]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-pxa2xx.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-pxa2xx.c
1 /*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36
37 #include "spi-pxa2xx.h"
38
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
43
44 #define TIMOUT_DFLT 1000
45
46 /*
47 * for testing SSCR1 changes that require SSP restart, basically
48 * everything except the service and interrupt enables, the pxa270 developer
49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50 * list, but the PXA255 dev man says all bits without really meaning the
51 * service and interrupt enables
52 */
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
61 | QUARK_X1000_SSCR1_EFWR \
62 | QUARK_X1000_SSCR1_RFT \
63 | QUARK_X1000_SSCR1_TFT \
64 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
72
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT 9
77 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
78
79 struct lpss_config {
80 /* LPSS offset from drv_data->ioaddr */
81 unsigned offset;
82 /* Register offsets from drv_data->lpss_base or -1 */
83 int reg_general;
84 int reg_ssp;
85 int reg_cs_ctrl;
86 int reg_capabilities;
87 /* FIFO thresholds */
88 u32 rx_threshold;
89 u32 tx_threshold_lo;
90 u32 tx_threshold_hi;
91 /* Chip select control */
92 unsigned cs_sel_shift;
93 unsigned cs_sel_mask;
94 unsigned cs_num;
95 };
96
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 { /* LPSS_LPT_SSP */
100 .offset = 0x800,
101 .reg_general = 0x08,
102 .reg_ssp = 0x0c,
103 .reg_cs_ctrl = 0x18,
104 .reg_capabilities = -1,
105 .rx_threshold = 64,
106 .tx_threshold_lo = 160,
107 .tx_threshold_hi = 224,
108 },
109 { /* LPSS_BYT_SSP */
110 .offset = 0x400,
111 .reg_general = 0x08,
112 .reg_ssp = 0x0c,
113 .reg_cs_ctrl = 0x18,
114 .reg_capabilities = -1,
115 .rx_threshold = 64,
116 .tx_threshold_lo = 160,
117 .tx_threshold_hi = 224,
118 },
119 { /* LPSS_BSW_SSP */
120 .offset = 0x400,
121 .reg_general = 0x08,
122 .reg_ssp = 0x0c,
123 .reg_cs_ctrl = 0x18,
124 .reg_capabilities = -1,
125 .rx_threshold = 64,
126 .tx_threshold_lo = 160,
127 .tx_threshold_hi = 224,
128 .cs_sel_shift = 2,
129 .cs_sel_mask = 1 << 2,
130 .cs_num = 2,
131 },
132 { /* LPSS_SPT_SSP */
133 .offset = 0x200,
134 .reg_general = -1,
135 .reg_ssp = 0x20,
136 .reg_cs_ctrl = 0x24,
137 .reg_capabilities = -1,
138 .rx_threshold = 1,
139 .tx_threshold_lo = 32,
140 .tx_threshold_hi = 56,
141 },
142 { /* LPSS_BXT_SSP */
143 .offset = 0x200,
144 .reg_general = -1,
145 .reg_ssp = 0x20,
146 .reg_cs_ctrl = 0x24,
147 .reg_capabilities = 0xfc,
148 .rx_threshold = 1,
149 .tx_threshold_lo = 16,
150 .tx_threshold_hi = 48,
151 .cs_sel_shift = 8,
152 .cs_sel_mask = 3 << 8,
153 },
154 };
155
156 static inline const struct lpss_config
157 *lpss_get_config(const struct driver_data *drv_data)
158 {
159 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
160 }
161
162 static bool is_lpss_ssp(const struct driver_data *drv_data)
163 {
164 switch (drv_data->ssp_type) {
165 case LPSS_LPT_SSP:
166 case LPSS_BYT_SSP:
167 case LPSS_BSW_SSP:
168 case LPSS_SPT_SSP:
169 case LPSS_BXT_SSP:
170 return true;
171 default:
172 return false;
173 }
174 }
175
176 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
177 {
178 return drv_data->ssp_type == QUARK_X1000_SSP;
179 }
180
181 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
182 {
183 switch (drv_data->ssp_type) {
184 case QUARK_X1000_SSP:
185 return QUARK_X1000_SSCR1_CHANGE_MASK;
186 case CE4100_SSP:
187 return CE4100_SSCR1_CHANGE_MASK;
188 default:
189 return SSCR1_CHANGE_MASK;
190 }
191 }
192
193 static u32
194 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
195 {
196 switch (drv_data->ssp_type) {
197 case QUARK_X1000_SSP:
198 return RX_THRESH_QUARK_X1000_DFLT;
199 case CE4100_SSP:
200 return RX_THRESH_CE4100_DFLT;
201 default:
202 return RX_THRESH_DFLT;
203 }
204 }
205
206 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
207 {
208 u32 mask;
209
210 switch (drv_data->ssp_type) {
211 case QUARK_X1000_SSP:
212 mask = QUARK_X1000_SSSR_TFL_MASK;
213 break;
214 case CE4100_SSP:
215 mask = CE4100_SSSR_TFL_MASK;
216 break;
217 default:
218 mask = SSSR_TFL_MASK;
219 break;
220 }
221
222 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
223 }
224
225 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
226 u32 *sccr1_reg)
227 {
228 u32 mask;
229
230 switch (drv_data->ssp_type) {
231 case QUARK_X1000_SSP:
232 mask = QUARK_X1000_SSCR1_RFT;
233 break;
234 case CE4100_SSP:
235 mask = CE4100_SSCR1_RFT;
236 break;
237 default:
238 mask = SSCR1_RFT;
239 break;
240 }
241 *sccr1_reg &= ~mask;
242 }
243
244 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
245 u32 *sccr1_reg, u32 threshold)
246 {
247 switch (drv_data->ssp_type) {
248 case QUARK_X1000_SSP:
249 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
250 break;
251 case CE4100_SSP:
252 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
253 break;
254 default:
255 *sccr1_reg |= SSCR1_RxTresh(threshold);
256 break;
257 }
258 }
259
260 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
261 u32 clk_div, u8 bits)
262 {
263 switch (drv_data->ssp_type) {
264 case QUARK_X1000_SSP:
265 return clk_div
266 | QUARK_X1000_SSCR0_Motorola
267 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
268 | SSCR0_SSE;
269 default:
270 return clk_div
271 | SSCR0_Motorola
272 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
273 | SSCR0_SSE
274 | (bits > 16 ? SSCR0_EDSS : 0);
275 }
276 }
277
278 /*
279 * Read and write LPSS SSP private registers. Caller must first check that
280 * is_lpss_ssp() returns true before these can be called.
281 */
282 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
283 {
284 WARN_ON(!drv_data->lpss_base);
285 return readl(drv_data->lpss_base + offset);
286 }
287
288 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
289 unsigned offset, u32 value)
290 {
291 WARN_ON(!drv_data->lpss_base);
292 writel(value, drv_data->lpss_base + offset);
293 }
294
295 /*
296 * lpss_ssp_setup - perform LPSS SSP specific setup
297 * @drv_data: pointer to the driver private data
298 *
299 * Perform LPSS SSP specific setup. This function must be called first if
300 * one is going to use LPSS SSP private registers.
