]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-pl022.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-pl022.c
1 /*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46
47 /*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55 /*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63 #define DRIVE_TX 0
64 #define DO_NOT_DRIVE_TX 1
65
66 #define DO_NOT_QUEUE_DMA 0
67 #define QUEUE_DMA 1
68
69 #define RX_TRANSFER 1
70 #define TX_TRANSFER 2
71
72 /*
73 * Macros to access SSP Registers with their offsets
74 */
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_ITCR(r) (r + 0x080)
86 #define SSP_ITIP(r) (r + 0x084)
87 #define SSP_ITOP(r) (r + 0x088)
88 #define SSP_TDR(r) (r + 0x08C)
89
90 #define SSP_PID0(r) (r + 0xFE0)
91 #define SSP_PID1(r) (r + 0xFE4)
92 #define SSP_PID2(r) (r + 0xFE8)
93 #define SSP_PID3(r) (r + 0xFEC)
94
95 #define SSP_CID0(r) (r + 0xFF0)
96 #define SSP_CID1(r) (r + 0xFF4)
97 #define SSP_CID2(r) (r + 0xFF8)
98 #define SSP_CID3(r) (r + 0xFFC)
99
100 /*
101 * SSP Control Register 0 - SSP_CR0
102 */
103 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
104 #define SSP_CR0_MASK_FRF (0x3UL << 4)
105 #define SSP_CR0_MASK_SPO (0x1UL << 6)
106 #define SSP_CR0_MASK_SPH (0x1UL << 7)
107 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108
109 /*
110 * The ST version of this block moves som bits
111 * in SSP_CR0 and extends it to 32 bits
112 */
113 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
114 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
115 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
116 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
117
118 /*
119 * SSP Control Register 0 - SSP_CR1
120 */
121 #define SSP_CR1_MASK_LBM (0x1UL << 0)
122 #define SSP_CR1_MASK_SSE (0x1UL << 1)
123 #define SSP_CR1_MASK_MS (0x1UL << 2)
124 #define SSP_CR1_MASK_SOD (0x1UL << 3)
125
126 /*
127 * The ST version of this block adds some bits
128 * in SSP_CR1
129 */
130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 /* This one is only in the PL023 variant */
136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137
138 /*
139 * SSP Status Register - SSP_SR
140 */
141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146
147 /*
148 * SSP Clock Prescale Register - SSP_CPSR
149 */
150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151
152 /*
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 */
155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159
160 /*
161 * SSP Raw Interrupt Status Register - SSP_RIS
162 */
163 /* Receive Overrun Raw Interrupt status */
164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165 /* Receive Timeout Raw Interrupt status */
166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167 /* Receive FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169 /* Transmit FIFO Raw Interrupt status */
170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171
172 /*
173 * SSP Masked Interrupt Status Register - SSP_MIS
174 */
175 /* Receive Overrun Masked Interrupt status */
176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177 /* Receive Timeout Masked Interrupt status */
178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179 /* Receive FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181 /* Transmit FIFO Masked Interrupt status */
182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183
184 /*
185 * SSP Interrupt Clear Register - SSP_ICR
186 */
187 /* Receive Overrun Raw Clear Interrupt bit */
188 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
189 /* Receive Timeout Clear Interrupt bit */
190 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
191
192 /*
193 * SSP DMA Control Register - SSP_DMACR
194 */
195 /* Receive DMA Enable bit */
196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197 /* Transmit DMA Enable bit */
198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199
200 /*
201 * SSP Integration Test control Register - SSP_ITCR
202 */
203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205
206 /*
207 * SSP Integration Test Input Register - SSP_ITIP
208 */
209 #define ITIP_MASK_SSPRXD (0x1UL << 0)
210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212 #define ITIP_MASK_RXDMAC (0x1UL << 3)
213 #define ITIP_MASK_TXDMAC (0x1UL << 4)
214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215
216 /*
217 * SSP Integration Test output Register - SSP_ITOP
218 */
219 #define ITOP_MASK_SSPTXD (0x1UL << 0)
220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222 #define ITOP_MASK_SSPOEn (0x1UL << 3)
223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224 #define ITOP_MASK_RORINTR (0x1UL << 5)
225 #define ITOP_MASK_RTINTR (0x1UL << 6)
226 #define ITOP_MASK_RXINTR (0x1UL << 7)
227 #define ITOP_MASK_TXINTR (0x1UL << 8)
228 #define ITOP_MASK_INTR (0x1UL << 9)
229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233
234 /*
235 * SSP Test Data Register - SSP_TDR
236 */
237 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
238
239 /*
240 * Message State
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
244 */
245 #define STATE_START ((void *) 0)
246 #define STATE_RUNNING ((void *) 1)
247 #define STATE_DONE ((void *) 2)
248 #define STATE_ERROR ((void *) -1)
249
250 /*
251 * SSP State - Whether Enabled or Disabled
252 */
253 #define SSP_DISABLED (0)
254 #define SSP_ENABLED (1)
255
256 /*
257 * SSP DMA State - Whether DMA Enabled or Disabled
258 */
259 #define SSP_DMA_DISABLED (0)
260 #define SSP_DMA_ENABLED (1)
261
262 /*
263 * SSP Clock Defaults
264 */
265 #define SSP_DEFAULT_CLKRATE 0x2
266 #define SSP_DEFAULT_PRESCALE 0x40
267
268 /*
269 * SSP Clock Parameter ranges
270 */
271 #define CPSDVR_MIN 0x02
272 #define CPSDVR_MAX 0xFE
273 #define SCR_MIN 0x00
274 #define SCR_MAX 0xFF
275
276 /*
277 * SSP Interrupt related Macros
278 */
279 #define DEFAULT_SSP_REG_IMSC 0x0UL
280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282
283 #define CLEAR_ALL_INTERRUPTS 0x3
284
285 #define SPI_POLLING_TIMEOUT 1000
286
287 /*
288 * The type of reading going on on this chip
289 */
290 enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
295 };
296
297 /**
298 * The type of writing going on on this chip
299 */
300 enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
305 };
306
307 /**
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
316 */
317 struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
321 bool extended_cr;
322 bool pl023;
323 bool loopback;
324 };
325
326 /**
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @kworker: thread struct for message pump
336 * @kworker_task: pointer to task for message pump kworker thread
337 * @pump_messages: work struct for scheduling work to the message pump
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
340 * @busy: message pump is busy
341 * @running: message pump is running
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @dma_rx_channel: optional channel for RX DMA
358 * @dma_tx_channel: optional channel for TX DMA
359 * @sgt_rx: scattertable for the RX transfer
360 * @sgt_tx: scattertable for the TX transfer
361 * @dummypage: a dummy page used for driving data on the bus with DMA
362 * @cur_cs: current chip select (gpio)
363 * @chipselects: list of chipselects (gpios)
364 */
365 struct pl022 {
366 struct amba_device *adev;
367 struct vendor_data *vendor;
368 resource_size_t phybase;
369 void __iomem *virtbase;
370 struct clk *clk;
371 struct spi_master *master;
372 struct pl022_ssp_controller *master_info;
373 /* Message per-transfer pump */
374 struct tasklet_struct pump_transfers;
375 struct spi_message *cur_msg;
376 struct spi_transfer *cur_transfer;
377 struct chip_data *cur_chip;
378 bool next_msg_cs_active;
379 void *tx;
380 void *tx_end;
381 void *rx;
382 void *rx_end;
383 enum ssp_reading read;
384 enum ssp_writing write;
385 u32 exp_fifo_level;
386 enum ssp_rx_level_trig rx_lev_trig;
387 enum ssp_tx_level_trig tx_lev_trig;
388 /* DMA settings */
389 #ifdef CONFIG_DMA_ENGINE
390 struct dma_chan *dma_rx_channel;
391 struct dma_chan *dma_tx_channel;
392 struct sg_table sgt_rx;
393 struct sg_table sgt_tx;
394 char *dummypage;
395 bool dma_running;
396 #endif
397 int cur_cs;
398 int *chipselects;
399 };
400
401 /**
402 * struct chip_data - To maintain runtime state of SSP for each client chip
403 * @cr0: Value of control register CR0 of SSP - on later ST variants this
404 * register is 32 bits wide rather than just 16
405 * @cr1: Value of control register CR1 of SSP
406 * @dmacr: Value of DMA control Register of SSP
407 * @cpsr: Value of Clock prescale register
408 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
409 * @enable_dma: Whether to enable DMA or not
410 * @read: function ptr to be used to read when doing xfer for this chip
411 * @write: function ptr to be used to write when doing xfer for this chip
412 * @cs_control: chip select callback provided by chip
413 * @xfer_type: polling/interrupt/DMA
414 *
415 * Runtime state of the SSP controller, maintained per chip,
416 * This would be set according to the current message that would be served
417 */
418 struct chip_data {
419 u32 cr0;
420 u16 cr1;
421 u16 dmacr;
422 u16 cpsr;
423 u8 n_bytes;
424 bool enable_dma;
425 enum ssp_reading read;
426 enum ssp_writing write;
427 void (*cs_control) (u32 command);
428 int xfer_type;
429 };
430
431 /**
432 * null_cs_control - Dummy chip select function
433 * @command: select/delect the chip
434 *
435 * If no chip select function is provided by client this is used as dummy
436 * chip select
437 */
438 static void null_cs_control(u32 command)
439 {
440 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
441 }
442
443 static void pl022_cs_control(struct pl022 *pl022, u32 command)
444 {
445 if (gpio_is_valid(pl022->cur_cs))
446 gpio_set_value(pl022->cur_cs, command);
447 else
448 pl022->cur_chip->cs_control(command);
449 }
450
451 /**
452 * giveback - current spi_message is over, schedule next message and call
453 * callback of this message. Assumes that caller already
454 * set message->status; dma and pio irqs are blocked
455 * @pl022: SSP driver private data structure
456 */
457 static void giveback(struct pl022 *pl022)
458 {
459 struct spi_transfer *last_transfer;
460 pl022->next_msg_cs_active = false;
461
462 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
463 struct spi_transfer,
464 transfer_list);
465
466 /* Delay if requested before any change in chip select */
467 if (last_transfer->delay_usecs)
468 /*
469 * FIXME: This runs in interrupt context.
