi->tx_fifo_size = (id & LTQ_SPI_ID_TXFS_M) >> LTQ_SPI_ID_TXFS_S;
928 spi->rx_fifo_size = (id & LTQ_SPI_ID_RXFS_M) >> LTQ_SPI_ID_RXFS_S;
929 supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
930 revision = id & LTQ_SPI_ID_REV_M;
931
932 lantiq_ssc_hw_init(spi);
933
934 dev_info(dev,
935 "Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
936 revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
937
938 err = devm_spi_register_master(dev, master);
939 if (err) {
940 dev_err(dev, "failed to register spi_master\n");
941 goto err_wq_destroy;
942 }
943
944 return 0;
945
946 err_wq_destroy:
947 destroy_workqueue(spi->wq);
948 err_clk_put:
949 clk_put(spi->fpi_clk);
950 err_clk_disable:
951 clk_disable_unprepare(spi->spi_clk);
952 err_master_put:
953 spi_master_put(master);
954
955 return err;
956 }
957
958 static int lantiq_ssc_remove(struct platform_device *pdev)
959 {
960 struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
961
962 lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
963 lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
964 rx_fifo_flush(spi);
965 tx_fifo_flush(spi);
966 hw_enter_config_mode(spi);
967
968 destroy_workqueue(spi->wq);
969 clk_disable_unprepare(spi->spi_clk);
970 clk_put(spi->fpi_clk);
971
972 return 0;
973 }
974
975 static struct platform_driver lantiq_ssc_driver = {
976 .probe = lantiq_ssc_probe,
977 .remove = lantiq_ssc_remove,
978 .driver = {
979 .name = "spi-lantiq-ssc",
980 .of_match_table = lantiq_ssc_match,
981 },
982 };
983 module_platform_driver(lantiq_ssc_driver);
984
985 MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
986 MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
987 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
988 MODULE_LICENSE("GPL");
989 MODULE_ALIAS("platform:spi-lantiq-ssc");