301 */
302 static void lpss_ssp_setup(struct driver_data *drv_data)
303 {
304 const struct lpss_config *config;
305 u32 value;
306
307 config = lpss_get_config(drv_data);
308 drv_data->lpss_base = drv_data->ioaddr + config->offset;
309
310 /* Enable software chip select control */
311 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
312 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
313 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
314 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
315
316 /* Enable multiblock DMA transfers */
317 if (drv_data->master_info->enable_dma) {
318 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
319
320 if (config->reg_general >= 0) {
321 value = __lpss_ssp_read_priv(drv_data,
322 config->reg_general);
323 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
324 __lpss_ssp_write_priv(drv_data,
325 config->reg_general, value);
326 }
327 }
328 }
329
330 static void lpss_ssp_select_cs(struct driver_data *drv_data,
331 const struct lpss_config *config)
332 {
333 u32 value, cs;
334
335 if (!config->cs_sel_mask)
336 return;
337
338 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
339
340 cs = drv_data->master->cur_msg->spi->chip_select;
341 cs <<= config->cs_sel_shift;
342 if (cs != (value & config->cs_sel_mask)) {
343 /*
344 * When switching another chip select output active the
345 * output must be selected first and wait 2 ssp_clk cycles
346 * before changing state to active. Otherwise a short
347 * glitch will occur on the previous chip select since
348 * output select is latched but state control is not.
349 */
350 value &= ~config->cs_sel_mask;
351 value |= cs;
352 __lpss_ssp_write_priv(drv_data,
353 config->reg_cs_ctrl, value);
354 ndelay(1000000000 /
355 (drv_data->master->max_speed_hz / 2));
356 }
357 }
358
359 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
360 {
361 const struct lpss_config *config;
362 u32 value;
363
364 config = lpss_get_config(drv_data);
365
366 if (enable)
367 lpss_ssp_select_cs(drv_data, config);
368
369 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
370 if (enable)
371 value &= ~LPSS_CS_CONTROL_CS_HIGH;
372 else
373 value |= LPSS_CS_CONTROL_CS_HIGH;
374 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
375 }
376
377 static void cs_assert(struct driver_data *drv_data)
378 {
379 struct chip_data *chip =
380 spi_get_ctldata(drv_data->master->cur_msg->spi);
381
382 if (drv_data->ssp_type == CE4100_SSP) {
383 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
384 return;
385 }
386
387 if (chip->cs_control) {
388 chip->cs_control(PXA2XX_CS_ASSERT);
389 return;
390 }
391
392 if (gpio_is_valid(chip->gpio_cs)) {
393 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
394 return;
395 }
396
397 if (is_lpss_ssp(drv_data))
398 lpss_ssp_cs_control(drv_data, true);
399 }
400
401 static void cs_deassert(struct driver_data *drv_data)
402 {
403 struct chip_data *chip =
404 spi_get_ctldata(drv_data->master->cur_msg->spi);
405
406 if (drv_data->ssp_type == CE4100_SSP)
407 return;
408
409 if (chip->cs_control) {
410 chip->cs_control(PXA2XX_CS_DEASSERT);
411 return;
412 }
413
414 if (gpio_is_valid(chip->gpio_cs)) {
415 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
416 return;
417 }
418
419 if (is_lpss_ssp(drv_data))
420 lpss_ssp_cs_control(drv_data, false);
421 }
422
423 int pxa2xx_spi_flush(struct driver_data *drv_data)
424 {
425 unsigned long limit = loops_per_jiffy << 1;
426
427 do {
428 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
429 pxa2xx_spi_read(drv_data, SSDR);
430 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
431 write_SSSR_CS(drv_data, SSSR_ROR);
432
433 return limit;
434 }
435
436 static int null_writer(struct driver_data *drv_data)
437 {
438 u8 n_bytes = drv_data->n_bytes;
439
440 if (pxa2xx_spi_txfifo_full(drv_data)
441 || (drv_data->tx == drv_data->tx_end))
442 return 0;
443
444 pxa2xx_spi_write(drv_data, SSDR, 0);
445 drv_data->tx += n_bytes;
446
447 return 1;
448 }
449
450 static int null_reader(struct driver_data *drv_data)
451 {
452 u8 n_bytes = drv_data->n_bytes;
453
454 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
455 && (drv_data->rx < drv_data->rx_end)) {
456 pxa2xx_spi_read(drv_data, SSDR);
457 drv_data->rx += n_bytes;
458 }
459
460 return drv_data->rx == drv_data->rx_end;
461 }
462
463 static int u8_writer(struct driver_data *drv_data)
464 {
465 if (pxa2xx_spi_txfifo_full(drv_data)
466 || (drv_data->tx == drv_data->tx_end))
467 return 0;
468
469 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
470 ++drv_data->tx;
471
472 return 1;
473 }
474
475 static int u8_reader(struct driver_data *drv_data)
476 {
477 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
478 && (drv_data->rx < drv_data->rx_end)) {
479 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
480 ++drv_data->rx;
481 }
482
483 return drv_data->rx == drv_data->rx_end;
484 }
485
486 static int u16_writer(struct driver_data *drv_data)
487 {
488 if (pxa2xx_spi_txfifo_full(drv_data)
489 || (drv_data->tx == drv_data->tx_end))
490 return 0;
491
492 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
493 drv_data->tx += 2;
494
495 return 1;
496 }
497
498 static int u16_reader(struct driver_data *drv_data)
499 {
500 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
501 && (drv_data->rx < drv_data->rx_end)) {
502 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
503 drv_data->rx += 2;
504 }
505
506 return drv_data->rx == drv_data->rx_end;
507 }
508
509 static int u32_writer(struct driver_data *drv_data)
510 {
511 if (pxa2xx_spi_txfifo_full(drv_data)
512 || (drv_data->tx == drv_data->tx_end))
513 return 0;
514
515 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
516 drv_data->tx += 4;
517
518 return 1;
519 }
520
521 static int u32_reader(struct driver_data *drv_data)
522 {
523 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
524 && (drv_data->rx < drv_data->rx_end)) {
525 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
526 drv_data->rx += 4;
527 }
528
529 return drv_data->rx == drv_data->rx_end;
530 }
531
532 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
533 {
534 struct spi_message *msg = drv_data->master->cur_msg;
535 struct spi_transfer *trans = drv_data->cur_transfer;
536
537 /* Move to next transfer */
538 if (trans->transfer_list.next != &msg->transfers) {
539 drv_data->cur_transfer =
540 list_entry(trans->transfer_list.next,
541 struct spi_transfer,
542 transfer_list);
543 return RUNNING_STATE;
544 } else
545 return DONE_STATE;
546 }
547
548 /* caller already set message->status; dma and pio irqs are blocked */
549 static void giveback(struct driver_data *drv_data)
550 {
551 struct spi_transfer* last_transfer;
552 struct spi_message *msg;
553 unsigned long timeout;
554
555 msg = drv_data->master->cur_msg;
556 drv_data->cur_transfer = NULL;
557
558 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
559 transfer_list);
560
561 /* Delay if requested before any change in chip select */
562 if (last_transfer->delay_usecs)
563 udelay(last_transfer->delay_usecs);
564
565 /* Wait until SSP becomes idle before deasserting the CS */
566 timeout = jiffies + msecs_to_jiffies(10);
567 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
568 !time_after(jiffies, timeout))
569 cpu_relax();
570
571 /* Drop chip select UNLESS cs_change is true or we are returning
572 * a message with an error, or next message is for another chip
573 */
574 if (!last_transfer->cs_change)
575 cs_deassert(drv_data);
576 else {
577 struct spi_message *next_msg;
578
579 /* Holding of cs was hinted, but we need to make sure
580 * the next message is for the same chip. Don't waste
581 * time with the following tests unless this was hinted.