470 * Is this really smart?
471 */
472 udelay(last_transfer->delay_usecs);
473
474 if (!last_transfer->cs_change) {
475 struct spi_message *next_msg;
476
477 /*
478 * cs_change was not set. We can keep the chip select
479 * enabled if there is message in the queue and it is
480 * for the same spi device.
481 *
482 * We cannot postpone this until pump_messages, because
483 * after calling msg->complete (below) the driver that
484 * sent the current message could be unloaded, which
485 * could invalidate the cs_control() callback...
486 */
487 /* get a pointer to the next message, if any */
488 next_msg = spi_get_next_queued_message(pl022->master);
489
490 /*
491 * see if the next and current messages point
492 * to the same spi device.
493 */
494 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
495 next_msg = NULL;
496 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
497 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
498 else
499 pl022->next_msg_cs_active = true;
500
501 }
502
503 pl022->cur_msg = NULL;
504 pl022->cur_transfer = NULL;
505 pl022->cur_chip = NULL;
506 spi_finalize_current_message(pl022->master);
507
508 /* disable the SPI/SSP operation */
509 writew((readw(SSP_CR1(pl022->virtbase)) &
510 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
511
512 }
513
514 /**
515 * flush - flush the FIFO to reach a clean state
516 * @pl022: SSP driver private data structure
517 */
518 static int flush(struct pl022 *pl022)
519 {
520 unsigned long limit = loops_per_jiffy << 1;
521
522 dev_dbg(&pl022->adev->dev, "flush\n");
523 do {
524 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
525 readw(SSP_DR(pl022->virtbase));
526 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
527
528 pl022->exp_fifo_level = 0;
529
530 return limit;
531 }
532
533 /**
534 * restore_state - Load configuration of current chip
535 * @pl022: SSP driver private data structure
536 */
537 static void restore_state(struct pl022 *pl022)
538 {
539 struct chip_data *chip = pl022->cur_chip;
540
541 if (pl022->vendor->extended_cr)
542 writel(chip->cr0, SSP_CR0(pl022->virtbase));
543 else
544 writew(chip->cr0, SSP_CR0(pl022->virtbase));
545 writew(chip->cr1, SSP_CR1(pl022->virtbase));
546 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
547 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
548 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
549 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
550 }
551
552 /*
553 * Default SSP Register Values
554 */
555 #define DEFAULT_SSP_REG_CR0 ( \
556 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
557 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
558 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
559 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
560 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
561 )
562
563 /* ST versions have slightly different bit layout */
564 #define DEFAULT_SSP_REG_CR0_ST ( \
565 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
566 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
567 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
568 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
569 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
570 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
571 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
572 )
573
574 /* The PL023 version is slightly different again */
575 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
576 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
580 )
581
582 #define DEFAULT_SSP_REG_CR1 ( \
583 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
584 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
585 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
586 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
587 )
588
589 /* ST versions extend this register to use all 16 bits */
590 #define DEFAULT_SSP_REG_CR1_ST ( \
591 DEFAULT_SSP_REG_CR1 | \
592 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
593 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
594 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
595 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
596 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
597 )
598
599 /*
600 * The PL023 variant has further differences: no loopback mode, no microwire
601 * support, and a new clock feedback delay setting.
602 */
603 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
604 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
605 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
606 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
607 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
608 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
609 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
610 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
611 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
612 )
613
614 #define DEFAULT_SSP_REG_CPSR ( \
615 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
616 )
617
618 #define DEFAULT_SSP_REG_DMACR (\
619 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
620 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
621 )
622
623 /**
624 * load_ssp_default_config - Load default configuration for SSP
625 * @pl022: SSP driver private data structure
626 */
627 static void load_ssp_default_config(struct pl022 *pl022)
628 {
629 if (pl022->vendor->pl023) {
630 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
631 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
632 } else if (pl022->vendor->extended_cr) {
633 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
634 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
635 } else {
636 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
637 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
638 }
639 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
640 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
641 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
642 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
643 }
644
645 /**
646 * This will write to TX and read from RX according to the parameters
647 * set in pl022.
648 */
649 static void readwriter(struct pl022 *pl022)
650 {
651
652 /*
653 * The FIFO depth is different between primecell variants.
654 * I believe filling in too much in the FIFO might cause
655 * errons in 8bit wide transfers on ARM variants (just 8 words
656 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
657 *
658 * To prevent this issue, the TX FIFO is only filled to the
659 * unused RX FIFO fill length, regardless of what the TX
660 * FIFO status flag indicates.
661 */
662 dev_dbg(&pl022->adev->dev,
663 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
664 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
665
666 /* Read as much as you can */
667 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
668 && (pl022->rx < pl022->rx_end)) {
669 switch (pl022->read) {
670 case READING_NULL:
671 readw(SSP_DR(pl022->virtbase));
672 break;
673 case READING_U8:
674 *(u8 *) (pl022->rx) =
675 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
676 break;
677 case READING_U16:
678 *(u16 *) (pl022->rx) =
679 (u16) readw(SSP_DR(pl022->virtbase));
680 break;
681 case READING_U32:
682 *(u32 *) (pl022->rx) =
683 readl(SSP_DR(pl022->virtbase));
684 break;
685 }
686 pl022->rx += (pl022->cur_chip->n_bytes);
687 pl022->exp_fifo_level--;
688 }
689 /*
690 * Write as much as possible up to the RX FIFO size
691 */
692 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
693 && (pl022->tx < pl022->tx_end)) {
694 switch (pl022->write) {
695 case WRITING_NULL:
696 writew(0x0, SSP_DR(pl022->virtbase));
697 break;
698 case WRITING_U8:
699 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
700 break;
701 case WRITING_U16:
702 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
703 break;
704 case WRITING_U32:
705 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
706 break;
707 }
708 pl022->tx += (pl022->cur_chip->n_bytes);
709 pl022->exp_fifo_level++;
710 /*
711 * This inner reader takes care of things appearing in the RX
712 * FIFO as we're transmitting. This will happen a lot since the
713 * clock starts running when you put things into the TX FIFO,
714 * and then things are continuously clocked into the RX FIFO.
715 */
716 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
717 && (pl022->rx < pl022->rx_end)) {
718 switch (pl022->read) {
719 case READING_NULL:
720 readw(SSP_DR(pl022->virtbase));
721 break;
722 case READING_U8:
723 *(u8 *) (pl022->rx) =
724 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
725 break;
726 case READING_U16:
727 *(u16 *) (pl022->rx) =
728 (u16) readw(SSP_DR(pl022->virtbase));
729 break;
730 case READING_U32:
731 *(u32 *) (pl022->rx) =
732 readl(SSP_DR(pl022->virtbase));
733 break;
734 }
735 pl022->rx += (pl022->cur_chip->n_bytes);
736 pl022->exp_fifo_level--;
737 }
738 }
739 /*
740 * When we exit here the TX FIFO should be full and the RX FIFO
741 * should be empty
742 */
743 }
744
745 /**
746 * next_transfer - Move to the Next transfer in the current spi message
747 * @pl022: SSP driver private data structure
748 *
749 * This function moves though the linked list of spi transfers in the
750 * current spi message and returns with the state of current spi
751 * message i.e whether its last transfer is done(STATE_DONE) or
752 * Next transfer is ready(STATE_RUNNING)
753 */
754 static void *next_transfer(struct pl022 *pl022)
755 {
756 struct spi_message *msg = pl022->cur_msg;
757 struct spi_transfer *trans = pl022->cur_transfer;
758
759 /* Move to next transfer */
760 if (trans->transfer_list.next != &msg->transfers) {
761 pl022->cur_transfer =
762 list_entry(trans->transfer_list.next,
763 struct spi_transfer, transfer_list);
764 return STATE_RUNNING;
765 }
766 return STATE_DONE;
767 }
768
769 /*
770 * This DMA functionality is only compiled in if we have
771 * access to the generic DMA devices/DMA engine.
