]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/spi/spi-ppc4xx.c
Merge tag 'writeback_for_v5.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-ppc4xx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SPI_PPC4XX SPI controller driver.
4 *
5 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
6 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
7 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
8 *
9 * Based in part on drivers/spi/spi_s3c24xx.c
10 *
11 * Copyright (c) 2006 Ben Dooks
12 * Copyright (c) 2006 Simtec Electronics
13 * Ben Dooks <ben@simtec.co.uk>
14 */
15
16 /*
17 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
18 * generate an interrupt to the CPU. This can cause high CPU utilization.
19 * This driver allows platforms to reduce the interrupt load on the CPU
20 * during SPI transfers by setting max_speed_hz via the device tree.
21 */
22
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/wait.h>
28 #include <linux/of_address.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_platform.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi_bitbang.h>
36
37 #include <asm/io.h>
38 #include <asm/dcr.h>
39 #include <asm/dcr-regs.h>
40
41 /* bits in mode register - bit 0 is MSb */
42
43 /*
44 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
45 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
46 * Note: This is the inverse of CPHA.
47 */
48 #define SPI_PPC4XX_MODE_SCP (0x80 >> 3)
49
50 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
51 #define SPI_PPC4XX_MODE_SPE (0x80 >> 4)
52
53 /*
54 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
55 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
56 * Note: This is identical to SPI_LSB_FIRST.
57 */
58 #define SPI_PPC4XX_MODE_RD (0x80 >> 5)
59
60 /*
61 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
62 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
63 * Note: This is identical to CPOL.
64 */
65 #define SPI_PPC4XX_MODE_CI (0x80 >> 6)
66
67 /*
68 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
69 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
70 */
71 #define SPI_PPC4XX_MODE_IL (0x80 >> 7)
72
73 /* bits in control register */
74 /* starts a transfer when set */
75 #define SPI_PPC4XX_CR_STR (0x80 >> 7)
76
77 /* bits in status register */
78 /* port is busy with a transfer */
79 #define SPI_PPC4XX_SR_BSY (0x80 >> 6)
80 /* RxD ready */
81 #define SPI_PPC4XX_SR_RBR (0x80 >> 7)
82
83 /* clock settings (SCP and CI) for various SPI modes */
84 #define SPI_CLK_MODE0 (SPI_PPC4XX_MODE_SCP | 0)
85 #define SPI_CLK_MODE1 (0 | 0)
86 #define SPI_CLK_MODE2 (SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
87 #define SPI_CLK_MODE3 (0 | SPI_PPC4XX_MODE_CI)
88
89 #define DRIVER_NAME "spi_ppc4xx_of"
90
91 struct spi_ppc4xx_regs {
92 u8 mode;
93 u8 rxd;
94 u8 txd;
95 u8 cr;
96 u8 sr;
97 u8 dummy;
98 /*
99 * Clock divisor modulus register
100 * This uses the following formula:
101 * SCPClkOut = OPBCLK/(4(CDM + 1))
102 * or
103 * CDM = (OPBCLK/4*SCPClkOut) - 1
104 * bit 0 is the MSb!
105 */
106 u8 cdm;
107 };
108
109 /* SPI Controller driver's private data. */
110 struct ppc4xx_spi {
111 /* bitbang has to be first */
112 struct spi_bitbang bitbang;
113 struct completion done;
114
115 u64 mapbase;
116 u64 mapsize;
117 int irqnum;
118 /* need this to set the SPI clock */
119 unsigned int opb_freq;
120
121 /* for transfers */
122 int len;
123 int count;
124 /* data buffers */
125 const unsigned char *tx;
126 unsigned char *rx;
127
128 struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
129 struct spi_master *master;
130 struct device *dev;
131 };
132
133 /* need this so we can set the clock in the chipselect routine */
134 struct spi_ppc4xx_cs {
135 u8 mode;
136 };
137
138 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
139 {
140 struct ppc4xx_spi *hw;
141 u8 data;
142
143 dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
144 t->tx_buf, t->rx_buf, t->len);
145
146 hw = spi_master_get_devdata(spi->master);
147
148 hw->tx = t->tx_buf;
149 hw->rx = t->rx_buf;
150 hw->len = t->len;
151 hw->count = 0;
152
153 /* send the first byte */
154 data = hw->tx ? hw->tx[0] : 0;
155 out_8(&hw->regs->txd, data);
156 out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
157 wait_for_completion(&hw->done);
158
159 return hw->count;
160 }
161
162 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
163 {
164 struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
165 struct spi_ppc4xx_cs *cs = spi->controller_state;
166 int scr;
167 u8 cdm = 0;
168 u32 speed;
169 u8 bits_per_word;
170
171 /* Start with the generic configuration for this device. */
172 bits_per_word = spi->bits_per_word;
173 speed = spi->max_speed_hz;
174
175 /*
176 * Modify the configuration if the transfer overrides it. Do not allow
177 * the transfer to overwrite the generic configuration with zeros.