582 *
583 * We cannot postpone this until pump_messages, because
584 * after calling msg->complete (below) the driver that
585 * sent the current message could be unloaded, which
586 * could invalidate the cs_control() callback...
587 */
588
589 /* get a pointer to the next message, if any */
590 next_msg = spi_get_next_queued_message(drv_data->master);
591
592 /* see if the next and current messages point
593 * to the same chip
594 */
595 if ((next_msg && next_msg->spi != msg->spi) ||
596 msg->state == ERROR_STATE)
597 cs_deassert(drv_data);
598 }
599
600 spi_finalize_current_message(drv_data->master);
601 }
602
603 static void reset_sccr1(struct driver_data *drv_data)
604 {
605 struct chip_data *chip =
606 spi_get_ctldata(drv_data->master->cur_msg->spi);
607 u32 sccr1_reg;
608
609 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
610 switch (drv_data->ssp_type) {
611 case QUARK_X1000_SSP:
612 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
613 break;
614 case CE4100_SSP:
615 sccr1_reg &= ~CE4100_SSCR1_RFT;
616 break;
617 default:
618 sccr1_reg &= ~SSCR1_RFT;
619 break;
620 }
621 sccr1_reg |= chip->threshold;
622 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
623 }
624
625 static void int_error_stop(struct driver_data *drv_data, const char* msg)
626 {
627 /* Stop and reset SSP */
628 write_SSSR_CS(drv_data, drv_data->clear_sr);
629 reset_sccr1(drv_data);
630 if (!pxa25x_ssp_comp(drv_data))
631 pxa2xx_spi_write(drv_data, SSTO, 0);
632 pxa2xx_spi_flush(drv_data);
633 pxa2xx_spi_write(drv_data, SSCR0,
634 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
635
636 dev_err(&drv_data->pdev->dev, "%s\n", msg);
637
638 drv_data->master->cur_msg->state = ERROR_STATE;
639 tasklet_schedule(&drv_data->pump_transfers);
640 }
641
642 static void int_transfer_complete(struct driver_data *drv_data)
643 {
644 /* Clear and disable interrupts */
645 write_SSSR_CS(drv_data, drv_data->clear_sr);
646 reset_sccr1(drv_data);
647 if (!pxa25x_ssp_comp(drv_data))
648 pxa2xx_spi_write(drv_data, SSTO, 0);
649
650 /* Update total byte transferred return count actual bytes read */
651 drv_data->master->cur_msg->actual_length += drv_data->len -
652 (drv_data->rx_end - drv_data->rx);
653
654 /* Transfer delays and chip select release are
655 * handled in pump_transfers or giveback
656 */
657
658 /* Move to next transfer */
659 drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
660
661 /* Schedule transfer tasklet */
662 tasklet_schedule(&drv_data->pump_transfers);
663 }
664
665 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
666 {
667 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
668 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
669
670 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
671
672 if (irq_status & SSSR_ROR) {
673 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
674 return IRQ_HANDLED;
675 }
676
677 if (irq_status & SSSR_TINT) {
678 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
679 if (drv_data->read(drv_data)) {
680 int_transfer_complete(drv_data);
681 return IRQ_HANDLED;
682 }
683 }
684
685 /* Drain rx fifo, Fill tx fifo and prevent overruns */
686 do {
687 if (drv_data->read(drv_data)) {
688 int_transfer_complete(drv_data);
689 return IRQ_HANDLED;
690 }
691 } while (drv_data->write(drv_data));
692
693 if (drv_data->read(drv_data)) {
694 int_transfer_complete(drv_data);
695 return IRQ_HANDLED;
696 }
697
698 if (drv_data->tx == drv_data->tx_end) {
699 u32 bytes_left;
700 u32 sccr1_reg;
701
702 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
703 sccr1_reg &= ~SSCR1_TIE;
704
705 /*
706 * PXA25x_SSP has no timeout, set up rx threshould for the
707 * remaining RX bytes.
708 */
709 if (pxa25x_ssp_comp(drv_data)) {
710 u32 rx_thre;
711
712 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
713
714 bytes_left = drv_data->rx_end - drv_data->rx;
715 switch (drv_data->n_bytes) {
716 case 4:
717 bytes_left >>= 1;
718 case 2:
719 bytes_left >>= 1;
720 }
721
722 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
723 if (rx_thre > bytes_left)
724 rx_thre = bytes_left;
725
726 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
727 }
728 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
729 }
730
731 /* We did something */
732 return IRQ_HANDLED;
733 }
734
735 static irqreturn_t ssp_int(int irq, void *dev_id)
736 {
737 struct driver_data *drv_data = dev_id;
738 u32 sccr1_reg;
739 u32 mask = drv_data->mask_sr;
740 u32 status;
741
742 /*
743 * The IRQ might be shared with other peripherals so we must first
744 * check that are we RPM suspended or not. If we are we assume that
745 * the IRQ was not for us (we shouldn't be RPM suspended when the
746 * interrupt is enabled).
747 */
748 if (pm_runtime_suspended(&drv_data->pdev->dev))
749 return IRQ_NONE;
750
751 /*
752 * If the device is not yet in RPM suspended state and we get an
753 * interrupt that is meant for another device, check if status bits
754 * are all set to one. That means that the device is already
755 * powered off.
756 */
757 status = pxa2xx_spi_read(drv_data, SSSR);
758 if (status == ~0)
759 return IRQ_NONE;
760
761 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
762
763 /* Ignore possible writes if we don't need to write */
764 if (!(sccr1_reg & SSCR1_TIE))
765 mask &= ~SSSR_TFS;
766
767 /* Ignore RX timeout interrupt if it is disabled */
768 if (!(sccr1_reg & SSCR1_TINTE))
769 mask &= ~SSSR_TINT;
770
771 if (!(status & mask))
772 return IRQ_NONE;
773
774 if (!drv_data->master->cur_msg) {
775
776 pxa2xx_spi_write(drv_data, SSCR0,
777 pxa2xx_spi_read(drv_data, SSCR0)
778 & ~SSCR0_SSE);
779 pxa2xx_spi_write(drv_data, SSCR1,
780 pxa2xx_spi_read(drv_data, SSCR1)
781 & ~drv_data->int_cr1);
782 if (!pxa25x_ssp_comp(drv_data))
783 pxa2xx_spi_write(drv_data, SSTO, 0);
784 write_SSSR_CS(drv_data, drv_data->clear_sr);
785
786 dev_err(&drv_data->pdev->dev,
787 "bad message state in interrupt handler\n");
788
789 /* Never fail */
790 return IRQ_HANDLED;
791 }
792
793 return drv_data->transfer_handler(drv_data);
794 }
795
796 /*
797 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
798 * input frequency by fractions of 2^24. It also has a divider by 5.