772 */
773 #ifdef CONFIG_DMA_ENGINE
774 static void unmap_free_dma_scatter(struct pl022 *pl022)
775 {
776 /* Unmap and free the SG tables */
777 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
778 pl022->sgt_tx.nents, DMA_TO_DEVICE);
779 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
780 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
781 sg_free_table(&pl022->sgt_rx);
782 sg_free_table(&pl022->sgt_tx);
783 }
784
785 static void dma_callback(void *data)
786 {
787 struct pl022 *pl022 = data;
788 struct spi_message *msg = pl022->cur_msg;
789
790 BUG_ON(!pl022->sgt_rx.sgl);
791
792 #ifdef VERBOSE_DEBUG
793 /*
794 * Optionally dump out buffers to inspect contents, this is
795 * good if you want to convince yourself that the loopback
796 * read/write contents are the same, when adopting to a new
797 * DMA engine.
798 */
799 {
800 struct scatterlist *sg;
801 unsigned int i;
802
803 dma_sync_sg_for_cpu(&pl022->adev->dev,
804 pl022->sgt_rx.sgl,
805 pl022->sgt_rx.nents,
806 DMA_FROM_DEVICE);
807
808 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
809 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
810 print_hex_dump(KERN_ERR, "SPI RX: ",
811 DUMP_PREFIX_OFFSET,
812 16,
813 1,
814 sg_virt(sg),
815 sg_dma_len(sg),
816 1);
817 }
818 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
819 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
820 print_hex_dump(KERN_ERR, "SPI TX: ",
821 DUMP_PREFIX_OFFSET,
822 16,
823 1,
824 sg_virt(sg),
825 sg_dma_len(sg),
826 1);
827 }
828 }
829 #endif
830
831 unmap_free_dma_scatter(pl022);
832
833 /* Update total bytes transferred */
834 msg->actual_length += pl022->cur_transfer->len;
835 if (pl022->cur_transfer->cs_change)
836 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
837
838 /* Move to next transfer */
839 msg->state = next_transfer(pl022);
840 tasklet_schedule(&pl022->pump_transfers);
841 }
842
843 static void setup_dma_scatter(struct pl022 *pl022,
844 void *buffer,
845 unsigned int length,
846 struct sg_table *sgtab)
847 {
848 struct scatterlist *sg;
849 int bytesleft = length;
850 void *bufp = buffer;
851 int mapbytes;
852 int i;
853
854 if (buffer) {
855 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
856 /*
857 * If there are less bytes left than what fits
858 * in the current page (plus page alignment offset)
859 * we just feed in this, else we stuff in as much
860 * as we can.
861 */
862 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
863 mapbytes = bytesleft;
864 else
865 mapbytes = PAGE_SIZE - offset_in_page(bufp);
866 sg_set_page(sg, virt_to_page(bufp),
867 mapbytes, offset_in_page(bufp));
868 bufp += mapbytes;
869 bytesleft -= mapbytes;
870 dev_dbg(&pl022->adev->dev,
871 "set RX/TX target page @ %p, %d bytes, %d left\n",
872 bufp, mapbytes, bytesleft);
873 }
874 } else {
875 /* Map the dummy buffer on every page */
876 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
877 if (bytesleft < PAGE_SIZE)
878 mapbytes = bytesleft;
879 else
880 mapbytes = PAGE_SIZE;
881 sg_set_page(sg, virt_to_page(pl022->dummypage),
882 mapbytes, 0);
883 bytesleft -= mapbytes;
884 dev_dbg(&pl022->adev->dev,
885 "set RX/TX to dummy page %d bytes, %d left\n",
886 mapbytes, bytesleft);
887
888 }
889 }
890 BUG_ON(bytesleft);
891 }
892
893 /**
894 * configure_dma - configures the channels for the next transfer
895 * @pl022: SSP driver's private data structure
896 */
897 static int configure_dma(struct pl022 *pl022)
898 {
899 struct dma_slave_config rx_conf = {
900 .src_addr = SSP_DR(pl022->phybase),
901 .direction = DMA_DEV_TO_MEM,
902 .device_fc = false,
903 };
904 struct dma_slave_config tx_conf = {
905 .dst_addr = SSP_DR(pl022->phybase),
906 .direction = DMA_MEM_TO_DEV,
907 .device_fc = false,
908 };
909 unsigned int pages;
910 int ret;
911 int rx_sglen, tx_sglen;
912 struct dma_chan *rxchan = pl022->dma_rx_channel;
913 struct dma_chan *txchan = pl022->dma_tx_channel;
914 struct dma_async_tx_descriptor *rxdesc;
915 struct dma_async_tx_descriptor *txdesc;
916
917 /* Check that the channels are available */
918 if (!rxchan || !txchan)
919 return -ENODEV;
920
921 /*
922 * If supplied, the DMA burstsize should equal the FIFO trigger level.
923 * Notice that the DMA engine uses one-to-one mapping. Since we can
924 * not trigger on 2 elements this needs explicit mapping rather than
925 * calculation.
926 */
927 switch (pl022->rx_lev_trig) {
928 case SSP_RX_1_OR_MORE_ELEM:
929 rx_conf.src_maxburst = 1;
930 break;
931 case SSP_RX_4_OR_MORE_ELEM:
932 rx_conf.src_maxburst = 4;
933 break;
934 case SSP_RX_8_OR_MORE_ELEM:
935 rx_conf.src_maxburst = 8;
936 break;
937 case SSP_RX_16_OR_MORE_ELEM:
938 rx_conf.src_maxburst = 16;
939 break;
940 case SSP_RX_32_OR_MORE_ELEM:
941 rx_conf.src_maxburst = 32;
942 break;
943 default:
944 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
945 break;
946 }
947
948 switch (pl022->tx_lev_trig) {
949 case SSP_TX_1_OR_MORE_EMPTY_LOC:
950 tx_conf.dst_maxburst = 1;
951 break;
952 case SSP_TX_4_OR_MORE_EMPTY_LOC:
953 tx_conf.dst_maxburst = 4;
954 break;
955 case SSP_TX_8_OR_MORE_EMPTY_LOC:
956 tx_conf.dst_maxburst = 8;
957 break;
958 case SSP_TX_16_OR_MORE_EMPTY_LOC:
959 tx_conf.dst_maxburst = 16;
960 break;
961 case SSP_TX_32_OR_MORE_EMPTY_LOC:
962 tx_conf.dst_maxburst = 32;
963 break;
964 default:
965 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
966 break;
967 }
968
969 switch (pl022->read) {
970 case READING_NULL:
971 /* Use the same as for writing */
972 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
973 break;
974 case READING_U8:
975 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
976 break;
977 case READING_U16:
978 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
979 break;
980 case READING_U32:
981 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
982 break;
983 }
984
985 switch (pl022->write) {
986 case WRITING_NULL:
987 /* Use the same as for reading */
988 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
989 break;
990 case WRITING_U8:
991 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
992 break;
993 case WRITING_U16:
994 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
995 break;
996 case WRITING_U32:
997 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
998 break;
999 }
1000
1001 /* SPI pecularity: we need to read and write the same width */
1002 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1003 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1004 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1005 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1006 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1007
1008 dmaengine_slave_config(rxchan, &rx_conf);
1009 dmaengine_slave_config(txchan, &tx_conf);
1010
1011 /* Create sglists for the transfers */
1012 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1013 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1014
1015 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1016 if (ret)
1017 goto err_alloc_rx_sg;
1018
1019 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1020 if (ret)
1021 goto err_alloc_tx_sg;
1022
1023 /* Fill in the scatterlists for the RX+TX buffers */
1024 setup_dma_scatter(pl022, pl022->rx,
1025 pl022->cur_transfer->len, &pl022->sgt_rx);
1026 setup_dma_scatter(pl022, pl022->tx,
1027 pl022->cur_transfer->len, &pl022->sgt_tx);
1028
1029 /* Map DMA buffers */
1030 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1031 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1032 if (!rx_sglen)
1033 goto err_rx_sgmap;
1034
1035 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1036 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1037 if (!tx_sglen)
1038 goto err_tx_sgmap;
1039
1040 /* Send both scatterlists */
1041 rxdesc = dmaengine_prep_slave_sg(rxchan,
1042 pl022->sgt_rx.sgl,
1043 rx_sglen,
1044 DMA_DEV_TO_MEM,
1045 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1046 if (!rxdesc)
1047 goto err_rxdesc;
1048
1049 txdesc = dmaengine_prep_slave_sg(txchan,
1050 pl022->sgt_tx.sgl,
1051 tx_sglen,
1052 DMA_MEM_TO_DEV,
1053 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1054 if (!txdesc)
1055 goto err_txdesc;
1056
1057 /* Put the callback on the RX transfer only, that should finish last */
1058 rxdesc->callback = dma_callback;
1059 rxdesc->callback_param = pl022;
1060
1061 /* Submit and fire RX and TX with TX last so we're ready to read! */
1062 dmaengine_submit(rxdesc);
1063 dmaengine_submit(txdesc);
1064 dma_async_issue_pending(rxchan);
1065 dma_async_issue_pending(txchan);
1066 pl022->dma_running = true;
1067
1068 return 0;
1069
1070 err_txdesc:
1071 dmaengine_terminate_all(txchan);
1072 err_rxdesc:
1073 dmaengine_terminate_all(rxchan);
1074 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1075 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1076 err_tx_sgmap:
1077 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1078 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1079 err_rx_sgmap:
1080 sg_free_table(&pl022->sgt_tx);
1081 err_alloc_tx_sg:
1082 sg_free_table(&pl022->sgt_rx);
1083 err_alloc_rx_sg:
1084 return -ENOMEM;
1085 }
1086
1087 static int pl022_dma_probe(struct pl022 *pl022)
1088 {
1089 dma_cap_mask_t mask;
1090
1091 /* Try to acquire a generic DMA engine slave channel */
1092 dma_cap_zero(mask);
1093 dma_cap_set(DMA_SLAVE, mask);
1094 /*
1095 * We need both RX and TX channels to do DMA, else do none
1096 * of them.