178 */
179 if (t) {
180 if (t->bits_per_word)
181 bits_per_word = t->bits_per_word;
182
183 if (t->speed_hz)
184 speed = min(t->speed_hz, spi->max_speed_hz);
185 }
186
187 if (!speed || (speed > spi->max_speed_hz)) {
188 dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
189 return -EINVAL;
190 }
191
192 /* Write new configuration */
193 out_8(&hw->regs->mode, cs->mode);
194
195 /* Set the clock */
196 /* opb_freq was already divided by 4 */
197 scr = (hw->opb_freq / speed) - 1;
198 if (scr > 0)
199 cdm = min(scr, 0xff);
200
201 dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
202
203 if (in_8(&hw->regs->cdm) != cdm)
204 out_8(&hw->regs->cdm, cdm);
205
206 mutex_lock(&hw->bitbang.lock);
207 if (!hw->bitbang.busy) {
208 hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
209 /* Need to ndelay here? */
210 }
211 mutex_unlock(&hw->bitbang.lock);
212
213 return 0;
214 }
215
216 static int spi_ppc4xx_setup(struct spi_device *spi)
217 {
218 struct spi_ppc4xx_cs *cs = spi->controller_state;
219
220 if (!spi->max_speed_hz) {
221 dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
222 return -EINVAL;
223 }
224
225 if (cs == NULL) {
226 cs = kzalloc(sizeof *cs, GFP_KERNEL);
227 if (!cs)
228 return -ENOMEM;
229 spi->controller_state = cs;
230 }
231
232 /*
233 * We set all bits of the SPI0_MODE register, so,
234 * no need to read-modify-write
235 */
236 cs->mode = SPI_PPC4XX_MODE_SPE;
237
238 switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
239 case SPI_MODE_0:
240 cs->mode |= SPI_CLK_MODE0;
241 break;
242 case SPI_MODE_1:
243 cs->mode |= SPI_CLK_MODE1;
244 break;
245 case SPI_MODE_2:
246 cs->mode |= SPI_CLK_MODE2;
247 break;
248 case SPI_MODE_3:
249 cs->mode |= SPI_CLK_MODE3;
250 break;
251 }
252
253 if (spi->mode & SPI_LSB_FIRST)
254 cs->mode |= SPI_PPC4XX_MODE_RD;
255
256 return 0;
257 }
258
259 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
260 {
261 struct ppc4xx_spi *hw;
262 u8 status;
263 u8 data;
264 unsigned int count;
265
266 hw = (struct ppc4xx_spi *)dev_id;
267
268 status = in_8(&hw->regs->sr);
269 if (!status)
270 return IRQ_NONE;
271
272 /*
273 * BSY de-asserts one cycle after the transfer is complete. The
274 * interrupt is asserted after the transfer is complete. The exact
275 * relationship is not documented, hence this code.
276 */
277
278 if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
279 u8 lstatus;
280 int cnt = 0;
281
282 dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
283 do {
284 ndelay(10);
285 lstatus = in_8(&hw->regs->sr);
286 } while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
287
288 if (cnt >= 100) {
289 dev_err(hw->dev, "busywait: too many loops!\n");
290 complete(&hw->done);
291 return IRQ_HANDLED;
292 } else {
293 /* status is always 1 (RBR) here */
294 status = in_8(&hw->regs->sr);
295 dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
296 }
297 }
298
299 count = hw->count;
300 hw->count++;
301
302 /* RBR triggered this interrupt. Therefore, data must be ready. */
303 data = in_8(&hw->regs->rxd);
304 if (hw->rx)
305 hw->rx[count] = data;
306
307 count++;
308
309 if (count < hw->len) {
310 data = hw->tx ? hw->tx[count] : 0;
311 out_8(&hw->regs->txd, data);
312 out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
313 } else {
314 complete(&hw->done);
315 }
316
317 return IRQ_HANDLED;
318 }
319
320 static void spi_ppc4xx_cleanup(struct spi_device *spi)
321 {
322 kfree(spi->controller_state);
323 }
324
325 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
326 {
327 /*
328 * On all 4xx PPC's the SPI bus is shared/multiplexed with
329 * the 2nd I2C bus. We need to enable the the SPI bus before
330 * using it.
331 */
332
333 /* need to clear bit 14 to enable SPC */
334 dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
335 }
336
337 /*
338 * platform_device layer stuff...