799 *
800 * There are formulas to get baud rate value for given input frequency and
801 * divider parameters, such as DDS_CLK_RATE and SCR:
802 *
803 * Fsys = 200MHz
804 *
805 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
806 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
807 *
808 * DDS_CLK_RATE either 2^n or 2^n / 5.
809 * SCR is in range 0 .. 255
810 *
811 * Divisor = 5^i * 2^j * 2 * k
812 * i = [0, 1] i = 1 iff j = 0 or j > 3
813 * j = [0, 23] j = 0 iff i = 1
814 * k = [1, 256]
815 * Special case: j = 0, i = 1: Divisor = 2 / 5
816 *
817 * Accordingly to the specification the recommended values for DDS_CLK_RATE
818 * are:
819 * Case 1: 2^n, n = [0, 23]
820 * Case 2: 2^24 * 2 / 5 (0x666666)
821 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
822 *
823 * In all cases the lowest possible value is better.
824 *
825 * The function calculates parameters for all cases and chooses the one closest
826 * to the asked baud rate.
827 */
828 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
829 {
830 unsigned long xtal = 200000000;
831 unsigned long fref = xtal / 2; /* mandatory division by 2,
832 see (2) */
833 /* case 3 */
834 unsigned long fref1 = fref / 2; /* case 1 */
835 unsigned long fref2 = fref * 2 / 5; /* case 2 */
836 unsigned long scale;
837 unsigned long q, q1, q2;
838 long r, r1, r2;
839 u32 mul;
840
841 /* Case 1 */
842
843 /* Set initial value for DDS_CLK_RATE */
844 mul = (1 << 24) >> 1;
845
846 /* Calculate initial quot */
847 q1 = DIV_ROUND_UP(fref1, rate);
848
849 /* Scale q1 if it's too big */
850 if (q1 > 256) {
851 /* Scale q1 to range [1, 512] */
852 scale = fls_long(q1 - 1);
853 if (scale > 9) {
854 q1 >>= scale - 9;
855 mul >>= scale - 9;
856 }
857
858 /* Round the result if we have a remainder */
859 q1 += q1 & 1;
860 }
861
862 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
863 scale = __ffs(q1);
864 q1 >>= scale;
865 mul >>= scale;
866
867 /* Get the remainder */
868 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
869
870 /* Case 2 */
871
872 q2 = DIV_ROUND_UP(fref2, rate);
873 r2 = abs(fref2 / q2 - rate);
874
875 /*
876 * Choose the best between two: less remainder we have the better. We
877 * can't go case 2 if q2 is greater than 256 since SCR register can
878 * hold only values 0 .. 255.
879 */
880 if (r2 >= r1 || q2 > 256) {
881 /* case 1 is better */
882 r = r1;
883 q = q1;
884 } else {
885 /* case 2 is better */
886 r = r2;
887 q = q2;
888 mul = (1 << 24) * 2 / 5;
889 }
890
891 /* Check case 3 only if the divisor is big enough */
892 if (fref / rate >= 80) {
893 u64 fssp;
894 u32 m;
895
896 /* Calculate initial quot */
897 q1 = DIV_ROUND_UP(fref, rate);
898 m = (1 << 24) / q1;
899
900 /* Get the remainder */
901 fssp = (u64)fref * m;
902 do_div(fssp, 1 << 24);
903 r1 = abs(fssp - rate);
904
905 /* Choose this one if it suits better */
906 if (r1 < r) {
907 /* case 3 is better */
908 q = 1;
909 mul = m;
910 }
911 }
912
913 *dds = mul;
914 return q - 1;
915 }
916
917 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
918 {
919 unsigned long ssp_clk = drv_data->master->max_speed_hz;
920 const struct ssp_device *ssp = drv_data->ssp;
921
922 rate = min_t(int, ssp_clk, rate);
923
924 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
925 return (ssp_clk / (2 * rate) - 1) & 0xff;
926 else
927 return (ssp_clk / rate - 1) & 0xfff;
928 }
929
930 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
931 int rate)
932 {
933 struct chip_data *chip =
934 spi_get_ctldata(drv_data->master->cur_msg->spi);
935 unsigned int clk_div;
936
937 switch (drv_data->ssp_type) {
938 case QUARK_X1000_SSP:
939 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
940 break;
941 default:
942 clk_div = ssp_get_clk_div(drv_data, rate);
943 break;
944 }
945 return clk_div << 8;
946 }
947
948 static bool pxa2xx_spi_can_dma(struct spi_master *master,
949 struct spi_device *spi,
950 struct spi_transfer *xfer)
951 {
952 struct chip_data *chip = spi_get_ctldata(spi);
953
954 return chip->enable_dma &&
955 xfer->len <= MAX_DMA_LEN &&
956 xfer->len >= chip->dma_burst_size;
957 }
958
959 static void pump_transfers(unsigned long data)
960 {
961 struct driver_data *drv_data = (struct driver_data *)data;
962 struct spi_master *master = drv_data->master;
963 struct spi_message *message = master->cur_msg;
964 struct chip_data *chip = spi_get_ctldata(message->spi);
965 u32 dma_thresh = chip->dma_threshold;
966 u32 dma_burst = chip->dma_burst_size;
967 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
968 struct spi_transfer *transfer;
969 struct spi_transfer *previous;
970 u32 clk_div;
971 u8 bits;
972 u32 speed;
973 u32 cr0;
974 u32 cr1;
975 int err;
976 int dma_mapped;
977
978 /* Get current state information */
979 transfer = drv_data->cur_transfer;
980
981 /* Handle for abort */
982 if (message->state == ERROR_STATE) {
983 message->status = -EIO;
984 giveback(drv_data);
985 return;
986 }
987
988 /* Handle end of message */
989 if (message->state == DONE_STATE) {
990 message->status = 0;
991 giveback(drv_data);
992 return;
993 }
994
995 /* Delay if requested at end of transfer before CS change */
996 if (message->state == RUNNING_STATE) {
997 previous = list_entry(transfer->transfer_list.prev,
998 struct spi_transfer,
999 transfer_list);
1000 if (previous->delay_usecs)
1001 udelay(previous->delay_usecs);
1002
1003 /* Drop chip select only if cs_change is requested */
1004 if (previous->cs_change)
1005 cs_deassert(drv_data);
1006 }
1007
1008 /* Check if we can DMA this transfer */
1009 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1010
1011 /* reject already-mapped transfers; PIO won't always work */
1012 if (message->is_dma_mapped
1013 || transfer->rx_dma || transfer->tx_dma) {
1014 dev_err(&drv_data->pdev->dev,
1015 "pump_transfers: mapped transfer length of "
1016 "%u is greater than %d\n",
1017 transfer->len, MAX_DMA_LEN);
1018 message->status = -EINVAL;
1019 giveback(drv_data);
1020 return;
1021 }
1022
1023 /* warn ... we force this to PIO mode */
1024 dev_warn_ratelimited(&message->spi->dev,
1025 "pump_transfers: DMA disabled for transfer length %ld "
1026 "greater than %d\n",
1027 (long)drv_data->len, MAX_DMA_LEN);
1028 }
1029
1030 /* Setup the transfer state based on the type of transfer */
1031 if (pxa2xx_spi_flush(drv_data) == 0) {
1032 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1033 message->status = -EIO;
1034 giveback(drv_data);
1035 return;
1036 }
1037 drv_data->n_bytes = chip->n_bytes;
1038 drv_data->tx = (void *)transfer->tx_buf;
1039 drv_data->tx_end = drv_data->tx + transfer->len;
1040 drv_data->rx = transfer->rx_buf;
1041 drv_data->rx_end = drv_data->rx + transfer->len;
1042 drv_data->len = transfer->len;
1043 drv_data->write = drv_data->tx ? chip->write : null_writer;
1044 drv_data->read = drv_data->rx ? chip->read : null_reader;
1045
1046 /* Change speed and bit per word on a per transfer */
1047 bits = transfer->bits_per_word;
1048 speed = transfer->speed_hz;
1049
1050 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1051
1052 if (bits <= 8) {
1053 drv_data->n_bytes = 1;
1054 drv_data->read = drv_data->read != null_reader ?