1097 */
1098 pl022->dma_rx_channel = dma_request_channel(mask,
1099 pl022->master_info->dma_filter,
1100 pl022->master_info->dma_rx_param);
1101 if (!pl022->dma_rx_channel) {
1102 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1103 goto err_no_rxchan;
1104 }
1105
1106 pl022->dma_tx_channel = dma_request_channel(mask,
1107 pl022->master_info->dma_filter,
1108 pl022->master_info->dma_tx_param);
1109 if (!pl022->dma_tx_channel) {
1110 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1111 goto err_no_txchan;
1112 }
1113
1114 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1115 if (!pl022->dummypage) {
1116 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1117 goto err_no_dummypage;
1118 }
1119
1120 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1121 dma_chan_name(pl022->dma_rx_channel),
1122 dma_chan_name(pl022->dma_tx_channel));
1123
1124 return 0;
1125
1126 err_no_dummypage:
1127 dma_release_channel(pl022->dma_tx_channel);
1128 err_no_txchan:
1129 dma_release_channel(pl022->dma_rx_channel);
1130 pl022->dma_rx_channel = NULL;
1131 err_no_rxchan:
1132 dev_err(&pl022->adev->dev,
1133 "Failed to work in dma mode, work without dma!\n");
1134 return -ENODEV;
1135 }
1136
1137 static int pl022_dma_autoprobe(struct pl022 *pl022)
1138 {
1139 struct device *dev = &pl022->adev->dev;
1140
1141 /* automatically configure DMA channels from platform, normally using DT */
1142 pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
1143 if (!pl022->dma_rx_channel)
1144 goto err_no_rxchan;
1145
1146 pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
1147 if (!pl022->dma_tx_channel)
1148 goto err_no_txchan;
1149
1150 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1151 if (!pl022->dummypage)
1152 goto err_no_dummypage;
1153
1154 return 0;
1155
1156 err_no_dummypage:
1157 dma_release_channel(pl022->dma_tx_channel);
1158 pl022->dma_tx_channel = NULL;
1159 err_no_txchan:
1160 dma_release_channel(pl022->dma_rx_channel);
1161 pl022->dma_rx_channel = NULL;
1162 err_no_rxchan:
1163 return -ENODEV;
1164 }
1165
1166 static void terminate_dma(struct pl022 *pl022)
1167 {
1168 struct dma_chan *rxchan = pl022->dma_rx_channel;
1169 struct dma_chan *txchan = pl022->dma_tx_channel;
1170
1171 dmaengine_terminate_all(rxchan);
1172 dmaengine_terminate_all(txchan);
1173 unmap_free_dma_scatter(pl022);
1174 pl022->dma_running = false;
1175 }
1176
1177 static void pl022_dma_remove(struct pl022 *pl022)
1178 {
1179 if (pl022->dma_running)
1180 terminate_dma(pl022);
1181 if (pl022->dma_tx_channel)
1182 dma_release_channel(pl022->dma_tx_channel);
1183 if (pl022->dma_rx_channel)
1184 dma_release_channel(pl022->dma_rx_channel);
1185 kfree(pl022->dummypage);
1186 }
1187
1188 #else
1189 static inline int configure_dma(struct pl022 *pl022)
1190 {
1191 return -ENODEV;
1192 }
1193
1194 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1195 {
1196 return 0;
1197 }
1198
1199 static inline int pl022_dma_probe(struct pl022 *pl022)
1200 {
1201 return 0;
1202 }
1203
1204 static inline void pl022_dma_remove(struct pl022 *pl022)
1205 {
1206 }
1207 #endif
1208
1209 /**
1210 * pl022_interrupt_handler - Interrupt handler for SSP controller
1211 *
1212 * This function handles interrupts generated for an interrupt based transfer.
1213 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1214 * current message's state as STATE_ERROR and schedule the tasklet
1215 * pump_transfers which will do the postprocessing of the current message by
1216 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1217 * more data, and writes data in TX FIFO till it is not full. If we complete
1218 * the transfer we move to the next transfer and schedule the tasklet.
1219 */
1220 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1221 {
1222 struct pl022 *pl022 = dev_id;
1223 struct spi_message *msg = pl022->cur_msg;
1224 u16 irq_status = 0;
1225 u16 flag = 0;
1226
1227 if (unlikely(!msg)) {
1228 dev_err(&pl022->adev->dev,
1229 "bad message state in interrupt handler");
1230 /* Never fail */
1231 return IRQ_HANDLED;
1232 }
1233
1234 /* Read the Interrupt Status Register */
1235 irq_status = readw(SSP_MIS(pl022->virtbase));
1236
1237 if (unlikely(!irq_status))
1238 return IRQ_NONE;
1239
1240 /*
1241 * This handles the FIFO interrupts, the timeout
1242 * interrupts are flatly ignored, they cannot be
1243 * trusted.
1244 */
1245 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1246 /*
1247 * Overrun interrupt - bail out since our Data has been
1248 * corrupted
1249 */
1250 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1251 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1252 dev_err(&pl022->adev->dev,
1253 "RXFIFO is full\n");
1254 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1255 dev_err(&pl022->adev->dev,
1256 "TXFIFO is full\n");
1257
1258 /*
1259 * Disable and clear interrupts, disable SSP,
1260 * mark message with bad status so it can be
1261 * retried.
1262 */
1263 writew(DISABLE_ALL_INTERRUPTS,
1264 SSP_IMSC(pl022->virtbase));
1265 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1266 writew((readw(SSP_CR1(pl022->virtbase)) &
1267 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1268 msg->state = STATE_ERROR;
1269
1270 /* Schedule message queue handler */
1271 tasklet_schedule(&pl022->pump_transfers);
1272 return IRQ_HANDLED;
1273 }
1274
1275 readwriter(pl022);
1276
1277 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1278 flag = 1;
1279 /* Disable Transmit interrupt, enable receive interrupt */
1280 writew((readw(SSP_IMSC(pl022->virtbase)) &
1281 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1282 SSP_IMSC(pl022->virtbase));
1283 }
1284
1285 /*
1286 * Since all transactions must write as much as shall be read,
1287 * we can conclude the entire transaction once RX is complete.
1288 * At this point, all TX will always be finished.
1289 */
1290 if (pl022->rx >= pl022->rx_end) {
1291 writew(DISABLE_ALL_INTERRUPTS,
1292 SSP_IMSC(pl022->virtbase));
1293 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1294 if (unlikely(pl022->rx > pl022->rx_end)) {
1295 dev_warn(&pl022->adev->dev, "read %u surplus "
1296 "bytes (did you request an odd "
1297 "number of bytes on a 16bit bus?)\n",
1298 (u32) (pl022->rx - pl022->rx_end));
1299 }
1300 /* Update total bytes transferred */
1301 msg->actual_length += pl022->cur_transfer->len;
1302 if (pl022->cur_transfer->cs_change)
1303 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1304 /* Move to next transfer */
1305 msg->state = next_transfer(pl022);
1306 tasklet_schedule(&pl022->pump_transfers);
1307 return IRQ_HANDLED;
1308 }
1309
1310 return IRQ_HANDLED;
1311 }
1312
1313 /**
1314 * This sets up the pointers to memory for the next message to
1315 * send out on the SPI bus.
1316 */
1317 static int set_up_next_transfer(struct pl022 *pl022,
1318 struct spi_transfer *transfer)
1319 {
1320 int residue;
1321
1322 /* Sanity check the message for this bus width */
1323 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1324 if (unlikely(residue != 0)) {
1325 dev_err(&pl022->adev->dev,
1326 "message of %u bytes to transmit but the current "
1327 "chip bus has a data width of %u bytes!\n",
1328 pl022->cur_transfer->len,
1329 pl022->cur_chip->n_bytes);
1330 dev_err(&pl022->adev->dev, "skipping this message\n");
1331 return -EIO;
1332 }
1333 pl022->tx = (void *)transfer->tx_buf;
1334 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1335 pl022->rx = (void *)transfer->rx_buf;
1336 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1337 pl022->write =
1338 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1339 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1340 return 0;
1341 }
1342
1343 /**
1344 * pump_transfers - Tasklet function which schedules next transfer
1345 * when running in interrupt or DMA transfer mode.