339 */
340 static int spi_ppc4xx_of_probe(struct platform_device *op)
341 {
342 struct ppc4xx_spi *hw;
343 struct spi_master *master;
344 struct spi_bitbang *bbp;
345 struct resource resource;
346 struct device_node *np = op->dev.of_node;
347 struct device *dev = &op->dev;
348 struct device_node *opbnp;
349 int ret;
350 const unsigned int *clk;
351
352 master = spi_alloc_master(dev, sizeof *hw);
353 if (master == NULL)
354 return -ENOMEM;
355 master->dev.of_node = np;
356 platform_set_drvdata(op, master);
357 hw = spi_master_get_devdata(master);
358 hw->master = master;
359 hw->dev = dev;
360
361 init_completion(&hw->done);
362
363 /* Setup the state for the bitbang driver */
364 bbp = &hw->bitbang;
365 bbp->master = hw->master;
366 bbp->setup_transfer = spi_ppc4xx_setupxfer;
367 bbp->txrx_bufs = spi_ppc4xx_txrx;
368 bbp->use_dma = 0;
369 bbp->master->setup = spi_ppc4xx_setup;
370 bbp->master->cleanup = spi_ppc4xx_cleanup;
371 bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
372 bbp->master->use_gpio_descriptors = true;
373 /*
374 * The SPI core will count the number of GPIO descriptors to figure
375 * out the number of chip selects available on the platform.
376 */
377 bbp->master->num_chipselect = 0;
378
379 /* the spi->mode bits understood by this driver: */
380 bbp->master->mode_bits =
381 SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
382
383 /* Get the clock for the OPB */
384 opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
385 if (opbnp == NULL) {
386 dev_err(dev, "OPB: cannot find node\n");
387 ret = -ENODEV;
388 goto free_master;
389 }
390 /* Get the clock (Hz) for the OPB */
391 clk = of_get_property(opbnp, "clock-frequency", NULL);
392 if (clk == NULL) {
393 dev_err(dev, "OPB: no clock-frequency property set\n");
394 of_node_put(opbnp);
395 ret = -ENODEV;
396 goto free_master;
397 }
398 hw->opb_freq = *clk;
399 hw->opb_freq >>= 2;
400 of_node_put(opbnp);
401
402 ret = of_address_to_resource(np, 0, &resource);
403 if (ret) {
404 dev_err(dev, "error while parsing device node resource\n");
405 goto free_master;
406 }
407 hw->mapbase = resource.start;
408 hw->mapsize = resource_size(&resource);
409
410 /* Sanity check */
411 if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
412 dev_err(dev, "too small to map registers\n");
413 ret = -EINVAL;
414 goto free_master;
415 }
416
417 /* Request IRQ */
418 hw->irqnum = irq_of_parse_and_map(np, 0);
419 ret = request_irq(hw->irqnum, spi_ppc4xx_int,
420 0, "spi_ppc4xx_of", (void *)hw);
421 if (ret) {
422 dev_err(dev, "unable to allocate interrupt\n");
423 goto free_master;
424 }
425
426 if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
427 dev_err(dev, "resource unavailable\n");
428 ret = -EBUSY;
429 goto request_mem_error;
430 }
431
432 hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
433
434 if (!hw->regs) {
435 dev_err(dev, "unable to memory map registers\n");
436 ret = -ENXIO;
437 goto map_io_error;
438 }
439
440 spi_ppc4xx_enable(hw);
441
442 /* Finally register our spi controller */
443 dev->dma_mask = 0;
444 ret = spi_bitbang_start(bbp);
445 if (ret) {
446 dev_err(dev, "failed to register SPI master\n");
447 goto unmap_regs;
448 }
449
450 dev_info(dev, "driver initialized\n");
451
452 return 0;
453
454 unmap_regs:
455 iounmap(hw->regs);
456 map_io_error:
457 release_mem_region(hw->mapbase, hw->mapsize);
458 request_mem_error:
459 free_irq(hw->irqnum, hw);
460 free_master:
461 spi_master_put(master);
462
463 dev_err(dev, "initialization failed\n");
464 return ret;
465 }
466
467 static int spi_ppc4xx_of_remove(struct platform_device *op)
468 {
469 struct spi_master *master = platform_get_drvdata(op);
470 struct ppc4xx_spi *hw = spi_master_get_devdata(master);
471
472 spi_bitbang_stop(&hw->bitbang);
473 release_mem_region(hw->mapbase, hw->mapsize);
474 free_irq(hw->irqnum, hw);
475 iounmap(hw->regs);
476 spi_master_put(master);
477 return 0;
478 }
479
480 static const struct of_device_id spi_ppc4xx_of_match[] = {
481 { .compatible = "ibm,ppc4xx-spi", },
482 {},
483 };
484
485 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
486
487 static struct platform_driver spi_ppc4xx_of_driver = {
488 .probe = spi_ppc4xx_of_probe,
489 .remove = spi_ppc4xx_of_remove,
490 .driver = {
491 .name = DRIVER_NAME,
492 .of_match_table = spi_ppc4xx_of_match,
493 },
494 };
495 module_platform_driver(spi_ppc4xx_of_driver);
496
497 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
498 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
499 MODULE_LICENSE("GPL");