1055 u8_reader : null_reader;
1056 drv_data->write = drv_data->write != null_writer ?
1057 u8_writer : null_writer;
1058 } else if (bits <= 16) {
1059 drv_data->n_bytes = 2;
1060 drv_data->read = drv_data->read != null_reader ?
1061 u16_reader : null_reader;
1062 drv_data->write = drv_data->write != null_writer ?
1063 u16_writer : null_writer;
1064 } else if (bits <= 32) {
1065 drv_data->n_bytes = 4;
1066 drv_data->read = drv_data->read != null_reader ?
1067 u32_reader : null_reader;
1068 drv_data->write = drv_data->write != null_writer ?
1069 u32_writer : null_writer;
1070 }
1071 /*
1072 * if bits/word is changed in dma mode, then must check the
1073 * thresholds and burst also
1074 */
1075 if (chip->enable_dma) {
1076 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1077 message->spi,
1078 bits, &dma_burst,
1079 &dma_thresh))
1080 dev_warn_ratelimited(&message->spi->dev,
1081 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1082 }
1083
1084 message->state = RUNNING_STATE;
1085
1086 dma_mapped = master->can_dma &&
1087 master->can_dma(master, message->spi, transfer) &&
1088 master->cur_msg_mapped;
1089 if (dma_mapped) {
1090
1091 /* Ensure we have the correct interrupt handler */
1092 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1093
1094 err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1095 if (err) {
1096 message->status = err;
1097 giveback(drv_data);
1098 return;
1099 }
1100
1101 /* Clear status and start DMA engine */
1102 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1103 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1104
1105 pxa2xx_spi_dma_start(drv_data);
1106 } else {
1107 /* Ensure we have the correct interrupt handler */
1108 drv_data->transfer_handler = interrupt_transfer;
1109
1110 /* Clear status */
1111 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1112 write_SSSR_CS(drv_data, drv_data->clear_sr);
1113 }
1114
1115 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1116 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1117 if (!pxa25x_ssp_comp(drv_data))
1118 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1119 master->max_speed_hz
1120 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1121 dma_mapped ? "DMA" : "PIO");
1122 else
1123 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1124 master->max_speed_hz / 2
1125 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1126 dma_mapped ? "DMA" : "PIO");
1127
1128 if (is_lpss_ssp(drv_data)) {
1129 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1130 != chip->lpss_rx_threshold)
1131 pxa2xx_spi_write(drv_data, SSIRF,
1132 chip->lpss_rx_threshold);
1133 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1134 != chip->lpss_tx_threshold)
1135 pxa2xx_spi_write(drv_data, SSITF,
1136 chip->lpss_tx_threshold);
1137 }
1138
1139 if (is_quark_x1000_ssp(drv_data) &&
1140 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1141 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1142
1143 /* see if we need to reload the config registers */
1144 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1145 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1146 != (cr1 & change_mask)) {
1147 /* stop the SSP, and update the other bits */
1148 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1149 if (!pxa25x_ssp_comp(drv_data))
1150 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1151 /* first set CR1 without interrupt and service enables */
1152 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1153 /* restart the SSP */
1154 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1155
1156 } else {
1157 if (!pxa25x_ssp_comp(drv_data))
1158 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1159 }
1160
1161 cs_assert(drv_data);
1162
1163 /* after chip select, release the data by enabling service
1164 * requests and interrupts, without changing any mode bits */
1165 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1166 }
1167
1168 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1169 struct spi_message *msg)
1170 {
1171 struct driver_data *drv_data = spi_master_get_devdata(master);
1172
1173 /* Initial message state*/
1174 msg->state = START_STATE;
1175 drv_data->cur_transfer = list_entry(msg->transfers.next,
1176 struct spi_transfer,
1177 transfer_list);
1178
1179 /* Mark as busy and launch transfers */
1180 tasklet_schedule(&drv_data->pump_transfers);
1181 return 0;
1182 }
1183
1184 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1185 {
1186 struct driver_data *drv_data = spi_master_get_devdata(master);
1187
1188 /* Disable the SSP now */
1189 pxa2xx_spi_write(drv_data, SSCR0,
1190 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1191
1192 return 0;
1193 }
1194
1195 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1196 struct pxa2xx_spi_chip *chip_info)
1197 {
1198 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1199 int err = 0;
1200
1201 if (chip == NULL)
1202 return 0;
1203
1204 if (drv_data->cs_gpiods) {
1205 struct gpio_desc *gpiod;
1206
1207 gpiod = drv_data->cs_gpiods[spi->chip_select];
1208 if (gpiod) {
1209 chip->gpio_cs = desc_to_gpio(gpiod);
1210 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1211 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1212 }
1213
1214 return 0;
1215 }
1216
1217 if (chip_info == NULL)
1218 return 0;
1219
1220 /* NOTE: setup() can be called multiple times, possibly with
1221 * different chip_info, release previously requested GPIO
1222 */
1223 if (gpio_is_valid(chip->gpio_cs))
1224 gpio_free(chip->gpio_cs);
1225
1226 /* If (*cs_control) is provided, ignore GPIO chip select */
1227 if (chip_info->cs_control) {
1228 chip->cs_control = chip_info->cs_control;
1229 return 0;
1230 }
1231
1232 if (gpio_is_valid(chip_info->gpio_cs)) {
1233 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1234 if (err) {
1235 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1236 chip_info->gpio_cs);
1237 return err;
1238 }
1239