1346 * @data: SSP driver private data structure
1347 *
1348 */
1349 static void pump_transfers(unsigned long data)
1350 {
1351 struct pl022 *pl022 = (struct pl022 *) data;
1352 struct spi_message *message = NULL;
1353 struct spi_transfer *transfer = NULL;
1354 struct spi_transfer *previous = NULL;
1355
1356 /* Get current state information */
1357 message = pl022->cur_msg;
1358 transfer = pl022->cur_transfer;
1359
1360 /* Handle for abort */
1361 if (message->state == STATE_ERROR) {
1362 message->status = -EIO;
1363 giveback(pl022);
1364 return;
1365 }
1366
1367 /* Handle end of message */
1368 if (message->state == STATE_DONE) {
1369 message->status = 0;
1370 giveback(pl022);
1371 return;
1372 }
1373
1374 /* Delay if requested at end of transfer before CS change */
1375 if (message->state == STATE_RUNNING) {
1376 previous = list_entry(transfer->transfer_list.prev,
1377 struct spi_transfer,
1378 transfer_list);
1379 if (previous->delay_usecs)
1380 /*
1381 * FIXME: This runs in interrupt context.
1382 * Is this really smart?
1383 */
1384 udelay(previous->delay_usecs);
1385
1386 /* Reselect chip select only if cs_change was requested */
1387 if (previous->cs_change)
1388 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1389 } else {
1390 /* STATE_START */
1391 message->state = STATE_RUNNING;
1392 }
1393
1394 if (set_up_next_transfer(pl022, transfer)) {
1395 message->state = STATE_ERROR;
1396 message->status = -EIO;
1397 giveback(pl022);
1398 return;
1399 }
1400 /* Flush the FIFOs and let's go! */
1401 flush(pl022);
1402
1403 if (pl022->cur_chip->enable_dma) {
1404 if (configure_dma(pl022)) {
1405 dev_dbg(&pl022->adev->dev,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma;
1408 }
1409 return;
1410 }
1411
1412 err_config_dma:
1413 /* enable all interrupts except RX */
1414 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1415 }
1416
1417 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1418 {
1419 /*
1420 * Default is to enable all interrupts except RX -
1421 * this will be enabled once TX is complete
1422 */
1423 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1424
1425 /* Enable target chip, if not already active */
1426 if (!pl022->next_msg_cs_active)
1427 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1428
1429 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1430 /* Error path */
1431 pl022->cur_msg->state = STATE_ERROR;
1432 pl022->cur_msg->status = -EIO;
1433 giveback(pl022);
1434 return;
1435 }
1436 /* If we're using DMA, set up DMA here */
1437 if (pl022->cur_chip->enable_dma) {
1438 /* Configure DMA transfer */
1439 if (configure_dma(pl022)) {
1440 dev_dbg(&pl022->adev->dev,
1441 "configuration of DMA failed, fall back to interrupt mode\n");
1442 goto err_config_dma;
1443 }
1444 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1445 irqflags = DISABLE_ALL_INTERRUPTS;
1446 }
1447 err_config_dma:
1448 /* Enable SSP, turn on interrupts */
1449 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1450 SSP_CR1(pl022->virtbase));
1451 writew(irqflags, SSP_IMSC(pl022->virtbase));
1452 }
1453
1454 static void do_polling_transfer(struct pl022 *pl022)
1455 {
1456 struct spi_message *message = NULL;
1457 struct spi_transfer *transfer = NULL;
1458 struct spi_transfer *previous = NULL;
1459 struct chip_data *chip;
1460 unsigned long time, timeout;
1461
1462 chip = pl022->cur_chip;
1463 message = pl022->cur_msg;
1464
1465 while (message->state != STATE_DONE) {
1466 /* Handle for abort */
1467 if (message->state == STATE_ERROR)
1468 break;
1469 transfer = pl022->cur_transfer;
1470
1471 /* Delay if requested at end of transfer */
1472 if (message->state == STATE_RUNNING) {
1473 previous =
1474 list_entry(transfer->transfer_list.prev,
1475 struct spi_transfer, transfer_list);
1476 if (previous->delay_usecs)
1477 udelay(previous->delay_usecs);
1478 if (previous->cs_change)
1479 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1480 } else {
1481 /* STATE_START */
1482 message->state = STATE_RUNNING;
1483 if (!pl022->next_msg_cs_active)
1484 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1485 }
1486
1487 /* Configuration Changing Per Transfer */
1488 if (set_up_next_transfer(pl022, transfer)) {
1489 /* Error path */
1490 message->state = STATE_ERROR;
1491 break;
1492 }
1493 /* Flush FIFOs and enable SSP */
1494 flush(pl022);
1495 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1496 SSP_CR1(pl022->virtbase));
1497
1498 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1499
1500 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1501 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1502 time = jiffies;
1503 readwriter(pl022);
1504 if (time_after(time, timeout)) {
1505 dev_warn(&pl022->adev->dev,
1506 "%s: timeout!\n", __func__);
1507 message->state = STATE_ERROR;
1508 goto out;
1509 }
1510 cpu_relax();
1511 }
1512
1513 /* Update total byte transferred */
1514 message->actual_length += pl022->cur_transfer->len;
1515 if (pl022->cur_transfer->cs_change)
1516 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1517 /* Move to next transfer */
1518 message->state = next_transfer(pl022);
1519 }
1520 out:
1521 /* Handle end of message */
1522 if (message->state == STATE_DONE)
1523 message->status = 0;
1524 else
1525 message->status = -EIO;
1526
1527 giveback(pl022);
1528 return;
1529 }
1530
1531 static int pl022_transfer_one_message(struct spi_master *master,
1532 struct spi_message *msg)
1533 {
1534 struct pl022 *pl022 = spi_master_get_devdata(master);
1535
1536 /* Initial message state */
1537 pl022->cur_msg = msg;
1538 msg->state = STATE_START;
1539
1540 pl022->cur_transfer = list_entry(msg->transfers.next,
1541 struct spi_transfer, transfer_list);
1542
1543 /* Setup the SPI using the per chip configuration */
1544 pl022->cur_chip = spi_get_ctldata(msg->spi);
1545 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1546
1547 restore_state(pl022);
1548 flush(pl022);
1549
1550 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1551 do_polling_transfer(pl022);
1552 else
1553 do_interrupt_dma_transfer(pl022);
1554
1555 return 0;
1556 }
1557
1558 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1559 {
1560 struct pl022 *pl022 = spi_master_get_devdata(master);
1561
1562 /*
1563 * Just make sure we have all we need to run the transfer by syncing
1564 * with the runtime PM framework.