1240 chip->gpio_cs = chip_info->gpio_cs;
1241 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1242
1243 err = gpio_direction_output(chip->gpio_cs,
1244 !chip->gpio_cs_inverted);
1245 }
1246
1247 return err;
1248 }
1249
1250 static int setup(struct spi_device *spi)
1251 {
1252 struct pxa2xx_spi_chip *chip_info;
1253 struct chip_data *chip;
1254 const struct lpss_config *config;
1255 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1256 uint tx_thres, tx_hi_thres, rx_thres;
1257
1258 switch (drv_data->ssp_type) {
1259 case QUARK_X1000_SSP:
1260 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1261 tx_hi_thres = 0;
1262 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1263 break;
1264 case CE4100_SSP:
1265 tx_thres = TX_THRESH_CE4100_DFLT;
1266 tx_hi_thres = 0;
1267 rx_thres = RX_THRESH_CE4100_DFLT;
1268 break;
1269 case LPSS_LPT_SSP:
1270 case LPSS_BYT_SSP:
1271 case LPSS_BSW_SSP:
1272 case LPSS_SPT_SSP:
1273 case LPSS_BXT_SSP:
1274 config = lpss_get_config(drv_data);
1275 tx_thres = config->tx_threshold_lo;
1276 tx_hi_thres = config->tx_threshold_hi;
1277 rx_thres = config->rx_threshold;
1278 break;
1279 default:
1280 tx_thres = TX_THRESH_DFLT;
1281 tx_hi_thres = 0;
1282 rx_thres = RX_THRESH_DFLT;
1283 break;
1284 }
1285
1286 /* Only alloc on first setup */
1287 chip = spi_get_ctldata(spi);
1288 if (!chip) {
1289 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1290 if (!chip)
1291 return -ENOMEM;
1292
1293 if (drv_data->ssp_type == CE4100_SSP) {
1294 if (spi->chip_select > 4) {
1295 dev_err(&spi->dev,
1296 "failed setup: cs number must not be > 4.\n");
1297 kfree(chip);
1298 return -EINVAL;
1299 }
1300
1301 chip->frm = spi->chip_select;
1302 } else
1303 chip->gpio_cs = -1;
1304 chip->enable_dma = drv_data->master_info->enable_dma;
1305 chip->timeout = TIMOUT_DFLT;
1306 }
1307
1308 /* protocol drivers may change the chip settings, so...
1309 * if chip_info exists, use it */
1310 chip_info = spi->controller_data;
1311
1312 /* chip_info isn't always needed */
1313 chip->cr1 = 0;
1314 if (chip_info) {
1315 if (chip_info->timeout)
1316 chip->timeout = chip_info->timeout;
1317 if (chip_info->tx_threshold)
1318 tx_thres = chip_info->tx_threshold;
1319 if (chip_info->tx_hi_threshold)
1320 tx_hi_thres = chip_info->tx_hi_threshold;
1321 if (chip_info->rx_threshold)
1322 rx_thres = chip_info->rx_threshold;
1323 chip->dma_threshold = 0;
1324 if (chip_info->enable_loopback)
1325 chip->cr1 = SSCR1_LBM;
1326 }
1327
1328 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1329 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1330 | SSITF_TxHiThresh(tx_hi_thres);
1331
1332 /* set dma burst and threshold outside of chip_info path so that if
1333 * chip_info goes away after setting chip->enable_dma, the
1334 * burst and threshold can still respond to changes in bits_per_word */
1335 if (chip->enable_dma) {
1336 /* set up legal burst and threshold for dma */
1337 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1338 spi->bits_per_word,
1339 &chip->dma_burst_size,
1340 &chip->dma_threshold)) {
1341 dev_warn(&spi->dev,
1342 "in setup: DMA burst size reduced to match bits_per_word\n");
1343 }
1344 }
1345
1346 switch (drv_data->ssp_type) {
1347 case QUARK_X1000_SSP:
1348 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1349 & QUARK_X1000_SSCR1_RFT)
1350 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1351 & QUARK_X1000_SSCR1_TFT);
1352 break;
1353 case CE4100_SSP:
1354 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1355 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1356 break;
1357 default:
1358 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1359 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1360 break;
1361 }
1362
1363 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1364 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1365 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1366
1367 if (spi->mode & SPI_LOOP)
1368 chip->cr1 |= SSCR1_LBM;
1369
1370 if (spi->bits_per_word <= 8) {
1371 chip->n_bytes = 1;
1372 chip->read = u8_reader;
1373 chip->write = u8_writer;
1374 } else if (spi->bits_per_word <= 16) {
1375 chip->n_bytes = 2;
1376 chip->read = u16_reader;
1377 chip->write = u16_writer;
1378 } else if (spi->bits_per_word <= 32) {
1379 chip->n_bytes = 4;
1380 chip->read = u32_reader;
1381 chip->write = u32_writer;
1382 }
1383
1384 spi_set_ctldata(spi, chip);
1385
1386 if (drv_data->ssp_type == CE4100_SSP)
1387 return 0;
1388
1389 return setup_cs(spi, chip, chip_info);
1390 }
1391
1392 static void cleanup(struct spi_device *spi)
1393 {
1394 struct chip_data *chip = spi_get_ctldata(spi);
1395 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1396
1397 if (!chip)
1398 return;
1399
1400 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1401 gpio_is_valid(chip->gpio_cs))
1402 gpio_free(chip->gpio_cs);
1403
1404 kfree(chip);
1405 }
1406
1407 #ifdef CONFIG_PCI
1408 #ifdef CONFIG_ACPI
1409
1410 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1411 { "INT33C0", LPSS_LPT_SSP },
1412 { "INT33C1", LPSS_LPT_SSP },
1413 { "INT3430", LPSS_LPT_SSP },
1414 { "INT3431", LPSS_LPT_SSP },
1415 { "80860F0E", LPSS_BYT_SSP },
1416 { "8086228E", LPSS_BSW_SSP },
1417 { },
1418 };
1419 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1420
1421 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1422 {
1423 unsigned int devid;
1424 int port_id = -1;
1425
1426 if (adev && adev->pnp.unique_id &&
1427 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1428 port_id = devid;
1429 return port_id;
1430 }
1431 #else /* !CONFIG_ACPI */
1432 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1433 {
1434 return -1;
1435 }
1436 #endif
1437
1438 /*
1439 * PCI IDs of compound devices that integrate both host controller and private
1440 * integrated DMA engine. Please note these are not used in module
1441 * autoloading and probing in this module but matching the LPSS SSP type.
1442 */
1443 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1444 /* SPT-LP */
1445 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1446 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1447 /* SPT-H */
1448 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1449 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1450 /* KBL-H */
1451 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1452 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1453 /* BXT A-Step */
1454 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1455 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1456 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1457 /* BXT B-Step */
1458 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1459 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1460 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1461 /* APL */
1462 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1463 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1464 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1465 { },
1466 };
1467
1468 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1469 {
1470 struct device *dev = param;
1471
1472 if (dev != chan->device->dev->parent)
1473 return false;
1474
1475 return true;
1476 }
1477
1478 static struct pxa2xx_spi_master *
1479 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1480 {
1481 struct pxa2xx_spi_master *pdata;
1482 struct acpi_device *adev;
1483 struct ssp_device *ssp;
1484 struct resource *res;
1485 const struct acpi_device_id *adev_id = NULL;
1486 const struct pci_device_id *pcidev_id = NULL;
1487 int type;
1488
1489 adev = ACPI_COMPANION(&pdev->dev);
1490
1491 if (dev_is_pci(pdev->dev.parent))
1492 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1493 to_pci_dev(pdev->dev.parent));
1494 else if (adev)
1495 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1496 &pdev->dev);
1497 else
1498 return NULL;
1499
1500 if (adev_id)
1501 type = (int)adev_id->driver_data;
1502 else if (pcidev_id)
1503 type = (int)pcidev_id->driver_data;
1504 else
1505 return NULL;
1506
1507 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1508 if (!pdata)
1509 return NULL;
1510
1511 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1512 if (!res)
1513 return NULL;
1514
1515 ssp = &pdata->ssp;
1516
1517 ssp->phys_base = res->start;
1518 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1519 if (IS_ERR(ssp->mmio_base))
1520 return NULL;
1521
1522 if (pcidev_id) {
1523 pdata->tx_param = pdev->dev.parent;
1524 pdata->rx_param = pdev->dev.parent;
1525 pdata->dma_filter = pxa2xx_spi_idma_filter;
1526 }
1527
1528 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1529 ssp->irq = platform_get_irq(pdev, 0);
1530 ssp->type = type;
1531 ssp->pdev = pdev;
1532 ssp->port_id = pxa2xx_spi_get_port_id(adev);
1533
1534 pdata->num_chipselect = 1;
1535 pdata->enable_dma = true;
1536
1537 return pdata;
1538 }
1539
1540 #else /* !CONFIG_PCI */
1541 static inline struct pxa2xx_spi_master *
1542 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1543 {
1544 return NULL;
1545 }
1546 #endif
1547
1548 static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1549 {
1550 struct driver_data *drv_data = spi_master_get_devdata(master);
1551
1552 if (has_acpi_companion(&drv_data->pdev->dev)) {
1553 switch (drv_data->ssp_type) {
1554 /*
1555 * For Atoms the ACPI DeviceSelection used by the Windows
1556 * driver starts from 1 instead of 0 so translate it here
1557 * to match what Linux expects.
1558 */
1559 case LPSS_BYT_SSP:
1560 case LPSS_BSW_SSP:
1561 return cs - 1;
1562
1563 default:
1564 break;
1565 }
1566 }
1567
1568 return cs;
1569 }
1570
1571 static int pxa2xx_spi_probe(struct platform_device *pdev)
1572 {
1573 struct device *dev = &pdev->dev;
1574 struct pxa2xx_spi_master *platform_info;
1575 struct spi_master *master;
1576 struct driver_data *drv_data;
1577 struct ssp_device *ssp;
1578 const struct lpss_config *config;
1579 int status, count;
1580 u32 tmp;
1581
1582 platform_info = dev_get_platdata(dev);
1583 if (!platform_info) {
1584 platform_info = pxa2xx_spi_init_pdata(pdev);
1585 if (!platform_info) {
1586 dev_err(&pdev->dev, "missing platform data\n");
1587 return -ENODEV;
1588 }
1589 }
1590
1591 ssp = pxa_ssp_request(pdev->id, pdev->name);
1592 if (!ssp)
1593 ssp = &platform_info->ssp;
1594
1595 if (!ssp->mmio_base) {
1596 dev_err(&pdev->dev, "failed to get ssp\n");
1597 return -ENODEV;
1598 }
1599
1600 master = spi_alloc_master(dev, sizeof(struct driver_data));
1601 if (!master) {
1602 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1603 pxa_ssp_free(ssp);
1604 return -ENOMEM;
1605 }
1606 drv_data = spi_master_get_devdata(master);
1607 drv_data->master = master;
1608 drv_data->master_info = platform_info;
1609 drv_data->pdev = pdev;
1610 drv_data->ssp = ssp;
1611
1612 master->dev.of_node = pdev->dev.of_node;
1613 /* the spi->mode bits understood by this driver: */
1614 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1615
1616 master->bus_num = ssp->port_id;
1617 master->dma_alignment = DMA_ALIGNMENT;
1618 master->cleanup = cleanup;
1619 master->setup = setup;
1620 master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1621 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1622 master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1623 master->auto_runtime_pm = true;
1624 master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1625
1626 drv_data->ssp_type = ssp->type;
1627
1628 drv_data->ioaddr = ssp->mmio_base;
1629 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1630 if (pxa25x_ssp_comp(drv_data)) {
1631 switch (drv_data->ssp_type) {
1632 case QUARK_X1000_SSP:
1633 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1634 break;
1635 default:
1636 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1637 break;
1638 }
1639
1640 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1641 drv_data->dma_cr1 = 0;
1642 drv_data->clear_sr = SSSR_ROR;
1643 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1644 } else {
1645 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1646 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1647 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1648 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1649 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1650 }
1651
1652 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1653 drv_data);
1654 if (status < 0) {
1655 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1656 goto out_error_master_alloc;
1657 }
1658
1659 /* Setup DMA if requested */
1660 if (platform_info->enable_dma) {
1661 status = pxa2xx_spi_dma_setup(drv_data);
1662 if (status) {
1663 dev_dbg(dev, "no DMA channels available, using PIO\n");
1664 platform_info->enable_dma = false;
1665 } else {
1666 master->can_dma = pxa2xx_spi_can_dma;
1667 }
1668 }
1669
1670 /* Enable SOC clock */
1671 clk_prepare_enable(ssp->clk);
1672