1565 */
1566 pm_runtime_get_sync(&pl022->adev->dev);
1567 return 0;
1568 }
1569
1570 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1571 {
1572 struct pl022 *pl022 = spi_master_get_devdata(master);
1573
1574 /* nothing more to do - disable spi/ssp and power off */
1575 writew((readw(SSP_CR1(pl022->virtbase)) &
1576 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1577
1578 if (pl022->master_info->autosuspend_delay > 0) {
1579 pm_runtime_mark_last_busy(&pl022->adev->dev);
1580 pm_runtime_put_autosuspend(&pl022->adev->dev);
1581 } else {
1582 pm_runtime_put(&pl022->adev->dev);
1583 }
1584
1585 return 0;
1586 }
1587
1588 static int verify_controller_parameters(struct pl022 *pl022,
1589 struct pl022_config_chip const *chip_info)
1590 {
1591 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1592 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1593 dev_err(&pl022->adev->dev,
1594 "interface is configured incorrectly\n");
1595 return -EINVAL;
1596 }
1597 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1598 (!pl022->vendor->unidir)) {
1599 dev_err(&pl022->adev->dev,
1600 "unidirectional mode not supported in this "
1601 "hardware version\n");
1602 return -EINVAL;
1603 }
1604 if ((chip_info->hierarchy != SSP_MASTER)
1605 && (chip_info->hierarchy != SSP_SLAVE)) {
1606 dev_err(&pl022->adev->dev,
1607 "hierarchy is configured incorrectly\n");
1608 return -EINVAL;
1609 }
1610 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1611 && (chip_info->com_mode != DMA_TRANSFER)
1612 && (chip_info->com_mode != POLLING_TRANSFER)) {
1613 dev_err(&pl022->adev->dev,
1614 "Communication mode is configured incorrectly\n");
1615 return -EINVAL;
1616 }
1617 switch (chip_info->rx_lev_trig) {
1618 case SSP_RX_1_OR_MORE_ELEM:
1619 case SSP_RX_4_OR_MORE_ELEM:
1620 case SSP_RX_8_OR_MORE_ELEM:
1621 /* These are always OK, all variants can handle this */
1622 break;
1623 case SSP_RX_16_OR_MORE_ELEM:
1624 if (pl022->vendor->fifodepth < 16) {
1625 dev_err(&pl022->adev->dev,
1626 "RX FIFO Trigger Level is configured incorrectly\n");
1627 return -EINVAL;
1628 }
1629 break;
1630 case SSP_RX_32_OR_MORE_ELEM:
1631 if (pl022->vendor->fifodepth < 32) {
1632 dev_err(&pl022->adev->dev,
1633 "RX FIFO Trigger Level is configured incorrectly\n");
1634 return -EINVAL;
1635 }
1636 break;
1637 default:
1638 dev_err(&pl022->adev->dev,
1639 "RX FIFO Trigger Level is configured incorrectly\n");
1640 return -EINVAL;
1641 break;
1642 }
1643 switch (chip_info->tx_lev_trig) {
1644 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1645 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1646 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1647 /* These are always OK, all variants can handle this */
1648 break;
1649 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1650 if (pl022->vendor->fifodepth < 16) {
1651 dev_err(&pl022->adev->dev,
1652 "TX FIFO Trigger Level is configured incorrectly\n");
1653 return -EINVAL;
1654 }
1655 break;
1656 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1657 if (pl022->vendor->fifodepth < 32) {
1658 dev_err(&pl022->adev->dev,
1659 "TX FIFO Trigger Level is configured incorrectly\n");
1660 return -EINVAL;
1661 }
1662 break;
1663 default:
1664 dev_err(&pl022->adev->dev,
1665 "TX FIFO Trigger Level is configured incorrectly\n");
1666 return -EINVAL;
1667 break;
1668 }
1669 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1670 if ((chip_info->ctrl_len < SSP_BITS_4)
1671 || (chip_info->ctrl_len > SSP_BITS_32)) {
1672 dev_err(&pl022->adev->dev,
1673 "CTRL LEN is configured incorrectly\n");
1674 return -EINVAL;
1675 }
1676 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1677 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1678 dev_err(&pl022->adev->dev,
1679 "Wait State is configured incorrectly\n");
1680 return -EINVAL;
1681 }
1682 /* Half duplex is only available in the ST Micro version */
1683 if (pl022->vendor->extended_cr) {
1684 if ((chip_info->duplex !=
1685 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1686 && (chip_info->duplex !=
1687 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1688 dev_err(&pl022->adev->dev,
1689 "Microwire duplex mode is configured incorrectly\n");
1690 return -EINVAL;
1691 }
1692 } else {
1693 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1694 dev_err(&pl022->adev->dev,
1695 "Microwire half duplex mode requested,"
1696 " but this is only available in the"
1697 " ST version of PL022\n");
1698 return -EINVAL;
1699 }
1700 }
1701 return 0;
1702 }
1703
1704 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1705 {
1706 return rate / (cpsdvsr * (1 + scr));
1707 }
1708
1709 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1710 ssp_clock_params * clk_freq)
1711 {
1712 /* Lets calculate the frequency parameters */
1713 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1714 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1715 best_scr = 0, tmp, found = 0;
1716
1717 rate = clk_get_rate(pl022->clk);
1718 /* cpsdvscr = 2 & scr 0 */
1719 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1720 /* cpsdvsr = 254 & scr = 255 */
1721 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1722
1723 if (freq > max_tclk)
1724 dev_warn(&pl022->adev->dev,
1725 "Max speed that can be programmed is %d Hz, you requested %d\n",
1726 max_tclk, freq);
1727
1728 if (freq < min_tclk) {
1729 dev_err(&pl022->adev->dev,
1730 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1731 freq, min_tclk);
1732 return -EINVAL;
1733 }
1734
1735 /*
1736 * best_freq will give closest possible available rate (<= requested
1737 * freq) for all values of scr & cpsdvsr.
1738 */
1739 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1740 while (scr <= SCR_MAX) {
1741 tmp = spi_rate(rate, cpsdvsr, scr);
1742
1743 if (tmp > freq) {
1744 /* we need lower freq */
1745 scr++;
1746 continue;
1747 }
1748
1749 /*
1750 * If found exact value, mark found and break.
1751 * If found more closer value, update and break.
1752 */
1753 if (tmp > best_freq) {
1754 best_freq = tmp;
1755 best_cpsdvsr = cpsdvsr;
1756 best_scr = scr;
1757
1758 if (tmp == freq)
1759 found = 1;
1760 }
1761 /*
1762 * increased scr will give lower rates, which are not
1763 * required
1764 */
1765 break;
1766 }
1767 cpsdvsr += 2;
1768 scr = SCR_MIN;
1769 }
1770
1771 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1772 freq);
1773
1774 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1775 clk_freq->scr = (u8) (best_scr & 0xFF);
1776 dev_dbg(&pl022->adev->dev,
1777 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1778 freq, best_freq);
1779 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1780 clk_freq->cpsdvsr, clk_freq->scr);
1781
1782 return 0;
1783 }
1784
1785 /*
1786 * A piece of default chip info unless the platform
1787 * supplies it.
1788 */
1789 static const struct pl022_config_chip pl022_default_chip_info = {
1790 .com_mode = POLLING_TRANSFER,
1791 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1792 .hierarchy = SSP_SLAVE,
1793 .slave_tx_disable = DO_NOT_DRIVE_TX,
1794 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1795 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1796 .ctrl_len = SSP_BITS_8,
1797 .wait_state = SSP_MWIRE_WAIT_ZERO,
1798 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1799 .cs_control = null_cs_control,
1800 };
1801
1802 /**
1803 * pl022_setup - setup function registered to SPI master framework
1804 * @spi: spi device which is requesting setup
1805 *
1806 * This function is registered to the SPI framework for this SPI master
1807 * controller. If it is the first time when setup is called by this device,
1808 * this function will initialize the runtime state for this chip and save
1809 * the same in the device structure. Else it will update the runtime info
1810 * with the updated chip info. Nothing is really being written to the
1811 * controller hardware here, that is not done until the actual transfer
1812 * commence.
1813 */
1814 static int pl022_setup(struct spi_device *spi)
1815 {
1816 struct pl022_config_chip const *chip_info;
1817 struct pl022_config_chip chip_info_dt;
1818 struct chip_data *chip;
1819 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1820 int status = 0;
1821 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1822 unsigned int bits = spi->bits_per_word;
1823 u32 tmp;
1824 struct device_node *np = spi->dev.of_node;
1825
1826 if (!spi->max_speed_hz)
1827 return -EINVAL;
1828
1829 /* Get controller_state if one is supplied */
1830 chip = spi_get_ctldata(spi);
1831
1832 if (chip == NULL) {
1833 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1834 if (!chip) {
1835 dev_err(&spi->dev,
1836 "cannot allocate controller state\n");
1837 return -ENOMEM;
1838 }
1839 dev_dbg(&spi->dev,
1840 "allocated memory for controller's runtime state\n");
1841 }
1842
1843 /* Get controller data if one is supplied */
1844 chip_info = spi->controller_data;
1845
1846 if (chip_info == NULL) {
1847 if (np) {
1848 chip_info_dt = pl022_default_chip_info;
1849
1850 chip_info_dt.hierarchy = SSP_MASTER;
1851 of_property_read_u32(np, "pl022,interface",
1852 &chip_info_dt.iface);
1853 of_property_read_u32(np, "pl022,com-mode",
1854 &chip_info_dt.com_mode);
1855 of_property_read_u32(np, "pl022,rx-level-trig",
1856 &chip_info_dt.rx_lev_trig);
1857 of_property_read_u32(np, "pl022,tx-level-trig",
1858 &chip_info_dt.tx_lev_trig);
1859 of_property_read_u32(np, "pl022,ctrl-len",
1860 &chip_info_dt.ctrl_len);
1861 of_property_read_u32(np, "pl022,wait-state",
1862 &chip_info_dt.wait_state);
1863 of_property_read_u32(np, "pl022,duplex",
1864 &chip_info_dt.duplex);
1865
1866 chip_info = &chip_info_dt;
1867 } else {
1868 chip_info = &pl022_default_chip_info;
1869 /* spi_board_info.controller_data not is supplied */
1870 dev_dbg(&spi->dev,
1871 "using default controller_data settings\n");