1673 master->max_speed_hz = clk_get_rate(ssp->clk);
1674
1675 /* Load default SSP configuration */
1676 pxa2xx_spi_write(drv_data, SSCR0, 0);
1677 switch (drv_data->ssp_type) {
1678 case QUARK_X1000_SSP:
1679 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1680 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1681 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1682
1683 /* using the Motorola SPI protocol and use 8 bit frame */
1684 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1685 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1686 break;
1687 case CE4100_SSP:
1688 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1689 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1690 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1691 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1692 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1693 break;
1694 default:
1695 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1696 SSCR1_TxTresh(TX_THRESH_DFLT);
1697 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1698 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1699 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1700 break;
1701 }
1702
1703 if (!pxa25x_ssp_comp(drv_data))
1704 pxa2xx_spi_write(drv_data, SSTO, 0);
1705
1706 if (!is_quark_x1000_ssp(drv_data))
1707 pxa2xx_spi_write(drv_data, SSPSP, 0);
1708
1709 if (is_lpss_ssp(drv_data)) {
1710 lpss_ssp_setup(drv_data);
1711 config = lpss_get_config(drv_data);
1712 if (config->reg_capabilities >= 0) {
1713 tmp = __lpss_ssp_read_priv(drv_data,
1714 config->reg_capabilities);
1715 tmp &= LPSS_CAPS_CS_EN_MASK;
1716 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1717 platform_info->num_chipselect = ffz(tmp);
1718 } else if (config->cs_num) {
1719 platform_info->num_chipselect = config->cs_num;
1720 }
1721 }
1722 master->num_chipselect = platform_info->num_chipselect;
1723
1724 count = gpiod_count(&pdev->dev, "cs");
1725 if (count > 0) {
1726 int i;
1727
1728 master->num_chipselect = max_t(int, count,
1729 master->num_chipselect);
1730
1731 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1732 master->num_chipselect, sizeof(struct gpio_desc *),
1733 GFP_KERNEL);
1734 if (!drv_data->cs_gpiods) {
1735 status = -ENOMEM;
1736 goto out_error_clock_enabled;
1737 }
1738
1739 for (i = 0; i < master->num_chipselect; i++) {
1740 struct gpio_desc *gpiod;
1741
1742 gpiod = devm_gpiod_get_index(dev, "cs", i,
1743 GPIOD_OUT_HIGH);
1744 if (IS_ERR(gpiod)) {
1745 /* Means use native chip select */
1746 if (PTR_ERR(gpiod) == -ENOENT)
1747 continue;
1748
1749 status = (int)PTR_ERR(gpiod);
1750 goto out_error_clock_enabled;
1751 } else {
1752 drv_data->cs_gpiods[i] = gpiod;
1753 }
1754 }
1755 }
1756
1757 tasklet_init(&drv_data->pump_transfers, pump_transfers,
1758 (unsigned long)drv_data);
1759
1760 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1761 pm_runtime_use_autosuspend(&pdev->dev);
1762 pm_runtime_set_active(&pdev->dev);
1763 pm_runtime_enable(&pdev->dev);
1764
1765 /* Register with the SPI framework */
1766 platform_set_drvdata(pdev, drv_data);
1767 status = devm_spi_register_master(&pdev->dev, master);
1768 if (status != 0) {
1769 dev_err(&pdev->dev, "problem registering spi master\n");
1770 goto out_error_clock_enabled;
1771 }
1772
1773 return status;
1774
1775 out_error_clock_enabled:
1776 clk_disable_unprepare(ssp->clk);
1777 pxa2xx_spi_dma_release(drv_data);
1778 free_irq(ssp->irq, drv_data);
1779
1780 out_error_master_alloc:
1781 spi_master_put(master);
1782 pxa_ssp_free(ssp);
1783 return status;
1784 }
1785
1786 static int pxa2xx_spi_remove(struct platform_device *pdev)
1787 {
1788 struct driver_data *drv_data = platform_get_drvdata(pdev);
1789 struct ssp_device *ssp;
1790
1791 if (!drv_data)
1792 return 0;
1793 ssp = drv_data->ssp;
1794
1795 pm_runtime_get_sync(&pdev->dev);
1796
1797 /* Disable the SSP at the peripheral and SOC level */
1798 pxa2xx_spi_write(drv_data, SSCR0, 0);
1799 clk_disable_unprepare(ssp->clk);
1800
1801 /* Release DMA */
1802 if (drv_data->master_info->enable_dma)
1803 pxa2xx_spi_dma_release(drv_data);
1804
1805 pm_runtime_put_noidle(&pdev->dev);
1806 pm_runtime_disable(&pdev->dev);
1807
1808 /* Release IRQ */
1809 free_irq(ssp->irq, drv_data);
1810
1811 /* Release SSP */
1812 pxa_ssp_free(ssp);
1813
1814 return 0;
1815 }
1816
1817 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1818 {
1819 int status = 0;
1820
1821 if ((status = pxa2xx_spi_remove(pdev)) != 0)
1822 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1823 }
1824
1825 #ifdef CONFIG_PM_SLEEP
1826 static int pxa2xx_spi_suspend(struct device *dev)
1827 {
1828 struct driver_data *drv_data = dev_get_drvdata(dev);
1829 struct ssp_device *ssp = drv_data->ssp;
1830 int status;
1831
1832 status = spi_master_suspend(drv_data->master);
1833 if (status != 0)
1834 return status;
1835 pxa2xx_spi_write(drv_data, SSCR0, 0);
1836
1837 if (!pm_runtime_suspended(dev))
1838 clk_disable_unprepare(ssp->clk);
1839
1840 return 0;
1841 }
1842
1843 static int pxa2xx_spi_resume(struct device *dev)
1844 {
1845 struct driver_data *drv_data = dev_get_drvdata(dev);
1846 struct ssp_device *ssp = drv_data->ssp;
1847 int status;
1848
1849 /* Enable the SSP clock */
1850 if (!pm_runtime_suspended(dev))
1851 clk_prepare_enable(ssp->clk);
1852
1853 /* Restore LPSS private register bits */
1854 if (is_lpss_ssp(drv_data))
1855 lpss_ssp_setup(drv_data);
1856
1857 /* Start the queue running */
1858 status = spi_master_resume(drv_data->master);
1859 if (status != 0) {
1860 dev_err(dev, "problem starting queue (%d)\n", status);
1861 return status;
1862 }
1863
1864 return 0;
1865 }
1866 #endif
1867
1868 #ifdef CONFIG_PM
1869 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1870 {
1871 struct driver_data *drv_data = dev_get_drvdata(dev);
1872
1873 clk_disable_unprepare(drv_data->ssp->clk);
1874 return 0;
1875 }
1876
1877 static int pxa2xx_spi_runtime_resume(struct device *dev)
1878 {
1879 struct driver_data *drv_data = dev_get_drvdata(dev);
1880
1881 clk_prepare_enable(drv_data->ssp->clk);
1882 return 0;
1883 }
1884 #endif
1885
1886 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1887 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1888 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1889 pxa2xx_spi_runtime_resume, NULL)
1890 };
1891
1892 static struct platform_driver driver = {
1893 .driver = {
1894 .name = "pxa2xx-spi",
1895 .pm = &pxa2xx_spi_pm_ops,
1896 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1897 },
1898 .probe = pxa2xx_spi_probe,
1899 .remove = pxa2xx_spi_remove,
1900 .shutdown = pxa2xx_spi_shutdown,
1901 };
1902
1903 static int __init pxa2xx_spi_init(void)
1904 {
1905 return platform_driver_register(&driver);
1906 }
1907 subsys_initcall(pxa2xx_spi_init);
1908
1909 static void __exit pxa2xx_spi_exit(void)
1910 {
1911 platform_driver_unregister(&driver);
1912 }
1913 module_exit(pxa2xx_spi_exit);