1872 }
1873 } else
1874 dev_dbg(&spi->dev,
1875 "using user supplied controller_data settings\n");
1876
1877 /*
1878 * We can override with custom divisors, else we use the board
1879 * frequency setting
1880 */
1881 if ((0 == chip_info->clk_freq.cpsdvsr)
1882 && (0 == chip_info->clk_freq.scr)) {
1883 status = calculate_effective_freq(pl022,
1884 spi->max_speed_hz,
1885 &clk_freq);
1886 if (status < 0)
1887 goto err_config_params;
1888 } else {
1889 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1890 if ((clk_freq.cpsdvsr % 2) != 0)
1891 clk_freq.cpsdvsr =
1892 clk_freq.cpsdvsr - 1;
1893 }
1894 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1895 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1896 status = -EINVAL;
1897 dev_err(&spi->dev,
1898 "cpsdvsr is configured incorrectly\n");
1899 goto err_config_params;
1900 }
1901
1902 status = verify_controller_parameters(pl022, chip_info);
1903 if (status) {
1904 dev_err(&spi->dev, "controller data is incorrect");
1905 goto err_config_params;
1906 }
1907
1908 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1909 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1910
1911 /* Now set controller state based on controller data */
1912 chip->xfer_type = chip_info->com_mode;
1913 if (!chip_info->cs_control) {
1914 chip->cs_control = null_cs_control;
1915 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1916 dev_warn(&spi->dev,
1917 "invalid chip select\n");
1918 } else
1919 chip->cs_control = chip_info->cs_control;
1920
1921 /* Check bits per word with vendor specific range */
1922 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1923 status = -ENOTSUPP;
1924 dev_err(&spi->dev, "illegal data size for this controller!\n");
1925 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1926 pl022->vendor->max_bpw);
1927 goto err_config_params;
1928 } else if (bits <= 8) {
1929 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1930 chip->n_bytes = 1;
1931 chip->read = READING_U8;
1932 chip->write = WRITING_U8;
1933 } else if (bits <= 16) {
1934 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1935 chip->n_bytes = 2;
1936 chip->read = READING_U16;
1937 chip->write = WRITING_U16;
1938 } else {
1939 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1940 chip->n_bytes = 4;
1941 chip->read = READING_U32;
1942 chip->write = WRITING_U32;
1943 }
1944
1945 /* Now Initialize all register settings required for this chip */
1946 chip->cr0 = 0;
1947 chip->cr1 = 0;
1948 chip->dmacr = 0;
1949 chip->cpsr = 0;
1950 if ((chip_info->com_mode == DMA_TRANSFER)
1951 && ((pl022->master_info)->enable_dma)) {
1952 chip->enable_dma = true;
1953 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1954 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1955 SSP_DMACR_MASK_RXDMAE, 0);
1956 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1957 SSP_DMACR_MASK_TXDMAE, 1);
1958 } else {
1959 chip->enable_dma = false;
1960 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1961 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1962 SSP_DMACR_MASK_RXDMAE, 0);
1963 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1964 SSP_DMACR_MASK_TXDMAE, 1);
1965 }
1966
1967 chip->cpsr = clk_freq.cpsdvsr;
1968
1969 /* Special setup for the ST micro extended control registers */
1970 if (pl022->vendor->extended_cr) {
1971 u32 etx;
1972
1973 if (pl022->vendor->pl023) {
1974 /* These bits are only in the PL023 */
1975 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1976 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1977 } else {
1978 /* These bits are in the PL022 but not PL023 */
1979 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1980 SSP_CR0_MASK_HALFDUP_ST, 5);
1981 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1982 SSP_CR0_MASK_CSS_ST, 16);
1983 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1984 SSP_CR0_MASK_FRF_ST, 21);
1985 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1986 SSP_CR1_MASK_MWAIT_ST, 6);
1987 }
1988 SSP_WRITE_BITS(chip->cr0, bits - 1,
1989 SSP_CR0_MASK_DSS_ST, 0);
1990
1991 if (spi->mode & SPI_LSB_FIRST) {
1992 tmp = SSP_RX_LSB;
1993 etx = SSP_TX_LSB;
1994 } else {
1995 tmp = SSP_RX_MSB;
1996 etx = SSP_TX_MSB;
1997 }
1998 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1999 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2000 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2001 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2002 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2003 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2004 } else {
2005 SSP_WRITE_BITS(chip->cr0, bits - 1,
2006 SSP_CR0_MASK_DSS, 0);
2007 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2008 SSP_CR0_MASK_FRF, 4);
2009 }
2010
2011 /* Stuff that is common for all versions */
2012 if (spi->mode & SPI_CPOL)
2013 tmp = SSP_CLK_POL_IDLE_HIGH;
2014 else
2015 tmp = SSP_CLK_POL_IDLE_LOW;
2016 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2017
2018 if (spi->mode & SPI_CPHA)
2019 tmp = SSP_CLK_SECOND_EDGE;
2020 else
2021 tmp = SSP_CLK_FIRST_EDGE;
2022 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2023
2024 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2025 /* Loopback is available on all versions except PL023 */
2026 if (pl022->vendor->loopback) {
2027 if (spi->mode & SPI_LOOP)
2028 tmp = LOOPBACK_ENABLED;
2029 else
2030 tmp = LOOPBACK_DISABLED;
2031 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2032 }
2033 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2034 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2035 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2036 3);
2037
2038 /* Save controller_state */
2039 spi_set_ctldata(spi, chip);
2040 return status;
2041 err_config_params:
2042 spi_set_ctldata(spi, NULL);
2043 kfree(chip);
2044 return status;
2045 }
2046
2047 /**
2048 * pl022_cleanup - cleanup function registered to SPI master framework
2049 * @spi: spi device which is requesting cleanup
2050 *
2051 * This function is registered to the SPI framework for this SPI master
2052 * controller. It will free the runtime state of chip.
2053 */
2054 static void pl022_cleanup(struct spi_device *spi)
2055 {
2056 struct chip_data *chip = spi_get_ctldata(spi);
2057
2058 spi_set_ctldata(spi, NULL);
2059 kfree(chip);
2060 }
2061
2062 static struct pl022_ssp_controller *
2063 pl022_platform_data_dt_get(struct device *dev)
2064 {
2065 struct device_node *np = dev->of_node;
2066 struct pl022_ssp_controller *pd;
2067 u32 tmp;
2068
2069 if (!np) {
2070 dev_err(dev, "no dt node defined\n");
2071 return NULL;
2072 }
2073
2074 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2075 if (!pd) {
2076 dev_err(dev, "cannot allocate platform data memory\n");
2077 return NULL;
2078 }
2079
2080 pd->bus_id = -1;
2081 pd->enable_dma = 1;
2082 of_property_read_u32(np, "num-cs", &tmp);
2083 pd->num_chipselect = tmp;
2084 of_property_read_u32(np, "pl022,autosuspend-delay",
2085 &pd->autosuspend_delay);
2086 pd->rt = of_property_read_bool(np, "pl022,rt");
2087
2088 return pd;
2089 }
2090
2091 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2092 {
2093 struct device *dev = &adev->dev;
2094 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2095 struct spi_master *master;
2096 struct pl022 *pl022 = NULL; /*Data for this driver */
2097 struct device_node *np = adev->dev.of_node;
2098 int status = 0, i, num_cs;
2099
2100 dev_info(&adev->dev,
2101 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2102 if (!platform_info && IS_ENABLED(CONFIG_OF))
2103 platform_info = pl022_platform_data_dt_get(dev);
2104
2105 if (!platform_info) {
2106 dev_err(dev, "probe: no platform data defined\n");
2107 return -ENODEV;
2108 }
2109
2110 if (platform_info->num_chipselect) {
2111 num_cs = platform_info->num_chipselect;
2112 } else {
2113 dev_err(dev, "probe: no chip select defined\n");
2114 return -ENODEV;
2115 }
2116
2117 /* Allocate master with space for data */
2118 master = spi_alloc_master(dev, sizeof(struct pl022));
2119 if (master == NULL) {
2120 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2121 return -ENOMEM;
2122 }
2123
2124 pl022 = spi_master_get_devdata(master);
2125 pl022->master = master;
2126 pl022->master_info = platform_info;
2127 pl022->adev = adev;
2128 pl022->vendor = id->data;
2129 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2130 GFP_KERNEL);
2131
2132 pinctrl_pm_select_default_state(dev);
2133
2134 /*
2135 * Bus Number Which has been Assigned to this SSP controller
2136 * on this board
2137 */
2138 master->bus_num = platform_info->bus_id;
2139 master->num_chipselect = num_cs;
2140 master->cleanup = pl022_cleanup;
2141 master->setup = pl022_setup;
2142 master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2143 master->transfer_one_message = pl022_transfer_one_message;
2144 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2145 master->rt = platform_info->rt;
2146 master->dev.of_node = dev->of_node;
2147
2148 if (platform_info->num_chipselect && platform_info->chipselects) {
2149 for (i = 0; i < num_cs; i++)
2150 pl022->chipselects[i] = platform_info->chipselects[i];
2151 } else if (IS_ENABLED(CONFIG_OF)) {
2152 for (i = 0; i < num_cs; i++) {
2153 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2154
2155 if (cs_gpio == -EPROBE_DEFER) {
2156 status = -EPROBE_DEFER;
2157 goto err_no_gpio;
2158 }
2159
2160 pl022->chipselects[i] = cs_gpio;
2161
2162 if (gpio_is_valid(cs_gpio)) {
2163 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2164 dev_err(&adev->dev,
2165 "could not request %d gpio\n",
2166 cs_gpio);
2167 else if (gpio_direction_output(cs_gpio, 1))
2168 dev_err(&adev->dev,
2169 "could set gpio %d as output\n",
2170 cs_gpio);
2171 }
2172 }
2173 }
2174
2175 /*
2176 * Supports mode 0-3, loopback, and active low CS. Transfers are
2177 * always MS bit first on the original pl022.
2178 */
2179 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2180 if (pl022->vendor->extended_cr)
2181 master->mode_bits |= SPI_LSB_FIRST;
2182
2183 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2184
2185 status = amba_request_regions(adev, NULL);
2186 if (status)
2187 goto err_no_ioregion;
2188
2189 pl022->phybase = adev->res.start;
2190 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2191 resource_size(&adev->res));
2192 if (pl022->virtbase == NULL) {
2193 status = -ENOMEM;
2194 goto err_no_ioremap;
2195 }
2196 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2197 adev->res.start, pl022->virtbase);
2198
2199 pl022->clk = devm_clk_get(&adev->dev, NULL);
2200 if (IS_ERR(pl022->clk)) {
2201 status = PTR_ERR(pl022->clk);
2202 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2203 goto err_no_clk;
2204 }
2205
2206 status = clk_prepare(pl022->clk);
2207 if (status) {
2208 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2209 goto err_clk_prep;
2210 }
2211
2212 status = clk_enable(pl022->clk);
2213 if (status) {
2214 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2215 goto err_no_clk_en;
2216 }
2217
2218 /* Initialize transfer pump */
2219 tasklet_init(&pl022->pump_transfers, pump_transfers,
2220 (unsigned long)pl022);
2221
2222 /* Disable SSP */
2223 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2224 SSP_CR1(pl022->virtbase));
2225 load_ssp_default_config(pl022);
2226
2227 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2228 0, "pl022", pl022);
2229 if (status < 0) {
2230 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2231 goto err_no_irq;
2232 }
2233
2234 /* Get DMA channels, try autoconfiguration first */
2235 status = pl022_dma_autoprobe(pl022);
2236
2237 /* If that failed, use channels from platform_info */
2238 if (status == 0)
2239 platform_info->enable_dma = 1;
2240 else if (platform_info->enable_dma) {
2241 status = pl022_dma_probe(pl022);
2242 if (status != 0)
2243 platform_info->enable_dma = 0;
2244 }
2245
2246 /* Register with the SPI framework */
2247 amba_set_drvdata(adev, pl022);
2248 status = spi_register_master(master);
2249 if (status != 0) {
2250 dev_err(&adev->dev,
2251 "probe - problem registering spi master\n");
2252 goto err_spi_register;
2253 }
2254 dev_dbg(dev, "probe succeeded\n");
2255
2256 /* let runtime pm put suspend */
2257 if (platform_info->autosuspend_delay > 0) {
2258 dev_info(&adev->dev,
2259 "will use autosuspend for runtime pm, delay %dms\n",
2260 platform_info->autosuspend_delay);
2261 pm_runtime_set_autosuspend_delay(dev,
2262 platform_info->autosuspend_delay);
2263 pm_runtime_use_autosuspend(dev);
2264 }
2265 pm_runtime_put(dev);
2266
2267 return 0;
2268
2269 err_spi_register:
2270 if (platform_info->enable_dma)
2271 pl022_dma_remove(pl022);
2272 err_no_irq:
2273 clk_disable(pl022->clk);
2274 err_no_clk_en:
2275 clk_unprepare(pl022->clk);
2276 err_clk_prep:
2277 err_no_clk:
2278 err_no_ioremap:
2279 amba_release_regions(adev);
2280 err_no_ioregion:
2281 err_no_gpio:
2282 spi_master_put(master);
2283 return status;
2284 }
2285
2286 static int
2287 pl022_remove(struct amba_device *adev)
2288 {
2289 struct pl022 *pl022 = amba_get_drvdata(adev);
2290
2291 if (!pl022)
2292 return 0;
2293
2294 /*
2295 * undo pm_runtime_put() in probe. I assume that we're not
2296 * accessing the primecell here.
2297 */
2298 pm_runtime_get_noresume(&adev->dev);
2299
2300 load_ssp_default_config(pl022);
2301 if (pl022->master_info->enable_dma)
2302 pl022_dma_remove(pl022);
2303
2304 clk_disable(pl022->clk);
2305 clk_unprepare(pl022->clk);
2306 amba_release_regions(adev);
2307 tasklet_disable(&pl022->pump_transfers);
2308 spi_unregister_master(pl022->master);
2309 amba_set_drvdata(adev, NULL);
2310 return 0;
2311 }
2312
2313 #if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
2314 /*
2315 * These two functions are used from both suspend/resume and
2316 * the runtime counterparts to handle external resources like
2317 * clocks, pins and regulators when going to sleep.
2318 */
2319 static void pl022_suspend_resources(struct pl022 *pl022, bool runtime)
2320 {
2321 clk_disable(pl022->clk);
2322
2323 if (runtime)
2324 pinctrl_pm_select_idle_state(&pl022->adev->dev);
2325 else
2326 pinctrl_pm_select_sleep_state(&pl022->adev->dev);
2327 }
2328
2329 static void pl022_resume_resources(struct pl022 *pl022, bool runtime)
2330 {
2331 /* First go to the default state */
2332 pinctrl_pm_select_default_state(&pl022->adev->dev);
2333 if (!runtime)
2334 /* Then let's idle the pins until the next transfer happens */
2335 pinctrl_pm_select_idle_state(&pl022->adev->dev);
2336
2337 clk_enable(pl022->clk);
2338 }
2339 #endif
2340
2341 #ifdef CONFIG_SUSPEND
2342 static int pl022_suspend(struct device *dev)
2343 {
2344 struct pl022 *pl022 = dev_get_drvdata(dev);
2345 int ret;
2346
2347 ret = spi_master_suspend(pl022->master);
2348 if (ret) {
2349 dev_warn(dev, "cannot suspend master\n");
2350 return ret;
2351 }
2352
2353 pm_runtime_get_sync(dev);
2354 pl022_suspend_resources(pl022, false);
2355
2356 dev_dbg(dev, "suspended\n");
2357 return 0;
2358 }
2359
2360 static int pl022_resume(struct device *dev)
2361 {
2362 struct pl022 *pl022 = dev_get_drvdata(dev);
2363 int ret;
2364
2365 pl022_resume_resources(pl022, false);
2366 pm_runtime_put(dev);
2367
2368 /* Start the queue running */
2369 ret = spi_master_resume(pl022->master);
2370 if (ret)
2371 dev_err(dev, "problem starting queue (%d)\n", ret);
2372 else
2373 dev_dbg(dev, "resumed\n");
2374
2375 return ret;
2376 }
2377 #endif /* CONFIG_PM */
2378
2379 #ifdef CONFIG_PM_RUNTIME
2380 static int pl022_runtime_suspend(struct device *dev)
2381 {
2382 struct pl022 *pl022 = dev_get_drvdata(dev);
2383
2384 pl022_suspend_resources(pl022, true);
2385 return 0;
2386 }
2387
2388 static int pl022_runtime_resume(struct device *dev)
2389 {
2390 struct pl022 *pl022 = dev_get_drvdata(dev);
2391
2392 pl022_resume_resources(pl022, true);
2393 return 0;
2394 }
2395 #endif
2396
2397 static const struct dev_pm_ops pl022_dev_pm_ops = {
2398 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2399 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2400 };
2401
2402 static struct vendor_data vendor_arm = {
2403 .fifodepth = 8,
2404 .max_bpw = 16,
2405 .unidir = false,
2406 .extended_cr = false,
2407 .pl023 = false,
2408 .loopback = true,
2409 };
2410
2411 static struct vendor_data vendor_st = {
2412 .fifodepth = 32,
2413 .max_bpw = 32,
2414 .unidir = false,
2415 .extended_cr = true,
2416 .pl023 = false,
2417 .loopback = true,
2418 };
2419
2420 static struct vendor_data vendor_st_pl023 = {
2421 .fifodepth = 32,
2422 .max_bpw = 32,
2423 .unidir = false,
2424 .extended_cr = true,
2425 .pl023 = true,
2426 .loopback = false,
2427 };
2428
2429 static struct amba_id pl022_ids[] = {
2430 {
2431 /*
2432 * ARM PL022 variant, this has a 16bit wide
2433 * and 8 locations deep TX/RX FIFO
2434 */
2435 .id = 0x00041022,
2436 .mask = 0x000fffff,
2437 .data = &vendor_arm,
2438 },
2439 {
2440 /*
2441 * ST Micro derivative, this has 32bit wide
2442 * and 32 locations deep TX/RX FIFO
2443 */
2444 .id = 0x01080022,
2445 .mask = 0xffffffff,
2446 .data = &vendor_st,
2447 },
2448 {
2449 /*
2450 * ST-Ericsson derivative "PL023" (this is not
2451 * an official ARM number), this is a PL022 SSP block
2452 * stripped to SPI mode only, it has 32bit wide
2453 * and 32 locations deep TX/RX FIFO but no extended
2454 * CR0/CR1 register
2455 */
2456 .id = 0x00080023,
2457 .mask = 0xffffffff,
2458 .data = &vendor_st_pl023,
2459 },
2460 { 0, 0 },
2461 };
2462
2463 MODULE_DEVICE_TABLE(amba, pl022_ids);
2464
2465 static struct amba_driver pl022_driver = {
2466 .drv = {
2467 .name = "ssp-pl022",
2468 .pm = &pl022_dev_pm_ops,
2469 },
2470 .id_table = pl022_ids,
2471 .probe = pl022_probe,
2472 .remove = pl022_remove,
2473 };
2474
2475 static int __init pl022_init(void)
2476 {
2477 return amba_driver_register(&pl022_driver);
2478 }
2479 subsys_initcall(pl022_init);
2480
2481 static void __exit pl022_exit(void)
2482 {
2483 amba_driver_unregister(&pl022_driver);
2484 }
2485 module_exit(pl022_exit);
2486
2487 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2488 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2489 MODULE_LICENSE("GPL");